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We propose the randomized physics-informed conditional Karhunen-Loève expansion (rPICKLE) 
method for uncertainty quantification in high-dimensional inverse problems. In rPICKLE, the 
states and parameters of the governing partial differential equation (PDE) are approximated via 
truncated conditional Karhunen-Loève expansions (cKLEs). Uncertainty in the inverse solution is 
quantified via the posterior distribution of cKLE coefficients formulated with independent stan-
dard normal priors and a likelihood containing PDE residuals evaluated over the computational 
domain. The maximum a posteriori (MAP) estimate of the cKLE coefficients is found by mini-
mizing a loss function given (up to a constant) by the negative log posterior. The posterior is 
sampled by adding zero-mean Gaussian noises into the MAP loss function and minimizing the loss 
for different noise realizations. For linear and low-dimensional nonlinear problems, we show that 
the rPICKLE posterior converges to the true Bayesian posterior. For high-dimensional non-linear 
problems, we obtain rPICKLE posterior approximations with high log-predictive probability. For a 
low-dimensional problem, the traditional Hamiltonian Monte Carlo (HMC) and Stein Variational 
Gradient Descent (SVGD) methods yield similar (to rPICKLE) posteriors. However, both HMC and 
SVGD fail for the high-dimensional problem. These results demonstrate the advantages of rPICKLE 
for approximately sampling high-dimensional posterior distributions.

1. Introduction

Inverse uncertainty quantification (IUQ) problems are ubiquitous in the modeling of natural and engineering systems governed by 
partial differential equations (PDEs) (e.g., subsurface flow systems, geothermal systems, CO2 sequestration, and climate modeling). 
IUQ has the same challenges as forward UQ, including the curse of dimensionality (COD), plus additional challenges associated with 
the ill-posedness of inverse PDE problems [1,2].

In this work, we are interested in IUQ for the PDE model

(𝑢(𝐱),𝑦(𝐱)) = 0, 𝐱 ∈Ω (1)
subject to the appropriate boundary conditions, where  is the differential operator acting on the state variable 𝑢(𝐱) and the space-
dependent parameter 𝑦(𝐱). This PDE can be discretized using a numerical method of choice, or modeled with physics-informed 
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machine learning methods such as the physics-informed neural networks (PINNs) [3–5]. In the deterministic inverse setting, point 
estimates of 𝑦 and 𝑢 were obtained by solving a PDE-constrained optimization problem where the objective function is the sum of 
the squared differences between predicted and observed 𝑦 and 𝑢 values. Adding regularization, which can be interpreted as prior 
knowledge, eliminates the ill-posedness of the inverse problem and leads to the maximum a posteriori (MAP) solution. However, 
the PDE-constrained MAP formulation may suffer from the COD. For example, for the diffusion equation model with an unknown 
space-dependent diffusion coefficient considered in this work, the MAP computational cost scales as 𝑂(𝑛3), where 𝑛 is the number of 
unknown parameters (discrete values of the diffusion coefficient) [6].

Models of natural and engineering systems can have thousands of (unknown) parameters. Several methods have been proposed 
for approximating such systems using a smaller number of parameters [7]. These methods include the pilot point method [8,9], 
subspace methods using singular value decompositions (SVD) [10], truncated Karhunen-Loéve expansions (KLE) [11], and truncated 
conditional KLEs (cKLE) [12]. In the KLE-based approach, the parameter estimation problem is reduced to estimating KLE coefficients. 
In [13,6], both the state variable 𝑢(𝐱) and space-dependent parameter 𝑦(𝐱)were projected onto the cKLE space and the inverse problem 
was formulated as a PDE residual least-square minimization problem. This method was termed the physics-informed cKLE (PICKLE) 
method. In [6], for a problem with 1000 intrinsic dimensions (the parameter field is represented with a 1000-dimensional truncated 
cKLE), it was shown that the PICKLE scales as 𝑂(𝑛1.15) (versus the cubic scaling of MAP). However, MAP and PICKLE do not describe 
uncertainty in the estimated parameters.

IUQ problems are commonly formulated in the Bayesian framework [11,14], where the distributions of the unknown parameters 
are sought [15,16,12]. When the Bayesian framework is combined with dimension reduction methods, the posterior parameter distri-
bution in the reduced space is estimated, e.g., the distribution of the coefficients in the KLE expansions of parameters fields [11,12]. 
The posterior can be analytically estimated for linear forward models with Gaussian prior and likelihood models. In more general 
scenarios, the posterior computations are intractable [17].

Approximate inference methods either approximate the posterior with a parameterized distribution (variational inference (VI) 
methods) or generate a sequence of samples from the posterior (Markov chain Monte Carlo (MCMC) methods) [18]. VI methods opti-
mize parameters in the assumed distribution to minimize the discrepancy between the parameterized and true posterior distributions 
based on a specific probabilistic distance metric [19,20]. For example, mean-field VI assumes a fully factorized structure of the pos-
terior distribution [21]. However, such specific structures can yield biased approximations, particularly for the posterior exhibiting 
strongly correlated structure [22], which is common in PDE-constrained inversions. Furthermore, mean-field VI commonly underes-
timates the posterior variance, which is undesirable for reliability analysis and risk assessment. Stein Variational Gradient Descent 
(SVGD) [23] is a more general variational inference approach that uses a set of particles to approximate the posterior distribution. 
SVGD iteratively updates the particle positions by following the functional gradient of the Kullback-Leibler divergence given by a 
combination of the weighted gradient of the log-posterior and a kernel-based term. SVGD can better capture complex, multimodal 
posterior distributions [24] than the mean-field VI method. However, it is not immune to the COD [25].

MCMC methods aim to construct multiple chains of posterior parameter samples with stationary distributions equal to the target 
posterior distribution. However, MCMC, especially the random-walk MCMC, suffers from the COD. One way to accelerate MCMC 
is to reduce the auto-correlation of the Markov chains. Hamiltonian Monte Carlo (HMC) reduces this auto-correlation by making 
larger jumps in parameter space using simulated Hamiltonian dynamics and is a common choice for Bayesian statistical models 
[26,27]. However, there are challenges in applying HMC to high-dimensional IUQ problems; namely, HMC is also not immune to 
COD because the increasing number of unknown parameters generally reduces the sampling efficiency of HMC. Furthermore, the 
posterior covariance structure could be poorly conditioned [28] because the posterior distribution has vastly different correlations 
between different pairs of parameters. This can lead to biased HMC estimates [26,29]. Nonlinearity in the model generally exacerbates 
the complexity of the posterior distribution and increases HMC bias.

Randomized MAP [30] and similar randomization methods such as randomized maximum likelihood [31] and randomize-then-
optimize [32] were proposed as alternatives to VI and MCMC methods for posterior sampling. In the randomized MAP method, 
a (deterministic) PDE-constrained optimization problem is replaced with a stochastic optimization problem where the randomized 
objective function is minimized subject to the same deterministic PDE constraint as in the standard MAP. The randomized MAP 
method has the same cubic dependence on the number of unknown parameters as the MAP method. Therefore, it is limited to 
low-dimensional problems.

Other commonly used approximate Bayesian inference methods include the iterative ensemble smoother (IES) and ensemble 
Kalman filter (KF) methods [33]. These methods can be combined with machine learning surrogates (e.g., Deep Operator Networks 
(DeepONets) [34], Fourier neural operator (FNO) [35], and Karhunen-Loéve Deep neural network (KL-DNN) [36]) to reduce the cost 
of multiple forward PDE simulations. In [37], a surrogate model was adaptively fine-tuned for near-optimal parameter values with 
online data selected during the Bayesian inference process to improve the model accuracy without a significant computational cost 
increase.

In this work, we propose an efficient sampling method for high-dimensional IUQ based on the residual least-square formulation of 
the inverse problem. The main ideas of our approach are to add independent Gaussian noise to each term of the objective function in a 
residual least-square method and solve the resulting problem for different realizations of the noise terms. The mean and variance of the 
noise distributions are chosen so that the ensemble of optimization problem solutions approximates the target posterior distribution. 
We test this approach for the PICKLE residual least-square formulation. We apply the “randomized PICKLE” (rPICKLE) method to a 
2000-dimensional IUQ problem and demonstrate that it avoids the challenges of sampling complex posterior distributions with ill-
conditioned covariances. Our analysis shows that the distribution of the rPICKLE samples converges to the exact posterior in the linear 
case with Gaussian priors. In nonlinear problems, the sampled posterior can deviate from the exact posterior, and these deviations 
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can be removed using a Metropolis rejection algorithm. In numerical experiments, we find that such deviations are minor and can be 
disregarded.

This paper is organized as follows. In Section 2, we review the PICKLE formulation and present the rPICKLE method for approxi-
mate Bayesian parameter estimation for Eq. (1). In Section 3, we formulate rPICKLE for an IUQ problem arising in groundwater flow 
modeling. In Section 4, we test rPICKLE for low-(15) and high-dimensional (2000) parameter estimation problems. A comparison 
with HMC and SVGD is provided for the low-dimensional case. Discussion and conclusions are given in Section 5.

2. Randomized PICKLE formulation

2.1. Conditional KLE

Here, we formulate rPICKLE for approximate Bayesian parameter estimation in the PDE model (1). The starting point of rPICKLE 
is to model the PDE parameter 𝑦(𝐱) and state 𝑢(𝐱) in Eq. (1) as random processes 𝑦(𝐱, 𝜔̃) and 𝑢(𝐱, 𝜔̃), respectively, where 𝜔̃ denotes a 
point in the corresponding probabilistic outcome space. Given observations 𝐮obs = {𝑢obs𝑖 }𝑁

obs
𝑢

𝑖=1 of 𝑢 and 𝐲obs = {𝑦obs𝑖 }
𝑁obs
𝑦

𝑖=1 of 𝑦, 𝑦(𝐱, 𝜔̃)
and 𝑢(𝐱, 𝜔̃) can be approximated with truncated cKLEs. For 𝑦(𝐱, 𝜔̃), the cKLE takes the form

𝑦(𝐱, 𝜔̃) ≈ 𝑦̂(𝐱,𝝃) = 𝑦𝑐(𝐱) +
𝑁𝜉∑
𝑖=1

√
𝜆𝑦𝑖 𝜓

𝑦
𝑖 (𝐱)𝜉𝑖, (2)

where 𝑦𝑐 is the prior mean of 𝑦 conditioned on 𝑦 observations and {𝜆𝑦𝑖 }
𝑁𝜉
𝑖=1 and {𝜓𝑦𝑖 (𝐱)}

𝑁𝜉
𝑖=1 are the leading 𝑁𝜉 eigenvalues and 

eigenfunctions of the prior covariance of 𝑦 conditioned on 𝑦 observations, 𝐶𝑐𝑦 (𝐱, 𝐱′). Both 𝑦𝑐 and 𝐶𝑐𝑦 (𝐱, 𝐱′) reflect the prior knowledge 
about 𝑦(𝑥) and are obtained via the Gaussian process regression (GPR) equations given in Appendix A. In Eq. (2), 𝝃 = [𝜉1, ..., 𝜉𝑁𝜉 ]

𝑇 is a 
vector of random variables with prior independent standard normal distribution. For this prior of 𝝃, the (prior) mean and covariance 
of 𝑦̂(𝐱, 𝝃) are equal, up to the truncation error, to those of 𝑦(𝐱, 𝜔̃). Estimating the posterior distribution of 𝝃, i.e., the distribution 
constrained by the governing PDE, is the goal of rPICKLE.

