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ARTICLE INFO ABSTRACT

Keywords: We propose a reduced-order deep-learning surrogate model for dynamic systems described by
Machine learning time-dependent partial differential equations. This method employs space-time Karhunen-Loéve
Surrogate models expansions (KLEs) of the state variables and space-dependent KLEs of space-varying parameters

Dimensional reduction

. . . to identify the reduced (latent) dimensions. Subsequently, a deep neural network (DNN) is used
Bayesian uncertainty quantification

to map the parameter latent space to the state variable latent space.

An approximate Bayesian method is developed for uncertainty quantification (UQ) in the
proposed KL-DNN surrogate model. The KL-DNN method is tested for the linear advection—
diffusion and nonlinear diffusion equations, and the Bayesian approach for UQ is compared with
the deep ensembling (DE) approach, commonly used for quantifying uncertainty in DNN models.
It was found that the approximate Bayesian method provides a more informative distribution
of the PDE solutions in terms of the coverage of the reference PDE solutions (the percentage
of nodes where the reference solution is within the confidence interval predicted by the UQ
methods) and log predictive probability. The DE method is found to underestimate uncertainty
and introduce bias.

For the nonlinear diffusion equation, we compare the KL-DNN method with the Fourier
Neural Operator (FNO) method and find that KL-DNN is 10% more accurate and needs less
training time than the FNO method.

1. Introduction

We propose a novel method for constructing Bayesian surrogate models for time-dependent partial differential equation (PDE)
problems. Several machine learning (ML) methods were recently developed for constructing surrogate models, including neural
operators and finite space operators. The neural operator models include Fourier neural operator (FNO) [1], deep operator
networks (DeepONets) [2], graph neural operator (GNO) [3], and the principal component analysis deep neural network (PCA-Net)
method [4]. These operators learn the relationships between input functions (e.g., parameter fields) and output functions (e.g., state
variables), i.e., these models can predict the PDE solution at any point. The finite-space operators (e.g., convolutional neural network
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image-to-image regression models [5]) learn the relationship between input parameters and PDE solutions discretized on a mesh and
make predictions on the same mesh. For complex problems, the (parameter field) input space can be very large, which might lead
to ML models with a relatively large number of parameters. Training such models requires large training datasets and significant
computational resources. Also, estimating uncertainty in such ML models becomes a formidable challenge because of the curse of
dimensionality (CoD) in many Bayesian methods, including Markov Chain Monte Carlo (MCMC) methods [6-8].

One possible solution to address CoD is to use dimension-reduction methods for finding the reduced latent space of parameters
and state variables. For example, in the PCA-Net method, the principal component analysis (PCA) was used to find the latent spaces
of the space-dependent diffusion coefficient and state variable [4]. Then, a deep neural network (DNN) was employed to map the
latent space of the parameter field to the latent space of the PDE state variable.

There are multiple sources of uncertainty in ML surrogate models related to the non-convexity of the minimization problems in
the training of DNNs and training and approximation errors. The common methods for quantifying uncertainty are deep ensembling
(DE) and Bayesian methods [9]. The DE methods only account for uncertainty due to the initialization of the iterative solution of
the minimization problem involved in the DNN training and tend to underestimate the total uncertainty in the surrogate models.
The methods for direct sampling of posterior distributions such as MCMC suffer from the CoD, which limits their application to
uncertainty quantification (UQ) in surrogate models. Several approximate Bayesian methods were recently proposed to address
challenges in MCMC methods, including transport maps [10] and ABC methods [11].

The novelty of our work is two-fold. Firstly, we propose a reduced-order surrogate model for time-dependent PDEs, where
the dimension reduction is performed in both space and time. This is achieved by the space-time Karhunen-Loéve expansion
(KLE) [12,13] of the state variable. The space-time KLE is an extension of the KLEs, which are used to model spatial or temporal
fields [14] and are closely related to the function PCA expansion in the PCA-Net method. We name this approach the KL-DNN
method. A potential bottleneck in applying the KLE-DNN and PCA-Net methods for multi-dimensional time-dependent PDEs is the
large size of the PCA decomposition, singular value decomposition, or the eigenvalue problems that are used in these methods to
compute the basis functions in PCA or KLE representations. However, the KLE of a multidimensional function can be represented
as a combination of one-dimensional KLEs [15], which significantly reduces this challenge.

The second contribution of this paper is a novel method for quantifying uncertainty in surrogate models. In this approach, we
randomize the objective function in the KL-DNN method such that the samples obtained by solving the resulting minimization
problem for the different realizations of the random noise terms approximate the posterior distribution of the parameters in the
KL-DNN model. This method builds on randomization methods developed in the context of Bayesian inverse solutions, including
randomized MAP [16], maximum likelihood [17], the randomize-then-optimize method [18], and the randomized physics-informed
conditional KLE (rPICKLE) method [19].

The stability of solutions obtained with some surrogate ML models can become an issue, especially when the surrogate models
are combined with PDE numerical models (e.g., when surrogate models are used as closure models for viscosity in Navier-Stokes
numerical models [20]). We demonstrate that the KL-DNN method is stable given that the training dataset is sufficiently large.

This work is organized as follows. In Section 2, we present the KL-DNN method for general time-dependent PDEs. Section 3
describes the approximate Bayesian and DE methods for quantifying uncertainty in the KL-DNN surrogate model. Sections 4 and
5 present applications of the KL-DNN method for solving advection—diffusion and nonlinear diffusion equations, respectively. In
Section 5, we also provide a comparison with the FNO method. Conclusions are given in Section 6.

