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Abstract—Power management and energy efficiency are critical
research areas for exascale computing and beyond, necessitating
reliable telemetry and control for distributed systems. Despite this
need, existing approaches present several limitations precluding
their adoption in production. These limitations include, but are
not limited to, lack of portability due to vendor-specific and
closed-source solutions, lack of support for non-MPI applications,
and lack of user-level customization.

We present a job-level power management framework based
on Flux. We introduce flux-power-monitor and demonstrate
its effectiveness on the Lassen (IBM Power AC922) and Tioga
(HPE Cray EX235A) systems with a low average overhead
of 0.4%. We also present flux-power-manager, where we
discuss a proportional sharing policy and introduce a hierarchical
FFT-based dynamic power management algorithm (FPP). We
demonstrate that FPP reduces energy by 1% compared to
proportional sharing, and by 20% compared to the default IBM
static power capping policy.

I. INTRODUCTION

Power management and energy efficiency are critical re-
search areas in exascale computing and beyond. With the ad-
vent of Artificial Intelligence and Machine Learning (AI/ML)
based scientific workflows [9], [37], the power demands for
High-performance computing (HPC) systems are expected
to increase. Similar trends are also observed in the cloud
community [12]. These practical concerns, combined with
the desire for improved sustainability in supercomputing [18],
are necessitating a need for scalable production-grade power
telemetry and dynamic power control frameworks.

Significant research has been conducted in HPC and Cloud
power management with techniques focusing on energy-
efficiency research [11], [15], [19], [30], static and dynamic
power management [13], [16], [24], [31], [35], [38]–[40],
and hardware overprovisioning [23], [28]. Notable production-
grade and open-source solutions include runtime systems such
as Intel GEOPM [15] and EAR [11] that focus on application-
specific optimizations for traditional MPI-based applications,
and power-aware job scheduling plugins provided through
SLURM [4], [5], [10], [31], [32]. Many other fragmented
vendor-specific solutions have emerged [20], [33].

Despite the demonstrated benefits of these approaches, their
adoption in production-grade systems that are in the Top500
has been incredibly slow. Each of these existing approaches
have at least one and often many of the following limitations
– they are specific to a particular system (locked in to a

specific hardware vendor or device type) [4], [5], [31], [32],
are not open-source [20], are lacking support for modern non-
MPI workflows [11], [15], are not customizable from a power
policy perspective [20], [32], or are not portable across HPC
and Cloud setups [20], [32], [33]. Furthermore, these existing
approaches are typically designed for system administrators
with elevated privileges. User-level support for telemetry and
dynamic power management is unavailable.

In this paper, we address the above challenges and present a
job-level power management framework based on the Flux [6]
framework1. Flux is an open-source resource management
framework developed by Lawrence Livermore National Lab-
oratory (LLNL) and will be deployed on the El Capitan
supercomputer. Flux has been designed to support not just tra-
ditional HPC systems, but also cloud computing infrastructure,
including integrations with Kubernetes [21], [34].

The Flux-based job power management framework pre-
sented in this paper is vendor-neutral, scalable, and ex-
tensible. It leverages interfaces provided by Variorum [27],
a vendor-agnostic and open-source power management li-
brary. As a result, it supports multiple microarchitectures
across Intel (CPU/GPU), AMD (CPU/GPU), IBM, ARM
and NVIDIA platforms, including support for all three
DOE exascale systems. It comprises of two modules, the
flux-power-monitor for job-level power telemetry and
the flux-power-manager for both static and dynamic
job power management. It’s flexible design for both telemetry
and control goes beyond traditional MPI applications, applying
to anything that can be launched under a Flux job including
non-MPI frameworks such as Charm++ [2], Python-based
AI/ML workflows, groups of sequential programs launched
together, or even arbitrary applications self-launched under an
allocation. As part of the Flux framework, it inherently sup-
ports user-level telemetry and power management policy cus-
tomization, where different users can choose different power-
aware scheduling policies within their respective allocations.
To the best of our knowledge, this is the first vendor-neutral,

1Our framework is available at https://github.com/
flux-framework/flux-power-mgr. The flux-power-monitor
module is production-quality and is slated for a Fall 2024 release. The
flux-power-manager is experimental as we do not intend to use
power capping on our production systems yet. Each site has different power
management objectives and our goal with this work is to demonstrate
capability and not advocate one policy over another.
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open-source, scalable, extensible and low-overhead job-level
power management framework. We believe this will enable
both the HPC and cloud community to test, integrate and adopt
dynamic power management policies in production.

