Check for
Updates

Exploring Self-Embedded Knitting Programs with
Twine

Amy Zhu
amyzhu@cs.washington.edu
University of Washington
USA

Abstract

We examine how we might explicitly embed the intricate de-
tails of the fabrication process in the design of an object; the
goal is for the programs that manufacture the object to also
produce themselves within the object. We highlight how con-
cretizing the design process of an object in the real object can
help reconstruct items and remind us of the reality that all
objects must be manufactured, incurring labour and environ-
mental costs. By drawing inspiration from self-reproducing
programs, we outline a new self-decoding language design
centred around quines for knitting, a versatile technique in
fabric construction, with both historical significance and re-
cent advances in programmable whole-garment machines
for their manufacture. We show some preliminary results
of using this language design to create knitted quines, and
discuss how this interesting question might be further ad-
vanced.

CCS Concepts: » Software and its engineering — Do-
main specific languages; « Applied computing;

Adriana Schulz
adriana@cs.washington.edu
University of Washington

USA

Keywords: knitting, fabrication, embedded information, quines

ACM Reference Format:

Amy Zhu, Adriana Schulz, and Zachary Tatlock. 2023. Exploring
Self-Embedded Knitting Programs with Twine. In Proceedings of
the 11th ACM SIGPLAN International Workshop on Functional Art,
Music, Modelling, and Design (FARM ’23), September 8, 2023, Seattle,
WA, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3609023.3609805

To err is human, to recreate, quine.

1 Introduction

Every fabricated object implicitly contains aspects of its fab-
rication program. Remnants of manufacturing processes are
embedded in weave patterns, seams, joins, cut ends, and
other artifacts. When experts in design and manufacturing

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

FARM 23, September 8, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0295-2/23/09.
https://doi.org/10.1145/3609023.3609805

25

Zachary Tatlock
ztatlock@cs.washington.edu
University of Washington
USA

analyze a manufactured object, they can often deduce many
of these aspects, from the materials used, the manufacturing
processes employed, and the assembly methods involved.
However, this analysis requires substantial expertise and
potentially dismantling the object to reverse engineer it and
develop a manufacturing plan for replication. Moreover, a
comprehensive understanding of the manufacturing process
is often not possible because there can be multiple ways to
produce a given design. Hence, we pose the question: can
we leverage concepts from self-reproducing programs to
generate designs encoding their manufacturing process?

Explicitly encoding the manufacturing process also reifies
the making of objects. It calls attention to the production
of the things we consume, providing quotidian reminders
that these items did not spontaneously appear, but had to be
created: the materials grown or synthesized, the processes
engineered, the items crafted and transported. In our fast-
paced consumerist society, we often disregard the origins
of our purchases. By showcasing manufacturability within
the objects themselves, we compel people to confront these
considerations, suggesting a mindful approach towards con-
sumption, prompting reflection on the labor and environ-
mental implications associated with our things.

In this work, we identify an interesting challenge in em-
bedding fabrication programs explicitly within knitted items,
and provide preliminary steps in exploring the space of solu-
tions alongside a short evaluation of the progress we have
made thus far.

Our proposed question is rooted in the fundamental un-
derstanding that manufacturing plans can be viewed as pro-
grams. These programs consist of sequences of instructions
that unveil the process of object creation. We deliberately
selected knitting as the primary subject of our investigation,
given its historical significance and its status as one of the
earliest and most adaptable techniques for fabric construc-
tion. Moreover, the advent of programmable whole-garment
knitting machines has facilitated the exploration of knitting
from a programming language analysis standpoint, resulting
in numerous studies within this field of research.

Furthermore, we insist that the fabrication instructions
incorporate the means to replicate themselves, such that the
new object derived from these instructions also contains the
necessary fabrication instructions. From this perspective, a
manufacturing process that exposes itself within the gen-
erated object is like a program that produces a replica of



FARM 23, September 8, 2023, Seattle, WA, USA

its own source code. This problem statement may recall a
classic programming problem: that of writing a quine.

