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A B S T R A C T

Spinodal metamaterials, with architectures inspired by natural phase-separation processes, have presented a
significant alternative to periodic and symmetric morphologies when designing mechanical metamaterials with
extreme performance. While their elastic mechanical properties have been systematically determined, their
large-deformation, nonlinear responses have been challenging to predict and design, in part due to limited data
sets and the need for complex nonlinear simulations. This work presents a novel physics-enhanced machine
learning (ML) and optimization framework tailored to address the challenges of designing intricate spinodal
metamaterials with customized mechanical properties in large-deformation scenarios where computational
modeling is restrictive and experimental data is sparse. By utilizing large-deformation experimental data
directly, this approach facilitates the inverse design of spinodal structures with precise finite-strain mechanical
responses. The framework sheds light on instability-induced pattern formation in spinodal metamaterials—
observed experimentally and in selected nonlinear simulations—leveraging physics-based inductive biases in
the form of nonconvex energetic potentials. Altogether, this combined ML, experimental, and computational ef-
fort provides a route for efficient and accurate design of complex spinodal metamaterials for large-deformation
scenarios where energy absorption and prediction of nonlinear failure mechanisms is essential.
1. Introduction

The rapid advancement of resolution and throughput in additive
anufacturing has opened doors to new possibilities in engineering
echanical metamaterials (or architected materials) with properties

hat were once unattainable using conventional manufacturing tech-
iques [1–5]. These properties include, e.g., high strength-to-weight
atios [2,6], negative Poisson’s ratios [7], mechanical cloaking abil-
ties [8], tailorable anisotropic stiffnesses [9–12], and high energy
bsorption [13,14]. While explorations on mechanical metamaterials
ave primarily focused on periodic and symmetric truss- [15] and
late-based [16] lattices, recently more attention has been given to
hell-based morphologies. These morphologies, such as triply periodic
inimal surfaces [17,18] and spinodal architectures [9,19–21] have

gained traction in the field as they do not possess nodes or joints,
ehave in a mechanically efficient manner due to their doubly curved
hells, and inherently mitigate stress concentrations.

Spinodal-like—or spinodoid—metamaterials are especially intrigu-
ng because they possess an aperiodic and asymmetric microstructure
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resembling the morphologies observed during the early stages of spin-
odal decomposition or rapid diffusion-driven phase separation in a
homogeneous mixture of immiscible phases (Fig. 1). These nature-
inspired designs spanning multiple length scales—from nanoscale to
macroscale—can either be manufactured using scalable self-assembly
via polymerization-induced phase separation in polymer blends [19]
or additive manufacturing of morphologies extracted from phase sep-
aration simulations [20,21]. In contrast to truss-, plate- and shell-
based lattices, the resulting smooth and bicontinuous topologies enable
robustness to manufacturing defects, mitigate any harmful stress con-
centrations, and exhibit extreme mechanical resilience [19,21]. In silico
tuning of the underlying energetics of the spinodal decomposition pro-
cess opens up a diverse design space of topologies and corresponding
mechanical properties [9,20,22], leading to a recent flurry of proposed
spinodal metamaterials for ultralight structures [19,23–25], energy ab-
sorption [21,26,27], bone-mimetic implants [9,28,29], acoustics [30],
mass transport [31], among other applications.
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Despite the recent advances, the structure–property relations of
pinodal metamaterials have primarily been explored only in a for-
ard fashion—computational or experimental mechanical analyses of
 few representative samples chosen through trial-and-error or intu-
tion of the design space [19,21,23,24,26,27,32]. Furthermore, clear

links between specific features of the morphology and the ensuing
echanical response are lacking. In light of the vast design space

f spinodal metamaterials, the question of interest is that of inverse
design, i.e., how to efficiently identify designs with tailored properties
dictated by stress–strain responses. While machine learning (ML) has
recently seen some success in inverse design of metamaterials [9–12,22,
24,33–39]—including but not limited to spinodal metamaterials—these
algorithms face a challenge of quality–quantity duality.

High-throughput simulations of mechanical responses yield large
uantities of data, which are of sufficient fidelity only in linear and
mall-strain regimes. For instance, in the context of spinodal metama-
erials, ML models have been trained on in silico data to inversely design
or linear stiffness tensor components and tailored anisotropy [9]. How-
ver, in the case of finite-strain behaviors, responses due to phenomena
uch as material and geometric nonlinearities, buckling, self-contact,
issipation, fracture, and meshing artifacts add significant complexity
nd computational cost. On the contrary, while experimental data can
erve as the ground-truth, highest-fidelity data for ML models, the
uantity of data is severely limited by the number of time-consuming
nd costly experiments that can be reasonably performed.

Here, we propose a direct experiment-to-ML inverse design frame-
ork to design spinodal metamaterials with tailored finite-strain me-

hanical responses. We create a reasonably sized dataset of 107 shell-
ased spinodal metamaterial architectures along with their stress–strain
esponses to 40% strain along three principal directions—efficiently
btained experimentally via ex situ and in situ uniaxial compression at
he microscale. The ML framework consists of a forward model that
urrogates the structure–property relations and an inverse optimization
cheme that finds the designs for a target large-deformation stress–
train response. To address the quality–quantity duality challenge, we
ntroduce a new ML architecture that uses physics-enhanced inductive
iases to eliminate the need for large-quantity and low-quality sim-
lation data. To complement these predictions, we employ nonlinear
inite element models that capture architecture-dependent deformation
echanisms, and shed light on the sources of energy absorption upon

arge deformation. In agreement with experiments and predictions,
hese simulations explain the relation between the directional curvature
istribution and predicted energy absorption metrics. Furthermore, we
emonstrate the ML framework’s ability to identify a spinodal morphol-
gy that exhibits a target behavior that lies outside the training data
omain. Altogether, this experiment-informed ML effort closes the gap
etween the structure–property relations of spinodal metamaterials in
 large-deformation regime, particularly by accounting for nonlinear
esponses due to deformation mechanisms in complex architectures.