Similarly, the cKLE of 𝑢(𝐱, 𝜔̃) has the form

𝑢(𝐱, 𝜔̃) ≈ 𝑢̂(𝐱,𝜼) = 𝑢𝑐(𝐱) +
𝑁𝜂∑
𝑖=1

√
𝜆𝑢𝑖 𝜓

𝑢
𝑖 (𝐱)𝜂𝑖, (3)

where 𝑢𝑐 is the conditional mean of 𝑢 and {𝜆𝑢𝑖 }
𝑁𝜂
𝑖=1 and {𝜓𝑢𝑖 (𝐱)}

𝑁𝜂
𝑖=1 are the leading eigenvalues and eigenfunctions of 𝐶𝑐𝑢 (𝐱, 𝐱′), which is the prior covariance of 𝑢 conditioned on 𝑢 observations. The prior covariance of 𝑢 is obtained by Monte Carlo sampling of the 

solution of Eq. (1) as described in Appendix A. As in the cKLE of 𝑦, {𝜂𝑖}
𝑁𝜂
𝑖=1 are random variables with independent standard normal 

prior distribution. The posterior distribution of 𝜼 is estimated as part of the rPICKLE inversion.

2.2. Revisiting PICKLE

We formulate rPICKLE by randomizing the PICKLE loss function. The PICKLE method was presented in [13,6] for solving high-
dimensional inverse PDE problems with unknown space-dependent parameters. In PICKLE, the unknown 𝑦̂(𝐱, ̃𝝃) and 𝑢̂(𝐱, ̃𝜼) fields are 
treated as one realization of the random 𝑦 and 𝑢 fields, respectively, and 𝝃̃ and 𝜼̃ are (deterministic) parameters that are found as the 
solution of the minimization problem:

(𝝃̃∗, 𝜼̃∗) = argmin
𝝃̃,𝜼̃

𝐿(𝝃̃, 𝜼̃) (4)

= argmin
𝝃̃,𝜼̃

𝜔𝑟
2 ‖(𝝃̃, 𝜼̃)‖22 +

𝜔𝜉
2 ‖𝝃̃‖22 +

𝜔𝜂
2 ‖𝜼̃‖22,

where  is the vector of PDE residuals computed on a discretization mesh with a numerical method of choice (finite volume dis-
cretization was used in [13]) and the last two terms are 𝓁2-regularization terms with respect to 𝝃̃ and 𝜼̃. In Section 2.3, we show 
that this PICKLE formulation provides the mode of the joint posterior distribution of 𝝃 and 𝜼 given that the likelihood and prior 
distributions of 𝝃 and 𝜼 are Gaussian.

Weights 𝜔𝑟, 𝜔𝜉 , and 𝜔𝜂 control the relative importance of each term in the loss function. Following [13], we set 𝜔𝜉 = 𝜔𝜂 . This 
choice is justified in the Bayesian context because 𝜔𝜉 and 𝜔𝜂 are related to the variances of the prior distributions of 𝝃 and 𝜼, which 
are the same and equal to one as stated in Section 2.1. Then, the minimization problem (4) can be re-written as

(𝝃̃∗, 𝜼̃∗) = argmin
𝝃̃,𝜼̃

1
2‖(𝝃̃, 𝜼̃)‖22 +

𝛾
2‖𝝃̃‖

2
2 +

𝛾
2‖𝜼̃‖

2
2, (5)

where 𝛾 = 𝜔𝜉∕𝜔𝑟 = 𝜔𝜂∕𝜔𝑟 is the regularization parameter controlling the relative magnitude of the regularization. The value of 𝛾 is 
selected to minimize the 𝓁2 distance between the PICKLE solutions and reference fields. If the reference fields are unknown, 𝛾 can be 
selected via cross-validation.
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2.3. Bayesian PICKLE

The Bayesian estimate of the posterior distribution of 𝝃 and 𝜼 in the PICKLE model can be found from the Bayes rule:

𝑃 (𝝃,𝜼|𝑟𝑒𝑠) =
𝑃 (𝑟𝑒𝑠|𝝃,𝜼)𝑃 (𝝃,𝜼)∬ 𝑃 (𝑟𝑒𝑠|𝝃,𝜼)𝑃 (𝝃,𝜼)𝑑𝝃𝑑𝜼

, (6)

where 𝑃 (𝝃, 𝜼) is the joint prior distribution of 𝝃 and 𝜼. We assume that the prior distributions of 𝝃 and 𝜼 are independent, i.e., 
𝑃 (𝝃, 𝜼) = 𝑃 (𝝃)𝑃 (𝜼). 𝑃 (𝑟𝑒𝑠|𝝃, 𝜼) is the likelihood function, where 𝑟𝑒𝑠 is the collection of PDE residuals. The double integral in the 
denominator of Eq. (6) is the normalization coefficient for the posterior distribution to integrate to one.

In PICKLE, cKLEs are conditioned on 𝑦 and 𝑢 observations. Therefore, the likelihood function only needs to specify the joint 
distribution of PDE residuals. The form of 𝑃 (𝑟𝑒𝑠|𝝃, 𝜼) and 𝑃 (𝝃, 𝜼) can be found from the PICKLE loss function 𝐿(𝝃̃, ̃𝜼) by requiring 
the PICKLE solution 𝝃̃∗ and 𝜼̃∗ to also maximize the posterior probability density 𝑃 (𝝃, 𝜼|𝑟𝑒𝑠), i.e., by requiring the PICKLE solution 
to coincide with the mode of the posterior distribution.

This can be achieved by taking the negative logarithm of both sides of Eq. (6), yielding

− ln[𝑃 (𝝃,𝜼|𝑟𝑒𝑠)] =
[
1
𝛾
𝐿(𝝃,𝜼) +𝐶

]
+ ln∬ 𝑃 (𝑟𝑒𝑠|𝝃,𝜼)𝑃 (𝝃,𝜼)𝑑𝝃𝑑𝜼, (7)

where 𝐶 is a constant and 𝐿(𝝃, 𝜼) is the PICKLE loss defined in Eq. (5). The left-hand side of Eq. (7) is the negative logarithm of the 
posterior, and we postulated that

− ln
[
𝑃 (𝑟𝑒𝑠|𝝃,𝜼)𝑃 (𝝃,𝜼)

]
= 1
𝛾
𝐿(𝝃,𝜼) +𝐶 . (8)

Since the last term in Eq. (7) is independent of 𝝃 and 𝜼, PICKLE solutions 𝝃̃∗ and 𝜼̃∗ that minimize 𝐿(𝝃̃, ̃𝜼) also maximize 𝑃 (𝝃, 𝜼|𝑟𝑒𝑠). 
We can break down Eq. (8) as

− ln
[
𝑃 (𝑟𝑒𝑠|𝝃,𝜼)

]
= 1

2𝛾 ‖(𝐱;𝝃,𝜼)‖22 +𝐶1, (9)

and

− ln [𝑃 (𝝃,𝜼)] = 1
2‖𝝃‖

2
2 +

1
2‖𝜼‖

2
2 +𝐶2, (10)

where 𝐶1 +𝐶2 = 𝐶 .
In Eq. (9), we can choose 𝐶1 such that the likelihood is

𝑃 (𝑟𝑒𝑠|𝝃,𝜼) =
(

1√
2𝜋𝜎𝑟

)𝑁

exp
(
−1
2(𝝃,𝜼)𝑇Σ−1

𝑟 (𝝃,𝜼)
)
, (11)

where Σ𝑟 = 𝜎2𝑟 𝐈 and 𝜎2𝑟 = 𝛾 . As desired, this likelihood states that the PDE residuals have zero mean.
Similarly, in Eq. (10), we can choose 𝐶2 such that the prior is

𝑃 (𝝃,𝜼) =
⎛
⎜
⎜⎝

1√
2𝜋𝜎𝜉

⎞
⎟
⎟⎠

𝑁𝜉 ⎛
⎜
⎜⎝

1√
2𝜋𝜎𝜂

⎞
⎟
⎟⎠

𝑁𝜂

exp
(
−1
2𝝃

𝑇Σ−1
𝜉 𝝃 − 1

2𝜼
𝑇Σ−1

𝜂 𝜼
)
, (12)

where Σ𝜉 = 𝜎2𝜉 𝐈 (𝜎2𝜉 = 1) and Σ𝜂 = 𝜎2𝜂 𝐈 (𝜎2𝜂 = 1). In other words, the prior distribution of 𝝃 and 𝜼 is independent and standard normal. 
Recall that this is consistent with the definition of 𝝃 and 𝜼 in Section 2.1. With these independent and standard normal prior, the 
mean and the covariance of the 𝑦 and 𝑢 fields estimated from observations can be recovered, up to the truncation error, from their 
cKLEs.

2.4. rPICKLE: randomization of the PICKLE loss function

Computing the double integral in Eq. (6) is computationally intractable for high-dimensional 𝝃 and 𝜼. In this section, we introduce 
the proposed rPICKLE method, which approximately samples the posterior distribution without computing this integral. In rPICKLE, 
the PICKLE loss function is randomized as

𝐿𝑟(𝝃,𝜼;𝝎,𝜶,𝜷) = 1
2‖(𝝃,𝜼)−𝝎‖2Σ𝑟 +

1
2‖𝝃 − 𝜶‖2Σ𝜉 (13)

+ 1
2‖𝜼− 𝜷‖2Σ𝜂 ,

where 𝝎, 𝜶, and 𝜷 are independent zero-mean random noise vectors with covariances Σ𝑤 = Σ𝑟 = 𝜎2𝑟 𝐈, Σ𝛼 = Σ𝜉 = 𝐈, and Σ𝛽 = Σ𝜂 = 𝐈, 
respectively. Then, the samples of the posterior distribution 𝑃 (𝝃, 𝜼|𝑟𝑒𝑠) are generated by repeatedly solving the minimization problem

