SkeTcHQL Demonstration: Zero-shot Video Moment Querying
with Sketches

Renzhi Wu* Pramod Chunduri* Dristi J Shah
Georgia Institute of Technology Georgia Institute of Technology Georgia Institute of Technology
renzhiwu@gatech.edu pramodc@gatech.edu dshah371@gatech.edu
Ashmitha Julius Aravind Ali Payani Xu Chu
Georgia Institute of Technology Cisco Georgia Institute of Technology

asjula@gatech.edu
Joy Arulraj
Georgia Institute of Technology
arulraj@gatech.edu
ABSTRACT

In this paper, we will present SKETCHQL, a video database man-
agement system (VDBMS) for retrieving video moments with a
sketch-based query interface. This novel interface allows users to
specify object trajectory events with simple mouse drag-and-drop
operations. Users can use trajectories of single objects as build-
ing blocks to compose complex events. Using a pre-trained model
that encodes trajectory similarity, SKETCHQL achieves zero-shot
video moments retrieval by performing similarity searches over the
video to identify clips that are the most similar to the visual query.
In this demonstration, we introduce the graphic user interface of
SkETCHQL and detail its functionalities and interaction mechanisms.
We also demonstrate the end-to-end usage of SKETCHQL from query
composition to video moments retrieval using real-world scenarios.

PVLDB Reference Format:

Renzhi Wu, Pramod Chunduri, Dristi] Shah, Ashmitha Julius Aravind, Ali
Payani, Xu Chu, Joy Arulraj, and Kexin Rong. SKETCHQL Demonstration:
Zero-shot Video Moment Querying with Sketches. PVLDB, 17(12): 4429 -
4432, 2024.

doi:10.14778/3685800.3685892

1 INTRODUCTION

Video moment retrieval is an important task in video analytics
whose goal is to search for target moments (sequences of frames)
within a video. This task has numerous applications in traffic surveil-
lance, sports analytics, and autonomous driving. For example, trans-
port researchers are interested in retrieving different instances of
left-turning vehicles from surveillance video streams to analyze
driving behaviors and improve traffic safety [1]. However, accu-
rately detecting "left turn" motions in diverse, real-world videos
can be quite challenging. Consider the illustrative video clips from
a parking lot surveillance camera in Figure 1. In Figure 1a, a car

*“The first two authors contributed equally to this paper.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685892

apayani@cisco.com

4429

xu.chu@cc.gatech.edu

Kexin Rong
Georgia Institute of Technology
krong@gatech.edu

(a) Nearby car, acute an-
gle, turning top.

(b) Distant car, acute an-
gle, turning top.

(c) Distant car, obtuse
angle, turning left.

Figure 1: Diverse left-turn behaviors in a traffic surveillance video.

begins driving towards the right side of the screen and makes a left
turn towards the top, while in Figure 1c, another car starts driving
towards the top of the screen and makes a left turn towards the left
side. Furthermore, due to the camera’s varying position and angle
relative to vehicles, the turning angles might appear different on
camera: the car in Figure 1b has an acute turning angle, while the car
in Figure 1c has an obtuse angle. Ideally, the left turn query should
capture all types of left-turn events, irrespective of the vehicle’s
initial direction or turning angle. Although the camera is station-
ary in this example, it could still subject to movements caused by
environmental factors like wind or vibrations; other video streams,
such as those in sports, often feature moving and panning cameras.
These further complicates the identification of relevant events.

LiMITATIONS OF CURRENT APPROACHES. The two main types
of query interfaces for video moment retrieval, natural language-
based and SQL-based, suffer from limitations in generalizability or
ease-of-use and cannot adequately address the above challenges.
(1) Natural language-based interfaces retrieve target video clips
based on user-specified text (e.g., “Car making a left turn") and are
popular within the machine learning community [6]. These meth-
ods are easy to use for non-experts, and are typically implemented
by training end-to-end deep learning models that map text to raw
video frames [11]. A key limitation of these interfaces is their re-
liance on large training data to achieve accurate retrieval [2], which
limits their application outside the original training contexts.