. Results and discussion

.1. Spinodal morphology design space

To replicate a variety of morphologies obtained through spinodal
ecomposition, such as those obtained in diffusion-driven phase sepa-
ation of a homogeneous mixture of immiscible phases, our first step
s to define a design space that parametrizes all possible morphologies.
ahn [40] demonstrated that the resulting phase field solution to the
anonical Cahn–Hilliard equation can be approximated by a Gaussian
andom field (GRF), i.e., a superposition of a large number of standing
aves with a narrow band of similar wavenumbers. In Fourier space,

his corresponds to a spectral density function (SDF) given by a diffused
pherical surface of radius equal to the wavenumber (denoted by 𝛽

enceforth) and centered at the origin. Inspired from the formalization

2 
f this approximation [31,41], we construct the phase field 𝜑 ∶ 𝛺 → R
n a domain 𝛺 ⊂ R3 directly in Fourier space as

= −1
[

 [𝜑noise]⊙  [𝜑filter]
]

= −1
[

 [𝜑noise]⊙
(

𝜌[𝜑filter]
)1∕2

]

. (1)

Here,  [⋅],  [⋅]−1, and 𝜌[⋅] denote the Fourier transform, inverse
Fourier transform, and SDF (squared magnitude of the Fourier trans-
form), respectively, while ⊙ denotes the Hadamard product, 𝜑noise
epresents the initial phase field of a homogeneous mixture of immis-
ible phases as an independent and identically distributed standard
aussian noise (i.e., zero mean and unit variance). Convolution of 𝜑noise
ith 𝜑filter (equivalently, Hadamard product in the Fourier space) rep-

resents the phase separation process that transforms the homogeneous
ixture 𝜑noise into the phase-separated phase field 𝜑. We define 𝜑filter

through its SDF as

𝜌[𝜑filter](𝒌) = exp
(

−
(𝑟 − 𝛽)2

2𝜆2𝑟

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
wavenumber control

⊙
3
∑

𝑖=1
𝜎
(

−𝜆𝜙(𝜙𝑖 − 𝜃𝑖)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
anisotropy control

with 𝜙𝑖 = min{cos−1(𝑘𝑖∕𝑟),− cos−1(𝑘𝑖∕𝑟)} and 𝑟 = ‖𝒌‖,

(2)

where 𝒌 denotes a wave-vector in the Fourier space; with 𝜆𝑟 > 0
and 𝜆𝜙 > 0 as constants. The first term—labeled wavenumber control—
specifies that the spectral density is limited to a narrow Gaussian band
with mean wavenumber 𝛽 and standard deviation 𝜆𝑟. Choosing a higher

yields morphologies with a finer microstructural lengthscale. The
econd term—labeled anisotropy control—adds directional constraints
o the wave-vectors. Specifically, the wave-vectors’ orientations (given

by 𝜙𝑖) are constrained to cones centered at the origin and along
he principal axes {𝒆̂1, 𝒆̂2, 𝒆̂3} with half-angles {𝜃1, 𝜃2, 𝜃3}, respectively

(Fig. 1, center). However, instead of a hard limit, we relax the con-
straint by using a smooth sigmoid-type function, which in this case
is 𝜎(⋅) = (1 + t anh(⋅))∕2. Consequently, the probability of a wave-
vector outside the cones decreases fast but smoothly with the rate
determined by 𝜆𝜙. We add both radial and angular smoothing in the
SDF to mitigate formation of non-smooth artifacts in the generated
morphology (see Supplementary Fig. S1). We highlight that this model
of anisotropy control is not just a mathematical construct; rather it
serves as an approximation to the canonical Cahn–Hilliard equation
with anisotropic mobility [9].

Choosing a cubic domain 𝛺 of size 𝓁×𝓁×𝓁, the Fourier transforms in
Eq. (1) are performed on a uniform grid of 𝛺 with 𝑋×𝑋×𝑋 resolution,
automatically ensuring triple periodicity in the generated structure. The
morphology of the spinodal metamaterial is obtained by computing the
zero level-set of 𝜑, i.e., for 𝒙 ∈ 𝛺, followed by extruding the surface
pointwise along both inward and outward normal directions equally for
a final surface thickness of ℎ ≪ 𝓁. Note that due to the randomness of
𝜑noise, the resulting structures are stochastic and hence two morphology
realizations for the same design parameters may be different. To reduce
the effects of stochasticity, we choose 𝛽𝓁 and ℎ∕𝓁 to be sufficiently
high and low, respectively, to ensure separation of scales between the
microstructural length scale and the domain dimensions. We validate
the choice in 𝛽 and ℎ through a systematic computational homoge-
nization analysis as well as manufacturing considerations, respectively
(Supplementary Note 2).

For the scope of this work, we uniquely defined each spinodal
metamaterial design by the design parameters 𝜣 = [𝜃1, 𝜃2, 𝜃3] with
𝜃1, 𝜃2, 𝜃3 ∈ {0} ∪ [𝜃min, 𝜃max] (i.e., the cone angles), while keeping
the remaining parameters constant (see Supplementary Table S1). The
angles, when non-zero, are lower-bounded by 𝜃min = 20◦ to ensure bi-
continuity of the structures [9] and upper-bounded by 𝜃max = 70◦ to
avoid degenerate (almost) isotropic structures. For instance, when 𝜣 =
[0, 0, 𝜃3], this one-dimensional (1D) parameter subspace results in struc-
tures with distinctive lamellar-like features (Fig. 1, left). In contrast,
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Fig. 1. Spinodal morphology design space defined by a three-parameter 𝜣 representation (center). Three design subspaces, defined by the non-zero dimensionality of the
= [𝜃1 , 𝜃2 , 𝜃3] vector are represented by color clouds encompassing the designs used for training. The one-dimensional (1D) subspace corresponding to lamellar morphologies

was represented by a non-zero 𝜃3, while the 2D and 3D subspaces subsequently added non-zero 𝜃2 and 𝜃3 parameters and corresponded to columnar and cubic morphologies,
respectively. Three representative designs of increasing norm |𝜣| are presented within each subspace, along with pole figures denoting the directional probability of normal vectors
𝒏.
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the corresponding 2D and 3D parameter subspaces—𝜣 = [0, 𝜃2, 𝜃3] and
= [𝜃1, 𝜃2, 𝜃3]—exhibit columnar- or cubic-like features, respectively

(Fig. 1, right). The resulting morphologies can be characterized by their
corresponding surface-normal distributions, represented as spherical
pole figures in Fig. 1, indicating the directional distribution of material
urvature within the morphologies. Overall, the design space admits

a large and diverse set of morphological anisotropy, with the aim of
linking said structures to their unique mechanical responses.

