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ABSTRACT: Nanopore-based sensing platforms have trans-
formed single-molecule detection and analysis. The foundation
of nanopore translocation experiments lies in conductance
measurements, yet existing models, which are largely phenomeno-
logical, are inaccurate in critical experimental conditions such as
thin and tightly fitting pores. Of the two components of the
conductance blockade, channel and access resistance, the access
resistance is poorly modeled. We present a comprehensive
investigation of the access resistance and associated conductance
blockade in thin nanopore membranes. By combining a first-
principles approach, multiscale modeling, and experimental
validation, we propose a unified theoretical modeling framework.
The analytical model derived as a result surpasses current
approaches across a broad parameter range. Beyond advancing our theoretical understanding, our framework’s versatility enables
analyte size inference and predictive insights into conductance blockade behavior. Our results will facilitate the design and
optimization of nanopore devices for diverse applications, including nanopore base calling and data storage.
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N anopores have evolved as valuable single-molecule
analytical tools over the past four decades.”” While
ubiquitous in nucleic acid sequencing applications, the
utilization of nanopores extends into broader molecule sensing,
biomolecule characterization, catalysis, desalination, and power
generation.””” The technology has been widely exploited for
the detection, fingerprinting, and sequencing of biomolecules
for advances in medicine, biotechnology, and forensics. In
particular, it has been extensively used to probe the mechanics
and dynamics of DNA, including double-stranded DNA
(dsDNA)' and DNA knots,* '* proteomics,"' ™" virol-
ogy,1 17 etc.

Mapping the experimental observables to their associated
analyte characteristics is a critical enabler for nanopore sensing
in diverse applications. Conductance measurement is the
cornerstone of nanopore translocation experiments. A baseline
open current exists due to the electrophoretic movement of
ions through a pore in an otherwise insulating free-standing
membrane (Figure 1a). The presence of an analyte inside the
pore impedes the flow of ions. As a result, the translocation of
a charged analyte through the pore under the influence of an
electric field causes a transient change in the electrical
resistance of the system (Figure 1b). On the basis of the
principle of resistive pulse sensing, the change in resistance
manifests as a modulation in the ionic current in current—time
pulse signatures in experiments (Figure lc)."® The nanopore
system is ultrasensitive to these changes in the ionic current
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such that the electrical signatures encompass information
about the morphological characteristics of translocating
analytes. For instance, the amplitude of a signature pulse,
known as current blockade Al encodes analyte width (or
thickness) information, which is important for molecule
characterization and fingerprinting applications. Normalized
Aly is termed conductance blockade AGy (Figure 1c). An
accurate, physics-based model of AGy is critical for the
interpretation of experimental observables.

Long, rod-like, charged cylindrical objects such as dsDNA,
filamentous viruses such as fd or TMV, nanorods, and DNA
nanostructures such as DNA origami bundles, etc. (Figure 1d),
have been studied extensively because of their importance in
applications such as sequencing, diagnostics, and biophysical
studies.'”'*'"7** In addition to the prevalence of such
analytes, their cylindrical symmetry offers mathematical
convenience for the use of cylindrical or oblate spheroidal
coordinate systems in analytical conductance models. Relevant
length scales for a system with cylindrical analytes including
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Figure 1. State of the nanopore system corresponding to the changes in the curvature of the equipotential surface for (a) an open pore shown with
minimal circuit representation of the system and (b) a blocked pore in the presence of a long, cylindrical analyte. (c) Representative resistive pulse
outputs from experiments with amplitude current blockade Al (d) Analytes of interest such as DNA, viruses, and nanostructures. (e)
Dimensionless groups in the system, « (analyte:pore diameter ratio) € [0, 1) and § (pore aspect ratio) € (0, 5) typically. (f) Transmission electron

microscopy image of a silicon nitride SiN, pore used for detection.
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Figure 2. Kowalczyk model. (a) System partitioning into channel and access regions based on a flat equipotential surface (highlighted in parts A
and B) that is treated as an effective disk shown in part C. (b) Heat map of the relative error in conductance blockade AGy compared to fully
coupled, continuum simulations. The inset highlights the parameter space with significantly high errors in AGy of <60%.

pore diameter D, membrane thickness L, and analyte diameter
d are depicted in panels e and f of Figure 1. Analyte length !
does not play a role in modulating AGy as long as [ > L. On
the basis of these three length scales, two dimensionless groups
are defined in the system: @ = d/D represents how loosely/
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tightly fit the analyte is inside the pore, and # = L/D is the pore
aspect ratio (Figure le).