Interesting quines already present a challenge to write
in general-purpose programming languages with general-
purpose tools. Instead, we posit that for the purpose of
producing specific quines easily and extensibly, this “self-
printing information” must be embedded into the semantics
of the language itself.

Our insights are twofold. First, we view the process of
including the fabrication instructions for an object as embed-
ding the fabrication program within the fabrication program,
rather than including them as a layer on top or another
processing step, enabling the worldview that these can be
expressed as quines. Second, to enable the creation of many
different knit quine programs, we should build a language
that has self-production as a first-class citizen. We design
such a language, called Twine, and use it to write and cre-
ate some knitted quines. We identify key challenges within
this problem space and describe what future work would be
necessary to fully do justice to this interesting problem.

Our contributions serve as a prototype that begins to ex-
plore the problem space, not the final word on this subject.
Rather than thinking of this work as solving the problem
of self-embedded fabrication programs, we hope this paper
opens avenues to more interesting and complete insights
and implementations to come.

2 Related Work
2.1 Fabricating Embedded Information

There has been a rich interest in fabricating items with em-
bedded information, of which we provide a very brief as-
sessment. Some lines of work find ways to either invisibly
encode directions to external information on objects such as
3D-printed QR codes only visible to an IR camera [3], visibly
render barcodes for 3D printing [8], or explore how to embed
designs into 3D printed objects revealed through IR imaging
or thermal conductivity [6]. Other, more subtle ways to em-
bed information can also be powerful. [2] demonstrates the
use of settings as “signatures” by changing slicing parame-
ters to identify the manufacturing printer. [1] shows another
watermarking mechanism through slight variations in layer
thickness. We refer readers interested in a more in-depth
exploration of the space to the papers cited above.

Perhaps most relevantly, [7] demonstrates how a DNA-
inspired matrix of nano glass beads can be used as a material
for 3D printing. The authors show how a 3D-printed Stanford
bunny can be disassembled, sequenced, and used to replicate
itself, doing this five times in total.

These works often aim to embed arbitrary information,
which may be far larger than the object itself, or redirect
the user to another resource. In our work, we aim to embed
only the program producing the fabrication object directly

26

Amy Zhu, Adriana Schulz, and Zachary Tatlock

() (b)

Figure 1. An illustration of knits. (A) A row of unsupported
loops. These loops would be considered neighbors. (B) A
wale of loops, showing the stability of loops pulled through
loops. Notice how the legs of the yarn in the middle loop can
no longer be pulled flat.

into the object. Importantly, we do this within the domain
of knitting.

2.2 Knitting Languages

Computational knitting is a rich field with advances from
graphics, HCI, and programming languages. There are sev-
eral notable examples of domain-specific languages devel-
oped to describe knitting. KnitSpeak [5] is a language to
describe knitting patterns, particularly textures, which draws
inspiration from how knitters typically write patterns. Knitout,
first described in [9], is an abstract assembly language that
encodes knitting machine operations.

3 Knitting Background

Knitted fabric is composed, fundamentally, by loops on a
connected yarn. A loop on its own is not stable, but the
process of knitting pulls a loop through another loop, thus
stabilizing it (Figure 1). We describe such a relationship as
parentage: the old loop that was pulled through is the parent
of the new loop. Following the link from parent to child along
the knit object produces wales. Loops that are neighbors, i.e.
next to each other on the yarn, are typically part of the same
course (unless they are also parent and child).

The process of generating knitted items is regular, with
instructions for what operations to perform and which loops
to perform them on, similar to an assembly language.

4 Desiderata and Definitions

The design space of such self-decoding languages is vast, and
one could imagine many different solutions with different
properties. With an eye towards designing languages usable
for adoption in all knitted objects, we have identified several
properties as desiderata, some in tension with one another:

1. Compression. The act of reconstructing the program
should be less tedious than transcribing every individ-
ual stitch.



Exploring Self-Embedded Knitting Programs with Twine

2. Robustness. Imagine that some part of the fabric is
destroyed. Will we still be able to recover the instruc-
tions? How many instructions will be affected? For
example, extremely compressed programs might make
losing a piece of the knit object catastrophic.