Notably, increases in the magnitudes of the 𝜃𝑖 parameters, ap-
proaching the theoretical maximum of 90◦, results in isotropically
distributed wave-vectors and the anisotropic structural distinctions dis-
appear. However, for the sake of clarity in the subsequent discussions,
we use the terminology of lamellar, columnar, and cubic structures when
referring to the 1D, 2D, and 3D subspaces of 𝜣, respectively, regardless
of their absolute values.

2.2. Dataset generation via nanomechanical experiments

Sampling from the design space defined above, we generated a
dataset consisting of 𝑁 = 107 spinodal morphologies by randomly
ampling 𝜣. The dataset included 11 lamellar (𝜣 = [0, 0, 𝜃3]), 36
olumnar (𝜣 = [0, 𝜃2, 𝜃3]), and 60 cubic (𝜣 = [𝜃1, 𝜃2, 𝜃3], with 𝜃1 < 𝜃2 <
3) morphologies. To augment our experimental effort, we removed
edundancy in data generation due to permutation symmetry in the
arameterization (i.e., the response along 𝒆̂1 for [𝜃1, 𝜃2, 𝜃3] is equivalent
o the response along 𝒆̂2 for [𝜃2, 𝜃1, 𝜃3]). To assess the response along
he three principal directions for each of the unique 𝑁 morphologies,
e fabricated 321 samples corresponding to 107 geometries, printed in

hree orientations. Altogether, these samples represented 609 effective
parameterizations within our design space, accounting for permu-

tation symmetry (see Supplementary Note 1). The 321 samples were
fabricated out of IP-Dip photoresist using a two-photon lithography
process (Supplementary Note 2), resulting in cubic unit cells with an
verage edge length of 𝓁 = 92 ± 1.2 μm and shell thickness of ℎ =
.6 ± 0.1 μm, with an approximate relative density (i.e., fill fraction)
f 40%. Using sub-micron resolution X-ray computed tomography, we
3 
alidated the geometric validity of our fabricated samples, ensuring
ccurate representation of curvatures, shell thicknesses, and relative
ensities (Supplementary Note 2).

We note that, imperfections due to additive manufacturing can
ffect the mechanical properties [42–44]. However, we did not aim
o train the ML surrogate model on data whose imperfections have
een artificially reduced through repeated experiments. Instead, we let
he model account for the role of as-fabricated imperfections in the
echanical response.

To obtain the finite-strain response of each sample in the dataset,
e performed both ex situ and in situ quasi-static uniaxial compression
xperiments (strain rate of 10−3 s−1) along the three principal direc-
ions 𝒆̂1, 𝒆̂2, and 𝒆̂3. In situ observation of the compression enabled
isualization of multiple nonlinear and irreversible mechanisms such
s plastic buckling, self-contact, and fracture through the thickness of
he shells (Fig. 2a)—which could be linked to specific characteristics
f the large-deformation stress–strain response. The loading portion
f the measured 321 stress–strain curves was used to train the ML

model for inverse design, while the unloading portion was omitted
since it carried minimal information in this large-strain regime (full
loading–unloading responses are presented in Supplementary Note 1).
To facilitate comparison to spinodal metamaterials made of similar
polymeric constituents, we report the stress normalized by the elastic
modulus 𝐸𝑠 (3.2 ± 0.3 GPa) of IP-Dip photoresist, determined from
experiments on monolithic micropillars with the same print parameters
as the metamaterials.

As an appropriate qualitative indicator of mechanical anisotropy
within each design, we represented the surface normal distributions in
the form of a spherical pole figure, indicating the relative orientation of
curved shells with respect to a loading direction (Fig. 2b). Regions with
a higher distribution of surface normals correlated to a more compliant
response in the linear regime, followed by an on-average lower stress
level throughout subsequent deformation. In the cases of lamellar and
columnar morphologies, directions with low surface-normal distribu-
tions tended to exhibit plastic buckling beyond the onset of nonlinearity

 and consequently, negative-stiffness responses up
(at strains of 𝜀 ≈ 5%)
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Fig. 2. Results and analysis of nanomechanical experiments. (a) In situ snapshots 𝑖–𝑖𝑣 showing the progression of deformation for the 𝜣 = [0◦ , 0◦ , 33◦] morphology along the 𝒆̂1
direction, up to 40% strain. Scale bars, 20 μm. (b) Qualitative structure-to-response relations enabled by spherical pole figures denoting the directional surface-normal distributions
or representative lamellar (left), columnar (center), and cubic (right) morphologies—accompanied by corresponding stress–strain responses along the 𝒆̂𝑖 directions. The pole figures
erve as a proxy for structural anisotropy, with higher surface-normal distributions along a given direction correlating to a more compliant response. The lamellar and columnar

morphologies exhibited negative-stiffness regions corresponding to nonlinear buckling (as marked for the lamellar sample shown in (a)), along with stiffening at large deformations
due to self-contact of shells. (c) Range of finite stress–strain behaviors across the training data as observed from ex situ compressions along the three principal directions 𝒆̂1 (left),
𝒆̂2 (center), 𝒆̂3 (right) highlighted on a generic spinodal morphology. The black lines denote the stress bounds across the training dataset, while color-coded responses correspond
to the three representative morphologies shown in (b).
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to strains of 𝜀 ≈ 20% as observed via in situ experiments on the 𝜣 =
[0◦, 0◦, 33◦] morphology (Fig. 2a,b left). Notably, the cubic morpholo-
gies approach similar responses when loading in all three directions
with 𝜃1 ≈ 𝜃2 ≈ 𝜃3. Further in situ observations for representative
samples presented in Fig. 2b are included in Supplementary Note 2 (see
Supporting Information Movies S1–S9).

