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Abstract— Feedforward networks form the backbone of deep
learning, used in deep multilayer perceptrons, convolutional
neural networks, and deep belief networks. Even though
stochastic activations of deep neural networks are highly de-
sired, they are often avoided due to their heavy computational
costs in traditional hardware. This paper presents the hard-
ware implementation of inference in such deep feedforward
stochastic networks with the fastest nanodevice-based prob-
abilistic bits (p-bit) demonstrated to date. The stochasticity
of low-barrier stochastic magnetic tunnel junctions (sMTJ) is
used to create p-bits, routed back to a Field Programmable
Gate Array (FPGA) to build a hybrid CMOS+sMTJ com-
puter. Unlike commonly implemented Boltzmann-Ising type
undirected networks, feedforward networks require carefully
ordered updates. We achieve such ordered updating by gen-
erating sequenced signals from the FPGA back to the p-
bits. In addition, each neuron in a given layer is updated
concurrently by the fluctuations of sMTJs, achieving layer-
by-layer parallelism. Fast sMTJ-based p-bits are demonstrated
using specially engineered sMTJs with in-plane anisotropy
with microsecond fluctuations, three orders of magnitude faster
than all previous demonstrations. We experimentally perform
inference on two feedforward Belief Networks including a
medical diagnosis example. We improve earlier projections
based on the experimentally-demonstrated sMTJ parameters
illustrating the potential of scaled-up versions of our system.

I. INTRODUCTION
Deep learning largely relies on feedforward neural networks

where layers of neurons are nonlinearly activated, follow-
ing linear weighted summations. Typically, the activations of
neurons are deterministic due to the computational costs of
stochastic activations, despite their appeal [1]. Over the years,
probabilistic bits (p-bits) have shown promise as scalable and
energy-efficient hardware building blocks for stochastic acti-
vations. Previous hardware demonstrations of p-bits, however,
have exclusively dealt with undirected Boltzmann-Ising type
networks. In such undirected networks, the update order does
not matter due to the symmetry of the network [2]. For the
more widely-used feedforward networks, however, layers of
neurons need to be updated in ancestral order starting from
parent to child layers. This work presents the first experimental
demonstration of such feedforward stochastic neural networks
with p-bits, addressing previously non-existent challenges in
Boltzmann-Ising networks related to update order, read-out,
and parallel updating of each layer. The hardware setup goes
beyond our recent results in Ref. [3], [4] by introducing signals

from the FPGA (CMOS) back to the p-bits, enforcing ordered
(parent-to-child) updates from layer to layer. In addition, using
specially designed in-plane sMTJs with synthetic antiferro-
magnetic (SAF) free layers [5], we demonstrate the fastest
MTJ-based p-bits to date, fluctuating in the 1-5 µs ranges,
about three orders of magnitude faster than previously reported
perpendicular sMTJ-based p-bits [3].

II. P-BIT MODEL FOR FEEDFORWARD NETWORKS
The basic p-bit equations [3] are given by (FIG. 1a):

mi = sgn(tanh(Ii)� rU ) Ii =
P

Jijmj + hi (1)
where mi represents the output of binary stochastic neurons
(p-bit) and Ii is the input parameter (weighted sum) of a
given neuron. The key difference in feedforward networks
compared to Boltzmann-Ising type machines are the directed
connections, where Jij is not a symmetric matrix, requiring
careful sequencing of update orders. The hybrid sMTJ-based
p-bit and FPGA setup are shown in FIG. 1b,c similar to
Ref. [3], [4]. Specific to this work, however, are the sMTJ
enable signals which control the sequential and layer-wise
parallel updating of p-bits.

III. FAST P-BITS WITH IN-PLANE SMTJS
In this work, we experimentally demonstrated the fastest

sMTJ-based p-bits, using in-plane anisotropy (IMA) sMTJs.
Previous p-bit results used perpendicular magnetic anisotropy
(PMA) magnets whose fluctuations are of the order of mil-
liseconds [3], [4]. The IMA vs. PMA stack structures of the
sMTJs are shown in FIG. 2a. The in-plane sMTJs have a TMR
ratio of 80% and an aspect ratio of 1:2.5. All data shown
in FIG. 2 is based on the sMTJ-based p-bit circuit shown
in FIG. 1b discussed in depth in [4]. One key difference in
this work is that the single operational amplifier (OpAmp)
is replaced with two back-to-back OpAmps ensuring fast
enough electronic response times to capture the microsecond
fluctuations. In FIG. 2b, each point on the sigmoid represents
a time-average over 10 s window with a fixed VIN. Relaxation
time (FIG. 2c), autocorrelation (FIG. 2d) and time-resolved
data (FIG. 2e) show consistent results indicating 1-5 µs
fluctuations, constituting the fastest p-bit flips to date. With
faster electronic components, further improvements down to
nanosecond fluctuation would be possible.