(2) SQL-based query interfaces, predominantly developed within
the data management community [3, 5, 10], support rule-based
selection of clips using SQL-like syntax. They are often built upon
low-level primitives extracted by pre-trained models, such as pre-
trained object detectors [5, 10], object tracking models [5, 10], or

https://doi.org/10.14778/3685800.3685892
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685892

scene graph extraction models [4]. The main advantage of SQL-
based interfaces is their ability to generalize across different datasets
and video domains with few or no labeled examples, thanks to the
robust performance of pre-trained models [8]. However, SQL-base
interfaces require considerable query specification time from users
because translating a semantically meaningful event (e.g., left turns)
into SQL-like rules on top of low-level primitives (e.g., location and
angle of bounding boxes) can be challenging.

VIDEO MOMENT QUERYING WITH A SKETCH-BASED INTER-
FACE. To address the above limitations, in our recent work [9],
we developed SKETCHQL, a video database management system
(VDBMS) for offline, exploratory video moment retrieval that is
easy to use and generalizes well across video datasets. To improve
ease-of-use, SKETCHQL features a visual query interface that enables
users to sketch complex visual queries through intuitive drag-and-
drop actions. By leveraging a human’s inherent ability to capture
complex events via sketches, SKETCHQL improves the usability and
expressivity of query specifications for non-expert users. To im-
prove generalizability, SKETCHQL operates on object-tracking prim-
itives that are reliably extracted across datasets using pre-trained
models [8]. The sketch-based query is executed by comparing the
query trajectories provided by the user to object bounding box tra-
jectories extracted using pre-trained object trackers. We developed
a transformer-based neural network model that learns a similarity
measure between trajectories that is robust to differences in cam-
era perspectives and movements. SKETCHQL trains the model on a
diverse dataset generated with a novel simulator, that enhances its
accuracy across a wide array of datasets and queries.

In this paper, we introduce the user interface of SKETcHQL. We
demonstrate the main functionalities of SKETCHQL (composing
visual queries and retrieving similar clips) with end2end scenarios.

2 SYSTEM OVERVIEW

SKETCHQL consists of three key components: (1) SKETCHER features
a visual query interface that enables users to sketch complex queries
through simple drag-and-drop actions, (2) MATCHER compares the
query trajectories provided by the user to object bounding box tra-
jectories extracted using pre-trained object trackers and (3) TUNER
is an optional component that incorporates explicit user feedback
when provided to improve the retrieval quality.

SKETCHQL is designed to operate on top of per-frame object
bounding boxes rather than raw pixels, similar to Mir1s [3] and
STAR Retrieval [4]. Bounding box sequences for objects across
frames are obtained in a preprocessing step using pre-trained object
trackers [12] without dataset-specific retraining.

2.1 SKETCHER: Composing visual queries

The SKETCHER is the query interface of SKETCHQL, and it has two
major components: (a) The Canvas. This is a whiteboard where
users can place and drag objects to compose clips (Figure 2, top). (b)
The Trajectory Panel. This is a panel where users can adjust multiple
trajectories of the same object and align the trajectories of different
objects (Figure 2, bottom). The SKETCHER is developed on top of a
popular canvas library tldraw (https://github.com/tldraw/tldraw)
We detail the specific functionalities of SKETCHER in the following.

4430

(a) Canvas Panel

G O camont *« o o

Q-0 Open query

(b) Trajectory Panel

Figure 2: User interface of SKETCHQL.

When using the canvas, the user can select one of four types
of mouse operations: drag, delete, edit, and create by clicking the
corresponding buttons (shown in the pink dashed box in Figure 2).
The four operations enable the following functionalities:

(1) Object Creation. This action allows users to select an object
type and place the object on the canvas. When the user clicks on
the "square"” icon to select the mouse operation type as "create”, an
input box pops up for the user to specify the object type. Currently,
about eighty common object types (e.g., car, person) are supported.
The user can also set a generic type Any that represents any types
of objects. After setting the object type, the user can place one or
more objects on the canvas.