When analyzing the dataset as a whole—simply represented in
Fig. 2c as bounded by maximum and minimum responses with some
highlighted morphologies within—we identify the buckling behavior
to be prevalent in other lamellar morphologies as well as some low-
angle columnar morphologies (i.e., when 𝜃2 < 30◦). For the subset
of fabricated samples, we identified a distinctively different response
in 𝒆̂3-loaded responses, primarily exhibiting monotonically increasing
stress levels—a consequence of our 𝜃1 < 𝜃2 < 𝜃3 criterion when
electing morphologies. We highlight that between the strains of 𝜀 ≈
0% to 40%, micro-cracks began to form causing fracture events that
anifested as fluctuations in the stress response. Defining the energy

bsorbed as the integral of the stress–strain responses to 40% strain

rovided a broad distribution of performance metrics as a function of n

4 
orphology and orientation. Altogether, this comprehensive dataset
heds light on the complex nonlinear responses of high-relative-density
pinodal morphologies, identifying a correlation between mechanisms
uch as buckling and self contact to qualitative morphology classifi-
ations. These observations add intuition to previously observed non-
inear responses in spinodal morphologies, while alternate mechanics-
riven computational tools are required to identify structure–property
elations in this highly nonlinear regime.

.3. Forward modeling via physics-enhanced deep learning

Learning the highly nonlinear map from the design parameters 𝜣 to
he direction-dependent stress–strain responses of spinodal metamateri-
ls would require a significant amount of data. To circumvent this issue
nd to work with limited experimental data available, we introduce
 physics-enhanced ML framework that serves as a surrogate to the
orward structure-to-property relations.

In the exemplar stress–strain behaviors in Fig. 2b, we observe

onlinear features that are typical of instabilities and pattern formation
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Fig. 3. Physics-enhanced deep learning framework. (a) Left: The uniaxial compression stress response (as a function of applied strain 𝜀) of spinodal metamaterials is modeled as the
derivative of a deep neural network-based nonconvex energy density potential 𝑊 (𝜀,𝜣). The model consists of two potentials convex in 𝜀 and given by separate neural networks:
𝑊1(𝜀,𝜣) with the energy and stress vanishing at 𝜀 = 0 by construction; 𝑊2(𝜀,𝜣) with the energy (𝑣 +𝑊1(𝑏,𝜣)) and vanishing stress at 𝜀 = 𝑏. Both 𝑏(𝜣) and 𝑣(𝜣) are also given
y neural networks. The nonconvex potential 𝑊 is obtained by a combination of 𝑊1 and 𝑊2. Right: The stress is obtained by differentiating 𝑊 with respect to 𝜀. Also shown

are the derivatives of 𝑊1 and 𝑊2 for reference. (b) Schematic of the partial input convex neural network (PICNN) architecture for 𝑊1 and 𝑊2 and their combination thereof. The
ICNN architecture predicts an energy which is convex with respect to the strain 𝜀 (via convex path) and parameterized by the design parameters 𝜣 (via nonconvex path). See

SI Appendix Machine Learning Framework section for details.
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in bulk materials due to nonconvex energetics [45]. Therefore, we
model a representative stress–strain response as the derivative of an
underlying strain energy density potential, which in the context of uni-
axial compression corresponds to the area under the stress–strain curve.
Consequently, the potential as a function of the applied strain must be
monotonically increasing while admitting nonconvexities to allow for
instabilities. We emphasize that this notion of energy potential is used
only as an inductive bias to facilitate the learning of the uniaxial stress–
strain response; its physical and thermodynamical admissibility should
not be considered as strictly as a homogenized constitutive model.

We model the above potential with a deep neural network (NN)
𝑊 (𝜀,𝜣) as a function of the applied strain 𝜀 and design parameters
𝜣. A classical NN based on, e.g., a multi-layer perceptron (MLP)
architecture may not satisfy the constraint of monotonic increase with
𝜀. Additionally, while such an NN is highly non-convex in its inputs by
default, the degree of nonconvexity (loosely speaking) with respect to 𝜀
should be constrained. The experimental data clearly exhibits a single
macrostructural instability, which should be accordingly reflected in
the NN output. Since we are training on experimental data directly,
the NN—left unchecked—can exhibit fine-scale but highly oscillatory
behavior trying to fit the experimental noise [46]. To satisfy the above
constraints, we introduce the following NN architecture.

We take inspiration from Kumar et al. [45] and combine multiple
convex potentials into one monotonically increasing, but nonconvex
potential as
𝑊 (𝜀,𝜣) = min{𝑊1(𝜀,𝜣), 𝑊2(𝜀,𝜣)}, (3) s

5 
here 𝑊1(𝜀,𝜣) and 𝑊2(𝜀,𝜣) are two energy potentials that are convex
n 𝜀 (but non-convex in 𝜣). However, the corresponding transition
etween phases is very sharp and not representative of the experimental
ata. Therefore, we relax Eq. (3) by allowing the phases to coexist with

volume fractions 𝛾1, 𝛾2 ∈ [0, 1], respectively, as

(𝜀,𝜣) = min
𝛾1 ,𝛾2

[ 2
∑

𝑖=1
𝛾𝑖𝑊𝑖(𝜀,𝜣) −

(

−𝑘𝑇
2
∑

𝑖=1
𝛾𝑖 log 𝛾𝑖

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
configurational entropy

]

,

with 𝛾1 + 𝛾2 = 1.