(𝝃∗,𝜼∗) = argmin
𝝃,𝜼

𝐿𝑟(𝝃,𝜼;𝝎,𝜶,𝜷), (14)
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for different realizations of 𝝎, 𝜶, and 𝜷 .
The rPICKLE method can be summarized as follows: We draw 𝑁ens i.i.d. samples of 𝝎, 𝜶, and 𝜷 and, for each sample, minimize 

the loss (14) to obtain samples (𝝃∗𝑖 , 𝜼∗𝑖 ) (𝑖 = 1, ..., 𝑁ens), which approximate the posterior distribution of 𝝃 and 𝜼. Then, we use the 
cKLEs (Eq. (2) and (3)) to obtain the samples 𝑦̂(𝐱; 𝝃∗𝑖 ) and 𝑢̂(𝐱; 𝜼∗𝑖 ) of the predictive posterior distribution of 𝑦 and 𝑢, respectively. The 
samples 𝑦̂(𝐱; 𝝃∗𝑖 ) and 𝑢̂(𝐱; 𝜼∗𝑖 ) can be used to compute the distributions of 𝑦 and 𝑢 or the leading moments of these distributions. For 
example, the first and second moments of the 𝑦 distribution can be estimated as

𝜇𝑦̂(𝐱|𝑟𝑒𝑠) ≈
1

𝑁ens

𝑁ens∑
𝑖=1

𝑦̂(𝐱;𝝃∗𝑖 ), (15)

𝜎2𝑦̂ (𝐱|𝑟𝑒𝑠) ≈
1

𝑁ens − 1

𝑁ens∑
𝑖=1

[𝑦̂(𝐱;𝝃∗𝑖 )− 𝜇𝑦̂(𝐱|𝑟𝑒𝑠)]2. (16)

In Section 2.4.1, we analytically show that rPICKLE posterior samples recover the exact posterior of (𝝃 , 𝜼) for linear problems. 
In Section 4.1, for a low-dimensional weakly non-linear problem, we show via comparisons with HMC and SVGD that distributions 
approximated with the samples {(𝝃∗𝑖 , 𝜼∗𝑖 )}

𝑁ens
𝑖=1 approach the true posterior with increasing 𝑁ens regardless of the choice of 𝜎2𝑟 . In 

Section 4.2, we numerically demonstrate for high-dimensional problems that the rPICKLE posterior approximates well the unknown 
parameter field. For this problem, we cannot obtain an HMC posterior approximation to validate the rPICKLE ensemble’s convergence 
to the true posterior due to the prohibitive computational cost of HMC.

We note that the posterior distribution depends on the choice of 𝜎2𝑟 . If true field 𝑦 is known, one possible criterion for selecting 
the value of 𝜎2𝑟 is to minimize the distance between either the MAP estimate 𝑦̂MAP or the mean estimate 𝜇𝑦̂(𝐱|𝑟𝑒𝑠) and the true 
field. Alternatively, when the true field is unknown but some test data {𝑦(𝐱𝑖)} is available, one can select the 𝜎2𝑟 that maximizes the 
log-predictive probability (LPP) of the test data, defined as the sum of the pointwise log-probabilities of the data being observed given 
the predictive posterior [38]:

LPP = −
𝑁∑
𝑖=1

{
[𝜇𝑦̂(𝐱𝑖|𝑟𝑒𝑠)− 𝑦(𝐱𝑖)]2

2𝜎2𝑦̂ (𝐱𝑖)
+ 1

2 log[2𝜋𝜎2𝑦̂ (𝐱𝑖)]
}

. (17)

2.4.1. rPICKLE for a linear model
In this section, we prove that rPICKLE samples converge to the exact posterior as 𝑁ens →∞ for linear (with respect to 𝝃, 𝜼) PDE 

residuals of the form (𝝃, 𝜼) = 𝐀𝝃 + 𝐁𝜼 − 𝐜 ∈ ℝ𝑁 , with 𝐀 ∈ ℝ𝑁×𝑁𝜉 , 𝐁 ∈ ℝ𝑁×𝑁𝜂 , and 𝐜 ∈ ℝ𝑁 . This proof relies on the fact that the 
Bayesian posterior is Gaussian for Gaussian priors on 𝝃 and 𝜼, and linear  with Gaussian likelihood [38].

First, we find the mean and covariance of the posterior given by Bayes’ rule. Taking the first and second derivatives of both sides 
of Eq. (7) with respect to [𝝃, 𝜼]𝑇 yields the relationships between the mean 𝝁𝑝𝑜𝑠𝑡 and covariance Σ𝑝𝑜𝑠𝑡 of the posterior distribution:

𝝁𝑝𝑜𝑠𝑡 = Σ𝑝𝑜𝑠𝑡
[
𝐀𝑇Σ−1

𝑟 𝐜
𝐁𝑇Σ−1

𝑟 𝐜

]
. (18)

Then, Eq. (7) can be reformulated as:
([

𝝃
𝜼

]
− 𝝁𝑝𝑜𝑠𝑡

)𝑇
Σ−1
𝑝𝑜𝑠𝑡

([
𝝃
𝜼

]
− 𝝁𝑝𝑜𝑠𝑡

)

=
([

𝐀𝝃
𝐁𝜼

]
− 𝐜

)𝑇
Σ−1
𝑟

([
𝐀𝝃
𝐁𝜼

]
− 𝐜

)
+
[
𝝃
𝜼

]𝑇 [Σ−1
𝜉 𝟎
𝟎 Σ−1

𝜂

][
𝝃
𝜼

]
. (19)

Differentiating Eq. (19) twice with respect to [𝝃, 𝜼]𝑇 yields the expression for Σ𝑝𝑜𝑠𝑡:

Σ𝑝𝑜𝑠𝑡 =
[
𝐀𝑇Σ−1

𝑟 𝐀+ Σ−1
𝜉 𝐁𝑇Σ−1

𝑟 𝐀
𝐀𝑇Σ−1

𝑟 𝐁 𝐁𝑇Σ−1
𝑟 𝐁+ Σ−1

𝜂

]−1

. (20)

Next, we derive the mean and covariance of 𝝃∗ and 𝜼∗ given by rPICKLE (Eq. (13)). For linear , the randomized minimization 
problem (14) is reduced to a linear least-square problem with the solution given by the following system of linear equations:

𝜕𝐿𝑟
𝜕𝝃 =

[
(𝐀𝝃 +𝐁𝜼− 𝐜)𝑇Σ−1

𝑟 𝐀−𝝎𝑇Σ−1
𝑟 𝐀

]
+
[
(𝝃 − 𝜶)𝑇Σ−1

𝜉

]
= 0, (21)

𝜕𝐿𝑟
𝜕𝜼 =

[
(𝐀𝝃 +𝐁𝜼− 𝐜)𝑇Σ−1

𝑟 𝐁−𝝎𝑇Σ−1
𝑟 𝐁

]
+
[
(𝜼− 𝜷)𝑇Σ−1

𝜂

]
= 0, (22)

or
[
𝐀𝑇Σ−1

𝑟 𝐀+ Σ−1
𝜉 𝐁𝑇Σ−1

𝑟 𝐀
𝐀𝑇Σ−1

𝑟 𝐁 𝐁𝑇Σ−1
𝑟 𝐁+ Σ−1

𝜂

][
𝝃∗
𝜼∗

]
=
[
𝐀𝑇Σ−1

𝑟 (𝐜+𝝎) + Σ−1
𝜉 𝜶

𝐁𝑇Σ−1
𝑟 (𝐜+𝝎) + Σ−1

𝜂 𝜷

]
. (23)
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The solution of these equations is:
[
𝝃∗
𝜼∗

]
= Σ

[
𝐀𝑇Σ−1

𝑟 (𝐜+𝝎) + Σ−1
𝜉 𝜶

𝐁𝑇Σ−1
𝑟 (𝐜+𝝎) + Σ−1

𝜂 𝜷

]
, (24)

where

Σ =
[
𝐀𝑇Σ−1

𝑟 𝐀+ Σ−1
𝜉 𝐁𝑇Σ−1

𝑟 𝐀
𝐀𝑇Σ−1

𝑟 𝐁 𝐁𝑇Σ−1
𝑟 𝐁+ Σ−1

𝜂

]−1

. (25)

Comparing Eqs. (25) and (20) yields Σ = Σ𝑝𝑜𝑠𝑡. Recall that [𝝃∗, 𝜼∗]𝑇 is a function of the random noises (𝜶, 𝜷, 𝝎). Taking the expectation 
of [𝝃∗, 𝜼∗]𝑇 , we get

𝔼
[
𝝃∗
𝜼∗

]
= 𝔼

[
Σ
[
𝐀𝑇Σ−1

𝑟 (𝐜+𝝎) + Σ−1
𝜉 𝜶

𝐁𝑇Σ−1
𝑟 (𝐜+𝝎) + Σ−1

𝜂 𝜷

]]

= Σ
[
𝐀𝑇Σ−1

𝑟 (𝐜+ 𝔼[𝝎]) + Σ−1
𝜉 𝔼[𝜶]

𝐁𝑇Σ−1
𝑟 (𝐜+ 𝔼[𝝎]) + Σ−1

𝜂 𝔼[𝜷]

]

= Σ
[
𝐀𝑇Σ−1

𝑟 𝐜
𝐁𝑇Σ−1

𝑟 𝐜

]
= 𝝁. (26)

Comparing Eqs. (26) and (18) yields 𝝁 = 𝝁𝑝𝑜𝑠𝑡. Next, we prove that Σ = Σ𝑝𝑜𝑠𝑡 is the covariance of [𝝃∗, 𝜼∗]𝑇 . The covariance of 
𝜻 = [𝝃∗, 𝜼∗]𝑇 can be calculated as

𝔼[(𝜻 − 𝔼[𝜻])(𝜻 − 𝔼[𝜻])𝑇 ] (27)

= Σ𝔼
[[

𝐀𝑇Σ−1
𝑟 𝝎+ Σ−1

𝜉 𝜶
𝐁𝑇Σ−1

𝑟 𝝎+ Σ−1
𝜂 𝜷

][
𝐀𝑇Σ−1

𝑟 𝝎+ Σ−1
𝜉 𝜶 𝐁𝑇Σ−1

𝑟 𝝎+ Σ−1
𝜂 𝜷

]]
Σ

= Σ
[
𝑀11 𝑀12
𝑀21 𝑀22

]
Σ,

where

𝑀11 =𝐀𝑇Σ−1
𝑟 Σ−1

𝑟 𝐀𝔼[𝝎𝝎𝑇 ] + Σ−1
𝜉 Σ−1

𝜉 𝔼[𝜶𝜶𝑇 ]

𝑀12 = 𝐁𝑇Σ−1
𝑟 Σ−1

𝑟 𝐀𝔼[𝝎𝝎𝑇 ]

𝑀21 =𝐀𝑇Σ−1
𝑟 Σ−1

𝑟 𝐁𝔼[𝝎𝝎𝑇 ]

𝑀22 = 𝐁𝑇Σ−1
𝑟 Σ−1

𝑟 𝐁𝔼[𝝎𝝎𝑇 ] + Σ−1
𝜂 Σ−1

𝜂 𝔼[𝜷𝜷𝑇 ].

