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Abstract The paucity of fine particulate matter (PM2.5) measurements limits estimates of air pollution
mortality in Sub‐Saharan Africa. Well calibrated low‐cost sensors can provide reliable data especially where
reference monitors are unavailable. We evaluate the performance of Clarity Node‐S PM monitors against a
Tapered element oscillating microbalance (TEOM) 1400a and develop a calibration model in Mombasa,
Kenya's second largest city. As‐reported Clarity Node‐S data from January 2023 through April 2023 was
moderately correlated with the TEOM‐1400a measurements (R2 = 0.61) and exhibited a mean absolute error
(MAE) of 7.03 μg m−3. Employing three calibration models, namely, multiple linear regression (MLR),
Gaussian mixture regression and random forest (RF) decreased the MAE to 4.28, 3.93, and 4.40 μg m−3

respectively. The R2 value improved to 0.63 for the MLR model but all other models registered a decrease
(R2 = 0.44 and 0.60 respectively). Applying the correction factor to a five‐sensor network in Mombasa that was
operated between July 2021 and July 2022 gave insights to the air quality in the city. The average daily
concentrations of PM2.5 within the city ranged from 12 to 18 μg m−3. The concentrations exceeded the WHO
daily PM2.5 limits more than 50% of the time, in particular at the sites nearby frequent industrial activity. Higher
averages were observed during the dry and cold seasons and during early morning and evening periods of high
activity. These results represent some of the first air quality monitoring measurements in Mombasa and
highlight the need for more study.

Plain Language Summary Air pollution is a major health risk worldwide but is substantially
understudied in Africa. This work presents the first ever particulate matter air quality data set in Mombasa,
Kenya, a major African port and coastal city. The tools used include a hybrid mixture of high‐quality research
monitors and consumer‐grade sensors. A network of five monitoring sites is deployed throughout the city in a
variety of locations. The data indicate polluted air slightly above World Health Organization healthy guidelines,
but substantially lower than other major African cities. In the future, long‐term open access air quality
monitoring stations should be established.

1. Introduction
Air pollution poses a considerable threat on world health, with its most pronounced impact felt in low‐ and
middle‐ income countries (LMICs). Currently ranking fourth among the leading causes of global morbidity and
mortality, it closely trails high blood pressure, smoking and unhealthy diets (Hoffmann et al., 2021). The gravity
of the situation is underscored by epidemiological studies associating about 6.5 million premature deaths and 6
million preterm births globally each year to air pollution (Ghosh et al., 2021; McDuffie et al., 2021). These
statistics highlight the imperative to prioritize interventions that tackle the diverse health risks posed by air
pollution.

Fine particulate matter (PM), known as PM2.5, stands out as the most hazardous among major air pollutants. These
particles are easily respirable and exhibit a propensity to deposit in the pulmonary region based on their size
(Dharaiya et al., 2023). Controlling PM pollution is a key focus of national and local government bodies in many
countries (e.g., the Environmental Protection Agency in the United States) and is historically measured using
certified reference methods, with a high degree of accuracy and precision. Devices fitting this description are
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normally filter‐based methods like high volume samplers, though near real time monitoring methods like beta
attenuation monitors and tapered element oscillating microbalance (TEOM) are also certified and used in air
quality management (Ghamari et al., 2022; Hagan & Kroll, 2020). While these meet most legal requirements,
equipping and maintaining air quality stations with such monitors can be a financial burden and often results in
relatively sparse monitoring. In a complex urban environment, for instance, a single reference monitor costing
more than $10,000 cannot give information about localized variations that are important for protecting health.
Depending on deployment characteristics, a single reference monitor may only represent tens or hundreds km2 by
area and inform pollution in highly specific geographies (Alfano et al., 2020; Levy Zamora et al., 2019).