2. Dynamic KL-DNN method

Consider a PDE problem

Lu(x,1);p,y(x) =0, (x,1)€(D,T) @
subject to appropriate initial and boundary conditions. Here, £ is the differential operator, u(x,?) is the state variable, y(x) is the
space-dependent parameter field, p = [p,, ..., p,]" is the vector of n scalar parameters, and D and T are the space and time domains,
respectively.

Our objective is to develop a method for a rapid estimation of u(x,7) for any y(x) and p. Recently, a dynamic physics-informed
conditional Karhunen-Loéve expansion (dPICKLE) model for the PDE was proposed [13]. In this approach, a space-time KL
expansion is used to represent u(x,1):

Ny
u(e,1) & A (x, 1) = @(x, 1) + Y by (x D\ Ay, @
i=1
where # is the KLE of u, n = (1, ... .7 N,,)T is the vector of unknown parameters, and i(x, 1), ¢;(x, ), and A, are estimated as properties

of a random process that can provide an accurate statistical representation of u(x, t). Specifically, a(x, r) is the mean and ¢,(x,t) and
J; are the eigenfunctions and eigenvalues of the covariance C,(x,x’,t,1") of this random process, respectively. We compute the
mean and covariance by sampling y(x) and p from their prior distributions, solving the PDE (2) for each sample of y(x) and p, and
computing i(x,t) and C,(x,x’,7,1') as the sample mean and covariance, respectively [13].

The eigenvalues 4; are organized in descending order and truncated according to the desired tolerance, rtol:

ZZN,YH )”i
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< rtol. 3
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The space-dependent parameters are represented with the standard (space-dependent) KL expansion:
Ne
WX & §(x.8) = 50+ D 1(0VBiE “)
i=1
where j is the KLE of y, £ = (¢, ... ,éN(_ )T is the vector of parameters, j(x) is the prior mean, and y;(x) and f; are the eigenfunctions
and eigenvalues of C,(x, x'), the prior covariance of y(x).

Assuming that the Gaussian process model of y(x) (including y(x) and C,(x, x")) is known, the dPICKLE method computes the
solution of Eq. (1) for any realization of y(x) and p according to the following algorithm:

1. Generate N, samples of y(x) and p and solve Eq. (1) for each sample yielding the ensemble of solutions {u(x, t)}f;’tl"““.
2. Use the ensemble {u®(x, t)}ili‘l“““ to compute the sample mean and covariance of u(x,t) as

Nirain

a(x,t) = 1 2 uD(x,1), 5)

train ;=

Nirain

! WD (x, 1) — e, OO 1) — (el 1), )
1

Cc,(x,x' ') = ——
“ Ntrain -1

i=

3. Compute the eigenvalues and eigenfunctions in the KLEs of u(x, ) and y(x) by solving the eigenvalue problems:

//Cu(x,x’,t,t’)¢,~(x’,t’)dx’dt' =ngi(x.1) i=1,...,N, ()
pJr
and

/Cy(x,x’))(i(x’)dx’=§i)(i(x) i=1,...,Ng. ®)
D

Nirai . . .
" are available on a N, x N, space-time mesh (N, is the number of

spatial nodes and N, is the number of time steps) and { y(x)(")}i]l‘l“i“ are available at N, points in space. Then, the numerical

We assume that the numerical solutions {u(x,)®}

solution of Egs. (7) and (8) will yield the values of eigenfunctions {¢;(x, t)}f:”l on the N, x N, mesh and { ;(,-(x)}f:‘fl on the N,
spatial mesh.
4. For the selected y*(x) and p*, find the solution of Eq. (1) by minimizing the PDE residuals on the N, x N, mesh as
N, N,
n = min| 37 3 LGe1im.p* 5 807 ©
i=1 j=1
As in other ROM models [21], the dPICKLE minimization problem (9) must be solved for any new y(x) and p, which is faster than
solving the original PDE (1) with standard numerical methods but may still take considerable time. Also, solving the minimization
problem (9) requires numerically computing the space and time derivatives of the eigenfunctions, which makes this method intrusive.
In the KL-DNN method, we replace the minimization problem (9) in the dPICKLE model with a DNN model to map & and p to
n:
n(p, &) ~ NN (p,&0), (10)
where NN (p, &, 0) is a fully connected feed-forward DNN with the input layer containing & and p, output layer composed of 7, and
parameters (weights and biases) 6. The KL-DNN method takes full advantage of the set of N,.,;, solutions obtained in Step 1 of the

dPICKLE method by using it to both compute the mean and eigenpairs (as in the dPICKLE method) and train the DNN in Eq. (10).
The training set for estimating 6 is generated from the ensemble {p®, y(x)®, u(x, )® }’Z‘I’"‘i“ as follows:

1. For the solution u(x, ) with the parameters p® and y(x)?) (i = 1,2, ..., Nygin), compute £ and 7 by least-square fitting
the KLEs $(x, &) and a(x, t,1) to y(x)® and u(x, ), respectively, as

Ny
§0 = min Y 1yx)" = 3(x,. OF an
j=1
and
N, N,
79 = m'}n Z Z[u(xj, 10" — a(x;, 1, M. 12)
j=1 k=1