The paper is organized as follows. We provide a brief
background of the tools and applications used in this
paper in Section II. We then present the design of
flux-power-monitor and flux-power-manager in
Section III. We present a proportional power sharing pol-
icy and a novel Fast Fourier Transform (FFT) based dy-
namic power capping(FPP) algorithm. In Section IV, we
first demonstrate the effectiveness and vendor neutrality of
flux-power-monitor across two diverse HPC systems at
LLNL, Lassen (IBM Power AC922 system, #57 on Top500)
and Tioga (HPE Cray EX235A system, #187 on Top500).
We discuss how it achieves a low overhead of under 0.4%
on average. Then, we evaluate flux-power-manager on
the Lassen system showcasing both static and dynamic power
capping capabilities and demonstrate how FPP reduces energy
consumption by 1.2% with less than a 0.8% performance loss
on average, when compared to the proportional power sharing
policy; and by 20% with a 1.58x performance gain when
compared to default node-level power capping from IBM.
Finally, we include a discussion on production challenges
encountered and summarize our work.

II. BACKGROUND

A. HPC Systems

We base our experiments on two systems, Lassen and Tioga,
located at LLNL. Lassen is a 23-petaflop supercomputer with
IBM AC922 server nodes. Each dual-socket node has 44
IBM Power9 cores, 4 NVIDIA Volta GPUs, 256 GB of CPU
memory and 64 GB of high bandwidth (HBM2) GPU memory.
It has a total of 792 nodes, and is connected with Mellanox 100
Gb/s Enhanced Data Rate (EDR) InfiniBand. Power telemetry
is supported with in-band power sensors reported at the node,
socket (CPU cores), memory and GPU levels by the On-Chip
Controller (OCC) at 500 micro-second granularity [1]. Node-
level power telemetry is directly supported in hardware and
includes uncore components.

IBM supports node-level power capping on this architecture
with the OpenPower Abstraction Layer (OPAL) firmware. The
maximum power per node is 3050 W, and the minimum
possible soft power cap (not guaranteed by hardware) is 500
W [27]. The soft power cap is typically only applicable if
GPUs are not utilized. The minimum possible hard power cap
with GPU activity (guaranteed by hardware) is 1000 W. For
any given node power cap, the default IBM algorithm esti-
mates the power share for the GPU and CPU and determines
a maximum power cap for the GPUs. The ratio of distribution
can be modified using the Power Shifting Ratio (PSR), which
ranges from 0% to 100% on each socket. In this paper, the PSR
is always set to 100 (default), implying maximum power share
to the GPUs. GPU power capping is also supported directly,
through NVIDIA Management Library (NVML). Each GPU
has a peak power of 300 W and minimum power of 100 W.

Tioga is a 5.8-petaflop system with HPE Cray EX235a
server nodes. This is an early access system for El Capitan
with a total of 32 nodes. Each node has a single-socket
AMD Trento processor with 64 cores, along with AMD
Instinct MI250X accelerator modules. The MI250x system
consists of four Open Compute Platform Accelerator Modules
(OAMs) on each node. Each OAM package consists of two
Graphics Compute Dies (GCDs), each of which constitutes
one GPU device in the system, resulting in 8 GPUs per node
on Tioga [7]. The two GCDs in the package are connected
via four AMD Infinity Fabric links running at a theoretical
peak rate of 25 GT/sec, giving a bidirectional peak transfer
bandwidth of 400 GB/sec for the same.