Fortunately, there has been a new paradigm shift in conventional PM monitoring with the advent of low‐cost
sensor systems. These devices, primarily portable optical particle counters or nephelometers, operate based on
the principle of light scattering to infer the PM number concentration, which can then be converted to mass
concentration assuming a particle density and shape. Priced between $150 to $3,000, these devices offer a cost‐
effective solution to capture spatiotemporal variability, enabling high‐density near real‐time air quality moni-
toring (Feenstra et al., 2019; Zimmerman et al., 2018). Recent work has shown that low‐cost air quality sensors,
especially when carefully calibrated, can be extremely powerful in revealing air quality levels and sources of air
pollution (Amegah, 2018; Giordano et al., 2021; McFarlane, Isevulambire, et al., 2021; McFarlane, Raheja,
et al., 2021; Okure et al., 2022; Raheja et al., 2022, 2023; Subramanian & Garland, 2021; Westervelt et al., 2024).
An outstanding issue remains data quality, though the strengths and weaknesses of these devices have been well‐
characterized recently (Hagan & Kroll, 2020; Jayaratne et al., 2018; Molina Rueda et al., 2023; Ouimette
et al., 2022; Tryner et al., 2020).

For LMICs like Kenya, where adequate monitoring and scientific information are lacking, the potential of low‐
cost sensors cannot be overstated. With only a few reference monitors and a few sensors reporting air quality data,
primarily concentrated in the capital, Nairobi, there is a pressing need for comprehensive monitoring in other
regions of the country. Previous studies on air quality in Mombasa are few (Simiyu et al., 2018; Yussuf
et al., 2023) and have only relied on simulated model output, for example, from the Modern‐Era Retrospective
analysis for Research and Applications version 2 reanalysis (MERRA‐2). This work therefore presents, to our
knowledge, the first surface observations of PM2.5 in the city of Mombasa, the second‐largest city in Kenya with a
population of about 3.5 million and a major port city, and represents some of the first dedicated air quality
research in this area.

2. Materials and Methods
2.1. Sampling Locations

Mombasa is the second largest city in Kenya and lies on the southeast of the Kenyan coast within coordinates (3°
80′, 4°10′S and 39°60′, 39°80′E). The city has an area of 295 km2 with an increasing number of inhabitants at
more than 3.5 million (KNBS, 2019). It is arguably the largest port in East Africa and plays a pivotal role in trade
in the region. It is home to several manufacturing and processing industries including iron smelting, steel rolling
mills, cement mining and oil companies. Mombasa is also an iconic tourist destination with clusters of sandy
beaches and World Heritage sites (KPA, 2017).

Despite its economic significance, Mombasa faces understudied environmental challenges, particularly in terms
of air quality. Potential anthropogenic sources of pollution include operation of minibuses (Matatus), motorized
tricycles (Tuk Tuks), cargo ships, haulage trucks, container handling equipment, thermal power plants, cement
factories, and the burning of open and biomass fuels. The combination of industrial activities, transportation, and
tourism makes Mombasa a complex urban environment susceptible to air quality issues.

To gain a comprehensive understanding of air quality in Mombasa, this study focused on five distinct sampling
locations in Changamwe, Vescon, Bamburi, the University of Nairobi (UoN), Jomo Kenyatta University of
Agriculture and Technology (JKUAT) and Nyali (Figure 1). These locations (coordinates in Table 1) were
strategically chosen to capture the diverse environmental conditions and potential sources of pollution within the
city.
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2.2. Clarity Node‐S

Clarity Node‐S (Clarity Movement Co., Berkeley, CA, USA) is a low‐cost multipollutant monitor that consists of
a Plantower PMS6003, an electrochemical cell sensor (Alphasense), and a Bosche BME280 sensor for the
simultaneous measurement of PM, NO2, temperature, and relative humidity (Nobell et al., 2023). The Plantower
PMS6003 sensors are specifically designed for the measurement of PM and are equipped with two dual lasers that
operate alternately, providing continuous cross‐verification to ensure sensor longevity (Nobell et al., 2023). When
the sensor draws ambient air containing particles of different sizes into its measurement volume, a laser beam

Figure 1. A map of Mombasa and the deployment sites of the Clarity Nodes and the tapered element oscillating microbalance.
The pie charts show the percentage of days where the concentration of PM2.5 at each site exceeded (red) the WHO daily limit
(15 μg m−3).