(2) Object Deletion and Editing. The user is allowed to delete or
edit an object on the canvas. When the user clicks on the "cross"
icon, the mouse enters deletion mode and the user can click on an
object to delete it. Similarly, when the user clicks on the "pencil"
icon, the user can click on an object to change its object type.

(3) Trajectory Creation with Drag and Drop. The user can create
trajectories when the mouse is in "Drag" mode which activates
when the "cursor" icon is clicked. In this mode, the user can move
an object on the Canvas via mouse drag-and-drop operations, and all
the coordinates of the movements are automatically recorded. Each
drag-and-drop operation is represented as a box in the trajectory
panel. For example, the car movement in Figure 2 is created by
three drag-and-drop operations: left turn, going straight, and right
turn, so there are three boxes shown in the trajectory panel for the
car object. This abstraction allows users to use each drag-and-drop
operation as a building block to compose complex motions for an
object, even enabling complex events involving multiple objects.

The Trajectory Panel is similar to the soundtrack panel in exist-
ing audio editing tools. It allows for the following functionalities:
(1) Trajectory Editing. The user can delete the boxes in the tra-
jectory panel for each object to remove unwanted trajectories. The
user can resize the box to make it shorter or longer to speed up or
slow down the corresponding trajectory. The user can also rear-
range the boxes to change the order of the trajectories. For example,
in Figure 2, the car’s initial trajectory is a left turn, followed by
straight motion, and then a right turn. By reordering the three

https://github.com/tldraw/tldraw

¢ O hemmaz & D 00 Neowmsne

@tramicors

X Upload Dstast

(a) Upload Dataset.
@ " SR JT—
e o
%
o o
x
v
Qo [open auery "o [T

(c) Create and Edit Trajectory.

cshosstza %D OO Necumemine |

w2 @ omom | . [

(b) Create object.

Display Videos

(d) Run query and display results.

Figure 3: SKETCHQL end-to-end usage demonstration

boxes, users can edit the event to depict a different sequence, such
as a left turn, a right turn, and then straight motion.

(2) Trajectory Coordination Among Multiple Objects. When
creating events with multiple objects, we need to coordinate the
timing of the trajectories. For example, in the event depicted in Fig-
ure 2, the motion that the car goes right happens first, and after
a long time the person goes right. To create a synchronized event
in which the person and the car go right at the same time, we can
move the second box of the person object in the trajectory panel to
align with the second box of the car object.

Apart from the canvas panel and the trajectory panel, the in-
terface also provides a few buttons in the bottom right corner as
shown in Figure 2. The buttons provide the following functional-
ities: (1) Dataset Uploading. When the user clicks on the button
"Upload Dataset", a window pops out allowing the user to select
a video file to upload. After a dataset is uploaded, future queries
will be executed using this dataset. (2) Query replay. When the user
clicks on the "Open Query" button, a window pops out displaying
an video that animates the defined event, so the user can check
the query holistically, and optionally go back to editing the query.
(3) Query execution. When the user clicks on the button "Run", the
visual query is sent to backend to be executed, where MATCHER is
invoked to find similar video clips. (4) Display query results. When
the user clicks on the button "Display Videos", a window pops out
listing the found similar video clips.

4431

2.2 MaATcHER: Identifying Similar Clips

The MATCHER is the backend of SKETCHQL. We discuss it briefly
here, and more details can be found in our research paper [9].

The MATCHER identifies video clips Cy that are most similar to
a given visual query Cg through sliding-window similarity search.
The core challenge is defining the similarity function sim(Cg, Cy)
that is robust to camera angles and noises. We developed a pre-
trained model that encodes the bounding box trajectories in Cp
or Cy as embeddings, and then similarity is measured as the co-
sine similarity between the embeddings. The model architecture
is a transformer that encodes the the sequences of bounding box
trajectories of multiple objects into one embedding vector.