3. Locality. An instruction should somehow be displayed
and recoverable close to the piece of the object it cre-
ates. If we are decoding a sweater with its embedded
fabrication instructions, having the sleeve contain all
of its fabrication instructions and the body contain
its fabrication instructions makes tasks like editing
or remixing patterns more straightforward. We also
believe there is some amount of elegance in the idea
that an instruction can be encoded in the result of its
instruction.

4. Decodability. The language should offer a way to
decode a pattern from a physical object that is easier
and clearer than reconstructing the program through
expert knowledge. For example, identifying where a
pattern begins when it has been knit in-the-round can
be done by close examination and the information that
knitting is helical, but this is a tedious and uncertain
process. The language should avoid being abstruse,
so that checking that a decoding matches a specific
object is possible, and potentially even enable the error-
correction of any “flipped bits”.

5. Expressiveness. The fact that the object must be a
quine should not restrict the space of things we are
able to knit, and users should be allowed freedom in
making a wide array of design choices.

Very importantly, all quined knitting programs, using the
following definitions,

(Encode) []:Prog — Fabric
(Decode) () : Fabric — Prog

must fulfill this property:
Vp € Prog.p = ([p])

which says that all programs encoded in the fabric can be
decoded from the fabric into the same program.

5 A Prototype

We propose a prototype language, Twine, that makes it sim-
ple to design knitted quines. In Twine, the progam is en-
coded within the fabric, and can be decoded from the fabric.
A Twine program is then interpreted, where the interpreter
represents the process of compiling the program to knitting
instructions and knitting it. The program is then re-extracted
from the knitted item by observing its colour pattern, which
can then be re-interpreted to produce another knitted item.

We choose to use colours as the front-end for the language,
reasoning that it is relatively easy to distinguish them. Each
stitch has a colour; for example, a red stitch represents one

27

FARM 23, September 8, 2023, Seattle, WA, USA

instruction. To bootstrap the program, a user can begin from
any valid knitted object, and generate a quine from it by
assigning the correct colours to each stitch, preserving its
initial validity.

One idea we originally had for creating self-replicating
knits is to try and embed the proprietary low-level visual pro-
gramming language from Shima Seiki, Knit Paint, as colour-
work onto a knit object such that the Knit Paint program,
when executed, fabricated that object. However, there is an
difficulty in that in Knit Paint programs, changing colours
means adding a new row to the program, thus expanding
the program beyond any hope of making it self-contained.
Instead, we decided that these colours shhould be parsed and
translated into a quine-embedding language, which is then
compiled into knitting instructions.

One language design idea could be, then, for each colour
to describe its own method of manufacture: e.g. a red stitch
might mean “purl with red”, and a blue stitch might mean
“knit with blue”. However, because counting each individ-
ual stitch is cumbersome, we choose to incorporate a more
idiomatic “repeat” strategy instead, which describes how
many times to repeat a stitch. Each course begins with the
specification for how to knit all the stitches in that course,
at which point the next course begins and new colour in-
structions are rendered. When reading the program from the
fabric, the end of each course is additionally signalled by a
“switch direction” instruction, which hints to the user to start
reading in the other direction in the course below. Currently,
our program only supports repeating simple knit stitches,
but in the future it will be important to support arbitrary
repeating patterns of stitches and a variety of operations.

We present the syntax of the Twine frontend in Figure 3,
translation from frontend to Twine IR in Figure 5, syntax of
Twine IR in Figure 4, and semantics of Twine IR in Figure 6.

The target language of the Twine compiler is Knitout [9],
which is an abstract assembly language over knitting ma-
chines. Each knitout statement is a command for the knitting
machine to perform a single meaningful operation, such as
knit, drop from needle, transfer from one bed to another at
certain needle, or move a yarn carrier to a specific location.
Here, we focus on the “knit” command, knit(dir, needle,
yarn), which takes a knitting direction, needle, and yarn
as parameters, and makes one loop at that needle in that
direction.

