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An emerging paradigm in modern electronics is that of CMOS + X requiring the integration of standard CMOS tech-
nology with novel materials and technologies denoted by X. In this context, a crucial challenge is to develop accurate
circuit models for X that are compatible with standard models for CMOS-based circuits and systems. In this perspec-
tive, we present physics-based, experimentally benchmarked modular circuit models that can be used to evaluate a class
of CMOS + X systems, where X denotes magnetic and spintronic materials and phenomena. This class of materials is
particularly challenging because they go beyond conventional charge-based phenomena and involve the spin degree of
freedom which involves non-trivial quantum effects. Starting from density matrices � the central quantity in quantum
transport � using well-defined approximations, it is possible to obtain spin-circuits that generalize ordinary circuit the-
ory to 4-component currents and voltages (1 for charge and 3 for spin). With step-by-step examples that progressively
become more complex, we illustrate how the spin-circuit approach can be used to start from the physics of magnetism
and spintronics to enable accurate system-level evaluations. We believe the core approach can be extended to include
other quantum degrees of freedom like valley and pseudospins starting from corresponding density matrices.

I. INTRODUCTION

The rise of Artificial Intelligence with its skyrocketing
computing needs coincided with the stagnation of Moore’s
Law. This clash has been driving the development of domain-
specific hardware1 and architectures with a rich variety of het-
erogeneous systems for computing, memory and sensing ap-
plications. In this new era, rapid and accurate tools for eval-
uating the potential of emerging materials, physical phenom-
ena, and device concepts has become a crucial need. Such
tools will have an impact not only in moving forward well-
established computational schemes but also in opening new
directions in unconventional computing paradigms2.

In this perspective, we describe a physics-based circuit ap-
proach that covers a wide range of phenomena in spintronics
and magnetism using a generalized circuit theory. We show
how circuit “modules” derived out of microscopic theory and
phenomenological models can accurately model spin trans-
port while accounting for magnetization dynamics.

Combining phenomenology and microscopic theory, the
spin-circuit approach for spintronics has been used to model
non-local spin-valves, channels with high-spin orbit coupling
such as semiconductor channels with Rashba interactions,
heavy metals and topological insulators, transport in fer-
romagnetic insulators, ferromagnet-normal metal interfaces,
spin-pumping phenomena, magnetic tunnel junctions, voltage
controlled magnetic anisotropy, finite temperature magneti-
zation dynamics and others. A web page with open-source
models along with open-source SPICE codes catalogue these
results3.

The key strength of the approach is not just about modeling
phenomena, but more about its ability to combine the modules
to design new circuits and structures. For example, given in-
terface, bulk magnet, magnetization dynamics, and spin-orbit
channel modules, complicated new devices can be constructed

and studied (see, for example, Ref’s.4,5). Real-time simula-
tion of nanomagnet dynamics coupled with transport modules
allows accurate transient simulations from which device char-
acteristics can be obtained. Powerful tools and analysis op-
tions of mature circuit simulators greatly ease a wide range
of measurements for AC, DC, transient and noise analysis.
Our transport conductances are based on low-frequency (DC)
analysis, but they can be dynamically controlled by changing
magnetization vectors. We assume that these changes occur
instantaneously, allowing the transport to be described using
lumped circuit models.

Another distinguishing aspect of spin-circuits compared to
powerful alternatives to model spintronic phenomena6,7 is
how new devices and phenomena can be seamlessly integrated
with state-of-the-art complementary metal oxide semiconduc-
tor (CMOS) transistor models. This combination allows fast,
accurate and informative evaluation of CMOS + X platforms
(where X can be any emerging CMOS-compatible technology
such as spintronics, ferroelectrics, photonics, etc.) using effi-
cient circuit simulators (e.g., SPICE and its variants).

The spin-circuit approach evolved out of a 2-component
model involving collinear spins8 which is relatively intuitive.
It is as if there are two species of electrons, up and down. The
charge current is the sum of up and down currents, while the
spin current is given by their difference.

Less intuitive is the 4-component model with noncollinear
components, 1 for charge and 3 for spin (see, for example,9,10

and references therein). The 4-component model is not based
on four species of electrons. Rather, it is based on two com-
ponents with complex amplitudes {u v} that embody subtle
quantum physics. For example, {1 0} represents +z spin,
{0 1} represents �z spin, while a superposition of the two
{1 1} represents +x spin. This can lead to quite non-intuitive
results, like a flux of +x spins getting converted into +z spins

by a shunt path that pulls out �z spins
11.
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FIG. 1. Physics to systems perspective with modular spin-circuits (a) Physics: Spin-circuits solve transport and magnetization dynamics
self-consistently. (b) Devices: example stochastic MTJs (with spin-orbit and spin-transfer torque) using low-energy barrier magnets. (c)
Circuits: stochastic neurons (p-bits) built out of stochastic MTJs (d) Architectures: Probabilistic architectures with interacting stochastic
neurons (e) Networks: networks of p-bits mapped to computationally hard optimization problems (f) Algorithms: powerful algorithms that
use replicas of probabilistic networks to help solve these optimization problems.

Even such non-intuitive effects are accurately captured by
the 4-component model whose components represent measur-
able quantities given by bilinear products of u and v. For the
2-component wavefunction y = {u v}T with complex com-
ponents:

yy† = r =


uu

⇤
uv

⇤

vu
⇤

vv
⇤

�
(1)

where r is the density matrix at a given point in the real
space representation. The charge and spin components are
then given by tr(rsi) where si are Pauli spin matrices for x,y,
z and the identity matrix for charge. Then, the charge com-
ponent is given by uu

⇤ + vv
⇤ while the three components of

spin are given by uu
⇤ � vv

⇤ (z-spin), 2 Re(uv
⇤) (y-spin) and

�2 Im(uv
⇤) (x-spin).

The 4-component spin-circuit equations have later been
converted into convenient and intuitive 4-component circuits
where currents and voltages carry 3-spin and 1-charge compo-
nents that are related by 4⇥ 4 conductances matrices. Many
examples of spin-circuits to model existing and evaluate new
device concepts have been performed over the years, by the
authors and others12–35.