To train the embedding model, we propose synthesizing labeled
training data using a custom trajectory simulator, inspired by the
wide adoption of simulators in generating training data for au-
tonomous driving models. The simulator operates on top of the
bounding box abstraction, enabling it to synthesize trajectories
across video domains. The high-level idea of our simulator is to
generate motions in a 3D space and create 2D video clips by record-
ing the event from virtual cameras placed at random locations in
the 3D space. Intuitively, 2D video clips from the different cameras
of the same 3D clip are positive (similar) examples, and 2D video
clips from different 3D clips are negative (dissimilar) examples.

SKETCHQL also has an optional TUNER component that can adapt
the learned similarity measure according to user feedback. Since
SKETCHQL provides decent results without needing user feedback,
in this paper we focus on demonstrating the zero-shot retrieval
capability of SKETCHQL and omit the discussion on TUNER.

3 DEMONSTRATION

We demonstrate the usage of SKETCHQL with an end-to-end sce-
nario. We use a real-world traffic surveillance dataset [7] that is
used extensively in the computer vision community. We consider
two common queries: (Q1) a car making a left turn and (Q2) car
and person moving perpendicularly to each other. Q1 only has one
object, while Q2 involves two objects. The overall pipeline of Q2 is
similar to that of Q1; it only differs in how to coordinate the two
objects. Therefore, we first illustrate the overall pipeline with Q1,
and then we discuss how to coordinate multiple objects with Q2.

3.1 End-to-end Demo with Q1

The end-to-end usage of SKETCHQL is illustrated in Figure 3.

Step 1: Uploading dataset and initialization. The user uploads
a video by clicking the "Upload Dataset" button and selecting a
video file in the pop-up window. After this, SKETCHQL initializes
by extracting the object tracking primitives for the dataset.

Step 2: Object Creation. The user clicks on the creation icon, i.e.,
the "square” icon, sets the object type to "Car" in the pop-up input
window, and then clicks on the canvas to place the "Car" object.
Step 3: Trajectory Creation. The user clicks the "cursor” icon to
enable the mouse’s "Drag" mode. Then, the user drags the "Car"
object on the canvas to make a left turn. The user drops the "Car"
object when the left turn finishes.

Step 4: Trajectory Editing. The user clicks on the "Open Query"
button to replay the event just created. The user can edit the tra-
jectory if needed. For example, the user may delete the trajectory
from the Trajectory Panel and then drag the object to create a new
trajectory, If the user is satisfied with the shape of the trajectory
but hopes to let the car make a left turn faster, the user can stretch
the corresponding box on the Trajectory Panel to shorten the box.
Step 5: Query Execution. The user clicks on the "Run” button.
The visual query is then sent to the backend to be executed.

Step 6: Checking the Found Video Clips. After query execution,
the user can click "Display Videos" to see the list of similar video
clips found by the MATCHER sorted by their query similarity scores.

3.2 Multi-object Event Query Demo with Q2

We demonstrate how to create queries with multi-object events
with a simple query, car, and person moving perpendicularly to
each other. Step 1, Step 5, and Step 6 are the same as in Section 3.1,
and we explain Step 2, Step 3, and Step 4.

Step 2 (Multi-object): Object Creation. The user follows Step 2
in Section 3.1 to create one "Car" object and one "Person" object.
Step 3 (Multi-object): Trajectory Creation. The user clicks on
the "cursor" icon to enable the mouse’s "Drag" mode. The user drags
the "Person” object to move horizontally. After that, the user drags
the "Car" object to move vertically. With this creation, the "Person"
object moves first, and the "Car" object moves after. To make them
move simultaneously, next we coordinate their movements.