(4)

ere, the configurational entropy (not physical entropy) penalizes the
ormation of phase mixtures. The constant 𝑘𝑇 > 0 controls the influence
f configurational entropy and in turn, the smoothness of the transition
etween 𝑊1 and 𝑊2. The effective stress 𝜎 is obtained as the derivative
f 𝑊 (𝜀,𝜣)

𝜎(𝜀,𝜣) = 𝜕 𝑊
𝜕 𝜀 =

exp
(

−𝑊1
𝑘𝑇

)

exp
(

−𝑊1
𝑘𝑇

)

+ exp
(

−𝑊2
𝑘𝑇

)

𝜕 𝑊1
𝜕 𝜀 +

exp
(

−𝑊2
𝑘𝑇

)

exp
(

−𝑊1
𝑘𝑇

)

+ exp
(

−𝑊2
𝑘𝑇

)

𝜕 𝑊2
𝜕 𝜀 ,

(5)

where the simplification on the right side follows from the analytical
olution of Eq. (4) (see Supplementary Note 3 for derivation).
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We model the constituent potential 𝑊1 as

𝑊1(𝜀,𝜣) = 𝜔1
(𝜀,𝜣)

⏟⏞⏞⏟⏞⏞⏟
first convex potential

− 𝜔1
(0,𝜣)

⏟⏞⏞⏟⏞⏞⏟
energy correction

− 𝜀
𝜕𝜔1

(0,𝜣)
𝜕 𝜀

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
stress correction

. (6)

Here, 𝜔1
denotes a partial input convex NN (PICNN) (see Ref. [47]

for architectural details) with the trainable parameter set 𝜔1. Due to
the inherent property of PICNNs, the predicted 𝑊1 is modeled to be
nly convex with respect to 𝜀, but can have any arbitrary functional
elationships with 𝜣. We name these functional relationships within
he PICNN architecture as the convex and nonconvex path (as seen
n Fig. 3b). Following the principle that non-negative weighted sums
f convex functions are convex, the convex path only contains linear
ransformations with non-negative weights and convex non-decreasing
onlinear activation functions. Supplementary Note 3 provides fur-
her details on the PICNN architecture used here. This PICNN-based
pproach allows us to obtain energies convex in 𝜀 but non-convexly
arameterized by 𝜣. Note that, 𝜔1

is merely the convex output of the
ICNN, and only when combined with the energy and stress corrections
t becomes the potential 𝑊1. These correction terms ensure that 𝑊1
dentically satisfies zero energy and zero stress (strain-derivative of 𝑊1)
t zero strain, i.e., 𝜀 = 0.

We model the constituent potential 𝑊2 as
𝑊2(𝜀,𝜣) = 𝜔2

(𝜀 − 𝑏,𝜣)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

second convex potential

−
(

𝜔2
(0,𝜣) − 𝑣 −𝑊1(𝑏,𝜣)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
energy correction

− (𝜀 − 𝑏)
𝜕𝜔2

(0,𝜣)
𝜕 𝜀

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
stress correction

,

with 𝑏 = 𝛽 (𝜣) ≥ 0 and 𝑣 = 𝜈(𝜣) ≥ 0.

(7)

Here, 𝜔2
denotes another PICNN that is convex in 𝜀 and contains

trainable parameters 𝜔2. However, unlike 𝑊1, the energy and stress
correction terms ensure that minimizer and minimum of 𝑊2 are non-
zero, i.e., 𝜀 = 𝑏 ≥ 0 and 𝑊2(𝑏,𝜣) = 𝑣 + 𝑊1(𝑏,𝜣). Both 𝑏 and 𝑣 act as
ffsets of 𝑊2 with respect to 𝑊1 in the strain vs. energy space. Their
alues are given by two additional classical MLP neural networks 𝛽 (𝜣)
nd 𝜈 (𝜣), parameterized by 𝛽 and 𝜈, respectively. The non-negativity
onstrain on 𝑏 and 𝑣 ensure that the non-convex combination of 𝑊1 and
2 in Eq. (4) yields a 𝑊 that is monotonically increasing (see Fig. 3a).
ote that, while we limit the construction of 𝑊 to a combination of
nly two convex potentials, additional potentials can be incorporated
o model more complex nonlinear behavior if needed.

We represent the experimentally generated dataset as

=
{(

𝜣(𝑛), ̃𝜖(𝑛,𝑖)𝑡 , ̃𝜎(𝑛,𝑖)𝑡

)

∶ 𝑡 = 1,… , 𝑇 (𝑛, 𝑖); 𝑖 = 1, 2, 3; 𝑛 = 1,… , 𝑁
}

,

(8)

here 𝑛, 𝑖, and 𝑡 denote the different sample, direction of loading,
nd loadstep during loading, respectively. The total number of load-
teps 𝑇 (𝑛, 𝑖) as well as change in strain between two loadsteps may
ot necessarily be the same across different samples and direction of
oading. The forward ML model is then trained to minimize the mean
bsolute percentage error (MAPE) loss in stress predictions across the
mall training dataset:

𝜔1, 𝜔2, 𝛽 , 𝜈 ← arg min
𝜔1 ,𝜔2 ,𝛽 ,𝜈

1
||

𝑁
∑

𝑛=1

3
∑

𝑖=1

𝑇 (𝑛,𝑖)
∑

𝑡=1

|

|

|

|

|

|

|

𝜎
(

𝜀̃(𝑛,𝑖)𝑡 ,𝜣(𝑛)
)

− 𝜎̃(𝑛,𝑖)𝑡

𝜎̃(𝑛,𝑖)𝑡

|

|

|

|

|

|

|

. (9)

The loss function computes the relative error of the predicted and
arget values, ensuring that the predictions are forced to be accurate,
egardless of the magnitude of the target value. Supplementary Note 3
resents the detailed ML training protocols.

Due to the limited amount of data, we take additional measures
o facilitate the training process. For each data point, we distinguish
etween the type of spinodal topologies (lamellar, columnar, or cubic)
6 
nd the loading directions (𝒆̂1, 𝒆̂2, and 𝒆̂3). For each of these cases, we
rain distinct ML models and post-hoc lump them into a unified model;
ee Supplementary Note 3 for details.

