Check for
Updates

2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

Blocks? Graphs? Why Not Both? Designing and Evaluating a
Hybrid Programming Environment for End-users

Nico Ritschel
ritschel@cs.ubc.ca
University of British Columbia
Vancouver, British Columbia, Canada

Ronald Garcia
rxg@cs.ubc.ca
University of British Columbia

Felipe Fronchetti
fronchettl@vcu.edu
Virginia Commonwealth University
Richmond, Virginia, USA

Vancouver, British Columbia, Canada

ABSTRACT

Many modern end-user development environments support one
of two visual modalities: block-based programming or data-flow
programming. In this work, we investigate the trade-offs between
the two modalities in the context of robotics tasks. These often
contain both aspects that are better solved with blocks and others
that best fit data-flow programming. To address this style of task,
we present and discuss two novel programming environment pro-
totypes, one purely block-based and one a hybrid of blocks and
data-flow programming. We compare the designs through a con-
trolled experiment with 113 end-user participants, in which we
asked them to solve programming and program comprehension
tasks using one of the two environments. We find that participants
preferred the hybrid environment in direct comparison, but per-
formed better across all tasks and also reported higher usability
ratings for blocks.

ACM Reference Format:

Nico Ritschel, Felipe Fronchetti, Reid Holmes, Ronald Garcia, and David C.
Shepherd. 2024. Blocks? Graphs? Why Not Both? Designing and Evaluating
a Hybrid Programming Environment for End-users. In 2024 IEEE/ACM 46th
International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion °24), April 14-20, 2024, Lisbon, Portugal. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3639478.3643101

1 INTRODUCTION

Millions of people write code as part of their job, but the vast major-
ity of them are end-users, who have received no formal programming-
related education and only limited training [5]. Due to this lack of
formal training, end-users are ill-equipped to use traditional pro-
gramming languages or tools. Instead, they rely on domain-specific
tools and languages that are designed to be easy to learn and use [1].
End-user tools typically use rich user interfaces that leverage
visual aids and notations, making them expensive to develop from

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE-Companion °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0502-1/24/04. .. $15.00
https://doi.org/10.1145/3639478.3643101

326

Reid Holmes
rtholmes@cs.ubc.ca
University of British Columbia
Vancouver, British Columbia, Canada

David C. Shepherd
dshepherd@lsu.edu
Louisiana State University
Baton Rouge, Louisiana, USA

scratch. To save development cost and effort, many tool developers
build on established frameworks that are suitable for a wide range
of programming domains. Block-based programming [11, 3] and
data-flow programming [2, 10] are two of the most commonly used
frameworks for this purpose. The former originates in computer
science education [6] and uses graphical puzzle blocks that can
be assembled through drag-and-drop to edit program syntax. The
latter has a long history in industrial languages [4, 7], and visualizes
programs as directed graphs that represent information flow.

Previous work has explored the use of blocks and data-flow
graphs in different domains. Data-flow representations tend to be
used for data and event processing, because they are well-suited
to illustrating the step-wise evaluation of expressions. Blocks on
the other hand are typically used to used to describe imperative
sequences of commands, like animations [6] or robot manufacturing
steps [11]. However, no previous work has explicitly discussed the
potential trade-offs between the two modalities.

Ideally, an end-user programming tool should support creating
both imperative and expression-based code. When users define what
aprogram should do, it is often easier to do so in an imperative style,
whereas defining when it should do it often requires them to create
logical, math-like expressions. In this work, we consider a concrete
use case where both aspects of a program are important and can
become complex enough to challenge end-users: programming
a mobile robot that moves between workstations and operates
machinery. Existing approaches have also demonstrated that block-
based programming can support end-users as they define what
actions such a robot should perform [11, 9]. However, operating
machines requires more careful planning of when a robot should
execute these operations. Existing end-user robotics tools provide
only very limited support this type of planning.

2 APPROACH: TRIGGER BLOCKS VS. GRAPHS

One established way to support end-users in the programmatic
planning of tasks are triggers, a simplified form of event-based pro-
gramming [8]. Defining triggers of non-trivial complexity requires
creating a nested logical expressions, which can be evaluated to
determine when a trigger is executed. Unfortunately, traditional
block-based programming tools do not support this style of pro-
gramming well. Blocks limit how users can format nested expres-
sions, forcing them into a single line. The block structure further
makes it difficult to discern the structure of an expression.

ICSE-Companion ’24, April 14-20, 2024, Lisbon, Portugal

Machine is ready to be loaded 1=l

VE e Station B ~ K| empty ~ |
VP& Station B ~ L) not running ~ |
_empty -

Robot gripper is

Button 1 is pressed

Button 2 is pressed

Figure 1: A block-based trigger expression for a mobile robot.
The computational flow of the nested sub-expressions is not
obvious for beginners.