5.1 Discussion

Our language makes the following trade-offs in the desider-
ata landscape, as described in section 4. It is very local, dis-
tributing the fabrication instructions throughout the object,
and keeping each course’s fabrication instructions indepen-
dent from the next, at the expense of further compression. A
more compressed representation could, for example, specify
when whole courses are repeated. We believe our design also
strikes reasonable levels of robustness and expressiveness.



FARM 23, September 8, 2023, Seattle, WA, USA

With instructions at only the beginning of each course, we
are able to knit a large variety of shapes, though some design
choices are constrained by the row-to-row decoding. On the
other hand, a densely-encoded area that contains e.g. the
whole item’s worth of instructions in the beginning of the
knit means the reconstruction fails catastrophically if that
area is ruined; of course, such an encoding could allow even
more design freedom in the rest of the garment. With respect
to decodability, we chose colours as obvious and striking
features that are easy to read, and each stitch as a unit of
colour demarcates each instruction simply. However, the
reader still needs to be able to distinguish individual stitches
and their courses.

than spec structions, /
Set knitting direction to be left to right akes the quine invali /
Knit a stitch with pink

igit 1 into list of digits

Regi Register digit 2 into list of digits /
Knita stitch with dark blue

Knit a stitch with light blue

Register igit 3 nto st ofdigis_ Registerdigt 1 nto st of digits
Kr k blue

Knita stitch with cyan nit a stitch with dark blu

Figure 2. A visual decoding of a knit quine in the Twine
frontend.

:= Instr*
= SetDirL2RKnit
| SwitchDir

| Base4Num@

| Base4Num1l

| Base4Num2
I

I

I

Program :
Instr ::

Base4Num3
Repeat
Nop

Figure 3. Syntax of Twine frontend.

We believe that it should be possible to generate quines for
knitting programs that use knits, purls, and short rows. Note
that each such knitting program has only one Twine program
that represents it, and each Twine program represents a
unique knitted item, removing all ambiguity for decodability
purposes. Each knitted item has a distinctive look imparted
by the Twine self-decoding system.

28

Amy Zhu, Adriana Schulz, and Zachary Tatlock

IR 1= Op*
Op ::= 1 « v | knit(Colour, N)
::= dir | digits
\% c:= 4+ | - | dir | -v
| @ | 1 | 2 ] 3 | empty
Colour ::= 1 | 2 | 3 | 4] 5
| 6 1 71 8] 9 | 10
Figure 4. Syntax of Twine IR.
lower prog — IR
lower = flatmap lowerInstr

lowerInstr Instr — IR

lowerInstr (SetDirL2RKnit) =

dir « +; knit(1, 1)
lowerInstr(SwitchDir) =
dir « - dir; knit(2, 1)
lowerInstr (Base4Num@) =
digits « 0; knit(3, 1)
lowerInstr (Base4Numl) =
digits « 1; knit(4, 1)
lowerInstr (Base4Num2) =
digits « 2; knit(5, 1)
lowerInstr (Base4Num3) =
digits <« 3; knit(6, 1)

lowerInstr (ExecuteRepeat) =
knit(7, 1); knit(8, to_int(digits));
digits <« empty

lowerInstr (Nop) = ;

Figure 5. Lowering step from Twine frontend to Twine IR.

We considered supporting increases and decreases, but en-
countered increased constraints. Users should not be asked
to to read colours off stacked stitches, as the stitch colour and
order are obscured, complicating the process of reconstruct-
ing the program. We could also constrain the instructions
to only knit stitches, which could be future work, but this
accommodation makes feasible knits difficult to characterize.
Further work is needed to expand the quine language and
space of knitted quines, possibly using another encoding.

6 Compiler Pipeline

We have implemented a Twine language interpreter in Python.
Users can construct Twine programs (as one flat array of
colours) and interpret them to get a list of knitting instruc-
tions.