Table 1
Sensor Deployment Locations in Mombasa

Site Site code Latitude Longitude Description

Changamwe CH −4.027 39.626 Industrial near port

Vescon VE −4.003 39.704 Industrial site

Bamburi BA −4.009 39.710 Industrial and residential site

UON UO −4.061 39.665 Urban site

JKUAT JK −4.064 39.672 Ocean‐influenced

Nyali NY −4.020 39.725 Suburban residential area and ocean‐influenced
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illuminates these particles. The resulting scattered light is then detected perpendicularly by a photodiode detector.
Subsequently, the raw light signals undergo filtering and amplification through electronic filters and circuitry
before being converted into mass concentrations. According to the manufacturer's data sheet, this particular
sensor model has a measurement range spanning from 0.3 to 10 μm (Demanega et al., 2021; Kaur & Kelly, 2023),
though laboratory studies have found that the Plantower PMS6003 and similar sensors have no ability to detect
supermicron particles (Molina Rueda et al., 2023).

2.3. TEOM

The TEOM 1400a is a gravimetric PM monitor with the ability to make continuous mass measurements. It is one
of the devices that has been designated as a Federal Equivalent Method by the United States Environmental
Protection Agency. In principle, particle‐laden air streams are drawn through a filter medium weighed in near
real‐time, usually every 2 s. The filter is placed on an elastic hollow glass‐like tube (the tapered element), free on
one end but clamped on the other, and set in constant oscillation by an electronic feedback system. This motion
has a light‐blocking effect on an LED‐phototransistor pair and can be used to detect the frequency of oscillation of
the element. As more particles are deposited on the filter, this frequency decreases and the changes are converted
into a mass measurement (Ardon‐Dryer et al., 2020; Kulkarni et al., 2011).

Changamwe, being an industrial area and home to the city's port activities, represents a hotspot for various in-
dustrial emissions. Vescon, situated in proximity to manufacturing and processing facilities, provides insights into
the impact of industrial operations on air quality. Bamburi, with its mix of residential and industrial zones, serves
as a representative sampling point for urban air quality. Nyali, a residential and tourist‐centric area with scenic
beaches, contributes information on air quality in areas frequented by residents and visitors.

The UoN site serves as a reference point, providing data on air quality in an educational and research setting. It
houses the reference monitor (TEOM) and one of the low‐cost sensors used in this study. The location at JKUAT
has close proximity to the coastline and raises the possibility of sea spray contributing to local air quality dy-
namics. This is also true for Nyali found along the North coast of Mombasa. Each location offers a unique
perspective on the challenges faced by Mombasa in maintaining air quality standards amid its economic and
industrial activities.

2.4. Calibration Models

We collocated one Clarity Node‐S with a reference‐grade ThermoFisher TEOM 1400a installed at the UoN site
from February to April 2023, spanning dry and wet months to fully account for seasonality. We compared the
PM2.5 data from these devices using a univariate regression model similar to Badura et al., 2019, a multiple linear
regression (MLR), a Gaussian Mixture Regression (GMR), and a random forest (RF) model similar to approaches
followed by Malings et al. (2019) and McFarlane, Isevulambire, et al. (2021), McFarlane, Raheja, et al. (2021).
These methods have been commonly used due to their ease of use (especially linear regression), their accuracy,
and their frequency of use in the literature. Other correction models such as extreme gradient boosting, neural
networks, or other machine learning approaches have been used as well (Giordano et al., 2021). The best per-
forming correction model with respect to the R2 and mean absolute error (MAE) values was retrospectively
applied to a five‐sensor network in Mombasa that was operated between July 2021 and May 2022 to provide an
overall survey of the air quality data in the city.