In this work, we present a modified version of block-based pro-
gramming that better supports nested expressions, as shown in
Figure 1. This version spreads expressions over multiple lines, mak-
ing them easier to read and edit. However, remaining within the
structure of blocks limits how clearly the dependencies within an
expression and the flow of its evaluation can be represented.

To overcome the remaining limitations of block-based expres-
sions, we further consider the alternative that is using a true hybrid
system: one that uses blocks for imperative code and data-flow
graphs for trigger expressions. Figure 2 illustrates how trigger ex-
pressions are represented in this design alternative. Unlike blocks,
this graph-based design allows users to group and arrange sub-
expressions freely and trace their execution flow top-to-bottom.
However, this design is only suitable for side-effect-free expressions
and therefore still requires blocks to represent other, imperative
parts of a program. It is also less space-efficient and potentially
more difficult to edit as users have to manually adjust edges and
connections when moving or replacing nodes in the graph.

3 EVALUATION

To investigate and compare the previously presented design options,
we created prototype environments that implement each approach.

3.1 Experimental Design

To compare our two design prototypes, we conducted a controlled
experiment. 113 end-users were recruited via the Prolific online plat-
form to compare the two prototypes. Each participant was trained
to use their respective environment and were asked to complete
two complex tasks that required writing both nested expressions for
triggers and imperative robot code. We then evaluated their ability
to comprehend isolated, complex examples of triggers that were
represented as blocks or as a graph. Finally, participants rated their
environment individually and in comparison to the alternative.

3.2 Experimental Results

For the first of the two programming tasks, we find that 71% of the
blocks-users and 51% of the hybrid-users successfully completed the
task. For the second programming task, the overall performance was
worse and only 54% of the blocks-users and 37% of the hybrid-users
solved the task successfully. For both program comprehension tasks,

327

Nico Ritschel, Felipe Fronchetti, Reid Holmes, Ronald Garcia, and David C. Shepherd

UECINEE stations B empty @)

Machine at is
AN

AN

Robot gripper is

Y
Machine is ready to be loaded

Figure 2: The same program as in Figure 1 represented as a
data-flow graph. The edges make the data-flow explicit and
programmers can manually group and arrange nodes.

.

we saw a similar difference success rates between the groups (85%
vs. 65% for Q1, 78% vs. 62% for Q2). These results are complemented
by the participants’ own ratings, which were also substantially
higher for those who used blocks. In contrast to our other findings,
when we asked participants to directly compare the environments,
both groups showed a preference for the hybrid environment. This
observation might be caused by the appeal of data-flow graphs as a
visually richer, supposedly more readable representation for code.

Our evaluation provides initial evidence that blocks might have
a greater benefit for end-users than data-flow graphs. Though we
performed our evaluation on the domain of robotics, we believe
that our findings might transfer to related end-user domains, such
as home and web automation, and game development. We believe
that these observations can inform the design of future end-user
tools in those areas, as well as additional research on how to create
new, novice-friendly interface designs.

REFERENCES
(1]

Brian James Dorn. 2010. A case-based approach for supporting the informal
computing education of end-user programmers. Ph.D. Dissertation. Georgia
Institute of Technology.

Jody Condit Fagan. 2007. Mashing up multiple web feeds using yahoo! pipes.
Computers in Libraries, 27, 10, 10-17.

Mateus Carvalho Gongalves, Otavio Neves Lara, Raphael Winckler de Bet-
tio, and André Pimenta Freire. 2021. End-user development of smart home
rules using block-based programming: a comparative usability evaluation with
programmers and non-programmers. Behaviour & Information Technology, 1-
23.

John L Kelly, Carol Lochbaum, and Victor A Vyssotsky. 1961. A block diagram
compiler. The Bell System Technical Journal, 40, 3, 669-678.

Andrew J Ko et al. 2011. The state of the art in end-user software engineering.
ACM Computing Surveys (CSUR), 43, 3, 1-44.

John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. Transactions
on Computing Education (TOCE), 10, 4, 1-15.

J Paul Morrison. 1994. Flow-based programming. In Proc. Ist International
Workshop on Software Engineering for Parallel and Distributed Systems, 25-29.
Steven Ovadia. 2014. Automate the internet with “if this then that” (IFTTT).
Behavioral & social sciences librarian, 33, 4, 208-211.

Nico Ritschel, Felipe Fronchetti, Reid Holmes, Ronald Garcia, and David C Shep-
herd. 2022. Can guided decomposition help end-users write larger block-based
programs? a mobile robot experiment. Proceedings of the ACM on Programming
Languages, 6, OOPSLA2, 233-258.

[10] Brenden Sewell. 2015. Blueprints visual scripting for unreal engine. Packt Pub-
lishing Ltd.
[11] David Weintrop, David C Shepherd, Patrick Francis, and Diana Franklin. 2017.

Blockly goes to work: block-based programming for industrial robots. In Blocks
and Beyond Workshop (B&B), 29-36.