As metadata, we insert two rows of each colour at the
beginning of each knit piece. These should not be included



Exploring Self-Embedded Knitting Programs with Twine

o’ =oldir — -]

{dir < +:: P,0,F) — (P,0’,F)

SETDIRLEFT

o(dir) = -
{(dir « —dir) :: P,0,F) — (P,¢’, F)

o’ = o|dir — +]

SwITCHDIRLEFT

o(dir) = + o’ = o[dir — -]
SwITCHDIRRIGHT
{(dir « —dir) =: P,0,F) — (P,0’,F)
d = o(dir) n = o(needle)
" F’' = F :: knity,(n,d, c) o’ = o[needle — d(n,1)]
o (knit(c,0) = P, o, Fy — (P, o, F')
F' =F :: knity,(n,d, c)
n = o(needle) o’ = o[needle — d(n, 1)
r=r-1 P’ = knit(c,r’) = P
KNITMULTIPLE

(knit(c,r) = P,0,F) — (P',0,F’)

Figure 6. Twine semantics. Here, P is the Twine program
being executed, o is the environment wherein our machine
state is held, and F is the fabric being produced (i.e. the
Knitout knitting program. knity, represents the Knitout in-
struction knit being emitted rather than the Twine IR ter-
minal.

to_int(digits) =
digits.reduce(lambda acc, digit, idx:
acc + (digit * pow(4, len(digits) - 1 - idx)), @)

Figure 7. Helper function for Twine semantics, which con-
verts a list of base four digits into a (base 10) integer.

in the program reconstruction, and they help users identify
which colour represents which command and to mitigate
potential fabrication pitfalls.

We compile to doubleknit jacquard, which we have empir-
ically found to have several advantages. Doubleknit jacquard
makes it possible to easily and stably fabricate colourwork
changes like the ones we present here, and also enables the
possibility to have the quine be on the backside of a knitted
item (as both sides may have different colour patterns). Items
knit with this colourwork style are also naturally quite flat.
in the reverse (have the instructions on the inside), naturally
flat. This choice unfortunately does lead to the produced
knitted items sometimes having different properties from
their non-jacquard counterparts, as seen in section 7.

Items were then compiled to the Knitout assembly lan-
guage as described in [9], then KnitPaint’s .dat format, then
to Shima Seiki’s .000 machine code, and finally knit on a
7-gauge Shima Seiki SWG091N2.

29

FARM 23, September 8, 2023, Seattle, WA, USA

7 Evaluation

As a first illustration, we created a sample knitted square
(Figure 8) through the quine language. The square is 35
stitches wide and starts at the top left, where the small yellow
stitch, SetDirL2RKnit, sets the knitting direction. Note that
to reconstruct the program, the knitting direction is also the
reading direction, which is necessary to ensure the quine
behaviour of the program. The first few stitches after (val-
ues Base4Num1, Base4Num3, Base4Num2) then define how
many stitches to knit when ExecuteRepeat is encountered
(30). The orange stitch denotes ExecuteRepeat and the blue
stitches are Nop. Then, at the right side of that course, bright
red (KnitSwitchDir) knits and sets the machine direction
to right-to-left. We continue to read right-to-left now, start-
ing from directly below the bright red stitch. This square
example demonstrates how Twine works for a very simple
shape and accordingly simple program.

Figure 8. The final knitted square. The first rows are the
metadata stripes, setting the order of the colours used. To
illustrate, because yellow is first, we see that it is the first
instruction in the Twine frontend, SetDirL2RKnit and be-
cause blue is last, we see that it is the last instruction, Nop.
After the 8 bands of colour, the first yellow stitch on the left
is SetDirL2RKnit instruction.

Second, we wanted to demonstrate our language embed-
ded in a functional object. As our tool supports short-row
shaping, we adapted a pattern for a short-row hat [4] into
our quine language format. The hat pattern was generated
using the pseudocode in Figure 10, then translated into our
quine language. Unfortunately, we found that here dou-
bleknit jacquard caused the fabric to become too thick to
properly shape into a hat as the original pattern intended, as
in Figure 11. We were also forced to shrink the hat pattern



FARM 23, September 8, 2023, Seattle, WA, USA

Figure 9. The Twine pattern for the square in Figure 8, as
explained in Figure 2.

cast on 76
for repeat in 0..5 {
for (let i =72; 1i>=40; i -=1) {
knit from @ to i
knit from i to @
endfor
endfor

Figure 10. The basic knitting instructions for the short-row
hat.

by over half, as the knitting pattern generated from the orig-
inal pattern in Figure 10 proved too large for the knitting
machine memory.