2. Train the DNN by minimizing the loss function L, (6):

0" = mein L,(6) (13)
where
Nlrain
£,0) =24, Y INNPE?,£:0) -3 + 4,ll0113, (14

i=1
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||0||§ is the ¢, regularization term, and 4, and A, are the weights.
3. Once the DNN is trained, the solution for any y*(x) and p* is given as
u(x, ) ~ i (x,1; NN (p*, €%0)) . (15)

In the KL-DNN method, the total error ¢ is a combination of the approximation error ¢, (error due to approximating the PDE
solution with a KLE) and the operator error (the DNN operator that maps the parameters to the PDE solution), ¢,,. The relative e,
€ap> and ¢, errors can be defined as

\/Zf; f;l[u(xj, 1) =i (x;. 1, NN (p, & 6%) 2.
L=

€ , (16)
N, N
YO DI IN e
¥~ NN, p,6")
o= [l77 *5 P9, a7
l7*1l,
(where & and p are the parameters in the exact PDE solution u(x, 1)), and
VI BN e, 1) - G, 1o )P
€ap = — , 18
\Y; ijxl Zk=t1 u(xj’tk)z
where n* is the solution of the least square fitting of 4(x, ;1) to u(x, t):
NX Nf
* = mi St —h(x i, 1, 2. 19
n "‘n”‘j; ;[u(x, ) — (), 1) (19)

The error ¢,, decreases as N, increases. Also, ¢,, might depend on the accuracy of the mean and covariance estimates, which
improve with increasing Ny, Therefore, ¢,, decreases with increasing Nygi,. The ¢,, error is expected to decrease as the DNN
size increases. However, a larger DNN requires more data for training, i.e., a larger N ,i,-

In the PICKLE method, the total error is a combination of the approximation error (which is defined similarly to e, in the KL-DNN
method) and the error in the residual least-square approximation of the PDE solution. The latter error decreases with increasing N,
and N,, i.e., with increasing mesh resolution.

It must be noted that the formulation of the KL-DNN method is similar to that of the PCA-Net method, where PCA expansions are
used in Egs. (2) and (4) instead of KLEs and {u(x, t)}i’i‘fa‘“ and C, are treated as the data and data covariance, respectively. KLEs
allow treating u, p, and y as random variables and the governing PDEs as stochastic. The stochastic interpretation has advantages
for computing C, and (7;, q.'),-)f:"l, which is especially important when obtaining enough u; samples becomes too expensive. Equally
important, the size of the C, matrix for multi-dimensional time-dependent PDEs can become so large that solving the eigenvalue
problem or performing SVD would be unfeasible.

In the stochastic interpretation, Egs. (5) and (6) constitute the Monte Carlo (MC) method, which has a relatively low convergence
rate. The stochastic treatment of the governing equations allows using other methods (e.g., Polynomial Chaos [22,23] and the
moment equation method [24,25]) for computing the mean and covariance of the state variables that are more efficient than the
MC method. Also, treating u as a random field can enable the solution of very large eigenvalue problems by rewriting the KLE of u
as [15]:

N”/
u(x, t,0) ~ a(x, 1) + Y (%, DV 4 (0n,(t, @), (20)

i=1
where o is the coordinate in the outcome space, #,(t,w) are the random variables, and 4,;(r) and ¢;(x,t) are the eigenvalues and
eigenfunctions of the covariance C, (1, x, x’), respectively, given by the solution of the eigenvalue problem:

/ C,(x,x', );(x', 1) dx’ = n;(t, 0)p;(x,1) i=1,..., N,. (21
D

By construction, #;(t, w) are zero mean independent random variables, which can be expressed with one-dimensional KLEs as

NY
n(t,w) = 2 8ij(D\/HijVij> (22)
j=1

where y;; are independent and identically distributed (i.i.d.) zero-mean random variables and g;;(r) and y;; are, respectively, the
eigenfunctions and eigenvalues of H,(1,1'), the covariance of #,(t,w), which is defined in [15]. These eigenpairs can be found by
solving the eigenvalue problem

/ H;(, t,)g,-j(t/)dt/ = ﬂijgij(t) j=1..., Ny~ (23)
T

The dimensionality of each of the eigenvalue problems in Egs. (21) and (23) is smaller than the dimensionality of the eigenvalue
problem (7). The surrogate model can be constructed by mapping p and & to the KLE parameters y;;.

4
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3. Uncertainty quantification: Deep ensembling and randomized KL-DNN method

There are several sources of uncertainty in the KL-DNN model. One is due to the nonlinearity of the least-square problem in
Eq. (13). Despite adding the ¢, regularization term, we find that the solution of Eq. (13) depends on the initial guess for the DNN
parameters 0. Here, we use the iterative L-BFGS algorithm to solve this minimization problem. We find that stochastic gradient
descent algorithms such as Adam produce similar (initialization-dependent) results. We call this source of uncertainty the DNN
training uncertainty. The DNN training uncertainty can be quantified using the DE method, where the minimization problem (1 4)
is randomly initialized and solved N, times for different values of the seed, yielding the ensemble of DNN parameters {9“)} .
Then, the DE prediction of u(x,?) for the parameters p and ¢ is given by the sample mean ipg(x, ¢), and uncertainty is descrlbed by
the variance ‘712315("’ 1) defined as:

