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ABSTRACT

Many modern end-user development environments support one
of two visual modalities: block-based programming or data-flow
programming. In this work, we investigate the trade-offs between
the two modalities in the context of robotics tasks. These often
contain both aspects that are better solved with blocks and others
that best fit data-flow programming. To address this style of task,
we present and discuss two novel programming environment pro-
totypes, one purely block-based and one a hybrid of blocks and
data-flow programming. We compare the designs through a con-
trolled experiment with 113 end-user participants, in which we
asked them to solve programming and program comprehension
tasks using one of the two environments. We find that participants
preferred the hybrid environment in direct comparison, but per-
formed better across all tasks and also reported higher usability
ratings for blocks.
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1 INTRODUCTION

Millions of people write code as part of their job, but the vast major-
ity of them are end-users, who have received no formal programming-
related education and only limited training [5]. Due to this lack of
formal training, end-users are ill-equipped to use traditional pro-
gramming languages or tools. Instead, they rely on domain-specific
tools and languages that are designed to be easy to learn and use [1].
End-user tools typically use rich user interfaces that leverage
visual aids and notations, making them expensive to develop from
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scratch. To save development cost and effort, many tool developers
build on established frameworks that are suitable for a wide range
of programming domains. Block-based programming [11, 3] and
data-flow programming [2, 10] are two of the most commonly used
frameworks for this purpose. The former originates in computer
science education [6] and uses graphical puzzle blocks that can
be assembled through drag-and-drop to edit program syntax. The
latter has a long history in industrial languages [4, 7], and visualizes
programs as directed graphs that represent information flow.

Previous work has explored the use of blocks and data-flow
graphs in different domains. Data-flow representations tend to be
used for data and event processing, because they are well-suited
to illustrating the step-wise evaluation of expressions. Blocks on
the other hand are typically used to used to describe imperative
sequences of commands, like animations [6] or robot manufacturing
steps [11]. However, no previous work has explicitly discussed the
potential trade-offs between the two modalities.

Ideally, an end-user programming tool should support creating
both imperative and expression-based code. When users define what
aprogram should do, it is often easier to do so in an imperative style,
whereas defining when it should do it often requires them to create
logical, math-like expressions. In this work, we consider a concrete
use case where both aspects of a program are important and can
become complex enough to challenge end-users: programming
a mobile robot that moves between workstations and operates
machinery. Existing approaches have also demonstrated that block-
based programming can support end-users as they define what
actions such a robot should perform [11, 9]. However, operating
machines requires more careful planning of when a robot should
execute these operations. Existing end-user robotics tools provide
only very limited support this type of planning.

2 APPROACH: TRIGGER BLOCKS VS. GRAPHS

One established way to support end-users in the programmatic
planning of tasks are triggers, a simplified form of event-based pro-
gramming [8]. Defining triggers of non-trivial complexity requires
creating a nested logical expressions, which can be evaluated to
determine when a trigger is executed. Unfortunately, traditional
block-based programming tools do not support this style of pro-
gramming well. Blocks limit how users can format nested expres-
sions, forcing them into a single line. The block structure further
makes it difficult to discern the structure of an expression.
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Figure 1: A block-based trigger expression for a mobile robot.
The computational flow of the nested sub-expressions is not
obvious for beginners.

In this work, we present a modified version of block-based pro-
gramming that better supports nested expressions, as shown in
Figure 1. This version spreads expressions over multiple lines, mak-
ing them easier to read and edit. However, remaining within the
structure of blocks limits how clearly the dependencies within an
expression and the flow of its evaluation can be represented.

To overcome the remaining limitations of block-based expres-
sions, we further consider the alternative that is using a true hybrid
system: one that uses blocks for imperative code and data-flow
graphs for trigger expressions. Figure 2 illustrates how trigger ex-
pressions are represented in this design alternative. Unlike blocks,
this graph-based design allows users to group and arrange sub-
expressions freely and trace their execution flow top-to-bottom.
However, this design is only suitable for side-effect-free expressions
and therefore still requires blocks to represent other, imperative
parts of a program. It is also less space-efficient and potentially
more difficult to edit as users have to manually adjust edges and
connections when moving or replacing nodes in the graph.

3 EVALUATION

To investigate and compare the previously presented design options,
we created prototype environments that implement each approach.

3.1 Experimental Design

To compare our two design prototypes, we conducted a controlled
experiment. 113 end-users were recruited via the Prolific online plat-
form to compare the two prototypes. Each participant was trained
to use their respective environment and were asked to complete
two complex tasks that required writing both nested expressions for
triggers and imperative robot code. We then evaluated their ability
to comprehend isolated, complex examples of triggers that were
represented as blocks or as a graph. Finally, participants rated their
environment individually and in comparison to the alternative.

3.2 Experimental Results

For the first of the two programming tasks, we find that 71% of the
blocks-users and 51% of the hybrid-users successfully completed the
task. For the second programming task, the overall performance was
worse and only 54% of the blocks-users and 37% of the hybrid-users
solved the task successfully. For both program comprehension tasks,
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Figure 2: The same program as in Figure 1 represented as a
data-flow graph. The edges make the data-flow explicit and
programmers can manually group and arrange nodes.

.

we saw a similar difference success rates between the groups (85%
vs. 65% for Q1, 78% vs. 62% for Q2). These results are complemented
by the participants’ own ratings, which were also substantially
higher for those who used blocks. In contrast to our other findings,
when we asked participants to directly compare the environments,
both groups showed a preference for the hybrid environment. This
observation might be caused by the appeal of data-flow graphs as a
visually richer, supposedly more readable representation for code.

Our evaluation provides initial evidence that blocks might have
a greater benefit for end-users than data-flow graphs. Though we
performed our evaluation on the domain of robotics, we believe
that our findings might transfer to related end-user domains, such
as home and web automation, and game development. We believe
that these observations can inform the design of future end-user
tools in those areas, as well as additional research on how to create
new, novice-friendly interface designs.
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