We evaluate the predictive capabilities of our forward model by
sing test samples and their stress–strain data which the ML framework
as not seen during training. In Fig. 4a, we present the predicted (teal)
nd the experimentally measured (red) stress–strain curves across three
irections each for three test samples—one each of lamellar, columnar,
nd cubic topologies. We also plot the derivatives 𝜕 𝑊1∕𝜕 𝜀 (dark blue)
nd 𝜕 𝑊2∕𝜕 𝜀 (light blue) of the two convex constituent energy poten-
ials for reference. We generally observe a MAPE of 6%–12% across
ll types of spinodal structures and across all directions. However,
e do note that the errors for predicting the material behavior for

amellar structures (with small cone angles) are generally higher than
or columnar and cubic structures. We attribute the higher errors for

lamellar topologies to the relatively high sensitivity to imperfections
and unpredictable localized mechanical behavior. Fig. 4b illustrates
the accuracy of the models across all the nine test cases. Despite
the small dataset, we observe a goodness-of-fit 𝑅2 > 0.96 for stress,
𝑅2 > 0.99 for absorbed energy (i.e., cumulative area under the curve),
nd 𝑅2 > 0.90 for the incremental stiffness (i.e., slope of the curve)
ith respect to the experimental ground truth at every strain point.
upplementary Note 2 provides details on how the absorbed energy and
ncremental stiffness are computed. The lower accuracy in incremental
tiffness predictions may be attributed to compounding of errors when
omputing derivatives of the stress–strain curve.

.4. Morphology-dependent deformation mechanisms

To bridge the gap between the measured/predicted nonlinear re-
ponses and the morphology descriptors that lead to various defor-
ation mechanisms, we employed nonlinear finite element models of

selected morphologies within our design space. We leveraged these
simulations to add mechanistic insight to performance metrics such as
absorbed energy and its relation to our spinodal design space, particu-
arly linking nonlinear mechanisms to surface-curvature distributions
n a given morphology. As representative designs of the lamellar,
olumnar, and cubic categories, we selected the 𝜣 = [0◦, 0◦, 33◦],
= [0◦, 23◦, 37◦], and 𝜣 = [20◦, 23◦, 24◦] morphologies, respectively,

o model within the finite element framework.
To match the conditions in our experiments, we modeled each

orphology with no constrains on the lateral faces while the degrees of
freedom of the bottom nodes were fully constrained and a compressive
isplacement was imposed on the top nodes. To capture complex re-
ponses while managing the computational cost of each simulation, we
iscretized each morphology using structural shell elements endowed
ith an elasto-plastic material model, where the plastic flow curve was
etermined from experiments on the constituent polymer (see Supple-

mentary Note 2). We note that this plasticity model was chosen for
its simple implementation, while it is not intended to fully capture the
physical mechanisms of permanent deformation in our polymeric con-
stituent material. As a result, we employ these simulations as a tool to
uncover differences in deformation mechanisms between representative
morphologies, instead of as an all-encompassing material model for our
spinodal samples. Improvements to the model can be made to account
for polymer-specific physics during nonlinear deformation [48–50], but
are beyond the scope of this work.

Comparing the simulations to the in situ experimental responses
demonstrated kinematic agreement within all morphologies, prior to
the emergence of fracture events within the polymeric shells which
were not intended to be captured numerically. For instance, simu-
lations of compression on the 𝜣 = [0◦, 23◦, 37◦] morphology along
the 𝒆̂1 direction (Fig. 5a, other morphologies/directions in Figs. S13
and S14) captured nonlinear responses such as buckling and self-

contact. In agreement with experiments, the simulations predicted the
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Fig. 4. Forward model results. (a) Stress–strain plots showing the ML-predicted (teal) versus experimental ground truth (red) curves for three representative spinodal design in
the test dataset (i.e., sample from outside the training dataset). For reference, we show the derivatives 𝜕 𝑊1∕𝜕 𝜀 (dark blue) and 𝜕 𝑊2∕𝜕 𝜀 (light blue). (b) Distribution of predicted
vs. ground truth values on the test dataset for normalized stress, normalized incremental stiffness (i.e., slope of curve), and normalized cumulative energy absorbed (i.e., area
under curve) at all strain increments. The dashed line represents the ideal line with zero intercept and unit slop; 𝑅2 denotes the corresponding goodness-of-fit.
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buckling events to emerge at 𝜀 ≈ 5%, accompanied by stress local-
ization at regions of higher curvature. Beyond the onset of buckling,
he simulations predicted accumulation of equivalent plastic strain 𝜀̄𝑝

primarily in these high-curvature regions, agreeing with the sites of
racture initiation in in situ experiments. While the linear response of
he simulations proved to be consistently stiffer than that observed in
xperiments (Fig. 5b), as expected in a model that is agnostic of minor
abrication defects, the qualitative large-deformation response was in
greement and the effective yield strength 𝜎∗𝑦 predictions were within
% of experimental values—with the exception of the lamellar sample
hose instability-driven onset of nonlinearity was within 13%. Most

mportantly, the simulations provided estimates of energy distributions
ithin the probed morphologies, suggesting energy absorption to be
rimarily due to plastic dissipation. Specifically, plastic dissipation

was calculated to equal the elastic strain energy in the structure at
ompressive strains of 5%, shortly after the emergence of buckling
Fig. 5c). Even at strains of 20% in various morphologies, contributions
ue to frictional dissipation were minimal, with plastic dissipation
ccounting for up to 78% of the total internal energy in the system

n the case of the lamellar architecture. t

7 
To establish a connection between these local phenomena and the
nderlying geometry, we introduce a parameter 𝜂 termed the normal
articipation factor (NPF), which denotes the degree to which surfaces
ithin an architecture align with the loading direction. For a given

urface element 𝑖, the NPF 0 ≤ 𝜂𝑖 ≤ 1 is computed as

𝑖 = 1 − (𝐧𝐢 ⋅ 𝐞𝐝)2, (10)

here 𝐧𝐢 represents the normal vector of the element and 𝐞𝐝 denotes the
irection of loading. The NPF assumes a value of 1 when the loading
irection is parallel to the surface, while it approaches 0 when the
oading direction is perpendicular. Using these finite element models to
etermine plastic strain localization in spinodal morphologies reveals a
orrelation between the regions of high NPF and localized equivalent
lastic strain for a majority of the morphologies (Fig. 5d (i, ii)).