The total conductance of the nanopore system is determined
by the sum of key resistances in series that include the access
(or convergence) and channel (or pore) resistances. The
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Figure 3. Continuum simulations. (a and b) Electric potential gradient and equipotential surfaces (enlarged) for thick and thin pores, respectively.
(c) Bending of electric field lines around the pore mouth. (d) Variation of dimensionless conductance blockade (equation S9) over a—p space

shown for various D values.

resistance to the flow of ions inside the pore channel is termed
the channel resistance, R, The potential gradient across
the bulk electrolyte solution due to the distortion and
convergence of electric field lines around the pore mouths is
approximated by the access resistance, R, .., which is
equivalent to entrance effects in the flow of a fluid through
constrictions. Existing conductance models have been
primarily developed for long, cylindrical analytes.”>~** While
these models work well for small @ and §>> 1, they fail for thin
membranes (f < 1). However, with the advent of and
progress in two-dimensional materials, the increasing use of
extremely thin membranes for nanopore experiments is
imperative. These are ideal for high-resolution, high-
throughput nanopore-based single-molecule detection. They
have been reported to have several advantages in terms of
manufacturability, signal-to-noise ratio (SNR), electrical
sensitivity, and stability.”**” In addition, tightly fitted pores
(a = 1) are critical for high experimental sensitivity and
SNR.”” As a result, accurate models for conductance in thin
and tightly fitted pores, i.e, AGy for @ — 1 and f < 1, are
critical.

A key component of AGjg, R,...; dominates for thin pores
[Roccess/ Rehannet ~ 1/ (see the Supporting Information)]. On
the basis of the literature, it is widely understood that R, for
an open pore depends on only the resistivity of the conducting
medium and pore diameter D.**73° However, a comprehensive
understanding of the perturbation in R, in the presence of
an analyte inside the pore remains elusive. First-generation
models for R, ., proposed by Hall and Hille, have been
developed for ion channels in pharmacological applications,
primarily dealing with open pore scenarios (a = 0).””*° The
presence of an analyte has only been phenomenologically or
empirically accounted for thus far, including in more recent
models by Kowalczyk™ and Carlsen.”* The most widely used
model is that of Kowalczyk, which combines R, from Hall*’
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and R,,pne from ohm’s law integrated across the channel. The
presence of an analyte is captured on the basis of an effective
pore diameter that is exact for Ry, e but is only a first-order
approximation for R, (Figure 2a). The Carlsen model
overcorrects the Kowalczyk model by accounting for the
analyte as an added negative access conductance in addition to
the effective pore diameter.”*

The most important assumption in Hall's approach is that
the equipotential surface at the pore mouth is a planar disk
(Figure 2a, parts A and B). While this assumption is suitable
for an open pore, it breaks down for tightly fitted pores. For an
open pore, a large fraction of electric field lines can pass
straight through the pore unhindered. In contrast, in the
presence of an analyte, the field lines are no longer straight in
the pore channel and bend significantly around the pore mouth
as they exit. As a result, the equipotential surface at the pore
mouth cannot be a flat disk as assumed in the model because it
has to remain perpendicular to the field lines. Moreover, in the
presence of an analyte, the pore is no longer “open” and thus
no longer a complete disk (Figure 2a, part C).