Power telemetry is supported at the CPU-level and the
OAM-level (not per-GPU, but combined across two GPUs).
The hardware does not report memory or uncore power. The
underlying power management dials include machine-specific
registers (MSRs) as opposed to sensors. The E-SMI library
is used on the CPU side in conjunction with the Host Sys-
tem Management Protocol (HSMP) and amd-energy kernel
modules, and ROCm interfaces are used on the GPU side [27].
Power capping, while supported in the actual hardware at the
CPU- and the OAM-level, has not been enabled for users on
this early access system. Details on maximum or minimum
node power limits are unavailable. The maximum power at
the OAM-level is 560 W (across 2 GPUs).

The native system resource manager on Tioga is Flux.
On Lassen, however, the native resource manager is IBM
Spectrum LSF. Enabling Flux on Lassen for our experiments
was non-trivial, which we discuss in Section V.

B. Flux
Flux [6] is a flexible resource management framework de-

signed for the next-generation of distributed systems, ranging
from HPC systems, to cloud, to converged computing setups.
Flux enables hierarchical scheduling to improve throughput
and is based on a novel graph-based scheduling approach [25].

A flux-broker is a message broker daemon [3] that is
launched on each node. A Flux instance is similar to an allo-
cation of physical resources, and is a set of flux-broker
processes that form a Tree-Based Overlay Network (TBON)
for distributed communication. Flux components communi-
cates by exchanging messages over the overlay network.

A system-level Flux instance manages all the resources,
users, and high-level policies for a distributed system, such as
an HPC cluster. When a user requests a job, they are allocated
their own user-level Flux instance, allowing them to customize
the scheduling policy within their instance. On non-system-
level Flux setups, it can be bootstrapped under other resource
managers like SLURM or LSF. This means Flux can operate
within the constraints of these existing schedulers, enabling a
more flexible, hierarchical job scheduling system. In this work,
we use flux-core v0.63, released in June 2024.

C. Variorum
Variorum is an open-source, extensible, vendor-neutral

library for exposing power and performance capabilities
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Fig. 1: Power consumption timeline for LAMMPS and Quicksilver on Lassen, collected on a single node with all four GPUs.

of low-level hardware dials across diverse architectures
in a user-friendly manner [27]. Developed at LLNL, it
is a 2023 R&D100 winner that enables power telemetry
and capping on over twenty different CPU and GPU
microarchitectures from different vendors (Intel, AMD,
IBM, ARM, and NVIDIA). It can be integrated easily
with higher-level system software such as schedulers and
runtime systems [10]. Integration with Flux utilizes three
Variorum APIs, the variorum_get_node_power_json
API for vendor-neutral telemetry, the
variorum_cap_best_effort_node_power_limit
API for node-level power capping, and the
variorum_cap_each_gpu_power_limit for GPU
power capping. Node-level power capping varies on each
architecture. On Intel and AMD systems, while CPU-level
and GPU-level power caps can be set directly, no direct
node-level power capping is available in hardware. As a
result, best effort power capping at the node level distributes
power uniformly across available sockets. IBM AC922 allows
for direct node-level power capping.

D. Applications

We use five applications in this paper: four of these
are GPU-enabled MPI applications, and one is a CPU-only
Charm++ application. All applications have been compiled
with gcc-12.1.2 and CUDA 12.2.0 for Lassen, and
with clang-17.0.1 and with ROCm 6.0.3 on Tioga.
LAMMPS [36] is a classical molecular dynamics simula-
tion code. We use this as a strongly scaled application
with newton=on (pairwise bonded interactions) and use the
ML-Snap package to achieve high GPU utilization. GEMM
is a generalized matrix multiplication application that is
weakly scaled. We use the GEMM kernel from RajaPerf [17].
Quicksilver [29] is a weakly-scaled proxy application for
the Monte Carlo transport code based on Mercury. Laghos
[14] is a weakly-scaled application that solves time-dependent
Euler equations using unstructured high-order finite element
spatial discretization. Both Quicksilver and Laghos require
task partitioning based on the number of MPI ranks. These are

set as (2,2,1) for 4 ranks, (2,2,2) for 8 ranks, (2,2,4)
for 16 ranks, (4,4,2) for 32 ranks, and (4,4,4) for 64
ranks, in the x,y,z dimensions. NQueens is a CPU-only
Charm++ application based on the popular chessboard puzzle
that solves for a situation where no queens attack each other.
Table I shows the inputs we used with these applications.