Nens

Y a(x.t, NN (p,&67)),

ens ;|
NCHS

Z[u x,t, NN(p,&; 9([))) — iipg(x. 1 p. ).

ipg(x,t;p, &) =

2 .
ope(X.:p.8) =

ens

—1

There is also uncertainty due to the DNN regression model error and the prior assumptions about the distribution of 6 expressed
in the regularization term in Eq. (14). Traditionally, this uncertainty is treated probabilistically using the Bayesian framework that
treats the DNN parameters 6 as random variables with the posterior distribution P(6|d) given the measurements d defined by the
Bayes’ rule:

P(d|6)P(0)

=7 24
[ P(d|6)P(6)d6 @4

P(O|d) =
where d = {n(")}ﬁtl“"“ is the training data, P(6) is the prior distribution of 6, and P(d|6) is the likelihood function. The integral in
the denominator of Eq. (24) is the normalization coefficient, which makes the posterior distribution integrate to one.

The likelihood corresponding to the first term in the KL-DNN loss function is

Nirain N'/ ( (') ( i) g(). 9 2
1 . —7;(p", & 0))
P(d|6) = (—=—) "N T Texp[-——

N 111 2

271(7,,

B (25)

where 02 = Al The prior corresponding to the £, regularization term in the loss function is
n

P©) =(

) ’ Hexp( ) 26)

where 62 = —. With these choices of the prior and likelihood, the DE solutions 6 of the minimization problem (13) provide the
modes of the posterlor distribution.

The standard approach for sampling P(6|d) is the Hamiltonian Monte Carlo (HMC) method. However, HMC suffers from the curse
of dimensionality, i.e., the computational cost of HMC rapidly increases with the increasing dimensionality of 6. As an alternative,

here we propose a randomized sampling algorithm, which is based on the randomization of the loss function (14) as

Ntram
1
LO) = — Z IN N, 0) = 1 — a;ll5 + =110 - BII3. @27)
n i=1 %
where @; (i = 1,..., Nyain) and g are vectors of i.i.d. Gaussian random variables with zero mean and variances of, = Ai and o-g = zi’
n 0

respectively.

Minimizing the randomized loss function for different realizations of {a-}N‘“i“, B, and the random initial guesses of 6 produces
samples {9(')} ™ of the posterior distribution of 8. We name this the rKL-DNN method. The subscript “r” is used to distinguish Gii)
from 6® obtamed by minimizing the loss function (14) using DE.

For a linear (in ) model of 7, the rKL-DNN-sampled distribution converges to the posterior distribution as the number of samples
approaches infinity (see, for example, the convergence proof for the rPICKLE model in [19]). For nonlinear models such as the
DNN model in our approach, the proposed sampling scheme can introduce bias, which can be removed using Metropolis rejection
schemes. However, it was found that the rejection rates in similar randomized schemes (e.g., rPICKLE and randomized MAP) are
very small [16,19]. Therefore, here we accept all samples 99).

An important question in the Bayesian estimation of uncertainty is selecting the variances oﬁ and 02 We note that the solution
0" of the minimization problem with the deterministic loss function (14) only depends on the ratio 4,,, = /19 [y = 0'2 /o2 o,, which is the
regularization coefficient in the loss (14). This regularization coefficient can be determined to minimize the error in the surrogate
model prediction for a testing data set.

On the other hand, the posterior distribution depends on the values of o-f’ and 65 and not just their ratio. Here, we select the
values of 63 and ag to maximize the log predictive probability (LPP) with respect to testing data that is defined as the sum of the
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point-wise log probabilities of the reference being observed given the statistical prediction [26]:

N.

X

& (& (%1213 Erests Prest) — Urest(X;- 1))
LPP = _Z Z{ rKL-DNN\%*i» ! j> Stest> Ptest test\Xis
j=1

(28)

2 .
i=1 26531 pan i 13 Etests Prest)

1 2
+ 5lOg[zﬂ'UrKL_DNN(xiatj;gtestﬁptest)] }’
2

where u(x;.1;; Egests Prest) and O L DNN
computed from rKL-DNN method as

(i, Erests Prest) are the sample mean and variance of u(x,) given the parameters (et Prest)

Nens

ens

iy pNN (X, 1 P, ) = Nl Z i (X, t, NN(p,E;Gi”)) (29)
ens j—|
and
1 Nens .
oA 1:p.§) = r——= Dl (x 1, NN@,g;Qﬁ”)) iy prn e P T (30)
i=1

4. One-dimensional advection—diffusion equation

In this section, we consider the one-dimensional advection—diffusion equation (ADE)

Ju ou u
E'I-U; _Dﬁ’ (X,I)E(O,L)X(O,T) (31)

subject to the initial and boundary conditions:

u(0,1) = Cy, (32)
u(co,1) =0, (33)
u(x,0) =0, (34)

where v and D are the (constant) velocity and the diffusion coefficient. Our aim is to train a surrogate model i(x, t, v, D; 6), which
predicts u(x, 1) for any values of v and D in the ranges v € [v,,;, Uax] a0d D € [D,;,. Dy 1

This ADE allows an approximate analytical solution known as the Ogata-Banks solution [27]. We use this analytical solution
to generate a training dataset for constructing the KLE ii(x,;7) and training the DNN map N N '(p; 6), where p = [v, D]'. In Step
1 of the dPICKLE algorithm, we sample v and D from the independent uniform distributions with the ranges v € [v,,,, U0, ] and
D e[D,;,, D,,,], respectively, and evaluate u(x, 1) for each sample of v and D on a structured mesh with the grid size Ax and time
step 4t. Then, we compute the KLE i(x,1;n) using Steps 2 and 3 of the dPICKLE algorithm. Finally, we train the surrogate model
and evaluate its accuracy for several combinations of v and D. We compare the accuracy of the surrogate and dPICKLE models as a
function of N,;, and Ax and Ar. The dependence of errors on N, is important because generating samples (when the analytical
solution is not available) is a significant part of the total computational costs of both the KL-DNN and dPICKLE algorithms. The
dependence of errors on Ax and 4¢ is also important because the Ax and Ar determine the size of the discrete problem in the numerical
solution of the PDE and the size of the eigenvalue problem.