To overcome the assumptions of the existing models, we use
fully coupled simulations of the Poisson—Nernst—Planck and
Navier—Stokes equations with appropriate boundary con-
ditions in COMSOL Multiphysics. We show that the state-of-
the-art approaches perform poorly in the critical experimental
limits (@ — 1, § < 1). The heat map in Figure 2b depicts the
relative error in the prediction of AGg using the Kowalczyk
model when compared to the simulation results. The errors of
the Kowalczyk model are as high as 60% for thin and tightly
fitted pores (¢ — 1, f# < 1). Unsurprisingly, these are the
cases farthest from open pore scenarios in which the flat disk
assumption is not justified. This limits the usage of the existing
models in current applications.”’

We hypothesize that an annular disk is a better
approximation than an effective disk, and that the equipotential
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Figure 4. Our model. (a) Updated system partitioning into channel and access regions based on the equipotential surface (highlighted in parts A
and B) that forms a truncated elliptical cone with an annular region shown in part C. (b) Heat map of the relative error in conductance blockade
AGy as compared to fully coupled, continuum simulations. The inset emphasizes the significant reduction in errors in AGjp for an important

parameter range.

surface is an elliptical arc, drawing inspiration from analogous
heat and mass transport problems.”"** The access region and,
hence, its associated resistance, R, ..y is perturbed nontrivially
during the translocation of an analyte through the region. To
test our hypotheses, we use a combination of simulations,
analytical modeling, and experimental validation to elucidate
the role of the access region in determining AGy in the
presence of cylindrical analytes, particularly for thin pores.

The equipotential surface at the pore mouth is curved
(Figure 3a,b) because the fraction of electric field lines that
bend for thin membranes and tightly fitted pores is very high
(Figure 3c). As a result, the assumption of a planar disk at the
pore mouth is a poor approximation in this limit and influences
the accuracy of the existing R, ., models. In addition, due to
the assumption of a hyperbolic shape of the analyte
(specifically dsDNA) in the pore instead of a cylinder, the
Kowalczyk model consistently overestimates AGg.

Toward proposing a new modeling framework and the
development of a more accurate analytical conductance model,
we show that two dimensionless groups, @ and f, are sufficient
to predict the conductance of a nanopore system; i.e., if two
systems have the same (a, /), they will have the same

nondimensional conductance, G = Gy 11/ Go channel (€9 S9),

where Gp gannet and Gp o1y refer to the open channel and total
blocked pore conductances, respectively. This is evident by a
collapse of data points with the same (q, ) values over the
entire parameter space in Figure 3d. Leveraging this insight, we
propose and validate a universal, physics-inspired analytical
model for AGg, demonstrating superior performance com-
pared to the existing models for a wide parameter range. We
present a modeling framework with three key novel features:
(1) accurate estimation for the capacitance of an annular disc
and, hence, R, ..., dominant for thin pores, (2) nonhyperbolic,
cylindrical analyte shapes, and (3) incorporation of electric
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field bending and, hence, the dependence of channel and
access region partitions on both a and f.

Consider a long, cylindrical analyte of diameter d with length
I long enough to pierce both the access regions of a nanopore
of diameter D and thickness L. We focus on concentrated
electrolyte systems, and any double-layer effects can be
neglected to first order (Debye length, Ap /D < 1 and A,/
d < 1). Therefore, any surface charge on the analyte or pore is
screened by a thin double layer. Low-molarity approximation is
beyond the scope of this paper; charge- and flow-related effects
such as electro-osmotic flow, conductivity enhancement,
double-layer overlap, etc., have been ignored. While A
could be comparable to the gap (D — d) at high salt
concentrations, unlike predicted by the Debye—Huckel theory,
exact ion concentration profiles are not critical to the
calculations of integrated quantities like capacitance or
conductance, particularly for salts with comparable anionic
and cationic mobilities.*> > At the pore length scale, the
analyte and pore surfaces can be assumed to act like an
insulator in a background electric field. Charge screening in the
pore results in field lines running parallel to the pore wall and
analyte surface (Figure 3c). The geometric boundaries
between the channel and access region can now be assigned
by noting that the equipotential line that passes through the
corner of the pore wall (Figure 4a, part A) is incident on the
corner at an angle of 45° (see the Supporting Information).*®
Because the analyte surface has no net charge at high ionic
strengths, the equipotential lines are incident perpendicular to
its surface (Figure 4a, part B).