IV. BAYESIAN INFERENCE ON FEEDFORWARD
STOCHASTIC NETWORKS

Hardware for feedforward Bayesian networks with stochas-
tic activations have great scope due to their effectiveness



in tackling problems ranging from medical diagnosis [6] to
image classification [7]. However, this becomes an intractable
problem in large networks, motivating the need for domain-
specific hardware. Typical p-bit demonstrations (e.g, [3], [4])
cannot be directly used for such feedforward inference due
to the uncontrolled (and random) fluctuations of sMTJ-based
p-bits (or other random processes). Unlike their Boltzmann-
Ising counterparts, updating nodes in the proper ancestral order
(from parents to children) is crucial to get consistent results
with the Bayes theorem. Before getting to experiments, we first
illustrate this important property in simulation with a simple
3-node network in FIG. 3.

Next, we show experimental results on probabilistic infer-
ence on the canonical Cloud-Rain-Sprinkler-Grass problem
(FIG. 4) and a medical diagnosis problem known as the
Asia Network (FIG. 5). FIG. 4a experimentally confirms the
importance of update orders: when sMTJs are freely clocking
their respective digital bits inside the FPGA, the network
converges to a steady state that is not described by the
corresponding Bayes theorem but by a different steady state
which can be exactly described by a transition matrix approach
[2]. Both example histograms are obtained after collecting 104

sweeps. Respectively, we also show the KL divergence with
the exact random update and the exact Bayes distribution with
respect to the number of sweeps collected.

In this work, we used simplified conditional probability
tables (CPTs) to avoid higher-order interactions whenever a
node has multiple parents [2], even though it is relatively easy
to include such higher-order interactions due to the binary
nature of p-bits. FIG. 4e shows how each p-bit is updated
in parallel in different layers. In this case, for the 4-neuron
network, we show 3 sMTJs to update the 3 layers in parallel
using carefully crafted enable signals. FIG. 5 extends the
concept of parallel and ordered updates to the Asia network.
Experimental results match the expected inference from the
Bayes theorem. In this case, a network of 8 neurons is updated
using 4 sMTJ-based p-bits that activate the clocks of individual
neurons in the FPGA.

Another crucial issue is the state read-out in directed feed-
forward stochastic networks. If the state is read out after a new
update occurs following the ancestral order, the corresponding
sweep becomes contaminated. This requires care in reading
out the p-bit states after a sweep. For the purpose of read-out,
we use digital state registers that essentially take a snapshot
of the network right after the last layer is updated. This
copying occurs on the negative edge of the sMTJ enable
signal corresponding to the p-bit (while the p-bits update on
the positive edges). This ensures that the final state a child
node uses is identical to that captured in the registers. The
final read-out occurs after the N th p-bit has finished updating
and before the 1st p-bit starts the next update. Read-out not
timed in this interval would result in incorrect states since not
all p-bits would come from the same iteration. These issues
stress the additional design difficulties we had to address to
perform inference on feedforward stochastic neural networks
using naturally asynchronous devices and should be useful for

other types of p-bits.

V. PROJECTIONS AND OUTLOOK

Two key metrics in the development of probabilistic com-
puters are sampling throughput and power consumption. The
former measures how quickly the p-computer can make proba-
bilistic decisions. These metrics are measured and reported by
the GPU/TPU community. We report their published numbers
[8]–[11] and our previous work [3] based on FPGAs. Table I
shows the raw experimental data for a single p-bit. We report
the sMTJ branch power calculated for a VDD of 1.5 V
and VIN of 1.32 V corresponding to a branch current of
⇡280 µA. While this current is much larger than that of PMA
sMTJs, it can be improved to reduce power consumption using
optimized sMTJs. Indeed, such optimized sMTJs are projected
to consume around 10 µW of power per p-bit (Table I)
(details will be published elsewhere). In our roadmap, we then
consider two scaled projections with N=106 p-bits with a total
power budget of 20 W (10W for p-bits and 10W for synapse)
[12]: A p-computer with a sampling throughput of N/⌧=500
flips/ns, assuming the demonstrated p-bit ⌧⇡2 µs (P2) and the
other one with N/⌧=106 flips/ns, assuming the ⌧=1 ns (P3) as
shown in [13] which would be around 5 orders of magnitude
faster than GPU and TPUs for probabilistic sampling.

We experimentally demonstrated probabilistic inference in
feedforward stochastic neural networks in parallelized and
carefully ordered networks with fast p-bits. Scaled-up versions
of our demonstration are a strong candidate of a means to
implement the desired but costly stochastic neurons [1] in deep
neural networks in the future.
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Fig. 1. Hardware overview of the sMTJ+FPGA experimental setup: (a) The generic model of a probabilistic computer with p-bits and the interconnections 
between them (synapse). (b) shows the division of a p-bit, its synapse, and the sMTJ enable module in the sMTJ + FPGA based setup used in this work. Here 
PRNG is a Pseudo-Random Number Generator, and the LUT is a look-up table and the details of the sMTJ circuit parameters are described in the text. (c) The 
experimental setup of the printed circuit board (PCB) with 4 sMTJ circuits along with an FPGA. FPGA sends enable signals to the sMTJ circuit inputs (VIN), and 
asynchronous sMTJ circuit outputs from the PCB are then used to clock the PRNGs. Bottom left of (c) shows the unordered sMTJ clocks that would be used in 
traditional Boltzmann Machines that are update order agnostic. Bottom right of (c) shows the ordered sMTJ circuit clocks enforced by the enable signals sent 
from the FPGA. This ordering ensures the ancestral update order for convergence of feedforward networks to the distribution dictated by the Bayes Theorem.