We first give a brief introduction to the spin-circuit ap-
proach discussing the basics of the transport and magnetism
modules and how they interact. To illustrate how extensi-
ble and modular the approach is, we present several original
examples of the approach by constructing new spin-circuits.
Some of our examples are chosen in the context of a new
and emerging computational paradigm with probabilistic bits,
covering physics, devices, circuits, architectures, networks,
reaching all the way up to the algorithms that run on this
stack (FIG. 1). The ideas related to probabilistic computing
came long after the spin-circuit approach but as we will show,
spin-circuits have been instrumental in helping uncover new
physics and new potential applications due to their modular-
ity enabling a “plug and play” approach.

II. SPIN TRANSPORT WITH 4-COMPONENT CIRCUITS

The two main ingredients in the spin-circuit approach are
transport and magnetism modules that need to be solved self-
consistently. Transport timescales are typically much faster
than magnetization dynamics and this allows a lumped circuit
description of transport modules that are solved for each new
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magnetization configuration in the circuit. We first start by
describing spin-transport modules.

Transport modules are naturally represented as circuits but
they need to be generalized to include spin transport. If a con-
ductance (or resistance) based formulation for circuit theory
is desired, the principled approach is to start from a quantum
transport formulation to obtain relate terminal currents to ter-
minal voltages in terms of conductance matrices. These matri-
ces are of dimension 4⇥ 4 in the case of spin transport relating
4-component current and voltage vectors, one component for
charge and three components for spin directions (we show a
concrete example in Section V).

The key point however is that a fully phase-coherent de-
scription of conductors is often unnecessary, since spin con-
ductors generally conserve spin information captured in the
2⇥2 Hermitian part of the density matrix at a real space point,
but longer spatial correlations are often irrelevant and they
need to be taken out by computationally expensive dephas-
ing mechanisms. As we will show, the spin-circuit approach
we discuss can combine diffusive spin conductances with co-

herent spin conductances where the coherent part can often be
restricted to a small “active” region of interest. This effective
combination ensures that quantum transport is accounted for
only when it is needed. We stress that our examples in this pa-
per are exclusively on spin-transport, but extensions to valley
or more complicated degrees of freedom should be possible
using similar approaches.

As we discuss next in Section III , the non-conservative na-
ture of spin-currents necessitates care in a circuit description
of spin conductances. These non-conservative currents are
naturally handled by shunt conductances that are connected to
grounds. The resulting circuits fully satisfy Kirchhoff’s laws
and can be handled by powerful circuit simulators11,15,36. A
microscopic formulation of 4-component formulation of spin-
currents was first explored in Ref.’s9,10, focusing on metallic
and ferromagnetic channels. In our view, however, the spin-
circuit formalism is much broader. Even though starting from
microscopic theory may not always be necessary or possi-
ble, phenomenological 4-component spin-circuit models can
still be obtained. Examples of these include spin-circuits for
channels with spin-momentum locking37 such as heavy met-
als with giant spin Hall effect20, topological insulators20,23,
magnonic transport magnetic insulators38 and others.

III. TWO-PORT FORMULATION OF SPIN
CONDUCTANCES

The 4-component conductance formulation is rooted in a
2-port description of transport. For a 2-terminal conductor,
the two port formulation relates currents to voltages. In ordi-
nary charge conductors, the 2-port formulation simplifies due
to Kirchhoff’s current law, which enforces current conserva-
tion: I1 + I2 = 0. This results in constraints like G11 = �G21
and G22 = �G12, and if reciprocity holds (G12 = G21 = G0),
only one independent parameter, G0, is needed to fully de-
scribe the 2-port conductance matrix. This is why ordinary
circuit theory typically does not use a 2-port formulation. For

Reciprocal spin-conductor: 

+ +

- -

(a) (b) 

(c) 

+ +

- -

=

FIG. 2. 2-port formulation of spin conductances (a) Any 2-
terminal spin conductor can be formulated in terms 2-port conduc-
tance matrices between its terminals. (b) The currents and voltages
are related to each other by 4⇥4 conductances Gi j and currents and
voltages are 4-component vectors. (c) Unlike charge currents, spin
conductors may exhibit non-conservation of currents (I1 + I2 6= 0)
and non-reciprocity (G12 6= G21). Here, we show an example of
a reciprocal spin conductor (G12 = G21 = G0). Even with non-the
conservative nature of spin-currents, it is possible to obtain a circuit
description by introducing shunt conductances from the terminal to
the ground to account for losses through spin-relaxation or coherent
rotation mechanisms.

general conductances, neither reciprocity nor current conser-
vation is guaranteed. In spin circuits, unlike charge currents,
spin currents are not strictly conserved due to various relax-
ation processes, such as spin-flip scattering and spin dephas-
ing, or due to coherent rotations from spin-orbit coupling
and external magnetic fields. These mechanisms unbalance
the spin currents entering and exiting ports, manifesting as
G11 6= �G21 in the 2-port formulation. Nonetheless, it is still

possible to represent the 2-port description in terms of a stan-
dard circuit with shunt conductances (FIG. 2). When the spin
conductance is reciprocal (G12 = G21 = G0), the system can
be represented with shunt conductances Gsh1 = G11 +G0 and
Gsh2 = G22 +G0 at each terminal. These shunt conductances
capture the losses from spin relaxation or coherent rotations,
analogous to how shunt elements handle signal losses and dis-
sipation in microwave circuits39. This reciprocal assumption
simplifies the circuit representation, as it allows symmetric
handling of currents at both ports. For non-reciprocal spin
conductors, additional elements such as dependent sources
may be required to capture the asymmetric nature of spin cur-
rent flow40. We will examine an example of a non-reciprocal
conductance in channels with spin-momentum locking in Sec-
tion V. Modern circuit simulators like HSPICE can also take
in the constitutive 2-port relations directly to describe conduc-
tances, so both of these representations may be useful.