Similar to Hall’s approach, we seek to find the capacitance of
the equipotential surface sketched in Figure 4a.’’ As a first-
order approximation, we consider the equipotential surface as a
flat punctured disk surface of inner diameter d and outer
diameter D, although it is a surface of revolution of an elliptic

https://doi.org/10.1021/acs.nanolett.3c04997
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over the state-of-the-art conductance model.

arc.’> To estimate the capacitance, we utilize the work of
Smythe who proposed an iterative method for this problem,
starting with the charge distribution of an equipotential disk
(see the Supporting Information).”” These calculations yield

C 2. _
—amnils — Zlcos™ a4+ (1 — @) *tanh ' @]
Cisk r
0.014
x |1+ (—3) tan( 1.2805)]
a (1)
where C,, s and Cgig are the capacitances of the flat annulus

and disk, respectively. For & — 0, we determine that the values
are equal. Hereafter, we refer to the open and blocked pore
conductances as Go; and Gy, respectively, such that i € {total,
access, channel}. To obtain the desired quantity Gp, ey We
invoke that the conductance is proportional to the capacitance
because solving for the two problems is mathematically
equivalent™ (G = Co/ée, where ¢ and e are the electrolyte
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conductivity and permittivity of free space, respectively) and

hence
Gg 2
—EE = Zleos a4+ (1 — a®)*tank ! a]
O,access T

0.0143

ool

The other contribution to the total conductance, Gg annel 1S

) tan3(1.28a)] .

identical to the previous approaches for the flat punctured disk

surface:

70D _ g
4ﬂ(l a)

GB,channeI =

(©)
Conductance blockade AGg can be obtained by subtracting
the total blocked conductance from the open conductance:
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-1
4p
AGB = GO,total - GB,total = GD(7 + 1]

- (G ! + GB,access_l)_1 (4)

B,channel

As a second-order approximation, the equipotential surface
is now assumed to be an inclined annular disk because the
equipotential surface that passes through the corner of the pore
is curved (Figure 3b,c). Assuming a partitioning scheme in
which the boundary between the access and channel region is
given by a straight line inclined at an angle 6 with the
horizontal, instead of fixing it at 45° as previously discussed
(Figure 4a), yields an improved estimate for an appropriately
fitted value of parameter 0 (second-order correction), such
that @ is the only phenomenological parameter. The updated
model for Gg .., reads (see the Supporting Information)

(2
_ secto .

B,access — annulus

£ ()

Proceeding in manner similar to that of eq 3, we obtain eq 6
(see the Supporting Information). It is noteworthy that our
proposed model (eqs S and 6) converges to the traditional
model in the limits of open, thick pore cases, i.e, a = 0, f> 1
(see the Supporting Information).

{—(1 - a) +(1 + ﬁ]

tan @
1+ —(1 -
p ( a)}} (6)

We systematically evaluate the model performance (egs
4—6) against simulation results for a wide range of parameters:
a € [0,0.99] and f§ € [0.03, 5] for D € [10, 50] nm (equating
to 867 unique cases). Figure 4b shows the relative error in
AGyg estimated using our newly proposed model, which upon
comparison with Figure 2b, clearly underscores that our new
model significantly outperforms the state-of-the-art model in
the thin and tightly fitted pore limit, i.e., small # and large a.
When all cases with # < 0.1 are combined, the average errors
are 9% and 18% and the maximum errors are 24% and 61% for
our model and Kowalczyk’s model, respectively (Table S2).
Additional analyses and comparisons for alternative models are
shown in Figures S2 and $3.°%**