8 Limitations, Discussion, and Future Work

In this work, we present a study of what self-embedded fab-
rication programs for knitting might look like. Truly under-
standing the scope of the problem domain, and discovering
a fully comprehensive solution would require overcoming
some key challenges we have identified.

First, the space of all knit programs expressible and the
space of all knit quines, and their relationship, still wants for
a formal treatment. We would like to be able to understand
what kinds of knit programs cannot be transformed into self-
embedded quines, and what strategies could be employed to
make it possible. Currently, Twine uses only the colour chan-
nel of knit objects to convey information, leaving the texture
channel and shaping channel freely manipulable. Could we
achieve richer information by incorporating semantic tex-
ture changes as well? Or perhaps in some cases it would be
more visually appealing to reserve the colour channel and
embed the information elsewhere.

30

Amy Zhu, Adriana Schulz, and Zachary Tatlock

Figure 11. A shapely version of the knitted hat, formed into
a cone.

Figure 12. On the right in blue are several versions of the
knitted hat, where we had modified the pattern in an attempt
to make the final product more hat-like. On the left in yellow
is the expected full-size hat oracle. Note that the blue patterns
typically have much less curvature from shaping.

The colourwork method of doubleknit jacquard has many
benefits as described in section 6; however, its use resulted
in undesirable metric changes in our evaluation, due to the
thickness of the fabric. We found that patterns often had to be
drastically re-developed from the original design. Figure 12
shows the process of finding a reasonably suitable set of
parameters for a smaller hat pattern. Being able to update
these patterns parameters with informed guidance, or being
able to ensure the validity of a quine translation, could be
one solution to this problem.

Alternatively, we could find a new colourwork method to
stably produce individual stitches of colour across the knit
object without greatly affecting the overall knit properties,
which would facilitate wide applicability. One example could
be duplicate stitch — stitching over the existing loop with a
new colour — but this is not scalable.

Also, as discussed in section 5, Twine does not yet support
any operations beyond short rows. Further work is needed



Exploring Self-Embedded Knitting Programs with Twine

to support increases and decreases, after which a more thor-
ough evaluation will be needed. Another target would be
supporting stitch patterns of varying lengths with different
stitch types. For example, if a user wanted to write a rib
pattern, they would want to specify that the pattern (knit,
purl) is repeated however many times.

Related to both of the latter challenges, another boon
would be using some type of simulation or rigorous exper-
iments to understand the effect that certain stitch types or
colourwork strategies have on the overall visual saliency of
knit stitch colours. For example, this data could be used to
predict whether or not a three-stitch decrease can be reason-
ably decoded. Such feedback would be useful for tightening
the iteration loop for both the language design and pattern
design (such as in the hat case described above).

Finally, program decoding is currently reliant on human
extraction of the program from knit objects. Though we be-
lieve this to be acceptable, and possibly the most accurate
method at the moment, any of widespread adoption, more
subtle encoding types, or very tedious encodings would ne-
cessitate some kind of machine-extractable system.

9 Conclusion

We suggest a language inspired by programming quines,
Twine, for knitting programs that enables embedding the
fabrication instructions within the fabrication instructions,
thereby encoding them in the final knitted object. Our insight
for making this possible is that the language itself should
feature self-embedding as a first class citizen, which we im-
plement. We identify several key desiderata that any such
language should be evaluated against. Our work is a first
step towards fully enabling embedded fabrication programs
within knitted objects, which is itself a first step towards the
idea that all objects will contain their fabrication instructions,
and that they might do so within the fabrication program
itself. One day, we may be able to recreate arbitrary objects-
in-the-wild, and that each will be a reminder to us of the
physical making of these objects.