4432

Step 4 (Multi-object): Trajectory Editing. In the Trajectory
Panel, the user drags the box representing the trajectory of the
"Car" object to the left to ensure it synchronizes with the box rep-
resenting the trajectory of the "Person" object. Figure 4 shows the
Trajectory Panel after synchronization (originally the box for the
"Car" object is on the right side of the box for the "Person" object).

0000 0100 0200 0300 0400 0500

Figure 4: Trajectory panel for multi-object query Q2 after Step 4.

4 CONCLUSION

In this paper, we demonstrated SKETCHQL, a video database man-
agement system (VDBMS) for retrieving video moments with a
visual query interface. SKETCHQL’s interface allows query specifi-
cation with simple mouse drag-and-drop operations. The interface
also supports creating query with multiple objects.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under grants IIS-2335881 and IIS-2238431.

REFERENCES

[1] Osama Abdeljaber, Adel Younis, and Wael Alhajyaseen. 2020. Analysis of the
trajectories of left-turning vehicles at signalized intersections. Transportation
research procedia 48 (2020), 1288-1295.

Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell,
and Bryan Russell. 2017. Localizing moments in video with natural language. In
Proceedings of the IEEE international conference on computer vision. 5803-5812.
Favyen Bastani, Songtao He, Arjun Balasingam, Karthik Gopalakrishnan, Mo-
hammad Alizadeh, Hari Balakrishnan, Michael Cafarella, Tim Kraska, and Sam
Madden. 2020. Miris: Fast object track queries in video. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 1907-1921.
Yueting Chen, Nick Koudas, Xiaohui Yu, and Zigiang Yu. 2022. Spatial and
temporal constrained ranked retrieval over videos. Proceedings of the VLDB
Endowment 15, 11 (2022), 3226-3239.

Daniel Kang, Peter Bailis, and Matei Zaharia. 2019. Blazelt: optimizing declarative
aggregation and limit queries for neural network-based video analytics. VLDB
13, 4 (2019), 533-546.

Meng Liu, Ligiang Nie, Yunxiao Wang, Meng Wang, and Yong Rui. 2023. A
survey on video moment localization. Comput. Surveys 55, 9 (2023), 1-37.
Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-Chih Chen,
Jong Taek Lee, Saurajit Mukherjee, JK Aggarwal, Hyungtae Lee, Larry Davis,
etal. 2011. A large-scale benchmark dataset for event recognition in surveillance
video. In CVPR 2011. IEEE, 3153-3160.

Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang,
Jing Li, and Jian Sun. 2019. Objects365: A large-scale, high-quality dataset
for object detection. In Proceedings of the IEEE/CVF international conference on
computer vision. 8430-8439.

Renzhi Wu, Pramod Chunduri, Ali Payani, Xu Chu, Joy Arulraj, and Kexin Rong.
2025. SketchQL: Video Moment Querying with a Visual Query Interface. In
Proceedings of the 2025 ACM SIGMOD International Conference on Management
of Data.

Zhuangdi Xu, Gaurav Tarlok Kakkar, Joy Arulraj, and Umakishore Ramachan-
dran. 2022. EVA: A symbolic approach to accelerating exploratory video analytics
with materialized views. In Proceedings of the 2022 International Conference on
Management of Data. 602-616.

Songyang Zhang, Houwen Peng, Jianlong Fu, and Jiebo Luo. 2020. Learning 2d
temporal adjacent networks for moment localization with natural language. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 12870-12877.
Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng Weng, Zehuan Yuan, Ping
Luo, Wenyu Liu, and Xinggang Wang. 2022. Bytetrack: Multi-object tracking by
associating every detection box. In ECCV. Springer, 1-21.

[2]

[10

[11

[12

	Abstract
	1 Introduction
	2 System Overview
	2.1 Sketcher: Composing visual queries
	2.2 Matcher: Identifying Similar Clips

	3 Demonstration
	3.1 End-to-end Demo with Q1
	3.2 Multi-object Event Query Demo with Q2

	4 Conclusion
	Acknowledgments
	References