The 2-port formalism is entirely general and agnostic to
where the conductances Gi j come from. The examples we
consider in this paper cover widely different regimes from co-
herent quantum to semi-classical diffusive transport. The con-
ductances can originate from microscopic, phenomenological
theory or experiments.
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FIG. 3. Transport and magnetism (a) An example spin-valve built out of two interfaces is shown. Numerical results obtained from spin-
circuits are compared with theory9 where the charge conductance shows magnetoresistance as a function of the relative angle between the
ferromagnets. (b) Spin-circuit model illustrating the interaction between the magnetization dynamics (modeled by sLLG) and transport mod-
ules. The transport model receives two magnetization vectors from the stochastic LLG and produces 4-component spin currents carrying charge
and spin information. sLLG receives spin currents and magnetic fields and produces a magnetization vector. (c) sLLG results are benchmarked
with the Fokker Planck equation (FPE). 1000 low-barrier nanomagnets (with a very small perpendicular magnetic anisotropy) are prepared in
the �1 direction and left to relax. The average magnetization hmzi is measured over time and compared to FPE and the analytical solution (see
text).

IV. FERROMAGNET-NORMAL METAL INTERFACE

For many spintronic devices, a key component is the
ferromagnet-normal metal interface (F||N) where the spin-
transfer-torque effect occurs. A four-component circuit
formulation of the F||N interface can be obtained from
scattering theory or the non-equilibrium Green’s function
formalism9,36,40. The F||N interface consists of a series and
a shunt component (FIG. 3a) that both depend on the orienta-
tion of the ferromagnet. When the ferromagnet points in the
+z direction, these conductances are given by:

Gse/G0 =

2

6664

c z x y

c 1 P 0 0
z P 1 0 0
x 0 0 0 0
y 0 0 0 0

3

7775
,Gsh/G0 =

2

6664

c z x y

c 0 0 0 0
z 0 0 0 0
x 0 0 a b

y 0 0 �b a

3

7775

where G0 is the interface conductance, P is the interface po-
larization, a,b are the real and imaginary coefficients of the
“spin-mixing conductance”, respectively. The form of these
conductances is intuitive: the series conductance creates spin-
polarized spin currents when subject to a charge potential and
shunt conductances are responsible for absorbing transverse
spin currents that result in the spin-transfer-torque effect.

Naturally, in settings where transient behavior needs to be
examined, conductances need to be modified in conjunction
with moving ferromagnetic magnetization vectors. This can
be carried out by a standard rotation matrix that leaves the
charge components (cc) unchanged but modifies spin compo-
nents. Expressing magnetization in spherical coordinates, an

arbitrary magnet direction (q ,f ) can be reached via G{sh,se} =

[UR]T
⇥
G{sh,se}

⇤
[UR], where the rotation matrix [UR] is given

by11:
2

66664

c z x y

c 1 0 0 0
z 0 cosq sinq cosf sinq sinf
x 0 �sinq cosf cosq + sin2 f(1� cosq) �sinf cosf(1� cosq)
y 0 �sinq sinf sinf cosf(1� cosq) cosq + cos2 f(1� cosq)

3

77775

In circuit simulators, we first obtain a fully paramaterized
rotated conductance that receives instantaneous magnetization
directions for transient simulations.

As a simple example that demonstrates the modularity of
such spin-circuits, FIG.3(a) shows a metallic spin-valve where
the relative angle between the ferromagnets is changed. In this
case (and in many cases involving spin-circuits) the charge
conductance (or the c-c component) of the equivalent con-
ductance can be analytically calculated (see Eq. 124 in9 with
a= 2¬

�
G"#/G0

�
, while the imaginary part b is set to 0, which

is typical for metallic interfaces). FIG. 3(a) shows the magne-
toresistance effect on the charge conductance where the ana-
lytical result is compared to a numerical one obtained from a
circuit simulator (HSPICE).

This example shows the magnetoresistive change in the
charge conductance, but the spin-circuit also captures impor-
tant spin current information that can be readily extracted.
Technically, what we illustrate here is a metallic spin-valve.
Remarkably, multiplying two conductance matrices instead of
adding them in series seems to capture the non-trivial mag-
netic tunnel junction physics19. The intuition behind this is
the exponential decay of conductance across two tunneling
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interfaces in series Geq µ G1G2 which seems to generalize to
matrix conductances.

The spin-valve example we show in FIG. 3 may seem el-
ementary however the approach is more general. Recently,
Ref.41 analyzed a complicated magnetic tunnel junction de-
sign with two synthetic antiferromagnetic layers (4 ferromag-
nets) using the same approach, obtaining results in agreement
with experimental features observed in similar systems42.

V. CHANNELS WITH SPIN-ORBIT COUPLING

Other than the FM|NM interface, the transport conduc-
tances we consider in this paper are generally based on 4-
component spin-diffusion equations. As another example of
how coherent quantum transport can be distilled into spin-
circuits, we now examine channels with spin-orbit coupling.
Consider the following Hamiltonian with Rashba and Dres-
selhaus terms for a 2D semiconductor43:

H = H0 +a(sxky �sykx)+b (sxkx +syky) (2)

Here, H0 represents the kinetic energy term of the elec-
trons in the 2D electron gas (2DEG), typically described as:
H0 = h̄

2
k

2/2m
⇤ where h̄ is the reduced Planck’s constant, k

is the wavevector, and m
⇤ is the effective mass of the elec-

trons in the 2DEG. The terms a and b denote the strength
of the Rashba and Dresselhaus spin-orbit coupling, respec-
tively. These terms lead to spin-momentum locking, where
the effective magnetic fields seen by the electron depends on
its momentum. Given this microscopic Hamiltonian, it is pos-
sible to derive 4-component 2-terminal conductances required
for the 2-port formulation using the Non-Equilibrium Green’s
Function (NEGF) formalism40,44:

[Gmn]
ab =

q
2

h
tr
⇥
i
�
Sb Sa G

RGm �Sa Sb G
AGm

�
dmn

⇤

� tr
⇥
Sa GmG

R
Sb GnG

A
⇤

(3)

where [Gmn]
ab denotes the conductance matrix element be-

tween terminals m and n for a and b that go over charge and
spin (z,x,y). The prefactor q

2/h involves the electron charge q

and Planck’s constant h. The trace operation, denoted by tr, is
taken over spin indices. Here, G

R and G
A are the retarded and

advanced Green’s functions, respectively, and Gm and Gn are
the broadening matrices at terminals m and n. The matrices
Sa and Sb are spin projection matrices corresponding to the
spin components, including charge, z, x, or y spins. The Kro-
necker delta, dmn, ensures that the first term contributes only
when m = n. Eq. 3 can be considered the spin-generalization
of well-known Landauer formula, obtained from NEGF. In
the Appendix, we show, numerically and analytically, that for
a 1D ballistic conductor (ky = 0), at a conducting energy, the
Hamiltonian of Eq. B1 results in: G11 = G22 = (2q