For Σ𝜔 = 𝔼[𝝎𝝎𝑇 ] = Σ𝑟, Σ𝛼 = 𝔼[𝜶𝜶𝑇 ] = Σ𝜉 , and Σ𝛽 = 𝔼[𝜷𝜷𝑇 ] = Σ𝜂 , Eq. (27) reduces to

𝔼[(𝜻 − 𝝁)(𝜻 − 𝝁)𝑇 ] = ΣΣ−1Σ = Σ𝑝𝑜𝑠𝑡. (28)
Finally, we note that in rPICKLE, 𝑁ens samples of 𝜻 are obtained and used to compute the sample mean and covariance of 𝜻 . As 

𝑁ens →∞, the sample mean and covariance converge to their ensemble counterparts.

2.4.2. Metropolis rejection
When the residual (𝝃, 𝜼) is not linear with respect to 𝝃 and 𝜼, rPICKLE samples may deviate from the true posterior. This 

deviation, however, can be corrected via Metropolis rejection sampling.
Recall that the random noise vectors 𝝎, 𝜶, and 𝜷 have an independent joint distribution:

𝑝(𝝎,𝜶,𝜷) ∝ exp(−𝝎𝑇Σ−1
𝜔 𝝎− 𝜶𝑇Σ−1

𝛼 𝜶 − 𝜷𝑇Σ−1
𝛽 𝜷). (29)

Next, we define a random vector 𝜹 =(𝝃∗, 𝜼∗) − 𝝎 and assume that there exists an invertible map  ∶ (𝝎, 𝜶, 𝜷) → (𝜹, 𝝃∗, 𝜼∗), where 
𝝃∗ and 𝜼∗ minimize the rPICKLE loss function 𝐿𝑟 . Because 𝑝(𝝎, 𝜶, 𝜷) is known, the joint distribution of (𝜹, 𝝃∗, 𝜼∗) can be computed as

𝑓 (𝜹,𝝃∗,𝜼∗) = 𝑝(𝝎,𝜶,𝜷)|det(𝐉)|, (30)
where 𝑓 is the probability density function of (𝜹, 𝝃∗, 𝜼∗) and 𝐉 is the Jacobian of the map  defined as

𝐉 ∶= 𝜕(𝝎,𝜶,𝜷)
𝜕(𝜹,𝝃∗,𝜼∗)

. (31)

To find this Jacobian, we note that for a general residual function ,
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𝜕𝐿𝑟
𝜕𝝃 = 𝜹𝑇Σ−1

𝑟
𝜕
𝜕𝝃 + (𝝃 − 𝜶)𝑇Σ−1

𝜉 (32)
𝜕𝐿𝑟
𝜕𝜼 = 𝜹𝑇Σ−1

𝑟
𝜕
𝜕𝜼 + (𝜼− 𝜷)𝑇Σ−1

𝜂 (33)

and (𝝃∗, 𝜼∗) is the solution of ( 𝜕𝐿𝑟𝜕𝝃 , 𝜕𝐿
𝑟

𝜕𝜼 )𝑇 = 𝟎. Then,  is implicitly expressed as:

⎧
⎪
⎪
⎨
⎪
⎪⎩

𝜶 = Σ𝜉
𝜕
𝜕𝝃

𝑇Σ−1
𝑟 𝜹+ 𝝃∗

𝜷 = Σ𝜂
𝜕
𝜕𝜼

𝑇Σ−1
𝑟 𝜹+ 𝜼∗

𝝎 =(𝝃∗,𝜼∗)− 𝜹.

(34)

The explicit form of the Jacobian can then be obtained as

𝐉 ∶=
⎡
⎢
⎢
⎢⎣

𝜕𝝎
𝜕𝜹

𝜕𝝎
𝜕𝝃∗

𝜕𝝎
𝜕𝜼∗

𝜕𝜶
𝜕𝜹

𝜕𝜶
𝜕𝝃∗

𝜕𝜶
𝜕𝜼∗

𝜕𝜷
𝜕𝜹

𝜕𝜷
𝜕𝝃∗

𝜕𝜷
𝜕𝜼∗

⎤
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢⎣

−𝐈 𝜕
𝜕𝝃

𝜕
𝜕𝜼

Σ𝜉
𝜕
𝜕𝝃

𝑇Σ−1
𝑟 Σ𝜉(

𝜕2
𝜕𝝃2

)𝑇 ⊗ (Σ−1
𝑟 𝜹) Σ𝜉(

𝜕2
𝜕𝝃𝜕𝜼 )

𝑇 ⊗ (Σ−1
𝑟 𝜹)

Σ𝜂
𝜕
𝜕𝜼

𝑇Σ−1
𝑟 Σ𝜂(

𝜕2
𝜕𝜼𝜕𝝃 )

𝑇 ⊗ (Σ−1
𝑟 𝜹) Σ𝜂(

𝜕2
𝜕𝜼2 )

𝑇 ⊗ (Σ−1
𝑟 𝜹)

⎤
⎥
⎥
⎥
⎥⎦

=
⎡
⎢
⎢⎣

−𝐈 𝜕
𝜕𝜻

Σ̂ 𝜕
𝜕𝜻

𝑇Σ−1
𝑟 𝐈+ Σ̂( 𝜕

2
𝜕𝜻2

)𝑇 ⊗ (Σ−1
𝑟 𝜹)

⎤
⎥
⎥⎦
, (35)

where ⊗ denotes the tensor product and

Σ̂ =
[
Σ𝜉 𝟎
𝟎 Σ𝜂

]
. (36)

The Jacobian 𝐉 size is (𝑁𝑟 +𝑀) × (𝑁𝑟 +𝑀), where 𝑀 = 𝑁𝜉 +𝑁𝜂 and 𝑁𝑟 is the number of cells in the finite volume mesh 
where the PDE residuals are evaluated. However, computing |det(𝐉)| only requires computing the determinant of the 𝑀 ×𝑀 Schur 
complement as

|det(𝐉)| =
||||||
det

[
𝐈+ Σ̂

(
𝜕2
𝜕𝜻2

)𝑇
⊗ (Σ−1

𝑟 𝜹) + Σ̂
(
𝜕
𝜕𝜻

)𝑇
Σ−1
𝑟
𝜕
𝜕𝜻

]||||||
. (37)

The computational complexity of evaluating |det(𝐉)| is dominated by the computation of the tensor product and the determinant 
itself. The tensor product requires computing 𝑁𝑟 Hessians of size 𝑀 ×𝑀 , and computing each Hessian has complexity 𝑂(𝑀2), so 
the cost of evaluating the argument of the determinant scales as 𝑂(𝑀2) with increasing 𝑀 for fixed 𝑁𝑟. Evaluating the determinant 
itself has complexity equivalent to that of 𝑀 ×𝑀 matrix multiplication [39], which scales as 𝑂(𝑀𝜖), where 2 ≤ 𝜖 ≤ 3 is the exponent 
of the matrix multiplication algorithm employed. Therefore, for fixed 𝑁𝑟 , the overall cost of computing |det(𝐉)| scales as 𝑂(𝑀𝜖).

Having obtained a closed-form expression for |det(𝐉)|, we formulate the Metropolis rejection method for the rPICKLE as shown in 
Algorithm 1. First, the 𝑘th samples 𝝎𝑘, 𝜶𝑘, and 𝜷𝑘 (𝑘 = 1, ..., 𝑁ens) are independently drawn. Then, the 𝑘th samples 𝜻𝑘 = (𝝃∗𝑘, 𝜼

∗
𝑘) of the posterior distribution are found as the solution of the rPICKLE minimization problem (14) for (𝝎, 𝜶, 𝜷) = (𝝎𝑘, 𝜶𝑘, 𝜷𝑘). The first samples 

(𝑘 = 1) are automatically accepted. The 𝑘th sample (𝑘 > 1) is accepted or rejected according to the independent Metropolis-Hastings 
(IMH) method [40] with acceptance ratio 𝛼 given by

𝛼(𝜻𝑘−1,𝜻𝑘) = min
{
1,
𝜋(𝜻𝑘)𝑞(𝜻𝑘−1)
𝜋(𝜻𝑘−1)𝑞(𝜻𝑘)

}
, (38)

where 𝜋(⋅) is a function proportional to the Bayesian posterior and 𝑞(⋅) is the proposal density function, defined as

𝑞(𝜻) = ∫ 𝑓 (𝜹,𝝃∗,𝜼∗)𝑑𝜹

= ∫ 𝑝(𝝎,𝜶,𝜷)|det(𝐉)|𝑑𝜹, (39)

where the mapping from (𝝎, 𝜶, 𝜷) to (𝝃, 𝜼, 𝜹) is given by Eq. (34). This marginalization is in general computationally prohibitive; 
therefore, following [30], we use the following approximate expression for the acceptance ratio:

𝛼(𝜻𝑘−1,𝜻𝑘) ≈min
{

1,
|det(𝐉𝜁𝑘 )|1∕2
|det(𝐉𝜁𝑘−1 )|1∕2

}
. (40)
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A number 𝑔 is drawn from the continuous uniform distribution 𝑈 (0, 1) and the 𝑘th sample is accepted if 𝑔 ≤ 𝛼(𝜻𝑘, 𝜻𝑘−1). Otherwise, 
the 𝑘th sample is rejected, i.e., 𝜻𝑘 is replaced with 𝜻𝑘−1.

It should be noted that in this IMH algorithm, the proposal function 𝑞 is not conditioned on the previous sample. However, the 
acceptance ratio depends on the previous sample, and the total transition obeys the Markov property. In the case of the linear 
model considered in Section 2.4.1, every proposal is accepted because the determinant of the Jacobian is a constant and independent 
of 𝜻 .

Algorithm 1 Randomized PICKLE Algorithm.
Require: number of samples 𝑁ens
1: for 𝑘 = 1, … , 𝑁ens do
2: Sample random noises 𝝎𝑘 ∼ (𝟎, Σ𝑟), 𝜶𝑘 ∼ (𝟎, Σ𝜉 ), 𝜷𝑘 ∼ (𝟎, Σ𝜂 )
3: Propose 𝜻 ′ = (𝝃∗, 𝜼∗) by optimizing the randomized loss (14)
4: Calculate acceptance ratio 𝛼(𝜻 ′, 𝜻𝑘−1) =min

{
1, |det(𝐉𝜻′ )|1∕2

|det(𝐉𝜁𝑘−1)|1∕2
}

5: Sample 𝑔 ∼𝑈 (0, 1)
6: if 𝑔 ≤ 𝛼(𝜻 ′, 𝜻𝑘−1) then
7: 𝜻𝑘 ← 𝜻 ′ (accept 𝜻 ′ and set it as the new state)
8: else
9: 𝜻𝑘 ← 𝜻𝑘−1 (reject 𝜻 ′ and copy the old state forward)
10: end if
11: end for

We now briefly discuss the computational complexity of Algorithm 1. The per-sample cost of rPICKLE is dominated by two 
operations: (1) minimizing the randomized loss (14), which depends on 𝑁𝑟, 𝑀 , the residual function, and the iterative minimization 
algorithm employed, and (2) evaluating | det(𝐉)|. For the trust region reflective algorithm [41], the cost per minimization iteration 
scales as follows: For fixed 𝑀 and increasing 𝑁𝑟, this cost is dominated by the evaluation of the Jacobian 𝜕∕𝜕𝜁 , which scales as 
𝑂(𝑁𝑟) if computed using reverse-mode automatic differentiation. This is consistent with [6] where, for the problem described in 
Section 3.1, the overall PICKLE computational cost was found to scale as 𝑂(𝑁1.15

𝑟 ). On the other hand, for fixed 𝑁𝑟 and increasing 
𝑀 , the cost per minimization iteration is dominated by the solution of a dense 𝑀 ×𝑀 linear problem to find the update direction, 
which scales as 𝑂(𝑀𝜖), where again 𝜖 is the exponent of the matrix multiplication algorithm employed.