We solve the ADE for L = 86 and T = 600, and train the PICKLE and KL-DNN models for the parameters in the range D,,;,, = 0.036,
max = 0.085, v, = 0.128, and v,,,, = 0.298. These parameters correspond to the range of Peclet numbers Pe = % of [128,700].

First, we compute the ADE solutions for Pe = 175 and 600 using the DE-KL-DNN method, where the prediction is given by the
mean iipp(x,t;) and the uncertainty is quantified by the variance G%E(x, t). We set the regularization coefficient to Areg = 107 and,
unless mentioned otherwise, N, = 100.

Fig. 1 presents the analytical solution for Pe = 175 and 600, and Fig. 2 shows point errors in the KL-DNN and PICKLE solutions
for Pe = 175 (v = 0.15 and D = 0.07) obtained with N, = 20, 100, and 1000. The errors are computed with respect to the analytical
solutions shown in Fig. 1. We find that the KL-DNN solutions have smaller point errors than the PICKLE solutions for all considered
Nirain- The point errors in KL-DNN decrease with increasing Ny.,;,, while the PICKLE point errors do not change significantly.

The same trend can be seen in Fig. 3 for the ¢, error in the KL-DNN and PICKLE solutions as functions of Ny, for Pe = 175
and 600. The PICKLE ¢, error is practically independent of N,;,, while the KL-DNN ¢, error decreases by one order of magnitude
as Nipin increases from 20 to 1000. For comparison, we also show the relative approximation error e,,. Both €, and ¢ errors in
the PICKLE and KL-DNN solutions increase with Pe.

For Pe = 175, e, is significantly smaller than ¢, in the PICKLE and KL-DNN solutions, demonstrating that the main source of
error in the KL-DNN and PICKLE methods comes from DNN mapping and residual least-square formulation, respectively, rather than
from the KL representation of u(x, ). Also, we observe that ¢,, is practically independent of Ny.;,. For Pe = 600, the ¢,, is only
slightly smaller than ¢, in the KL-DNN solution. This indicates that KL-DNN as well as PICKLE solutions can be further improved by
increasing N,, which is expected to decrease e,, and (therefore) ;.

Fig. 3 (left panel) shows that (for fixed N,) e, is practically independent of Ny, which is the reason for ¢ in PICKLE to be
independent of N,i,. On the other hand, in KL-DNN, ¢, decreases with increasing Nip.

D,
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X

Fig. 1. Analytical solutions of ADE for Pe = 175 (left) and Pe =600 (right).
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Fig. 2. Point errors in the DE-KL-DNN (top row) and PICKLE (bottom row) solutions of ADE obtained with N, =20, 100, and 1000. The solutions are obtained
for v=0.15 and D = 0.07 corresponding to Pe = 175. The space-time mesh resolution is 120 x 120. In the DE-KL-DNN method, the regularization parameter is
Areg = 107 for Ny, =20 and 100 and 4,,, = 107 for N, = 1000. The number of terms in the KLE is N, = 20.

In Fig. 3 (right panel), we find that ¢,, decreases with Ny, and reaches an asymptotic value at Ny, = 200. The KL-DNN ¢
error also decreases with N,.;, until it reaches an asymptotic value at N,.;, = 500. The PICKLE ¢, error is practically independent
of Niin and, for the smallest tested Ni,i, = 20, the PICKLE solution is more accurate than the KL-DNN solution.

These results show that the KL-DNN method is an efficient alternative to PICKLE when a sufficient number of samples is available
for training the DNN map. On the other hand, the physics constraints in PICKLE allow obtaining an accurate solution even with
relatively few samples—in the case with Pe = 600, Ny, = N, = 20 is sufficient to obtain an accurate PICKLE solution.

The error in the PICKLE solution can be further decreased by decreasing Ax and At as seen in Fig. 4, which displays e, errors in
the KL-DNN and PICKLE solutions as functions of N, = N, for Pe = 175 and 600 and N, = 20. The PICKLE ¢, error decreases
with increasing N, while the KL-DNN ¢, error is practically independent of the grid resolution. The KL-DNN error is smaller than
the PICKLE error for smaller Pe and larger than the PICKLE error for larger Pe for all considered N, and N,. We reiterate that for
Pe = 600, the KL-DNN method becomes more accurate than PICKLE for larger Ni,i,.