In Figure 1 (log-scale), we show the power usage over time
for LAMMPS and Quicksilver on Lassen, from data collected
on a single node utilizing all 4 GPUs. Power from only one
socket (CPU) and one GPU is shown here for readability,
along with the total node power. The other socket, as well has
other three GPUs have a similar trend. LAMMPS and GEMM
are highly compute-bound and consume more power per node
(and per GPU) as a result. Quicksilver and Laghos are not
as compute bound. Only Quicksilver depicts periodic phase
behavior. Not all applications show this, for example, GEMM,
LAMMPS and NQueens have a relatively flat power timeline
without any swings. Laghos has some phase behavior, albeit
very minor in terms of the magnitude of swings observed in
power. It spends most of the time on the CPU and very little
on the GPU. We don’t show these timelines here due to lack
of space, but these are discussed in Section IV.

Application Scaling Input
LAMMPS Strong -v nx 64 -v ny 64 -v nz 64

GEMM Weak --sizefact 700 -repfact 50
Quicksilver Weak Derived based on number of ranks,

with a base mesh size of 16 and
300 particles per mesh with nsteps=40.

Laghos Weak -pt {task-partition}
-m {input-mesh} -rp 2 -tf 0.6

-no-vis -pa -d cuda --max-steps 40
NQueens Weak +p160, with 14 queens, grainsize=1000

TABLE I: Input parameters for each application.

III. DESIGN AND IMPLEMENTATION

Flux-power-monitor and flux-power-manager
are implemented as modules within the Flux framework. A
module [3] represents a service that is implemented as a
dynamically-loaded broker plugin. Modules have their own
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thread of control, are event-driven, and interact with Flux
exclusively via messages.

A. Flux-power-monitor

This module is implemented as a control loop where each
node periodically collects power data, but is not aware whether
a job is running on it or not, making it stateless. An external
client requests data for a specific job’s power from the module.
Based on this request, power data is aggregated and reported
back to the client. By keeping the power monitor stateless, the
overhead of power telemetry is significantly reduced.

The flux-power-monitor has the three components.
A root-agent that runs in the Flux daemon at the root of
the Flux Tree-Based Overlay Network (TBON). This agent
is primarily responsible for communicating with the external
client. All nodes have a node-agent, which collects power
data using Variorum. This data includes a timestamp and
instantaneous component-level (CPU, GPU, memory) power.
This data is stored in the form of a circular buffer of a fixed
size. The size of the buffer, as well as the sampling rate, are
configurable by the user. By default, power data is collected
every 2 seconds, and a buffer size of 43.4MB is used (stores
100,000 instances of the Variorum JSON object).

An external client requests job-level telemetry from the
flux-power-monitor. This is a Python script that takes a
job identifier and generates the associated details, such as the
nodes allocated to the job, and the start and end time of the job.
On receiving the client’s request, the root-agent requests
aggregated power data from the respective node-agent(s)
on which the job executed, which is then relayed to the client.
This data is presented to the user in the form of a CSV file,
along with a column specifying whether the module had a
complete data set for the job or a partial one, depending on
when the data was flushed out.

B. Flux-power-manager

The flux-power-manager module is designed to be
a hierarchical and dynamic power management system. It is
state-aware, implying that it has complete knowledge of the
state of the cluster and the jobs executing on it at any given
point in time. Its hierarchical operation allows it to adjust
power at various levels.

This module has three main components: the
cluster-level-manager operates across all nodes
and jobs, and is responsible for ensuring that the total power
consumption of the cluster does not exceed a specified
constraint. It runs on the root node. In the simplest use case,
where an HPC system has no power constraint, it allocates
the theoretical peak power to each node and performs no
power capping. When system power is constrained, each job
is allocated power in proportion to its requested node count
(see Subsection III-B1). This job-level power limit is the
maximum power that the entire job can consume at any point
in time.