Assuming that the number of iterations does not depend on 𝑀 , it follows that the cost of the overall minimization process scales 
as 𝑂(𝑀𝜖) with increasing 𝑀 . This scaling is the same as that of the evaluation of | det(𝐉)|. Nevertheless, when performing the tests 
presented in Section 4.1 we find empirically that the per-sample wall-clock cost is dominated by the evaluation of | det(𝐉)|, which 
indicates that the wall-clock cost of this operation has a higher constant factor than the minimization operation.

The per-sample computational cost of HMC is proportional to the cost of computing the gradient of the log-posterior (which 
scales as 𝑂(1) for fixed 𝑁𝑟 and increasing 𝑀) times the number 𝐿 of leapfrog steps per HMC proposal. The scaling of 𝐿 with 
problem dimension 𝑑 is known to be 𝑂(𝑑1∕4) for the simplified case of a posterior consisting of independent, identically distributed 
components [42]. However, this scaling is not known for a more general case, and the overall HMC computational complexity for 
the problem presented in Section 3.1 cannot be established. In Section 4.4 we empirically find that the efficiency of HMC decreases 
with increasing 𝑀 and decreasing 𝜎𝑟, so that HMC becomes prohibitively expensive for sufficiently large problems and sufficiently 
small 𝜎𝑟.

3. Application to the Hanford Site groundwater flow model

3.1. Governing equations

We test the rPICKLE method for a two-dimensional steady-state groundwater flow model described by the boundary value problem 
(BVP)

∇ ⋅ (𝑒𝑦(𝐱)∇𝑢(𝐱)) = 0 𝐱 ∈Ω (41)
𝑒𝑦(𝐱)∇𝑢(𝐱) ⋅ 𝑛(𝐱) = 𝑞 (𝐱) 𝐱 ∈ 𝜕Ω (42)

𝑢(𝐱) = 𝑢(𝐱) 𝐱 ∈ 𝜕Ω, (43)
where 𝑦(𝐱) is the logarithm of the transmissivity field, 𝑢(𝐱) is the hydraulic head, 𝜕Ω is the Neumann boundary, 𝜕Ω is the Dirichlet 
boundary, 𝜕Ω ∩ 𝜕Ω =∅, 𝑞 (𝐱) is the prescribed normal flux at the Neumann boundary, 𝑛(𝐱) is the unit normal vector, and 𝑢(𝐱)
is the prescribed hydraulic head at the Dirichlet boundary. It is common to treat 𝑦(𝐱) as a realization of a correlated Gaussian field. 
Also, it was found that solving an inverse problem for 𝑦 instead of transmissivity decreases the level of non-convexity in optimization 
problems [43].

We use a cell-centered finite volume (FV) discretization for Eqs. (41)–(43) and the two-point flux approximation (TPFA) to compute 
residuals in the rPICKLE objective function. The numerical domain Ω is discretized into 𝑁 finite volume cells, and 𝑢(𝐱) and 𝑦(𝐱) are 
approximated via the 𝐮 = {𝑢1, ..., 𝑢𝑁} and 𝐲 = {𝑦1, ..., 𝑦𝑁} vectors of their respective values evaluated at the cell centers {𝐱1 , ..., 𝐱𝑁}. 
For the inverse problem, we assume there are 𝑁obs

𝑦 observations of 𝑦, 𝐲obs = {𝑦obs𝑖 }
𝑁obs
𝑦

𝑖=1 , and 𝑁obs
𝑢 observations of 𝑢, 𝐮obs = {𝑢obs𝑖 }𝑁

obs
𝑢

𝑖=1 .
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Fig. 1. Reference (a) high-dimensional 𝑦HD and (b) low-dimensional 𝑦LD log-transmissivity fields and the corresponding reference (c) high-dimensional 𝑢HD and (d) 
low-dimensional 𝑢LD hydraulic head fields. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.2. Hanford Site case study

The rPICKLE method is tested for estimating subsurface parameters at the Hanford Site, a U.S. Department of Energy site situated 
on the Columbia River in Washington state. We use Eqs. (41)–(43) to describe the two-dimensional (depth-averaged) groundwater 
flow at the Hanford Site. The ground truth transmissivity field is taken from a previous calibration study reported in [44]. Following 
[6], we employ an unstructured quadrilateral mesh with 𝑁 = 1475 cells to compute PDE residuals.

Fig. 1a shows the ground truth 𝑦(𝐱) field. To retain 95% of the variance of this field, a 1000-term cKLE (𝑁𝜉 = 1000) is needed. We 
denote the ground truth 𝑦 field as the high-dimensional or 𝑦HD field. In the following, we will show that such high dimensionality in 
combination with relatively small 𝜎𝑟 reduces the efficiency of HMC, resulting in prohibitively large computational costs.

To enable a comparison between rPICKLE and baseline approximate Bayesian inference methods (HMC and SVGD), we generate a 
lower-dimensional (smoother) 𝑦 field 𝑦LD via iterative local averaging of 𝑦HD . Such averaging reduces the variance and increases the 
correlation length of the field [45] and, therefore, reduces the dimensionality of the inverse problem. At the 𝑘th iteration, for the 𝑖th 
FV element, we calculate the geometric mean of 𝑦(𝑘)𝑗 over the adjacent 𝑗 elements and assign this value to 𝑦(𝑘+1)𝑖 . Here, 𝑦HD = 𝑦(𝑘=0)

and 𝑦LD = 𝑦(𝑘=30). We find that a 10-term cKLE of 𝑦LD retains 95% of the total variance of this field.
We generate the hydraulic head fields 𝑢HD and 𝑢LD corresponding to the 𝑦HD and 𝑦LD fields by solving the Darcy flow equation 

with the Dirichlet and Neumann boundary conditions from the calibration study [44] using the previously described FV method. 
Fig. 1 shows the 𝑦HD and 𝑦LD fields and the corresponding 𝑢 fields. In the PICKLE representation, we set 𝑁𝜂 = 1000 and 𝑁𝜂 = 5 in 
cKLEs of 𝑢HD and 𝑢LD, respectively, to retain no less than 95% of the total variance of the hydraulic head field.

The Hanford Site calibration study [44] provides coordinates of 558 wells, with some of these wells located within the same FV 
cells. In this work, we only allow a single well per cell resulting in 323 wells. We assume that 𝑁obs

𝑢 observations of 𝑢 and 𝑁obs
𝑦
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Table 1
Values of 𝜎2 and 𝑙 for different cases.

𝜎2 𝑙

𝑦LD, 𝑁obs
𝑦 = 10 0.369 0.419

𝑦HD, 𝑁obs
𝑦 = 50 3.185 0.038

𝑦HD, 𝑁obs
𝑦 = 100 3.236 0.035

𝑦HD, 𝑁obs
𝑦 = 200 2.821 0.029

observations of 𝑦 are available. The locations of these observations are randomly selected from the well locations. The measurements 
of 𝑦 and 𝑢 at the selected locations are drawn from the 𝑦HD and 𝑢HD fields for the high-dimensional case and the 𝑦LD and 𝑢LD fields 
for the low-dimensional case.

The HMC, SVGD, and rPICKLE algorithms are implemented in TensorFlow 2 and TensorFlow-Probability. These implementations 
are publicly available at https://github .com /geekyifei /Bayesian _PICKLE _Hanford .git. All simulations are performed using an IntelⓇ
XeonⓇ Gold 6230R workstation.

3.3. Prior mean and covariance models of 𝑦 and 𝑢

Following [6], for the log-transmissivity field 𝑦(𝐱), we select the 5/2-Matérn type prior covariance kernel:

𝐶𝑦(𝐱,𝐱′;𝜎, 𝑙) = 𝜎2
(
1 +

√
5‖𝐱 − 𝐱′‖

𝑙
+ 5

3
‖𝐱 − 𝐱′‖2

𝑙2

)
exp

(
−
√
5‖𝐱 − 𝐱′‖

𝑙

)
, (44)

where 𝜎 and 𝑙 are the standard deviation and correlation length of 𝑦(𝐱) found by minimizing the negative marginal log-likelihood 
function of the 𝑦(𝐱) measurements [38]. In Table 1, we summarize the values of 𝜎2 and 𝑙 for different examples in Section 4. We find 
that the iterative local averaging reduces the variance and increases the correlation length of the low-dimensional field.

Then, the cKLE of 𝑦 is constructed by first computing the mean and covariance of 𝑦 conditioned on the 𝑦 measurements using 
GPR (Eqs. (A.1) and (A.2)), and then evaluating the eigenvalues and eigenfunctions by solving the eigenvalue problem (A.3).

Next, we generate 𝑁MC number of realizations of the stochastic 𝑦 field by independently sampling {𝜉𝑖}
𝑁𝜉
𝑖=1 from the normal 

distribution and solving Eqs. (41)–(43) for each realization of 𝑦 using the FV method described above. The ensemble of 𝑢 solutions 
is used to compute the (ensemble) mean and covariance of 𝑢 using Eqs. (A.4) and (A.5). Then, the mean and covariance of 𝑢 are 
conditioned on 𝑢 observations using the GPR equations. Finally, the cKLE of 𝑢 in Eq. (3) is constructed by performing the eigenvalue 
decomposition of the conditional covariance of 𝑢, i.e., by solving the eigenvalue problem similar to Eq. (A.3). In this work, we set 
𝑁MC = 5, 000.

4. Numerical results

4.1. Low-dimensional problem

We first present results for the low-dimensional case with the ground truth 𝑦 field given by 𝑦LD. We assume that 10 𝑦 and 𝑢
observations are available. The locations of the observations are randomly selected from the well locations. We use the posterior 
distributions sampled via HMC and SVGD, and the PICKLE-estimated MAP to benchmark the rPICKLE method with and without 
Metropolization. As stated earlier, we set 𝜎2𝜉 = 𝜎2𝜂 = 1. The joint problem of minimizing the rPICKLE loss over 𝝃 and 𝜼 and maximizing 
the LPP of the true field over 𝜎2𝑟 is computationally challenging. Instead, we compute the inverse solutions for several values of 𝜎2𝑟 in 
the range [10−5, 1] and select the 𝜎2𝑟 producing the largest LPP. We also study the effect of 𝜎2𝑟 on uncertainty in the inverse solution 
and the performance of HMC, SVGD, and rPICKLE.