Fig. 4 also shows that for a fixed N, the approximation error does not significantly depend on N, and N,. The reason for this can
be seen in Fig. 5, which shows the decay of eigenvalues of the covariance matrices for Pe = 175 computed on meshes N, = N, = 60
and 180. The first 40 eigenvalues of the two covariance matrices have similar values. In the presented above ADE solutions, we use
the first 20 eigenvalues in the KLE, and the resulting truncation errors (rtol) computed from Eq. (3) are 2.012x 10~¢ and 2.008 x 10~°
for N, = N, = 60 and 180, respectively.
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Fig. 4. Relative ¢, errors in the KL-DNN and PICKLE ADE solutions as functions of N, = N, and (left) Pe =175 (V¥ =0.7V* and D = 1.2D*) and (right) Pe = 600
(V =14V* and D =0.7D"). Ny, = 20. For comparison, the relative approximation error ¢,, is also provided.

Fig. 6 shows the standard deviation in the KL-DNN solution computed with DE for N.,;, = 20, 100, and 1000, and Pe = 175. The
uncertainty in the KL-DNN prediction decreases with increasing N.,i,, as do the point and ¢, errors in Figs. 2 and 3. It is important
to note that the point and ¢, error estimates require the reference solution (which, in general, is not available). The DE standard
deviation estimate does not require the reference solution and can be used as an a priori measure of the solution accuracy.

Based on the results presented so far in this section, we conclude that the KL-DNN method can outperform the reduced-order
methods such as PICKLE for problems where a sufficiently large number of samples is available, i.e., N, is sufficiently large. Also,
these KL-DNN results were obtained using the DE-KL-DNN method. Next, we compare the rKL-DNN and DE-KL-DNN methods. We
set o;, = 10~* and o} = 107 in the rKL-DNN model and A = 107° in the DE-KL-DNN model.

Fig. 7 shows the ¢, errors in the ADE solutions given by i pan(x.?) and dpg(x,t) with respect to the reference solution as
functions of Ng,,. We find that the errors in both methods are very similar (with the DE-KL-DNN errors being slightly smaller than
the rKL-DNN errors) and practically independent of Ng,.

Fig. 8 depicts the standard deviations as functions of x and ¢ estimated from the rKL-DNN and DE-KL-DNN methods. We find that
rKL-DNN predicts larger standard deviations than the DE-KL-DNN. Fig. 8 also presents the coverage of the reference solution in the
two methods where the yellow color denotes areas where the reference solution is within the confidence interval (mean plus/minus
two standard deviations) predicted by each method. It can be seen that rKL-DNN provides better coverage of the reference solution
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Fig. 7. DE-KL-DNN and rKL-DNN ¢, errors in the ADE solution with Pe = 175 as functions of Neps. Nygin = N, = 20.

(96.9%) than the DE-KL-DNN method (90.8%). Also, rKL-DNN has a higher LPP than DE-KL-DNN (14744.7 versus 13303.1). These
results show that the rKL-DNN method provides a more accurate estimate of uncertainty than DE-KL-DNN.

Finally, in Fig. 9 we show the marginal and bivariate distributions of #,,#,,...,#s, which are used to train the rKL-DNN and
DE-KL-DNN models. These distributions are highly non-Gaussian, suggesting that the distribution of «() samples in the dataset is
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confidence interval, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

also non-Gaussiam. From the results in this section, we conclude that KL-DNN surrogate models can be well-trained using samples
with a non-Gaussian distribution.

5. Nonlinear two-dimensional diffusion equation

In this section, we test the DE-KL-DNN and rKL-DNN methods for a synthetic groundwater flow problem known as the Freyberg
problem [28,29]. The governing equation for this problem, describing two-dimensional depth-averaged groundwater flow in an
unconfined aquifer, has the form:

du(x,t)

ot
where S, is the specific yield (assumed to be constant and known), K(x) is the hydraulic conductivity, f(¢) is the time-dependent
recharge, and g(x, 7) is the source term due to pumping wells and the interaction with a river. Our objective is to develop a surrogate
model of u(x, t) as a function of y(x) = In K(x) (no dependence on scalar parameters p is considered in this case). The In K(x) transform
is not necessary but is often used when the surrogate model is employed for solving the inverse problem of estimating K(x) given
some measurements of u. If a KLE is used to model K, then the solution of the inverse problem is reduced to estimating & in the
KLE model. One of the constraints on K(x) is that it must be positive, and representing In K(x) with KLE ensures that the inverse
solution always satisfies this constraint.

The reference log-transmissivity field y..¢(x) = In K,.f(x) and the computational domain are shown in Fig. 10. There are 40 rows
and 20 columns in the domain. Each cell is a square with a side length of 250 m. The total domain extent is 5000 by 10 000 m. Cells
colored black are inactive, i.e., the governing equation is not solved in these cells, and there are N,, = 706 active cells. The domain
is conceptualized as a headwater catchment with no-flow boundaries on the north, east, and west sides. The boundary separating
the active and inactive cells is also treated as a no-flow boundary. The southern boundary (shown by blue cells) has the Robin
(generalized head) boundary condition. The cyan color indicates a river running from North to South across the model domain,
with a specified inflow on the Northern end. The locations of the six pumping wells are indicated by red cells. The initial condition
is computed as the solution of the steady-state version of Eq. (35) with the recharge f, = f(t = 0).

Syu(x, 1) =V - (Kx)u(x,)Vu(x, 1)) + ulx, ) f () + g(x, )], (35)

10
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Fig. 9. The marginal and bivariate joint distributions 5,75, ...,%5 estimated from the ADE training dataset with N, = 1000.