However, some morphologies such as 𝜣 = [0◦, 0◦, 33◦] under loading
n the 𝒆̂1 direction show a greatly diminished correlation between the
istribution of 𝜀̄𝑝 and NPF values (Fig. 5d (iii)). This discrepancy arises
ue to buckling phenomena, which lead to less efficient load distribu-

ion upon buckling and corresponding localized strain accumulation.
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Fig. 5. Finite-strain simulations and normal participation factor. (a) In situ snapshots for 𝜣 = [0◦ , 23◦ , 37◦] loaded in the 𝒆̂1 direction for 1%, 10%, and 20% strain points. Scale
bars, 10 μm. (b) Comparison between in situ experiment (green line) and simulation (blue line) for the normalized stress–strain curves up to 20% strain. (c) Distribution of
energy mechanisms as a function of strain, including plastic dissipation, elastic strain energy, and frictional dissipation. Up to 20% strain, friction effects are negligible and plastic
dissipation is the dominant mode of dissipation. (d) Geometric representations of the normal participation factor 𝜂 (NPF) for three representative cases and its correlation to the
equivalent plastic strain 𝜀̄𝑝. The dark purple regions correspond to 𝜂 ≈ 1 which correlates to regions that undergo high plastic deformation (gold regions) for the cases shown in (i)
nd (ii), while diminished correlation occurs in the buckling-prone case in (iii). (e) Linear correlation between total energy dissipation and 𝜂, where the data points corresponding
o the three cases in (d) are indicated, showing a loss of correlation for geometries that undergo buckling events.
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Using these local 𝜂𝑖 values, we define the average NPF for the entire
morphology under a given loading direction, denoted as ⟨𝜂⟩, as

⟨𝜂⟩ =
∑𝑁

𝑖=1 𝐴𝑖𝜂𝑖
∑𝑁

𝑖=1 𝐴𝑖
, (11)

where 𝐴𝑖 represents the area of the 𝑖th surface element. Plotting the
⟨𝜂⟩ against the total energy dissipation, as shown in Fig. 5e, reveals a
otable correlation between the two parameters. Points deviating from
he trend line, signify exceptional cases characterized by buckling insta-
ilities. Furthermore, the predictions obtained from the ML algorithm
re overlaid, demonstrating its ability to capture the large-deformation
ffect of these instabilities. These exceptional cases underscore the
ecessity for employing two potentials within the ML framework, rather
han one, to accurately represent the nonlinear energy absorption
ssociated with buckling phenomena in spinodal metamaterials.

.5. Inverse design for tailored stress–strain response

We use the predictive capabilities of the forward ML model as a fast
urrogate (to experiments) for inverse designing spinodal metamaterials
ith prescribed nonlinear stress–strain responses. Let  = {(𝜀̂𝑡, ̂𝜎𝑡) ∶
= 1,… , 𝑇 } be a desired stress–strain response for quasi-static uniaxial
 m

8 
ompression loading discretized on 𝑇 > 0 points. We use the MAPE loss
to formulate the inverse design task as an optimization:

𝜣, 𝒆̂𝑖 ← arg min
𝜣, 𝑖∈{1,2,3}

1
𝑇

𝑇
∑

𝑡=1

|

|

|

|

|

𝜎(𝑖)(𝜀̂𝑡,𝜣) − 𝜎̂𝑡
𝜎̂𝑡

|

|

|

|

|

. (12)

The stress predictions 𝜎(𝑖)(𝜀̂𝑡,𝜣) are evaluated via the forward ML
model using Eq. (5), where the superscript (⋅)(𝑖) indicates the model
corresponding to the 𝒆̂𝑖 principal direction of loading (see Supplemen-
ary Note 4). This has two advantages: (i) the numerical optimization
equires several evaluations of the stress predictions, which are orders
f magnitude faster when performed via the forward ML model than
xperiments (or even simulations, if feasible); and (ii) while gradient-
ased optimization schemes (e.g., gradient descent [51]) are more
fficient and stable than non-gradient-based methods, they require
omputing the sensitivities of the loss function with respect to the
ariables (in this case, 𝜣). Leveraging the computational graph and
ackpropagation of NNs [52], the forward ML model enables automatic
ifferentiation [53] of the stress predictions 𝜎 and in turn, the loss
unction with respect to 𝜣. In contrast to computationally intensive
umerical differentiation (perturbing the input and re-evaluating the
oss function), automatic differentiation provides analytically exact
radients and enables a more stable numerical optimization.

Here, we use the Adaptive Moment Estimation or Adam [54] opti-
izer to solve Eq. (12). We highlight that the inverse design challenge
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Fig. 6. Inverse design framework and results. (a) The forward ML model serves as a fast surrogate to evaluate the structure–property relations within an iterative gradient-based
optimization scheme. The input to the optimization scheme is a target stress–strain curve (indicated in dark red) and the optimizer iteratively updates the guess design parameters
until the loss between the predicted and target stress–strain curve is minimized. (b–g) We optimize for six target stress–strain curves which are not present in the training dataset.
The stress–strain plots show the target (red), optimized (teal), and experimentally verified (green) stress–strain curves (with MAPEs specified between the target and experimental
response). For each optimized design, we provide SEM images of the fabricated samples corresponding to the optimized design parameters and the green stress–strain curves, with
he vertical direction (substrate normal direction) corresponding to the loading direction highlighted in transparent red. A graphic of the standard axis convention used in this
ork is given for reference to loading direction. Scale bar, 20 μm.
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s ill-posed as multiple designs can exhibit the target stress–strain curve.
o bypass this challenge, we perform the optimization for different

nitial guesses in parallel and select the design with the lowest MAPE
oss at the end. Supplementary Note 4 provides additional details on
he optimization protocols and a pseudocode is presented in Supporting
nformation Algorithm 1.