Acknowledgments
We would like to thank Chandrakana Nandi for help iter-
ating on the design of Twine, Anjali Pal and James Yoo for

critique on early and later drafts, and other members of the
UW PLSE and GRAIL labs for in-depth discussions. We are

31

FARM 23, September 8, 2023, Seattle, WA, USA

very appreciative of the thoughtful, thorough, and insightful
feedback from the anonymous reviewers. Finally, we would
like to thank John Leo for his enthusiastic encouragement.
This work was funded by NSF 2017927.

References

[1] Arnaud Delmotte, Kenichiro Tanaka, Hiroyuki Kubo, Takuya Funatomi,
and Yasuhiro Mukaigawa. 2020. Blind Watermarking for 3-D Printed

Objects by Locally Modifying Layer Thickness. IEEE Transactions on
Multimedia 22, 11 (2020), 2780-2791. https://doi.org/10.1109/TMM.

2019.2962306

Mustafa Doga Dogan, Faraz Faruqi, Andrew Day Churchill, Kenneth
Friedman, Leon Cheng, Sriram Subramanian, and Stefanie Mueller. 2020.
G-ID: Identifying 3D Prints Using Slicing Parameters. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI °20). Association for Computing Machinery,
New York, NY, USA, 1-13. https://doi.org/10.1145/3313831.3376202
Mustafa Doga Dogan, Ahmad Taka, Michael Lu, Yunyi Zhu, Akshat Ku-
mar, Aakar Gupta, and Stefanie Mueller. 2022. InfraredTags: Embedding
Invisible AR Markers and Barcodes Using Low-Cost, Infrared-Based 3D
Printing and Imaging Tools. In Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI
"22). Association for Computing Machinery, New York, NY, USA, Article
269, 12 pages. https://doi.org/10.1145/3491102.3501951

Brooke T Higgins. 2005. Tychus. https://knitty.com/ISSUEsummer05/
PATTtychus.html

Megan Hofmann, Lea Albaugh, Ticha Sethapakadi, Jessica Hodgins,
Scott E. Hudson, James McCann, and Jennifer Mankoff. 2019. KnitPick-
ing Textures: Programming and Modifying Complex Knitted Textures
for Machine and Hand Knitting. In Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology (New Orleans,
LA, USA) (UIST °19). Association for Computing Machinery, New York,
NY, USA, 5-16. https://doi.org/10.1145/3332165.3347886

Weiwei Jiang, Chaofan Wang, Zhanna Sarsenbayeva, Andrew Irlitti,
Jarrod Knibbe, Tilman Dingler, Jorge Gongalves, and Vassilis Kostakos.
2021. InfoPrint: Embedding Information into 3D Printed Objects. ArXiv
abs/2112.00189 (2021).

Julian Koch, Silvan Gantenbein, Kunal Masania, Wendelin J. Stark, Yaniv
Erlich, and Robert N. Grass. 2020. A DNA-of-things storage architecture
to create materials with embedded memory. Nature Biotechnology 38, 1
(01 Jan 2020), 39-43. https://doi.org/10.1038/s41587-019-0356-z
Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng.
2019. LayerCode: Optical Barcodes for 3D Printed Shapes. ACM Trans.
Graph. 38, 4, Article 112 (jul 2019), 14 pages. https://doi.org/10.1145/
3306346.3322960

James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech
Matusik, Jennifer Mankoff, and Jessica Hodgins. 2016. A Compiler for
3D Machine Knitting. ACM Trans. Graph. 35, 4, Article 49 (jul 2016),
11 pages. https:/doi.org/10.1145/2897824.2925940

[2

—

[3

—_

[4

flan)

[5

-

G

—

[7

—

8

=

[9

—

Received 2023-06-01; accepted 2023-07-01



	Abstract
	1 Introduction
	2 Related Work
	2.1 Fabricating Embedded Information
	2.2 Knitting Languages

	3 Knitting Background
	4 Desiderata and Definitions
	5 A Prototype
	5.1 Discussion

	6 Compiler Pipeline
	7 Evaluation
	8 Limitations, Discussion, and Future Work
	9 Conclusion
	Acknowledgments
	References