We solve Eq. (35) using the MODFLOW 6 (MF6) software [30,31] with the Robin BC implemented using its general head boundary
stress package, and the river is modeled with the streamflow routing stress package. Recharge and the pumping wells are modeled
using the MF6 recharge and well stress packages, respectively. The Freyberg problem is run for a total of 12 years using 25 time
steps of varying length. The first time step has a length of 10 years, and each of the remaining 24 time steps has a length of 1
month. Recharge rates are varied monthly in the last two years of the simulation. The well pumping rates are varied annually in
the last two years of the simulation.

The reference hydraulic conductivity field K,.¢(x) and {K(")(x)}i]:‘{ai" for the training dataset are generated according to the
algorithm described in [32,33], where an a priori K(x) field is modified with multipliers, first at the grid scale (each cell) and
then at the domain scale (a single scalar). We start from a spatially uniform prior K(x) = 11.1 m/day. The grid-scale multipliers
are realizations of a normal distribution with mean one and standard deviation 1.2 m/day sampled in log space (mean zero and
standard deviation 0.1823). The standard deviation is determined by a range of values for the multiplier, in our case [0.2,5.0]. This
range is also used to truncate the resulting samples. The grid-scale multipliers are given a spatial correlation structure using an
exponential variogram with a correlation length of 1000 m and a variance of one. Next, at the domain scale, a scalar multiplier is
applied to adjust the mean of the a priori K. This scalar multiplier is sampled from the same normal distribution described above
for the grid-scale parameters. Once the product of the multipliers is calculated, a second truncation is made, this time to the bounds
of [0.01, 100] m/day.

Next, we use MF6 and K, .f(x) and {K(")(x)}i]:"ai“ as input parameter fields to compute the solutions of the PDE (35), us(x,1)
and {u®(x, t)}fi‘lr"‘“. The samples {y) = In KO (x)} """ and {u®)(x, t)}fi‘lrai“ are used to construct the KLEs of y(x) = In K(x) and u(x, t)

11
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Fig. 11. The decay of the y(x) (left) and u(x,) (right) eigenvalues. In the simulations, the KLE of y is truncated at N, = 150 (rtol = 0.069) and the KLE of u is
truncated at N, =90 (rtol = 0.00045).

and to train the DNNs {N' N, (&; Gf))}iel“s and {N' N, (&; 6(‘))}fie1“s using the rKL-DNN and DE-KL-DNN methods, respectively. We use

Nirain = 5000 samples in the training dataset. In the DE-KL-DNN and rKL-DNN methods, we set N; = 150, N, = 90, N, = 100,
dreg = 107, 62 = 1078, and aé = 1073, blue Fig. 11 shows the decay of the y and u eigenvalues. For both fields, we observe the fast
and slow decay regimes. We select N and N, to coincide with the transition points from the slow to fast regimes. The corresponding
rtol values are 0.069 for the y field and 0.00045 for the u field.

12
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Fig. 12. The reference hydraulic head field u at times ¢, = 10, ¢, = 11, and ¢; = 12 years (first row). The error in the mean u prediction obtained from DE-KL-DNN
(second row) and rKL-DNN (third row) and u estimated from FNO (fourth row) with respect to the reference conductivity field.

Fig. 12 shows the reference hydraulic head field u. at times ¢; = 10, ¢, = 11, and 7; = 12 years and the point errors in the u(x, )
prediction obtained with the DE-KL-DNN and rKL-DNN methods. The u(x, r) predictions in these methods are given by ap(x, ) and
ixr-pnn (X, 1), respectively.

For comparison, we use the same dataset {y(x), u®”(x, t)}ili‘]'“‘“ to train a FNO surrogate model [1]. The point errors in the FNO-
predicted hydraulic head with respect to the reference solution are also shown in Fig. 12. In the FNO model, we use a fully connected
neural network to lift the input tensor with four channels to a desired high-dimensional channel space. Here, the four channels of
the input tensor contain the y(x;, x,,7) values at N,, points in the space-time domain and the x,, x,, and ¢ coordinates where u is
predicted. We set the width (the dimensionality) of the channel space to 32 (we find that the higher dimensionality significantly

13
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Fig. 13. The ¢, errors in u(x,r) predictions obtained from the DE-KL-DNN, rKL-DNN, and FNO methods at different time steps. The KLE approximation error
€,p(1) is also shown.

increases the training time without reducing the testing error). In each Fourier layer, we filter out Fourier modes greater than 8 (the
largest number of nodes available in the x; direction). We set the training epoch to 1000 with a batch size of 32 and employ the
Adam optimizer with a step learning rate (LR) scheduler that decays the initial learning rate of 1 x 10~3 by half every 100 epochs.
In the training dataset, the values of y and u in the inactive cells of the domain are set to —1. During the training phase, we create
a mask to filter out these cells so they do not contribute to the loss computation.

The rKL-DNN, DE-KL-DNN, and FNO methods produce point errors in approximately the same range, even though the distribution
of the point errors is different. The ¢, errors in the DE-KL-DNN, rKL-DNN, and FNO methods are 5.968 x 1074, 4.486 x 107#, and
4.914 x 1074, respectively.