2/h)I4⇥4

where G0 is 2q
2/h and �G12/G0 (in the c,z,x,y basis) is:

2

664

1 0 0 0
0 cosq cosg sinq sing sinq
0 �cosg sinq cos2 g cosq + sin2 g �sin(2g)sin2( q

2 )
0 �sing sinq �sin(2g)sin2( q

2 ) sin2 g cosq + cos2 g

3

775

(4)

where we introduced g = tan�1(b/a) and q =p
a2 +b 2(2m

⇤
L)/h̄

2, for a channel length of L. It is
easy to check that for b = 0, this conductance expresses
coherent precession around the y-axis and for a = 0, it
expresses coherent precession around the x-axis. Assuming
periodic boundary conditions across the width of the sample,
it is also possible to include transverse modes (ky 6= 0) to
get an averaged out conductance for 2D channels, but we do
not attempt this here40,45. Alternatively, a direct 2D NEGF
calculation with fixed boundary conditions can be used to
derive the conductance matrix using Eq. 3.

Another interesting aspect is the non-reciprocity of
spin conductances naturally arising in systems with spin-
momentum locking. Applying Eq. 3 to get G21 results in
a conductance matrix where q is replaced by �q , due to
the momentum dependent effective magnetic fields induced
by spin-orbit terms. These conductances can then be used
in circuit simulators to model coherent active regions with
spin-orbit coupling, along with FM|NM interfaces that de-
scribe magnetic contacts which can then be combined with
self-consistent magnetization modules. All of this makes an-
alyzing practical devices such as the Datta-Das transistor46 or
persistent spin helix states (when a = b 43) much more con-
venient than a full coherent quantum transport treatment.

Eq. 3 assumes coherent conductance over a length of L.
Therefore, spin-orbit conductances to describe a conductor
of length (2L) cannot be obtained by combining two con-
ductances in ordinary circuits, and a new coherent conduc-
tance description over (2L) is needed. Interestingly however,
multiplying the rotation submatrix of two conductances in se-
ries achieves a rotation of (2q) about the rotation axis, which
is what would be obtained from a coherent description of a
channel length of (2L). This is reminiscent of multiplied
FM|NM conductances to get the correct MTJ physics rather
than metallic spin-valves whose physics can be obtained by
inverting the conductance matrices adding them in series to
get the equivalent 4⇥4 resistance matrix. The multiplication
trick could allow an effective spin-diffusion theory of coher-
ent 4⇥ 4-conductances (see an alternative direct attempt to
obtain a diffusive quantum theory of Rashba SOC in Ref.47),
in networks representing arbitrary geometries. Unfortunately,
however, the multiplication of conductances in series is not
amenable to standard circuit theory.

We presented a specific example of channels with spin-orbit
coupling, however the NEGF formulation of Eq. 3 is entirely
general and can produce spin conductances for other types of
systems starting from microscopic Hamiltonians.
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VI. MAGNETIZATION DYNAMICS VIA
LANDAU-LIFSHITZ-GILBERT EQUATION

For device analysis, the transport captured by spin-circuits
typically needs to be solved self-consistently with magnetiza-
tion dynamics. Large ferromagnets in experiments typically
contain many domains and to get realistic dynamical behav-
ior, sophisticated “micromagnetics” tools need to be used6.
These tools solve partial differential equations that are hard to
combine with circuit simulators. Our approach is to assume
monodomain magnets and use the stochastic Landau-Lifshitz-
Gilbert (sLLG) equation to model magnetization dynamics.
This approximation gets better as magnets are scaled down to
small dimensions but more importantly, it allows magnetism
and transport modules to be readily coupled in circuit simu-
lators. Moreover, as we show in Section III, multiple mon-
odomain LLG modules can be combined to describe multi-
domain physics of nanomagnets, in principle. The single
sLLG model incorporates finite temperature physics, dipolar
and exchange coupling and spin-transfer torques.

The sLLG equation is a non-linear 2-dimensional ordinary
differential equation where the magnetization evolves on the
surface of the unit sphere48–52:

(1+a2)
dm̂

dt
=� |g|m̂⇥ ~H �a|g|m̂⇥ (m̂⇥ ~H)

+
a

qN
(m̂⇥~Is)+

1
qN

(m̂⇥ (~Is ⇥ m̂))
(5)

where a is the damping coefficient, q is the electron charge,
g is the electron gyromagnetic ratio, ~Is is the received spin
current. N is the total number of spins in the free layer,
N = MsVol./µB, where Ms is the saturation magnetization, µB

being the Bohr magneton. In addition to all the fields (uniax-
ial, demagnetization, external magnetic fields, strain-induced
anisotropy fields, etc.) that go into the effective field ~H, the
effect of thermal noise also enters as a fluctuating magnetic
field with the following properties:

Var.(Hx,y,z
n

) =
2akBT

|g|µ0MsVol.
, E[Hx,y,z

n
] = 0 (6)

where T is the temperature, kB is the Boltzmann’s constant
and µ0 is free space permeability. The noise is assumed to be
independent in all 3-dimensions.

To solve the sLLG equation using powerful circuit simu-
lators, we express the LLG equation in a form of coupled
capacitors: CdV/dt = I

16,53 where the voltages map to mag-
netizations and non-linear current sources map to the differ-
ent terms in the LLG equation. Note that our approach does
not use linearization or make any approximation: through the
use of non-linear and state-dependent current sources, the full

LLG equation is solved in circuit simulators. The numerically
challenging transient noise simulations can be handled by re-
formulating existing noise models that are used for resistor
noise in HSPICE54.