For rPICKLE, we compute 𝑁ens = 104 samples by solving the rPICKLE minimization problem (13) for 𝑁ens different realizations 
of 𝝎, 𝜶, and 𝜷 . In Section 4.3, we show that this number of samples is sufficient for the first two moments of the rPICKLE-sampled 
posterior distribution to converge. For HMC, we initialize three dispersed Markov chains over the parameter space. We set the number 
of HMC burn-in steps to 2 × 104 and the number of samples to 𝑁ens = 104 as the stopping criterion. We employ the No-U-Turn 
Sampler (NUTS) HMC method [46], which adaptively determines the number of integration steps taken within one HMC iteration. 
Furthermore, we use the dual averaging algorithms [46] to determine the optimal step size for NUTS to maintain a reasonable 
acceptance rate. Following [47], we set the target acceptance rate to 70%. For SVGD, we randomly initialize 𝑁ens = 2 × 103 particles 
from an isotropic normal distribution. Here, we must use a smaller ensemble size than in rPICKLE and HMC due to memory constraints 
during SVGD computations, which require operations with matrices of dimension equal to the ensemble size. The Adam optimizer 
[48] is used to update the particle positions with the learning rate set to 1 × 10−3. The radial basis function is used as the kernel 
function, with correlation length determined automatically during sampling following the so-called median trick [23].

Fig. 2 depicts the marginal and bivariate distributions of the first and last three components of the 𝝃 vector computed from HMC 
and rPICKLE with and without Metropolization using kernel density estimation (KDE) for 𝜎2𝑟 = 10−4 and 10−2. It can be seen that 
the distributions produced by the three different methods are similar. We also find that the marginal and bivariate distributions are 
approximately symmetric. For 𝜎2𝑟 = 10−4, the bivariate distributions are narrower than for 𝜎2𝑟 = 10−2, i.e., stronger physical constraints 

https://github.com/geekyifei/Bayesian_PICKLE_Hanford.git
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Fig. 2. Bivariate joint and marginal distributions of the first (first column) and last (second column) three components of 𝝃 obtained from HMC, rPICKLE, and rPICKLE 
with Metropolization for the low-dimensional case. The black cross symbols and lines indicate the coordinates of the mode of the joint posterior distribution computed 
from PICKLE. The top and bottom rows show results for 𝜎2𝑟 = 10−2 and 10−4 , respectively.

result in more certain predictions. Also, we see that for smaller 𝜎2𝑟 , the bivariate distributions exhibit stronger correlations between 
the 𝝃 components. These correlations are much stronger for the first three components of 𝝃 than for the last three components.

Fig. 2 also shows the coordinates of the joint posterior mode given by the PICKLE solution. The coordinates of the modes of the 
marginal and bivariate distributions obtained from HMC and rPICKLE are close to the coordinates of the joint distribution mode. It 
should be noted that unless the posterior is Gaussian, the coordinates of the modes of marginal distributions and the corresponding 
coordinates of the joint distribution mode may not coincide.

We proceed to discuss the Bayesian estimates of 𝑦. For 𝜎2𝑟 = 10−2, Fig. 3 shows the estimated mean 𝜇𝑦̂(𝐱|𝑟𝑒𝑠) fields, the absolute 
differences between the mean and the reference field |𝑦 − 𝜇𝑦̂(𝐱|𝑟𝑒𝑠)|, the standard deviations 𝜎𝑦̂(𝐱|𝑟𝑒𝑠), and the coverage plots 
obtained from the four methods. The coverage plots indicate locations where the reference solution falls within the predicted 95%
credibility interval, with zero and one values representing whether the reference field is outside or inside the credibility interval, 
respectively. We summarize in Table 2 the results obtained from the four methods in terms of the relative 𝓁2 error and 𝓁∞ error 
between the predicted mean and the reference 𝑦LD fields, the LPP of the reference field, and the percentage of coverage (percentage 
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Fig. 3. The low-dimensional 𝑦 field estimated from (a) HMC, (b) SVGD, (c) rPICKLE, and (d) rPICKLE with Metropolization for 𝜎2𝑟 = 10−2 : (first column) the posterior 
mean estimates; (second column) the point errors in the predicted mean with respect to the reference 𝑦𝐿𝐷 field; (third column) the posterior standard deviation of 𝑦; 
and (fourth column) the coverage of the reference field with the 95% credibility interval.

of nodes where the reference solution is within the 95% credibility interval) for 𝜎2𝑟 = 10−5, 10−4, 10−2, 10−1, and 100. For a given 
value of 𝜎2𝑟 , HMC and rPICKLE produce posterior mean estimates close to the PICKLE MAP estimate, and similar LPPs and coverages. 
This indicates that (i) the HMC and rPICKLE sampled distributions converge to the same posterior (note that in Section 2.4.1, we 
only prove the convergence of rPICKLE in the linear case), and (ii) Metropolization makes the posterior more descriptive of the 
reference field, i.e., it yields larger LPP and smaller 𝓁2 error, but the improvements are less than 1%. We also find that, for this 
problem, the total acceptance rate for Metropolization is above 95%, which agrees with the findings in [49,30] that the acceptance 
rate in randomized algorithms is, in general, very high. It should be noted that Metropolization requires the estimation of a Jacobian 
determinant that becomes computationally expensive for high-dimensional problems. For this reason, in the high-dimensional case 
presented in Section 4.2 we do not perform Metropolization and accept all samples generated by the rPICKLE algorithm. SVGD also 
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Table 2
Summary of rPICKLE, Metropolized rPICKLE (Metro-rPICKLE), HMC, SVGD, and 
PICKLE results for the low-dimensional problem with different values of 𝜎2𝑟 . Shown 
are the relative 𝓁2 and 𝓁∞ errors in the estimated 𝑦 field with respect to 𝑦LD , the LPP, 
and the percentage of coverage of 𝑦LD by the 95% confidence interval. Note that the 
PICKLE solution only provides MAP and LPP.
𝜎2𝑟 Method 𝓁2 error 𝓁∞ error LPP Coverage
100 PICKLE 8.05 × 10−3 3.14 × 10−1 – –

HMC 8.20 × 10−3 3.15 × 10−1 6972 92%
SVGD 8.11 × 10−3 3.14 × 10−1 6523 85%
rPICKLE 8.08 × 10−3 3.14 × 10−1 6971 92%
Metro-rPICKLE 7.92 × 10−3 3.15 × 10−1 6984 92%

10−1 PICKLE 7.28 × 10−3 3.06 × 10−1 – –
HMC 7.55 × 10−3 3.07 × 10−1 7206 90%
SVGD 7.32 × 10−3 3.06 × 10−1 6935 86%
rPICKLE 7.35 × 10−3 3.08 × 10−1 7226 90%
Metro-rPICKLE 7.17 × 10−3 3.04 × 10−1 7240 90%

10−2 PICKLE 5.90 × 10−3 2.50 × 10−1 – –
HMC 6.33 × 10−3 2.85 × 10−1 7561 89%
SVGD 6.21 × 10−3 2.67 × 10−1 7196 86%
rPICKLE 6.03 × 10−3 2.60 × 10−1 7564 89%
Metro-rPICKLE 5.91 × 10−3 2.50 × 10−1 7546 89%

10−4 PICKLE 7.14 × 10−3 3.30 × 10−1 – –
HMC 7.25 × 10−3 3.40 × 10−1 −21314 41%
SVGD 7.26 × 10−3 3.41 × 10−1 −21947 40%
rPICKLE 7.17 × 10−3 3.33 × 10−1 −20725 41%
Metro-rPICKLE 7.17 × 10−3 3.32 × 10−1 −20232 41%

10−5 PICKLE 9.36 × 10−3 4.62 × 10−1 – –
HMC 9.36 × 10−3 4.63 × 10−1 −275219 16%
SVGD 9.37 × 10−3 4.64 × 10−1 −283043 16%
rPICKLE 9.37 × 10−3 4.62 × 10−1 −277842 16%
Metro-rPICKLE 9.37 × 10−3 4.62 × 10−1 −282418 16%

results in a posterior mean close to the PICKLE MAP estimate. However, it yields slightly smaller LPP and coverage than HMC and 
rPICKLE.

Table 2 shows that the point errors and the relative 𝓁2 errors are the smallest across all methods when 𝜎2𝑟 = 10−2. We find that the 
LPPs are also the largest for this value of 𝜎2𝑟 . This indicates that 𝜎2𝑟 = 10−2 provides the posterior that best describes the true field. We 
also note that the PICKLE 𝓁2 and 𝓁∞ errors are also smallest for 𝛾 = 𝜎2𝑟 = 10−2, which indicates this value also provides the optimal 
regularization for this problem.

Finally, we find that in this low-dimensional problem, the runtime of rPICKLE (i.e., the time to obtain a solution of the rPICKLE 
minimization problem) is independent of the value of 𝜎2𝑟 . For all considered values of 𝜎2𝑟 , the runtime per sample was approximately 
0.02 seconds. On the other hand, the HMC runtime is found to increase with decreasing 𝜎2𝑟 from 1.12 seconds per sample for 𝜎2𝑟 = 1
to 2.01 for 𝜎2𝑟 = 10−5. The SVGD runtime increases with decreasing 𝜎2𝑟 from 2.33 seconds per sample for 𝜎2𝑟 = 1 to 4.35 for 𝜎2𝑟 = 10−5.

4.2. High-dimensional problem

Here, we present results for the high-dimensional case where the reference 𝑦 field is given by 𝑦HD. First, we estimate the posteriors 
for different values of 𝜎2𝑟 (10−4, 10−2, and 10−1) given 100 observations of the 𝑦HD field. Then, we estimate posteriors for different 
values of 𝑁obs

𝑦 (50, 100, and 200) given 𝜎2𝑟 = 10−4 to study the dependence of the posterior on the number of 𝑦 measurements. In all 
examples in this section, we assume that 𝑁obs

𝑢 = 323, i.e., 𝑢 measurements are available at all wells.
Based on the results in the previous section, we do not perform Metropolis rejection in rPICKLE. We find that for this high-

dimensional problem, the HMC step size, computed from the dual averaging step size adaptation algorithm (which is designed to 
maintain a prescribed acceptance rate) becomes extremely small. As a result, for some values of 𝜎2𝑟 , the HMC implementation fails to 
reach the stopping criterion after running for more than 30 days. For comparison, rPICKLE generates the same number of samples in 4 
to 5 days depending on 𝜎2𝑟 (around 30–40 seconds per sample). The posterior obtained from SVGD is very close to the (Gaussian) prior 
distribution, and its mean deviates significantly from the PICKLE MAP estimate. Therefore, for the high-dimensional case, we only 
present the rPICKLE and PICKLE results. We attribute HMC’s large computational time to the high condition number of the posterior 
covariance matrix, which we find to increase with increasing dimensionality and decreasing 𝜎2𝑟 . We investigate this dependence in 
detail in Section 4.4.