3. Results and Discussions
3.1. Correction of Low‐Cost Sensor Measurements

Figure 2 shows the daily averaged Clarity Node‐S PM2.5 data initial correlation with reference grade (TEOM)
PM2.5 data with an R2 value of 0.61 and initial mean absolute error (MAE = 7.03 μg m−3).

Including temperature and humidity data and modeling it using MLR, RF, and GMR models reduces the bias
(Table 2). The MLR model had the best R2 score of 0.61 and a reasonable MAE value of 4.28 μg m−3. Further
statistical evaluation is shown in Table S2 in Supporting Information S1.
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Figure 3 shows the raw (purple), TEOM (olive), and corrected (red) hourly PM2.5 data collected at the UoN site
from February to April 2023. On most days, the temporal trend was reproduced and the sensors responded well to
sudden spikes of mass concentrations. However, the raw and reference data were within 10 μg m−3 in the month
of March but within 20 μg m−3 in February. In addition, the daily averaged raw data of the Clarity Nodes in most
cases overpredicted the concentrations compared to reference grade TEOM monitor during the co‐location
period.

Figure 2. Performance evaluation and calibration of daily mean Clarity Node‐S against tapered element oscillating
microbalance‐1400a PM2.5 data.

Table 2
The Statistical Performance Metrics of the Correction Models

Model

Statistical performance metrics

Coefficient of determination (R2) Mean absolute error (MAE) (μg m−3)

SLR 0.61 7.03

MLR 0.63 4.28

RF 0.60 4.40

GMR 0.44 3.93
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3.2. Daily PM2.5 Measurements

Figure 4 summarizes the daily means of corrected PM2.5 data from all six sites in a violin plot. Overall, the
distributions are positively skewed mostly depicting a unimodal pattern and a majority of points between 10 and
20 μg m−3. Some sites like Changamwe and Vescon have long‐tail distributions compared to the rest, possibly
alluding to heavy traffic or industrial activity experienced on some days. This is however not an exact inter-
comparison as different sites have different daily samples (indicated as N in the plots). According to the corrected
plots, the highest daily PM2.5 values are observed in Changamwe (42 μg m−3) while the lowest daily concen-
trations are observed in Nyali (4 μg m−3). The average concentrations are also the highest and lowest at these sites
with Changamwe recording daily average of 16 μg m−3 respectively while Nyali has average of 11 μg m−3

respectively. Only the daily average of Changamwe exceeded the WHO daily PM2.5 limit of 15 μg m−3 though
there were days when this limit was exceeded in the other sites.

3.3. PM2.5 Time Series Plot at Each Site

Figure 5 shows the temporal variations of corrected daily PM2.5 concentra-
tions from the six sites in Mombasa. Overall, the concentrations at each site
exceeds the WHO annual guidelines of 5.0 μg m−3 in all days and exceeded
the daily limit of 15.0 μg m−3 on only some days, ranging from 20% to 64% of
days depending on the location (see pie charts in Figure 1).

Seasonal variations in PM2.5 concentrations are evident with the highest
monthly averages observed during the dry months (December to February)
when the wet deposition is greatly reduced. This was followed by the cold
months (July and August) where elevated PM2.5 averages are also consistent
with the lack of precipitation during this time period. By comparison, the
lowest averages were in April and between October and November which
correspond to the wet months where washout effect of the rain and wet
deposition reduce the PM2.5 levels.

3.4. Temporal Patterns in PM2.5 Concentrations

The diurnal cycles, weekly, and daily variations of PM2.5 in the six sites in
Mombasa are presented in Figure 6. The highest PM2.5 concentrations are
most likely to appear on during weekends in a weekly cycle, and most

Figure 3. A time series plot displaying the corrected, Clarity Node‐S, and Tapered element oscillating microbalance‐1400a
PM2.5 data.