Fig.  3. Fundamental differences between Boltzmann-Ising and Bayesian 
networks: In traditional Boltzmann machines the nodes have bidirectional 
connections whereas Bayesian networks are unidirectional. This leads to 
several key differences between these two types of networks: (a) the weight 
matrices corresponding to Boltzmann machines are symmetric which leads to 
a unique energy expression for these networks. In contrast, for Bayesian 
networks, the weight matrices are asymmetric (upper/lower triangular) which 
prevents them from having a unique energy expression. (b) This also relates to 
the fact that in Bayesian networks the update order of nodes is very crucial and 
one must follow the ancestral (parent-to-child) update order whereas for the 
Boltzmann networks, there is no preferred order. Weight matrices (J) are 
shown inset, and biases (h) used in both cases are [0, -1.39, 0].
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Fig. 2. Experimental demonstration of fast p-bits: (a) shows the stack 
structures of PMA and IMA sMTJs. Both consist of one reference and a free 
layer. (b) The time average of the voltage output of p-bit (sMTJ circuit in Fig. 1) 
shows tunable randomness. (c) On average, 5 μs relaxation time was measured. 
(d) shows the autocorrelation of the p-bit output, where τac corresponds to the lag 
at e-1 decay, a measure of how fast samples get uncorrelated. (e) Time 
fluctuations of the p-bit with 50/50 probability of AP and P states.
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Fig. 4. Experimental demonstration of Cloud-Rain-Sprinkler-Grass Bayesian network: (a) Histogram showing a close agreement between the probability 
of states with random permutation update (randperm) order (using the exact transition matrix approach described in [2]) and the probability of the states from 
the experimental sMTJ + FPGA setup with no specific update order among the asynchronous sMTJs. Here states are a decimal representation of a 4-bit binary 
[C R S G] state. (b) Decreasing KL divergence between the randperm update order and the sMTJ + FPGA experiment provides another validation of the 
experimental setup (Fig. 1). (c) Close agreement between the probability of states from the Bayes Theorem and the experimental setup can be obtained by 
enforcing the ancestral update order in the latter. (d) As the number of sweeps is increased, the experimental setup converges to the distribution given by Bayes 
Theorem as reflected in the gradual decrease of KL divergence. (e) Illustration of ancestral update order and parallel grouping scheme used in this experiment. 
Since Rain and Sprinkler share the same parent, they can be updated in parallel, thus optimizing the time required for each sweep.

Fig.  5.  Experimental demonstration of Asia Bayesian network with parallel updates: (a) Utilizing four sMTJ clocks with ancestral update order as 
described in Fig 4. (e), the eight nodes of the Asia network can be updated in four groups due to their inter-group independence. For example, there are two 
parent nodes namely ‘Visit to Asia’ and ‘Smoker’ which are independent of each other and so they can be updated in parallel. (b) Histogram representing the 
highest probability distribution of Bayes theorem and sMTJ + FPGA experiment with 104 sweeps.  Here, states are the decimal representation of 8-bit binary 
values denoted with A (1), B (73), C (89), D (95), E (129), F (217) and G (223). The state ‘A’ represents a scenario where one child node (‘No Breathing issues’) 
is ‘1’ while all other nodes are zero. Again, state E implies that a visit to Asia may not necessarily cause breathing issues. The histogram illustrates that the 
experimental data of sMTJ + FPGA closely matches the Bayes theorem.
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Fig.  6. Roadmap of probabilistic hardware: To 
benchmark sampling throughput (flip/ns) and power 
consumption (W), we report experimental data for 
GPU/TPUs solving similar probabilistic sampling 
problems and compare them with p-computers. P1 
shows our demonstrated previous work [3]. We then 
show two scaled-up p-computing projections assuming 
N=106 p-bits with 10 μW per p-bit: P2 uses this work's 
demonstrated τ = 2 μs, and P3 assumes τ = 1 ns (based 
on [13]). We assume a synapse power of 10W [12].

Table I. Summary of our work on p-bit results and projections: In this work, using in-plane sMTJs, we 
demonstrate p-bits with ~μs fluctuations. The in-plane sMTJ branch consumes 420 μW, as opposed to 6.7 μW 
with perpendicular sMTJs. The 50/50 current can be optimized significantly in future sMTJs. Using such 
optimized sMTJ models with experimentally-validated parameters [13], we expect a single p-bit power 
consumption to be about 10 μW, which we will report elsewhere. 
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