Table 3 summarizes the relative 𝓁2 and 𝓁∞ errors, LPP, and coverage of the rPICKLE estimates of 𝑦 for 𝜎2𝑟 = 10−4, 10−2, and 10−1. 
The smallest rPICKLE errors and the largest LPP are achieved for 𝜎2𝑟 = 10−2. However, we find that the LPP is more sensitive to 𝜎2𝑟
than the 𝓁2 error–𝓁2 errors vary by less than 7% for the considered 𝜎2𝑟 values, while LPP values change by more than 100%. Also, 
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Table 3
Summary of rPICKLE and PICKLE results for the high-dimensional problem for the 
priors based on different numbers of 𝑦 observations and 𝜎2𝑟 . Shown are the relative 𝓁2
and 𝓁∞ errors in the estimated 𝑦 field with respect to the reference field, the LPP, and 
the percentage of coverage of 𝑦LD by the 95% confidence interval.
𝑁obs
𝑦 Method 𝑟𝓁2 error 𝓁𝑖𝑛𝑓 error LPP Coverage

𝜎2𝑟 = 10−1
100 PICKLE 1.08 × 10−1 4.38 × 100 – –

rPICKLE 1.11 × 10−1 4.41 × 100 1730 87%

𝜎2𝑟 = 10−2
100 PICKLE 1.01 × 10−1 4.14 × 100 – –

rPICKLE 1.04 × 10−1 4.13 × 100 2032 82%

𝜎2𝑟 = 10−4
50 PICKLE 1.91 × 10−1 6.49 × 100 – –

rPICKLE 1.71 × 10−1 6.50 × 100 −2792 65%
100 PICKLE 1.26 × 10−1 6.14 × 100 – –

rPICKLE 1.10 × 10−1 5.33 × 100 1070 67%
200 PICKLE 7.91 × 10−2 5.34 × 100 – –

rPICKLE 7.99 × 10−2 5.38 × 100 5220 75%

the 𝓁2 error is 1% smaller for 𝜎2𝑟 = 10−4 than for 𝜎2𝑟 = 10−1 but the LPP is 70% larger for 𝜎2𝑟 = 10−1 than for 𝜎2𝑟 = 10−4. Errors in the 
PICKLE and rPIKCLE predictions of 𝑦 are very similar, and 𝜎2𝑟 = 10−2 also provides the best value of the regularization coefficient for 
PICKLE, i.e., the PICKLE error is smallest for 𝛾 = 𝜎2𝑟 = 10−2.

Fig. 4 depicts the marginal and bivariate distributions of the first and last three components of 𝝃 for 𝜎2𝑟 = 10−1 and 10−2. Compared 
with the low-dimensional case, we observe that the posterior of the first three components is more non-symmetric and correlated. 
The posterior distributions become narrower as 𝜎2𝑟 becomes smaller. The modes of these distributions have non-zero coordinates 
(while the prior distributions are centered at zero). On the other hand, the last three terms have symmetric marginal distributions 
approximately centered at zero and circular-shaped bi-variate distributions, the latter indicating the lack of cross-correlation. Fig. 4
also shows the coordinates of the joint posterior mode obtained from PICKLE. They slightly deviate from the coordinates of the 
marginal and bivariate modes because of the non-Gaussianity of the posterior.

Fig. 5 shows the rPICKLE estimate of the posterior mean of 𝑦, the absolute point difference between the mean and reference 
𝑦HD(𝑥) fields, the posterior standard deviation of 𝑦(𝑥), and the coverage for 𝜎2𝑟 = 10−2 and 𝜎2𝑟 = 10−4. We see significant differences 
in rPICKLE predictions for different 𝜎2𝑟 . Errors in the predictions with 𝜎2𝑟 = 10−4 are in general larger than in the predictions with 
𝜎2𝑟 = 10−2 with the maximum point error being 50% larger. As expected, the posterior standard deviations are generally larger in 
the prediction with the larger 𝜎2𝑟 . However, the maximum pointwise standard deviation is larger for the smaller 𝜎2𝑟 . We also see that 
𝜎2𝑟 = 10−2 produces a better coverage–the reference 𝑦HD field is within the confidence interval in 82% of all predicted locations versus 
65% for 𝜎2𝑟 = 10−2. We also note that the LPP for 𝜎2𝑟 = 10−4 is -2792, which is significantly smaller than that for 𝜎2𝑟 = 10−2 (2032).

Next, we study the inverse rPICKLE solution as a function of 𝑁obs
𝑦 . Fig. 6 shows the estimates of 𝑦 obtained with rPICKLE for 

𝑁obs
𝑦 = 50 and 200 and 𝜎2𝑟 = 10−4. The estimates for 𝑁obs

𝑦 = 100 are given in Fig. 5. Table 3 summarizes the relative 𝓁2 and 𝓁∞
errors, LPP, and the percent of coverage of the corresponding posteriors. As 𝑁obs

𝑦 increases, the posterior mean becomes closer to 
𝑦HD, and the posterior variance of 𝑦 decreases. The LPP increases with 𝑁obs

𝑦 , indicating that the posterior distribution better fits the 
true field. Also, we see that for all values of 𝑁obs

𝑦 the coverage for the 𝑦HD field is adequate, with the best coverage (75%) achieved 
for 𝑁obs

𝑦 = 200.

4.3. Convergence of rPICKLE and HMC with the ensemble size

Next, we examine the convergence properties of rPICKLE and HMC estimates with increasing 𝑁ens for the low- and high-
dimensional cases. For the 𝑖-th component of the 𝝃 vector, we analyze the relative mean 𝜉𝑏𝑖 (𝑚) (𝑏 = rPICKLE or HMC):

𝑅
𝜉
𝑏
𝑖
(𝑚) =

||||||

𝜉
𝑏
𝑖 (𝑚)

𝜉
𝑏
𝑖 (𝑁ens)

||||||
(45)

and relative standard deviation, 𝜎𝑏𝜉𝑖 (𝑚):

𝑅𝜎𝑏𝜉𝑖
(𝑚) =

||||||

𝜎𝑏𝜉𝑖 (𝑚)

𝜎𝑏𝜉𝑖 (𝑁ens)

||||||
, (46)

as functions of the ensemble size 𝑚 (𝑁ens = 104 is the maximum ensemble size). Fig. 7 shows the dependence of 𝑅
𝜉
𝑏
𝑖
(𝑚) and 𝑅𝜎𝑏𝜉𝑖 (𝑚)

on 𝑚 for the low-dimensional case (𝑖 = 1 and 10) and the high-dimensional case (𝑖 = 1 and 100). Here, we set 𝜎2𝑟 = 10−2 and 10−4. 
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Fig. 4. Bivariate joint and marginal distributions of the first (first column) and last (second column) three components of 𝝃 obtained from rPICKLE for the high-
dimensional case. The black cross symbols and lines indicate the coordinates of the mode of the joint posterior distribution computed from PICKLE. The top and 
bottom rows show results for 𝜎2𝑟 = 10−1 and 10−2 , respectively.

For the high-dimensional case, the number of 𝑦 observations for the high-dimensional case is set to 𝑁obs
𝑦 = 100, and we only show 

the convergence of rPICKLE because of the prohibitively large computational time of HMC.
For the low-dimensional case, Fig. 7 shows that the convergence properties of HMC and rPICKLE are similar. We also find that 

in both methods, the required number of samples for mean and variance to reach asymptotic values increases with 𝜎𝑟 . Furthermore, 
we see that in rPICKLE, the required number of samples is not significantly affected by the dimensionality, which is to be expected 
because the rPICKLE samples are generated independently.

It should be noted that, as shown in Section 4.4, the condition number of the posterior covariance increases with decreasing 𝜎𝑟 . 
The increasing condition number decreases the time step in the HMC algorithm. As a result, we find that the computational time 
of HMC to get a set number of samples increases with decreasing 𝜎𝑟 . On the other hand, the computational time of rPICKLE is not 
significantly affected by the value of 𝜎𝑟.
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Fig. 5. rPICKLE estimates of 𝑦HD with (a) 𝜎2𝑟 = 10−2 and (b) 𝜎2𝑟 = 10−4 given 𝑁obs
𝑦 = 100 observations of 𝑦: (first column) the posterior mean of 𝑦, (second column) 

point errors computed as the difference between the posterior mean of 𝑦 and the reference 𝑦 field, (third column) the posterior standard deviation of 𝑦, and (fourth 
column) the coverage of the reference 𝑦 by the 95% credibility interval.

Fig. 6. rPICKLE estimates of the high-dimensional 𝑦 field obtained with 𝜎2𝑟 = 10−4 given (a) 𝑁obs
𝑦 = 50 and (b) 𝑁obs

𝑦 = 200 observations of 𝑦: (first column) the posterior 
mean of 𝑦, (second column) point errors computed as the difference between the posterior mean of 𝑦 and the reference 𝑦 field, (third column) the posterior standard 
deviation of 𝑦, and (fourth column) the coverage of the reference 𝑦 by the 95% credibility interval.
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Fig. 7. 𝑅
𝜉
𝑏
𝑖
(𝑚) and 𝑅𝜎𝑏𝜉𝑖 (𝑚) as functions of the ensemble size 𝑚 for the low- and high-dimensional cases and 𝜎2𝑟 = 10−4 and 𝜎2𝑟 = 10−2 : (a) 𝜉1 of 𝑦LD , (b) 𝜉10 of 𝑦LD , (c) 

𝜉1 of 𝑦HD , and (d) 𝜉100 of 𝑦LD . HMC results are not available for the high-dimensional case.

4.4. HMC performance for low- and high-dimensional problems

In this section, we investigate the effect of 𝜎2𝑟 and problem dimensionality on the efficiency of HMC.
As mentioned earlier, for certain values of 𝜎2𝑟 , the HMC does not reach the stopping criterion (104 samples) after more than 30 

days of running the code. For comparison, rPICKLE generates 104 samples in 4 to 5 days depending on the value of 𝜎2𝑟 . For the 
low-dimensional case, rPICKLE takes approximately 4 minutes to generate the same number of samples for all considered 𝜎2𝑟 while 
the computational time of HMC varies from 3 to 6 hours depending on the 𝜎2𝑟 value.

The increase in HMC computational time is mainly due to smaller time steps in the Hamiltonian dynamics equation integration 
required to maintain a desirable acceptance rate in the dual averaging algorithm. It was shown in [50,28] that the large condition 
number of the posterior covariance matrix leads to decreasing HMC performance. Here, we demonstrate that the condition number 
increases with increasing problem dimension (𝑀 =𝑁𝜉 +𝑁𝜂) and decreasing 𝜎2𝑟 .