To demonstrate the efficacy of our framework, we inversely design
or target curves from our dataset, which were multiplied by a factor
= 1.2. This ensures that the target mechanical behavior is beyond the

tress–strain curves which were provided in the limited experimentally
enerated training set. We present six distinct target curves and their
 q

9 
espective optimization results in Fig. 6b–g. For each target (red) we
ptimize the design parameters to obtain an optimized curve (teal).
inally, we fabricate and test the structures with the optimized design
arameters (green). The first target (b) has a strain-softening region
ith a subsequent strain-hardening region. Similarly, the second target

c) has a strain-softening region after the yield point, with a subsequent
tress plateau. The third target (d) exhibits a relatively stable, mono-
onically increasing stress–strain response. The fourth target (e) has a
elatively stiff linear elastic region and a subsequent stress plateau. The
ast two targets (f–g) possess stiff linear elastic region with a subse-

uent strain-hardening behavior. For the first target, the optimization
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ramework proposes a lamellar structure (𝜣 = [0◦, 0◦, 37.87◦]) oriented
long the 𝒆̂1-direction to achieve the desired stress–strain response. The
abricated structure matches the target response well with a MAPE
f 20.5%. Most of the error stems from the strain-hardening region
n the fabricated sample, which the forward module overpredicted.
or the second target, also a lamellar structure (𝜣 = [0◦, 0◦, 24.33◦])
riented along the 𝒆̂2-direction, the MAPE between the response of the
abricated sample and the target curve is 24.4%. Here, the three curves
re offset by a small margin, with the experiment showing a lower yield
tress than what was predicted. The overall macro-structural behavior,
.e., strain-softening with subsequent stress-plateau, is captured with
he optimized design parameters. For the third target, the fabricated
arget (𝜣 = [0◦, 0◦, 36.97◦]) exhibits a higher strain-hardening than
hat was predicted, which results in an MAPE of 19.3%. However,

imilarly to the second target, the overall stress–strain behavior is well
aptured. For the fourth, fifth, and sixth target, we observe excel-
ent matches with the queried stress–strain behaviors with MAPEs of
.8%, 7.9%, and 6.9%.

Validation on these six target curves demonstrates the validity
f the proposed framework to capture highly nonlinear responses in
omplex 3D spinodal morphologies that lack internal symmetry and
eriodicity. While quantitative agreement between experimental and

optimized responses improves for columnar or cubic morphologies,
which have less pronounced anisotropy compared to lamellar ones,
the overall qualitative response was always captured regardless of the
𝜣 representation. Specifically, in scenarios where micromechanical
instabilities or failure events led to a macro-structural negative-stiffness
responses, the framework accurately accounted for these features with
closely matched stress and strain levels. Moreover, our results demon-
strate that the physical basis chosen for our ML framework accurately
describes the structural response of thick-shell spinodal structures at
finite strains—a complex parameter space that is intractable to fully
explore through high-fidelity simulations or experiments alone.

3. Conclusion

Designing complex spinodal metamaterials with a wide range of
topologies and corresponding nonlinear mechanical behavior is chal-
lenging, especially when computational modeling can be costly and
experimental data is scarce. Here, we introduced a physics-enhanced
ML and optimization framework that bypasses this challenge by directly
using extremely sparse experimental data and enables the inverse
design of spinodal structures with tailored finite-strain mechanical
responses.

The lack of data for learning the structure–property relations is com-
pensated by the physics-based inductive biases, which aid in identifying
nonlinear responses such as instability- and localization-dominated
responses. Tracing these responses back to nonconvex energetic poten-
ials allows for a versatile framework that may be applied to a variety of
ightweight microstructures employed in the mechanical metamaterials
ommunity. Inspired from phase transformation modeling approaches,
ombining multiple convex (in strain) neural networks to form non-

convex but monotonically increasing potentials can accurately and
fficiently capture complex nonlinear stress–strain behavior in presence

of extreme and localized deformation including failure. At the same
time, partial input convexity of PICNN architectures allows capturing
arbitrary non-convex functional relations with the design parameters of
spinodal metamaterials.

In this work, we verify the importance of the above described
physical basis in the ML model by looking at the local deformation
mechanisms. Despite the computational cost, finite element simulations
lead to the observation that plastic dissipation is the dominant dissi-
pation mechanism up to 20% strain and thus the geometric normal
articipation factor 𝜂 was introduced to describe the local loading dis-
ributions. We found that 𝜂 and energy absorption of our samples were
trongly correlated. However, the samples that underwent buckling had
10 
iminished correlation due to premature strain localization, evidencing
the physics-enhanced ML as a route to accurately and efficiently predict
energy absorption for these unique cases and highlighting the need for
the second convex energy well.

While we developed this framework for spinodal metamaterials, we
note that the ML inverse design framework and the physics-enhanced
inductive biases are sufficiently general to be individually (or in com-
bination) adapted for any class of metamaterials (e.g., truss, plate,
or TPMS lattices) and data representation (e.g., vector, graph, or
pixel/voxel-based parameterizations). The gradient-based optimization
strategy can also be adapted to other approaches, including generative
ML methods such as conditional variational autoencoders [42] and dif-
fusion models [33]. Additionally, one could extend the model to handle
multiple loading cycles by introducing internal parameters that track
the material’s loading history. These additions could allow the model
to distinguish between loading and unloading phases and account for
plastic deformation. Moreover, in this work, we have performed a
comparatively large number of high-fidelity experiments in both ex situ
and in situ formats to assist in the understanding of the ML model from a
physical basis. We leverage microscale fabrication and testing to obtain
an order-of-magnitude increase in data throughput—necessary for ap-
plicability to ML frameworks. From the 321 experiments performed in
this work, we were able to capture the complex localized deformation
behavior of thick-shelled spinodal morphologies, which led us to gain
critical insights into the physical interpretation of our ML framework
results. This work closes the gap in understanding the structure-to-
property relations of high-relative-density spinodal morphologies at
finite strains, relevant to applications of high energy absorption ma-
terials. The combination of using an experimentally generated dataset
to train a physics-enhanced ML framework shows a promising avenue
for designing and understanding the complex architected materials of
the future.

Methods

Details on the virtual specimen generation (Supplementary Note
1), the sample fabrication, physical characterization and finite element
analysis (Supplementary Note 2), the data preprocessing, the PICNN-
framework and training protocols (Supplementary Note 3), and the
gradient-based multi-initialization optimization scheme (Supplemen-
tary Note 4) are provided in the Supplementary information.
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