Our new model, in addition to fully coupled simulations,
successfully predicts experimental data over a wide range of
parameters reported by different research groups. A
comprehensive summary of the data can be found in Table
S1.°"7" An extensive experimental validation for the new
model is shown in Figure S. Panels a and b present the relative
error in AGg prediction from Kowalczyk’s model and our new
model, respectively, compared to the reported experimental
data. The average percentage errors over 44 data points are
36% and 16% for the two models, respectively. It is clear from
these figures that the new physics-based approach yields a
model that outperforms the existing state-of-the-art models
over the complete range of a for thin pores. Moreover, upon
comparison of the absolute AGy values in Figure Sc for a
particular data set that reports a fairly constant f3, the markers
for the new model (filled triangles) are much closer to the
experimental markers (empty circles) as « is varied, suggesting
a better match. Finally, the validity and higher accuracy of the
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new model become abundantly clear as the predictions lie
close to the parity line (x = y) in Figure Sd.

As discussed above, phenomenological parameter 6 should
be closer to 45° in the ideal scenario in which the equipotential
lines conform to the proposed trapezoidal partition between
the access and channel regions. However, a closer look at the
equipotential lines suggests that the equipotential lines become
flat a short distance into the pore mouth. Under this condition,
the boundary between the channel and access region would be
well represented by a nearly flat (small angle) boundary. As a
result, the results are not sensitive to € in our physics-based
model (Figure S6b), which is evaluated as a best-fit parameter
using a fourth of the simulation data set. We show that even
without an added second-order approximation (6 = 0, i.e., flat
equipotential surface), the model (eqs 2—4) outperforms the
existing models (Figure S6a). The curvature of the
equipotential surface is already accounted for, in part, by eq 2.

In conclusion, the new model serves the need for a more
accurate model in the especially critical thin pore limit. It
demonstrates the nontrivial dependence of R, on the
presence of an analyte and successfully predicts the
conductance for a wide range of the experimental data set.
Going beyond current applications, the model formulation can
be adopted for problems involving any gradient-driven flow
such as diffusiophoresis or pressure-driven flows. The general
framework for solving the Laplace equation lends the approach
its broader applicability. Fundamentally, our approach building
on Smythe’s work is powerful because it can be extended
beyond axisymmetric geometries to systems that admit
Schwartz—Cristoffel transformation.***”

We propose a novel partitioning scheme for the nanopore
system accounting for the changes in the equipotential surface
as a result of analyte translocation through nanopores. A
physics-based, more accurate conductance model emerges as a
result of the improved system decomposition and capacitance
calculations. Certain limitations of the modeling approach,
however, such as the effects of heterogeneity in pore shape, salt
concentration dependence, and anomalies associated with off-
axis translocation™ will be critical to carefully consider when
parsing data from nanopore translocation experiments. The
model has been developed for high-salt conditions, where the
strength of diffusive fluxes is negligible compared to that of the
deterministic migration fluxes caused by the applied electric
field. A majority of nanopore measurements are conducted
under high-salt conditions to enhance detection sensitivity and
signal-to-noise ratio, precisely the conditions under which the
new model is expected to perform the best. An implicit
assumption in our modeling approach is that the distribution
of the electric field lines in a conductive system is the same as
that in the analogical dielectric system. The distribution of
electric field lines in the vicinity of the pore region mediates
the conductance, and the distribution does not change
significantly beyond a certain analyte length, ! (Figure S7); I
> L for reported simulation and experimental results. Perhaps
any errors from the Poisson—Boltzmann approach at high salt
concentrations cancel out the error from the assumption
mentioned above. Overall, we expect our modeling framework
to become a convenient yet accurate method for conductance
estimates for various pore geometries and driving forces in
nanopore translocation.

We anticipate that these results can be directly applied in
various solid-state nanopore applications, including data
storage,”” profiling polymer topology,”'® peptide sequencing, "
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virus screening, etc. The modeling framework can also be used
to improve the accuracy of nanopore base calling in genomic
technologies. The state-of-the-art sequencing technologies
suffer from high error rates of 5—15%.>° Such a framework
can support model development to overcome these challenges
by helping us better understand the signal characteristics as
well as for signal calibration and normalization. Accurate
conductance models like ours can improve the accuracy and
reliabi}ity of various single-molecule applications of nano-
pores.
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