Solving the stochastic LLG requires care, especially if done
in closed-source circuit simulators. The time dependence of

noise fields, the choice of convention in integration (Itô vs
Stratonovitch), and the way the variance of the noise enters
in HSPICE may not be obvious. Our approach to such un-
certainties is to rigorously benchmark the sLLG by its corre-
sponding Fokker-Planck equation (FPE)50,55,56. For a magnet
with cylindrical symmetry, the time-dependent FPE reads50:

∂r(mz, t)

∂t
=

∂
∂mz


(i�h�mz)(1�m

2
z
)r +

1�m
2
z

2D
∂r
∂mz

�

as long as the external fields h and spin currents i are defined
to be in the ±z direction. t is the normalized time, t = (1+
a2)/(agHk)/t, where a is the damping coefficient, Hk is the
uniaxial anisotropy constant, g is the gyromagnetic ratio, and
t is the real time. D represents the energy barrier of the magnet
normalized with kBT .

To benchmark our sLLG solver in HSPICE with FPE, we
consider an ensemble of low-barrier nanomagnets all prepared
in the mz = �1 direction, which are then left to fluctuate on
their own in the absence of any fields and currents. We per-
form 1000 independent (with identical parameters) sLLG sim-
ulations and numerically plot the average mz component as a
function of time. The same quantity can be obtained from a
numerical solution of the FPE, which solves for r(t,mz). We
then integrate r to obtain hmz(t)i=

R
r(mz,t)dmz. The FPE

sLLG comparison is shown in FIG. 3c with excellent agree-
ment. Further, both numerical methods can be compared to an
analytical expression for the average mz (following a similar
approach in58:

C(t) = exp
✓
�2ag kBT

MsVol.
|t|
◆

(7)

Eq. 7 is also shown as the analytical solution in FIG. 3 in
agreement with FPE and sLLG. These toy examples demon-
strate the validation of our numerical solvers by matching the
stochastic Landau-Lifshitz-Gilbert (sLLG) simulations with
the Fokker-Planck Equation (FPE), which are further com-
pared against analytical predictions.

VII. NATURAL ANTIFERROMAGNETS WITH
SPIN-CIRCUITS

As mentioned earlier, our approach with magnetization dy-
namics necessarily assumes the monodomain approximation.
Could spin-circuit models be built out of coupled magnetiza-
tions? We answer this question in the context of natural anti-
ferromagnets (AFM) by matching the experimental antiferro-
magnetic resonance behavior observed in MnF2

57. FIG. 4a-b
shows the two coupled atomic sublattices and the correspond-
ing spin-circuit model. The exchange fields between two mag-
nets can be obtained from an energy model of the form:60

Eex =�Ms(Vol1 +Vol2)(Jex)(m̂1 · m̂2) (8)

where the effective field that enters the LLG becomes:

[Hex]i =� 1
(Ms)i

Vi

—m̂i
, Eex = Jex

(Vol1 +Vol2)
Voli

m j (9)
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FIG. 4. Antiferromagnetic resonance (AFMR) with spin-circuits (a) Sketch of an antiferromagnet where two sublattices with opposing
magnetizations. (b) Spin circuit model of the AFM with two antiferromagnetic layers analyzed by two LLGs coupled with exchange interac-
tions. (c) Experimental results for AFMR in MnF257. (d) Numerical results obtained from spin-circuits for AFMR, compared to known theory.
(e) Easy-axis (z) component of the magnetization vector analysis over an external magnetic field applied in the +z direction. At a critical field,
the sublattice spins enter the “spin-flop” region where they both develop a small mz component in the direction of the magnetic field. In all
cases, spin-circuits provide excellent agreement with known theory.

In the spin-circuit, the exchange fields are assumed to change
“instantaneously” for the two coupled LLGs. The tools avail-
able to circuit simulators make measuring the AFMR fre-
quency highly convenient. We apply an external DC magnetic
field along the z-axis and sweep the frequency of an external
AC magnetic field (perpendicular to the z-axis) and measure
the transient response of the mz components of the constituent
spins. The frequency of the AC field at which this response
is maximum is recorded as the AFM resonance frequency at
that DC field. Interestingly, this is not too different from how
the AFMR is measured experimentally.

By linearizing the coupled LLG equations, two sets of
AFMR frequencies can be obtained61,62:

fres = g
⇣p

HK · (HK +2 · Jex)±Hext

⌘
(10)

f
sf

res = g
q

H
2
ext � (2 · Jex ·HK +H

2
K
) (11)

where HK is the uniaxial anistropy of individual sublattices,
Hext is the external magnetic field and g is the gyromagnetic
ratio for the electron. In FIG. 4c-d, we observe that around
10 T, the coupled AFM spins enter the interesting “spin-flop”
region where they each develop a small mz component and
start precessing about this axis (FIG. 4e).

As FIG. 4 shows, all of this physics is captured by the spin-

circuit formalism quantitatively. The availability of AC/DC
sources, transient and AC simulation options offer a conve-
nient platform to study magnetization physics in a modular
manner. The ability to combine such magnetic models with
materials and transistors makes the spin-circuit approach ap-
pealing.

VIII. ENGINEERED ANTIFERROMAGNETS WITH
NON-LOCAL SPIN VALVES

Next, we show an example non-local spin valve (NLSV)
setup that couples low-barrier nanomagnets (LBMs) to en-
gineer a “Heisenberg machine” using spin-circuit models.
The setup we consider here has recently been proposed
theoretically59 and to the best of our knowledge no experi-
ments involving LBMs and NLSVs have yet been performed.
Our main point is that modular spin-circuits can be useful to
motivate new experiments, provide quantitative insights into
new physics and estimate energy and delay metrics before the
physical realization of a proposed system.

In previous sections, we described how we can model mag-
nets by coupling the transport model (F||N) with magneti-
zation dynamics obtained through the sLLG equation. For
channel materials used in NLSVs, we now introduce the Nor-
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FIG. 5. Non-local spin valve (NLSV) with low-barrier nanomagnets (LBM) (a) Physical structure consisting of networks of LBMs. A
charge current is injected from LBMs going to a nearby local ground. Spin currents polarized in the direction of fluctuating LBMs are routed
to one another. Inset shows an example of how magnetization dynamics m̂ evolve over time for an LBM with low perpendicular anisotropy.
The bottom panel shows the spin-circuit corresponding to the physical structure. (b) The average of the relative angle between LBM 1 and
LBM 2 is measured as a function of injected charge currents, showing ferromagnetic (at positive Ic) and antiferromagnetic (at negative Ic)
coupling. The numerical results are compared with those obtained from the Boltzmann law obtained from the Heisenberg Hamiltonian. This
correspondence between the unitless Heisenberg Hamiltonian and spin-circuit requires a mapping factor IM with units of currents (see text
and Ref.59). (c) A histogram of three LBMs at large negative currents where for better illustration the magnetizations m̂ are binarized by
thresholding at m̂z = 0. The system shows frustration in the antiferromagnetic configuration.