The job-level-manager, which also runs on the root
node, receives the job-level power limit and distributes the

power equally to each node associated with the job (node-
level-power-limit). Additionally, it maintains the complete
state of the current job.

The node-level-manager is present on each node and
is responsible for setting both node and GPU-level power
caps. It also tracks the power usage on the node at regular
intervals by collecting power data in a separate thread. All
three components communicate using RPCs over the Flux
TBON.

When using proportional power allocation, the
node-level-manager receives the node-level power
limit and enforces it directly. The node-level-manager
can also utilize dynamic power management policies, such
as ones based on past power history, measured performance
counters, or other progress metrics. We introduce a Fast
Fourier Transform (FFT) based dynamic power management
policy (FPP), which aims to identify application phases
(period of an FFT) and adjusts the power cap on each GPU
on the node accordingly.

1) Proportional Sharing Policy: For a given cluster with N
nodes and a global power cap of PG, its current state is defined
as the k currently executing jobs with a combined power
allocation of Pk (

∑k
x=1 Px) and currently allocated nodes Nk

(resulting in a per-node power allocation of Pn = Pk/Nk).
When a new job Ji requests Ni nodes, the

cluster-level-manager will first try to allocate
the maximum possible power to each node by determining
if the available power (Pavail = PG − Pk) is sufficient
for doing so. If the available power is not sufficient, it
will proportionally redistribute power to all jobs, where the
per-node power allocation will be Pn = PG/(Nk +Ni). The
new job will be assigned Pi = Ni ∗ Pn amount of power.

2) Fast Fourier Transform Based Policy: Algorithm 1
shows an overview of FPP. The key advantage of using FFT is
its ability to determine the period of a signal. This enables us
to identify periodic phase behavior in applications. This policy
integrates with the node-level-manager to dynamically
determine and set per-GPU power caps. The algorithm above
sets the values for P_reduce, powercap_levels, and
Max_GPU_Cap assuming a GPU similar to the NVIDIA
Volta GPU. These values are customizable. The algorithm is
executed on a per-GPU basis, allowing for non-uniform power
distribution among GPUs on the same node. While we utilize
this policy on GPUs, it is device-agnostic from a logistical
perspective, and can be easily extended to be utilized for
socket-level or memory-level power capping.

The FFT-GET-PERIOD procedure continuously monitors
power data, updating every thirty seconds to predict the appli-
cation’s period with increasing accuracy. The GET-GPU-CAP
procedure adjusts the GPU-level power cap based on the
difference in the FFT period. If the difference exceeds a
specified threshold, the power is increased. Power adjustments
cease when the delta falls below the convergence threshold. If
the delta lies between the change and convergence thresholds,
the power is decreased, indicating that the application is not
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Algorithm 1 FFT-Power-Policy (FPP) (Per-GPU)
1: procedure FFT-GET-PERIOD

2: buf ← empty buffer ▷ Initialize buffer
3: while job is running do
4: STOREPOWERDATA(buf )
5: if time elapsed ≥ 30 seconds then
6: T ← FINDPERIOD(buf )
7: Store T

8: end if
9: end while

10: end procedure

11: procedure GET-GPU-CAP(Tcur, Pcapprev , Pcapcur , Tprev)
12: convergeth ← 2 seconds
13: changeth ← 5 seconds
14: Preduce ← 50 W
15: Fconverge ← False
16: powercaplevels ← [10, 15, 25] W
17: ∆← Tcur − Tprev

18: ∆abs ← |∆|
19: if Pcapprev is None or Fconverge is true then
20: return Pcapcur

21: end if
22: if ∆abs ≤ convergeth then
23: Fconverge ← true
24: return Pcapcur

25: else if ∆ < 0 and convergeth < ∆abs < changeth then
26: return Pcapcur − Preduce

27: else
28: return Pcapcur + powercaplevels[min(∆abs

5
, 2)]

29: end if
30: end procedure

31: procedure MAIN

32: powercaptime ← 90 sec
33: Tprev ← 0 ▷ Initialize Tprev

34: Pcapprev ← None
35: Max GPU Cap← 300 W ▷ Vendor-specified maximum
36: GPU Power Lim← Derived max. cap from node-level limit
37: Pcapcur ← min(Max GPU Cap,GPU Power Lim)

38: while time mod powercaptime = 0 do
39: Tcur ← FFT-GET-PERIOD

40: Pcapnext ← GET-GPU-CAP(Tcur, Pcapprev , Pcapcur , Tprev)
41: Set GPU power cap to Pcapnext

42: Reset FFT buffer
43: end while
44: end procedure

significantly affected by the current power cap. The goal
of FPP is to improve energy efficiency without negatively
affecting application performance.