In theory, the posterior covariance can be computed directly from posterior samples obtained, for example, from rPICKLE. Here, 
we focus on a priori estimates of the posterior covariance that can be used as a criterion for using HMC. To obtain an a priori estimate 
of Σ𝑝𝑜𝑠𝑡, we employ the Laplace approximation and approximate the posterior covariance via the inverse of the Hessian of the log 
posterior. We start by approximating the log-posterior (6) using the Taylor expansion around the MAP (which we assume is known 
from PICKLE) as

log𝑃 (𝜻|𝑟𝑒𝑠) ≈ log𝑃 (𝜻∗|𝑟𝑒𝑠)

+ 1
2 (𝜻 − 𝜻∗)𝑇 (∇∇ log𝑃 (𝜻|𝑟𝑒𝑠)|𝜻=𝜻∗ )(𝜻 − 𝜻∗), (47)

where 𝜻∗ is the MAP, and ∇∇ log𝑃 (𝜻|𝑟𝑒𝑠)|𝜻=𝜻∗ is the Hessian, which we compute by automatic differentiation, evaluated at the 
MAP. The first-order term in Eq (47) vanishes because the log𝑃 gradient at the MAP point is zero. The right-hand side of Eq. (47)
is equivalent, up to a constant, to the log probability density of a Gaussian distribution. Under the Laplace assumption, the posterior 
distribution can be approximated with a Gaussian distribution, the mean of which is given by the MAP. The covariance is found by 
the inverse of the Hessian evaluated at the MAP point, i.e., (∇∇ log𝑃 (𝜻|𝑟𝑒𝑠)|𝜻=𝜻∗ )−1.

Fig. 8 shows the eigenvalues (arranged in descending order) of the approximated posterior covariance for the low- and high-
dimensional cases with 𝜎2𝑟 = 10−2 and 10−4. The red dashed lines indicate eigenvalues of the prior covariance (all eigenvalues are 
equal to one because of the diagonal form of the prior covariance and unit prior variances of the parameters). In the low-dimensional 
problem, the condition numbers are approximately 21 for 𝜎2𝑟 = 10−2 and 1760 for 𝜎2𝑟 = 10−4. In the high-dimensional problem, the 
condition numbers are ≈ 2 × 107 for 𝜎2𝑟 = 10−2 and 2 × 109 for 𝜎2𝑟 = 10−4.

Larger condition numbers indicate the presence of a stronger correlation between the components of the estimated 𝝃 . Also, the 
eigenvalues 𝜆𝑖 of Σ𝑝𝑜𝑠𝑡 are proportional to the variances 𝜎2𝑖 of the posterior marginal distributions of the 𝜉𝑖 components of 𝝃. Therefore, 
a large condition number indicates a large range of 𝜎2𝑖 values, which gives rise to geometrically pathological features of the posterior 
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Fig. 8. Covariance spectrum corresponding to the Laplace approximated posterior for (a) 𝑦LD and (b) 𝑦HD for 𝜎2𝑟 = 10−4 and 10−2 . The red dashed line represents the 
covariance structure informed by the normal prior.

parameter space (e.g., high curvature in the corners of equal-density posterior manifolds). The increase in correlation and the range 
of 𝜎2𝑖 with 𝜎2𝑟 and 𝑁𝜉 can be seen in Figs. 2 and 4. These geometric complexities reduce the efficiency of HMC [29].

5. Discussions and conclusions

We presented the rPICKLE method for approximate sampling of high-dimensional Bayesian posterior distributions of unknown 
parameters. The rPICKLE is derived by randomizing the PICKLE objective function. In the Bayesian framework, the prior distribu-
tion expresses prior knowledge about the modeled system. In the application of rPICKLE to the diffusion (Darcy) equation with an 
unknown space-dependent diffusion coefficient (transmissivity of an aquifer), it is assumed that the log-diffusion coefficient 𝑦(𝐱) has 
a Gaussian prior with mean and covariance estimated from 𝑦 measurements. This prior model determines the eigenfunctions in the 
cKLE expansion of 𝑦 and the Gaussian prior distribution of the parameters 𝝃 in this cKLE. We note that it is also possible to choose 
different prior distributions, such as the 𝐻1 seminorm prior [51], for 𝝃. The formulation of randomized methods for such priors will 
be the subject of future work.

The likelihood function is defined by assuming a Gaussian error model for the PDE residuals, with error variance 𝜎2𝑟 . This variance 
then becomes a free parameter controlling the posterior distribution. We study the effect of 𝜎2𝑟 on the difference between the true field 
and the posterior mean and on the LPP of the true field. We demonstrated that PICKLE provides the mode of the posterior distribution 
if the PICKLE regularization coefficient 𝛾 is set to 𝜎2𝑟 . Because the PICKLE-based mode estimation does not require posterior sampling, 
choosing 𝜎2𝑟 = 𝛾 to minimize the distance from the posterior mode to the true field is computationally straightforward. Generally, 
there is no guarantee that 𝜎2𝑟 selected according to this criterion would also maximize the LPP. However, we found that for considered 
problems, 𝜎2𝑟 minimizing the distance between the posterior mean and mode also maximizes the LPP of the posterior distribution. We 
also found that LPP is more sensitive to 𝜎2𝑟 than the distance between the mode and data. Therefore, LPP should also be considered 
when selecting 𝜎2𝑟 .

The robustness of rPICKLE was demonstrated by estimating the log-transmissivity field of a Hanford Site groundwater flow model 
with 2000-dimensional cKLE representations of the parameter and state variables. We found that rPICKLE produces posteriors with 
the mean close to the PICKLE MAP estimate for a wide range of values of 𝜎2𝑟 . On the other hand, HMC did not reach the stopping 
criterion (104 samples) after running for more than 1 month. For comparison, our rPICKLE implementation generated the same 
number of samples in 4 to 5 days depending on the value of 𝜎2𝑟 .

To compare rPICKLE and HMC, we considered a lower-dimensional problem where the parameters and states were represented 
with 10-dimensional cKLE parameters. For this problem, we found an excellent agreement between rPICKLE and HMC. We also 
found that the 𝑦 predictions given by the posterior mean of rPICKLE and HMC are close to the PICKLE MAP estimate. For this low-
dimensional problem, rPICKLE generated 104 samples in approximately 4 minutes regardless of the considered values of 𝜎2𝑟 . The HMC 
time was found to increase from ≈ 3 hours for 𝜎2𝑟 = 1 to ≈ 6 hours for 𝜎2𝑟 = 10−5. The efficiency of HMC is known to decrease with 
the increasing condition number of the posterior covariance matrix. We demonstrated that for the considered problem, the condition 
number increases with increasing dimensionality and decreasing 𝜎2𝑟 , which explains the observed trend in HMC computational time. 
In summary, our results demonstrate the advantage of rPICKLE for high-dimensional problems with strict physics constraints (small 
values of 𝜎2𝑟 ).
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Appendix A. Gaussian process regression and the conditional covariance

Given observations {𝑦obs𝑖 }
𝑁obs
𝑦

𝑖=1 , we estimate the parameters in the covariance function 𝐶𝑦(𝐱, 𝐱′) in Eq. (44) by minimizing the 
negative marginal log-likelihood function [38]. Then, we set the prior distribution of 𝑦(𝑥) to (𝑦𝑐(𝐱), 𝐶𝑐𝑦 (𝐱, 𝐱′)), where the mean 
𝑦𝑐(𝐱) and covariance 𝐶𝑐𝑦 (𝐱, 𝐱′) are computed using the Gaussian process regression (GPR) equations:

𝑦𝑐(𝐱) = 𝐜𝑦(𝐱)𝐂−1
𝑦 𝐲obs (A.1)

𝐶𝑐𝑦 (𝐱,𝐱
′) =𝐂𝑦(𝐱,𝐱′)− 𝐜𝑦(𝐱)𝐂−1

𝑦 𝐜𝑦(𝐱′). (A.2)

Here, the superscript 𝑐 denotes that Gaussian distribution is conditioned on the 𝑦 measurements, 𝐂𝑦 ∈ℝ𝑁obs
𝑦 ×𝑁obs

𝑦 is the observation 
covariance matrix with the elements 𝐶𝑦,(𝑖𝑗) = 𝐶𝑦(𝐱obs𝑖 , 𝐱obs𝑗 ), and 𝐜𝑦(𝐱) ∈ ℝ1×𝑁obs

𝑦 is the covariance vector with the elements 𝑐𝑦,𝑖 =
𝐶𝑦(𝐱, 𝐱obs𝑖 ).

The eigenfunctions and eigenvalues of Eq. (2) are obtained by solving the following eigenvalue problem:

∫ 𝐶𝑐𝑦 (𝐱,𝐱
′)𝜓𝑦𝑖 (𝐱

′)𝑑𝐱′ = 𝜆𝑦𝑖 𝜓
𝑦
𝑖 (𝐱

′) 𝑖 = 1, ...,𝑁𝜉 . (A.3)

This eigenvalue problem is solved on the mesh used to generate the training dataset and compute residuals in the minimization 
problem. As such, the eigenvalue problem reduces to the eigendecomposition in the finite-dimensional vector space. In the KLE of 𝑦, 
we use 𝑁𝜉 terms corresponding to 𝑁𝜉 largest eigenvalues. The selection criterion for 𝑁𝜉 is given in [6].

The mean 𝑢𝑐(𝐱) and covariance 𝐶𝑐𝑢 (𝐱, 𝐱′) in the KLE of 𝑢 are computed as the solutions of the (stochastic) Eq. (1) with the stochastic 
𝑦 field whose mean and covariance are given by Eqs. (A.1) and (A.2). We do not use a parameterized covariance function to model 
𝑢 because the random field for 𝑢 is generally not stationary and parameterized covariance functions do not enforce the physical 
constraint.

Here we use the Monte Carlo (MC) simulations to compute the mean and covariance of 𝑢. We randomly draw an ensemble of 𝑁MC
cKLE coefficients {𝜉𝑖}𝑁MC

𝑖=1 from  (𝟎, 𝐈) and use Eq. (2) to generate as many realizations of 𝑦. Then, for each realization 𝑦𝑖 we solve 
Eq. (1) to get 𝑁MC solutions 𝐮𝑖 on the finite volume mesh. Then, the mean solution vector 𝐮 and the covariance matrix 𝐂𝑢 of 𝐮 are 
computed as

𝐮 = 1
𝑁MC

𝑁MC∑
𝑖=1

𝐮𝑖, (A.4)

𝐂𝑢 =
1

𝑁MC − 1

𝑁MC∑
𝑖=1

[𝐮𝑖 − 𝐮][𝐮𝑖 − 𝐮]𝑇 . (A.5)

The GPR equations are used to condition the mean and covariance of 𝐮 on the 𝑢 measurements yielding 𝐮𝑐(𝐱) and 𝐂𝑐𝑢(𝐱, 𝐱′). Finally, 
the eigenvalue and (discretized on the finite volume mesh) eigenfunctions are obtained via the eigenvalue decomposition of 𝐂𝑐𝑢(𝐱, 𝐱′).
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