mal Metal (NM) model, describing spin-diffusion in channels
without any spin-orbit coupling. The NM model consists of
a p-network with two shunt conductance Gsh separated by a
series conductance Gse as shown in FIG. 513:

Gse =

2

6664

c z x y

c Gc 0 0 0
z 0 Gs 0 0
x 0 0 Gs 0
y 0 0 0 Gs

3

7775
, Gsh =

2

6664

c z x y

c 0 0 0 0
z 0 G

0
s

0 0
x 0 0 G

0
s

0
y 0 0 0 G

0
s

3

7775

where Gc = ANM/(rNML), Gs = ANM/(rNMls)csch(L/ls),
and G

0
s
= ANM/(rNMls) tanh(L/2ls). ANM denotes the area,

rNM is the NM resistivity, L is the length, and ls is the
spin-diffusion length. These matrices are obtained from mi-
croscopic spin-diffusion equations, accounting for the non-
conservative nature of spin currents through the shunts.

In this example, we stick to spin-isotropic channels with-
out any spin-momentum locking, however, experiments with
heavy metals that exhibit Giant Spin Hall Effect63 have been
successfully modeled with spin circuits11,20.

The basic idea of the coupled NLSVs in FIG. 5a is to engi-
neer a system of LBMs that interact via pure spin currents. To

achieve this, a charge current passes through each magnet with
a nearby ground. Then, spin-currents polarized in the instan-
taneous direction of the magnetization of the LBMs are sent
toward neighboring LBMs. The key point is to design a sys-
tem that takes samples from the classical Heisenberg model:

E =�1
2 Â

i, j

Ji j (m̂i · m̂ j) (12)

where Ji j are the interaction terms and mi are 3D-
magnetization vectors. Finding low-energy (or equilibrium
states of the Heisenberg Hamiltonian for probabilities pi (µ
exp(�E/kT )) is computationally challenging. As such, en-
gineering a system of LBMs to sample from the classical
Heisenberg model can be useful for optimization and/or sam-
pling problems. The read-out mechanisms or practical appli-
cations of this system is beyond the scope of our discussion
here and can be found in Ref.59.

From a modeling perspective, the system shown in FIG. 5a
is quite challenging: one needs to model the NLSV transport
where charge and spin-currents are modeled properly. More-
over, a self-consistent solution of stochastic LLG equations
with transport modules is needed. In the presence of incom-
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FIG. 6. Probabilistic bit with double-free-layer stochastic MTJs (a) Self-consistent magnet and transport model combined with transistors
to model a probabilistic bit. (b) Time-dependent spin currents are produced from the transport model that goes into the sLLG modules. We
show the x-axis component of spin-currents for magnets, 1 and 2. (c) Histogram and time fluctuations for the cos(q) between mz components
of magnet 1,2 for the double-free-layer sMTJ. Slight anti-parallel tendency is due to the dipolar coupling which is not completely overcome by
thermal fields. (d) Resistance of the sMTJ is measured while the voltage is swept from �0.5 to 0.5 V over 1 ms. The discrete data points are
average resistances over 500 ns showing the roughly bias-independent characteristics of the device. (e) The drain node (VD) and the output of
the inverter (VOUT) are measured while the input (VIN) is swept from �0.3 V to 0.3 V over 1 ms. The output of the inverter shows the binary
stochastic neuron behavior. (f) Digital output fluctuations over time for the probabilistic bit output at different bias conditions for VIN.

ing spin-currents that are transport-dependent, the sLLG equa-
tions provide magnetization vectors that control the interface
conductances. The spin-circuit approach allows a seamless
implementation of this highly complicated physical system.
As shown in FIG. 5, the magnitude and the sign of the injected
charge current control the degree of correlation between two
magnets (1 and 2). When the injected charge currents are neg-
ative, the coupling between the three LBMs exhibits antiferro-
magnetic coupling as shown in FIG. 5c, as would be expected
from the engineered interactions obtained from a Heisenberg
model with negative couplings.

IX. FUNCTIONAL SPIN-CIRCUITS WITH TRANSISTORS

So far, the spin-circuit examples we considered have been
based on spintronic building blocks with increasing sophisti-
cation, albeit without the use of any transistors. An emerging
trend in the field in the beyond Moore era of electronics is the
notion of domain-specific computation where conventional
complementary metal-oxide semiconductor (CMOS) transis-
tors are augmented with emerging technologies (X) to create
CMOS+X systems, where X can stand for anything from spin-
tronics, photonics, memristors, superconducting circuits, and
others. In this section, we show how a probabilistic bit with
stochastic MTJs combined with CMOS components64,65 can

be modeled and characterized within our spin circuit formal-
ism.

FIG. 6 shows how a new type of stochastic magnetic tunnel
junction can readily be modeled and analyzed using the spin-
circuit approach, in conjunction with state-of-the-art transistor
models forming a p-bit building block. Typically, magnetic
tunnel junctions employ a fixed layer such that the resistance
of the junction correlates with the magnetization of a free
layer. With the emergence of probabilistic computing66 and
the need for fast, energy-efficient, and scalable random num-
ber generators, a recent approach has been to design sMTJs
with no fixed layers41,67,68.