Figure 4. Violin plots of daily averaged corrected PM2.5 values for the entire
data set at each location and six sites in Mombasa.
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unlikely to appear on Thursdays. The large increases in tourist activity and consequently motor vehicles in the
weekends are likely to be a reason leading to elevated PM2.5 levels.

For five of the sites the diurnal cycles of PM2.5 (top‐left panel) displayed a bimodal pattern with early morning
peaks between (6:00 a.m. and 8:00 a.m.) and afternoon peaks between (5.00 p.m. and 9:00 p.m.). This was

Figure 5. Timeseries plots of the daily PM2.5 concentrations in six sites in Mombasa from July 2021 to May 2022.

Figure 6. Hourly average PM2.5 concentrations of six sites in Mombasa organized into hour‐of‐day and day‐of‐week temporal trends. Shading represents the range.
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consistent with the increased anthropogenic activity caused by commuter travel habits during rush hour times and
also by the changing mixing height. This is with exception to Changamwe whose morning and evening peaks
came in much earlier than the other sites, most likely because of the activities at the port. During the rest of the
day, traffic activities reduce and there is more mixing of pollutants hence a decrease in PM2.5 concentrations.

One caveat of our study includes the retrospectively applied correction factor based on a single node air sensor
and reference monitor co‐location for only a few months. While best practice suggests a more robust co‐location,
similar approaches have been successfully applied in previous studies, especially in data sparse areas such as the
African continent (McFarlane, Isevulambire, et al., 2021; Raheja et al., 2022). However, due to the timing of the
colocation, we cover both a dry month (February) and wet months (March and April), thereby accounting for the
predominant seasonality in the region. Additionally, concentrations during the colocation period months and the
deployment months are similar in magnitude, suggesting that the co‐location period was, to first order, an
appropriate proxy for the deployment period. Finally, the co‐location period had similar environmental conditions
as the deployment period, as demonstrated in Table S1 in Supporting Information S1.

4. Conclusion and Recommendations
In conclusion, this study addresses the significant challenge of limited surface measurements of fine PM2.5 in Sub‐
Saharan Africa, particularly in Mombasa, Kenya. The evaluation of Clarity Node‐S PM sensors against a TEOM
revealed moderate correlation and a MAE of approximately 7.03 μg m−3 in raw, manufacturer‐reported data.
Through the application of calibration models, including MLR, GMR, and RF, the MAE was reduced to 4.28,
3.93, and 4.40 μg m−3, respectively, with MLR achieving the highest R2 value of 0.63.

Applying the correction factor to a five‐sensor network in Mombasa provided valuable insights into the air
quality, revealing average daily PM2.5 concentrations ranging from 12 to 18 μg m−3. Some sites, such as
Changamwe, Vescon, and Bamburi, exceeded WHO daily PM2.5 guidelines more than 50% of the time. Higher
averages were observed during dry and cold seasons and during early morning and evening hours.

The study highlights the potential of low‐cost sensor systems in regions with limited monitoring infrastructure,
emphasizing their role in providing reliable air quality data where reference monitors are scarce. The findings
contribute to the nascent field of air quality research in Mombasa, offering valuable information for future in-
terventions and policies aimed at mitigating the health risks associated with air pollution. Though additional
investigation is needed with larger networks, our first results suggest that PM2.5 concentrations are moderately
lower than other major African cities (e.g., Nairobi) (Pope et al., 2018). This could be attributed to many factors,
likely including the close proximity to clean oceanic air masses owing to Mombasa's coastal location. The
temporal and spatial variations in PM2.5 concentrations underscore the need for continuous monitoring and
targeted interventions to address air quality challenges in LMICs like Kenya. Future research should explore other
areas within the city or other air pollutants not yet explored. Satellite data can also be used to map out potential
hotspots followed by dedicated studies looking at the sources of pollution in the city.
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