Fig. 13 shows the ¢, (¢) errors in these three methods and the KLE approximation error as functions of time. DE-KL-DNN has the
highest ¢, error except for the late time when the FNO error becomes largest. The rKL-DNN error is the smallest for most times.
We also observe that e, is 2-3 times smaller than the ¢ errors in the three methods, indicating that the KLE representation of the
solution is not the main source of the DE-KL-DNN and rKL-DNN errors. These results indicate that for the considered application,
rKL-DNN slightly outperforms FNO (e.g., ¢, in rKL-DNN is approximately 10% smaller than in FNO). An additional advantage of the
rKL-DNN method is that it has much fewer input parameters than the FNO method. As a result, the computational time for training
Neps = 100 DNNs in rKL-DNN (time for training one DNN is 40 s, the total time is 1.1 h) is significantly smaller than the time for
training the FNO model (16 h for training a single FNO network).

Fig. 14 shows the standard deviations in the DE-KL-DNN and rKL-DNN estimates of u,.¢(x,?). We find a similar pattern in the
distribution of the standard deviations in both methods. For a given time, larger values of the standard deviations correspond to
larger values of u..¢(x, ). However, the standard deviation in rKL-DNN is about 100% larger than in DE-KL-DNN.

Fig. 15 shows the coverage of u,(x,?) by the confidence intervals predicted by the DE-KL-DNN and rKL-DNN methods. The
percentage of coverage in DE-KL-DNN is 80% at time ¢,, 83% at time #,, and 74% at time 75. In rKL-DNN, the percent of coverage is
higher—93%, 95%, and 91% at times t,, t,, and 5, respectively. LPP defined in Eq. (28) is another measure of the informativeness
of the parameter distribution (a higher LPP corresponds to a more informative distribution). We find the LPP of the DE-KL-DNN
solution is 37753 versus 48079 in the rKL-DNN solution, indicating that rKL-DNN provides a more informative posterior than the
DE-KL-DNN method.

Fig. 16 depicts the marginal and bivariate distributions of #,,#,, ..., n5, which are used to train the rKL-DNN and DEns models.
As in the ADE problem, these distributions are non-Gaussian, further demonstrating that the Gaussianity assumption is not required
for constricting the KL-DNN surrogate models.

6. Discussion and conclusions

We proposed a reduced-order DNN surrogate model for learning the solution u(x,7) of a time-dependent PDE as a function of the
parameter vector p and/or parameter field y(x). The dimension reduction is achieved by using a space-time KLE of u(x,r) (with the
latent parameter vector n) and a spatial KLE of y(x) (with the latent parameter vector &). Then, the PDE solution is approximated
using a DNN map from the space (p, &) to . We termed this method the KL-DNN method.

There are multiple sources of uncertainty in the KL-DNN model of u(x,t). We propose two methods for quantifying uncertainty
in the KL-DNN surrogate model. The first approach is based on DE, which is often used to quantify uncertainty in DNN methods. In

14
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Fig. 14. The standard deviations in the u(x,7) estimates as functions of x and  obtained from DE-KL-DNN and rKL-DNN at times ¢, = 10, 7, = 11, and #; = 12
years.

the Bayesian framework, DE samples provide coordinates of the local modes in the posterior distribution of the DNN coefficients.
In the resulting DE-KL-DNN model, the model prediction and associated uncertainty are given by the mean and variance of the DE
samples.

In the second approach, which we term the randomized KL-DNN or rKL-DNN method, we approximately sample the posterior
Bayesian distribution of the DNN parameters from the randomized loss function. In this approach, the prediction and the associated
uncertainty are given by the mean and variance of the posterior distribution. This is the advantage of the rKL-DNN approach over
the DE-KL-DNN approach because the mean and variance of the modes’ coordinates do not have a clear statistical meaning because
they are different from the posterior distribution’s mean and variance.

We applied the rKL-DNN and DE-KL-DNN methods for building the surrogate models of the one-dimensional linear ADE and
two-dimensional nonlinear diffusion equation with a space-dependent diffusion coefficient. The diffusion PDE model describes time-
varying horizontal flow in an unconfined aquifer. For the linear ADE model, we found that the DE-KL-DNN and rKL-DNN predictions
have similar errors, but the rKL-DNN method provides better coverage of the reference solution than the DE-KL-DNN method. Our
comparison with the physics-informed ML (dPICKLE) method revealed that the KL-DNN surrogate model has higher accuracy if the
training dataset is sufficiently large.

For the nonlinear diffusion equation, our results showed that the rKL-DNN method has both a smaller prediction error and better
coverage than the DE-KL-DNN method. For both problems, we found that DE-KL-DNN predicts a smaller variance than the rKL-DNN
model, which in combination with the poorer coverage indicates that the DE-KL-DNN model underestimates uncertainty.

We found the proposed methods are stable for the considered application because the errors and variances do not increase
significantly with time if the training datasets are significantly large.

Finally, for the nonlinear diffusion equation problem, we compared the rKL-DNN method with FNO, a state-of-the-art ML method
for constructing surrogate models. We found that the solution given by the posterior mean of the rKL-DNN method is approximately

10 percent more accurate than the FNO solution. Other advantages of the rKL-DNN method over FNO include the uncertainty bounds
and a significantly smaller training time.
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Fig. 15. Coverage of u(x,?) by the confidence intervals (mean plus/minus two standard deviations) computed from DE-KL-DNN (top row) and rKL-DNN (bottom
row) at times ¢, = 10, 7, = 11, and #; = 12 years. In the coverage plot, the yellow and blue colors denote areas where the reference solution is inside and outside
the confidence interval, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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