Typically, physics-based device models cannot easily be in-
terfaced with transistor models, whereas the SPICE formula-
tion of spin-circuits allows seamless integration with CMOS.
FIG. 6 shows such a combination where a spin-valve made
out of two LBMs is connected to an n-MOS transistor. Here,
we use FinFET models from the open-source predictive tech-
nology models (PTM)69, in principle, however, any other FET
model could be combined with spin-circuits. When we com-
bine spin-circuits that carry 4-component currents and volt-
ages with ordinary circuits that only carry charge currents, we
only attach the charge current terminals to each other, since
any other spin information can be ignored in extended charge
circuits. The double-free layer sMTJ exhibits an interesting
voltage-independent resistance profile70. This behavior is re-
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FIG. 7. CMOS + X (stochastic MTJ) platforms (a) An sMTJ-based binary stochastic neuron (p-bit) is interfaced with a digital CMOS-based
circuit to trigger a digital p-bit emulator. The bottom panel shows SPICE results for the analog fluctuations at the drain (VsMTJ) of the NMOS
transistor. (b) Rail-to-rail stochastic fluctuations obtained after a buffer tree (VINTER) is inserted between the single sMTJ-based p-bit and
the large digital CMOS block. CMOS block contains a low-quality and inexpensive pseudo-random number generator (PRNG) along with a
look-up table to obtain tunability. This hybrid setup with the sMTJ circuit increases the quality of randomness that can be obtained from the
digital p-bit block alone (see Ref.64) (c) Tunability of the heterogeneous structure as a probabilistic bit is shown with time-averaged VOUT over
1000 ns in SPICE. (d) In the future, millions of sMTJs can provide nearly-free true randomness to CMOS underlayers for various probabilistic
computing applications.

produced by the spin-circuit model where the two symmet-
ric layers receive spin-currents with opposing signs (FIG. 6b),
leading to nearly uniform fluctuations (FIG. 6c) and weak
voltage-bias dependence (FIG. 6d). Voltage bias indepen-
dence is shown to be favorable in p-bit circuitry to obtain a
clear sigmoidal response in the face of device-to-device vari-
ations. The slight asymmetry favoring an anti-parallel con-
figuration stems from the dipolar coupling between the easy-
plane magnets which is included in the spin-circuit simulation
(following the methodology in Ref.67). Later work suggests
that building sMTJs out ofsynthetic antiferromagnet (SAF)-
based free layers can remove this zero-field dipolar coupling
entirely41.

Finally, FIG. 6e-f shows the full input-output characteris-
tics of what has been called a probabilistic or p-bit71 that is
obtained from our full model. These simulations demonstrate
the tunability of randomness at different bias voltages. An im-
portant point to stress is that the tunability does not arise from
spin-transfer-torque effects modulating the free layer magne-
tizations, but rather from the changing transistor conductance
by an analog input voltage.

The combination of magnetization dynamics, dipolar and
thermal noise fields, 4-component interface conductances, and
transistors in a sound powerful circuit simulator shows the
power and flexibility of the spin-circuit approach. We be-
lieve the approach eases the prediction and device-circuit level
evaluation of new types of spintronic devices. In the case of
double-free-layer sMTJs (first with double-free layers67 and
then with double-free SAF layers41), spin-circuit theory pre-

dicted the key qualitative features of these devices that have
later been experimentally demonstrated42,70.

X. FROM SPIN-CIRCUITS TO SYSTEMS

So far, the spin-circuit examples we illustrated are all at the
device or the circuit level. The combination of spin-circuits
with transistors unlocks a much larger space of possibilities
including the realization of energy and area efficient p-bit
networks. As a final example, we describe a hybrid system
where a true random number generator (TRNG) augments a
low-quality pseudo-random number generator (PRNG) (even
though our modeling in SPICE will use PRNGs for the sMTJ
part of this circuit, the RNG quality used for this purpose
will be much higher than that of an LFSR without noticeable
differences between an actual MTJ, see Ref.64 for details).
FIG. 7 shows the p-bit circuit from FIG. 6 triggering a dig-
ital p-bit (FIG. 7a-b) to generate a tunably random behavior
(whose average is shown in FIG. 7c).

The motivation is to increase the quality of randomness
that is extracted from inexpensive linear feedback shift regis-
ter (LFSR)-based PRNG by clocking the PRNG with random
arrivals of sMTJ fluctuations. This setup was realized using
physical sMTJs in a recent experiment that established the
concept64. Considering the expensive nature of PRNGs, aug-
menting them with the true randomness of millions of sMTJs
in integrated CMOS + X systems (FIG. 7d) seems desirable.

The CMOS block consists of a PRNG and a lookup table
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(LUT) for the hyperbolic tangent function consisting of thou-
sands of transistors. The CMOS design is synthesized from
the open-source ASAP7 Predictive PDK72 and the details of
how this synthesis is performed can be found in Ref.64.

The bottom panels of FIG. 7 show simulations obtained
from this hybrid circuit where a single sMTJ-based circuit
drives thousands of transistors. An important detail, imme-
diately captured by the spin-circuit approach is that of load-
ing. Without a “buffer tree” where several stages of inverters
distribute the capacitive load of the CMOS p-bit that is seen
by the single sMTJ-based circuit, the clocking does not work.
These nontrivial loading effects at the interfaces of physics-
based and digital systems are naturally captured by the pow-
erful spin-circuit approach that is otherwise easy to miss. In
addition to loading, key circuit and system metrics such as
energy-delay can be reliably calculated for many types of ex-
ploratory systems.

To verify the functionality of the synthesized p-bit, we
probe the drain voltage in FIG. 7a to observe the sMTJ ran-
dom telegraph noise when biased at V50/50, followed by the
rail-to-rail output of the buffer tree in FIG. 7b. In FIG. 7c
we plot the probability of the p-bit output being 1 against the
decimal equivalent of p-bit input, matching the expected sig-
moidal behavior. This system represents an energy-efficient
and scalable p-bit model, which has demonstrated significant
potential in offering scalable solutions to complex previously
intractable problems64,66.

XI. CONCLUSION

We have described the spin-circuit approach connecting the
microscopic physics of spins and magnets all the way up to
circuits and systems. We believe that such a physics-based,
modular, CMOS-compatible modeling approach will be criti-
cal in evaluating and exploring new hardware systems in the
beyond-Moore era of electronics. Despite the wide focus of
this paper, there are many other spintronic phenomena that
have been modeled by spin-circuits and we did not get into
these, e.g. full compute life-cycle modeling of skyrmions and
domain walls73. Beyond spins, a similar circuit framework
for new and emerging phenomena can be constructed. Ex-
tensions may include pseudospins, valley currents30, super-
conductivity, photonics, and qubit systems74. A diverse set
of such phenomena can all be analyzed within the context of
powerful, industry-standard transistor-compatible circuit sim-
ulators, while being rigorously connected to the underlying
physics, beyond empirical compact models. In the new era of
electronics, such extended spin-circuits could enable a rapid
and robust evaluation of emerging CMOS+X systems.

CODE AND DATA AVAILABILITY

All the codes used in this study are publicly available
in the Github repository [https://github.com/OPUSLab/Spin-
Circuit-Designs].
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Appendix A: Modeling stochastic ODEs WITH HSPICE

Given the circuit description of transport, solving the
stochastic magnetization dynamics in standard circuit simu-
lators for transient analysis allows a consistent self-consistent
approach. Unfortunately, the LLG equation is nonlinear and
cannot be represented as an elegant RLC circuit describing
damped oscillations. We resort to the powerful capabilities of
HSPICE for handling nonlinear ODEs numerically.

0 1500
Noise field (Oe)

8e-4
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-1500

HSPICE
Analytical

FIG. 8. Stochastic LLG module and SPICE circuit description

Capacitor-current source circuits are used to solve for the magneti-
zation components in spherical coordinates (q(t),f(t)). Inset shows
the probability density function of the noise field that matches the an-
alytically (Eq.6) with the noise source in HSPICE with minor modi-
fications (see the text).
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We implement the sLLG equation (Eq. 5 )as a capacitor-
current source system in 2 dimensions (for f and q ):

✓
1+a2

gHk

◆

| {z }
C

dm̂

dt|{z}
dV

dt

= f

⇣
m̂,~he f f ,~Is

⌘

| {z }
I(m̂,~he f f ,~Is)

(A1)

where the right hand side of the equations are defined as
dependent sources current sources that capture the non-
linearities, through their explicit dependence on q and f and
other magnetization parameters. The left hand side is a capac-
itor whose voltage represents the instantaneous value of q and
f . The choice of the spherical coordinates is appropriate since
this naturally conserves the magnetization amplitude (|m|= 1)
at all times, however magnetic fields through anisotropies and
spin-currents naturally enter in Cartesian coordinates that are
converted to spherical coordinates similar to the prescriptions
discussed in References49,53,54.

FIG. 8 illustrates the circuit used to obtain m̂ where dif-
ferent dependent current sources are organized to represent
different terms in the effective magnetic field including uniax-
ial, demagnetization anisotropies and external magnetic fields.
More terms to include new physics such as voltage control of
magnetic anisotropy or magnetostriction can easily be added
to this module. Special attention needs to be given to the noise
terms since the way these terms enter the equation are fun-
damentally different. Specifically, we rely on the .trannoise
function of HSPICE where the basic model is a resistor with
a random current source to describe thermal noise. Due to
internal, closed-source definitions of HSPICE (using version
T-2022.06), we observe that the noise field, representing the
magnitude of the autocorrelation of the noise field measured
in units of A

2/Hz, needs to be defined as 4akBT/MsVol. |g|µ0
which has an extra factor of 2. We carefully checked that
when defined with this extra factor, the samples we get cor-
respond to the correct probability density function (see inset
in FIG. 8). As discussed in the main text, the sLLG mod-
ule we use has been rigorously benchmarked against a time-
dependent Fokker Planck Equation description of magnetiza-
tion dynamics and is correctly implemented by HSPICE.

Appendix B: From Non-Equilibrium Green’s Function
Formalism to 4-component spin conductors

In this section, we will show the derivation of conductance
matrix corresponding to a channel with Rashba spin-orbit
(RSO) and Dresselhaus spin-orbit (DSO) coupling (Eq. 4).
Our starting point is Hamiltonian:

H = H0 +a(sxky �sykx)+b (sxkx +syky) (B1)

Consider a 1D channel with N = 3 points. In the tight-
binding approximation75, we set the hopping parameter and
lattice constant a to 1 to ease our analytical calculation: t =

Number of 
channel points

Spin conductance

(N)

Solid (numerical)
Dashed (theory)

50 100 150 200 250

- 2

- 1

1

2

FIG. 9. Spin Conductances for RSO + DSO channel in 1D:

we compare the theoretical spin submatrix (zz,zx,zy,xz,xx,yz,yx,yy)
components of Eq. 4 against a numerical NEGF calculation, show-
ing excellent agreement. The parameters are a = 5⇥ 10�11 eV-m,
b = 2.5⇥10�11 eV-m, lattice spacing a = 0.1 nm, the injection en-
ergy is equal to t, where t = h̄

2/(2m
⇤
a

2
q) where q is the electron

charge and m
⇤ is the effective mass with 0.2me where me is the elec-

tron mass. The rotation angle is q =
p

a2 +b 22m
⇤(Na)q/h̄

2 where
Na is the channel length.

h̄
2/(2m

⇤
a

2
q)⌘ 1, a = 1. The Hamiltonian then reads:

2
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The NM leads on the left and right are described the following
self-energy matrices:

S =

(
SL(i, j) =�te

ika [(di,1 +di,2)di, j] ,

SR(i, j) =�te
ika [(di,5 +di,6)di, j]

here di, j is the Kronecker delta, k is the wavevector at a given
energy and a is the lattice spacing. We can then compute the
retarded Green’s function, G

R, via G
R = [EI�H�SL�SR]�1

at a given energy E = 2t[1 � cos(ka)] that approximates a
parabolic dispersion when (ka)⌧ 1. The G

R produces a dense
6⇥6 matrix that we do not show here. Once G

R is computed,
we set E = t and compute the conductance matrices using
Eq. 3. Below, we only report GLR = G12 for a/t,b/t ⌧ 1,
which is the appropriate limit for the perturbative SOC Hamil-
tonian. We obtain G12/G0:

=�

2

664

1 0 0 0
0 �2a2 �2b 2 +1 2a 2b
0 �2a 1�2a2 �2ab
0 �2b �2ab 1�2b 2

3

775 (B2)

where G0=2q
2/h as defined earlier. It can be readily checked

that assuming q =
p

a2 +b 2(L) where L = (N � 1), N � 1
being the channel length and using g = tan�1(b/a), the small
a,b expansion of the rotation matrix shown in the main text
reproduces Eq. B2, proving the relation. The (N � 1) factor
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for the channel length ensures there is no rotation for a channel
length of 1, which would consist of a single 2⇥ 2 spin site
without any spin-orbit interaction. FIG. 9 shows a numerical
comparison of a 1D NEGF showing excellent agreement with
spin conductance components of Eq. 4.
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