IV. RESULTS

In this section, we first discuss vendor-neutral telemetry
followed by an overhead analysis on different systems. Then,
we present a detailed set of scenarios explaining static and
dynamic power capping, comparing the FPP algorithm with
the proportional power sharing algorithm. We also discuss

how flux-power-manager can be utilized for non-MPI
applications and show the impact on a real job queue.

A. Vendor-neutral telemetry with flux-power-monitor

Figure 2 shows the aggregated power information for two
applications from the Lassen and Tioga clusters. Applications
on Lassen are scaled from 1–32 nodes. On Tioga, they
are scaled from 1–8 nodes. Lassen supports direct power
measurements at the node, memory, CPU, and GPU levels.
Tioga supports power measurements only at the CPU- and
OAM-level (2 GPUs per OAM). Memory and total node power
cannot be directly measured. The node power reported is thus
a conservative estimate, and is the sum of the measured power
on the single socket (CPU) and the four OAMs.

The flux-power-monitor module aggregates values
(sampled every 2 seconds) for each node and provides per-
node data for the job. In the graphs, we also average across
the nodes for better readability. For weakly scaled applications
(Quicksilver and Laghos), the average per-component power
consumption is fairly similar when scaling from 1–32 nodes.
In contrast, for LAMMPS, which is a strongly scaled appli-
cation, the power consumption decreases as the problem size
decreases when going from 1–32 nodes. Most of this reduction
in power consumption comes from the GPU-level.

We also note that Tioga consumes more absolute power
than Lassen on the same application with the same inputs at
the same node count (for the four MPI applications in our
experiments). Recall that the node power reported here on
Tioga doesn’t include memory and uncore power, so the actual
node power consumption (which we do not have a way of
measuring) is expected to be even higher. This higher power
consumption is because we are utilizing a total of 8 GPUs per
node as opposed to 4 GPUs per node on Lassen.

Tioga is expected to be more energy efficient than Lassen as
it provides higher floating-point-operations-per-Watt (FLOPS
per Watt). In Table II, we show the absolute runtime for three
applications at 4 and 8 nodes on Lassen and Tioga, along
with average per-node energy. We observe that for LAMMPS,
overall energy reduced by 21.54% on Tioga compared to
Lassen. For Laghos, the energy per-node increased by 139%
on Tioga, but this is an expected result as the task count on
Tioga was twice that of Lassen (8 GPUs instead of 4 GPUs)
and the problem size was scaled based on the number of tasks.

Quicksilver demonstrated anomalous behavior in terms of
execution time. On Lassen, the runtime was of the order of 12–
14 seconds. On Tioga, we would have expected an execution
time of about 24–28 seconds due to doubling of tasks and
weak scaling. However, we observed the range to be 102–106
seconds, which was unexpected. This is being investigated by
the development team and is attributed to its HIP variant. We
do not report energy data for comparison as a result.

B. Overhead of flux-power-monitor

The flux-power-monitor module executes as a sep-
arate thread within the Flux framework. As a result, its
influence and impact on application performance is expected
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Fig. 2: Power data for various applications on Lassen and Tioga

Application Node Lassen Tioga Lassen Tioga Lassen Tioga Lassen Tioga
Count Task Task Runtime Runtime Avg. Power Avg. Power Avg. Energy Avg. Energy

Count Count (s) (s) (W) (per-node) (W) (per-node) (kJ) (per-node) (kJ) (per-node)
LAMMPS 4 16 32 77.17 51.00 1283.74 1552.40 99.07 79.17
LAMMPS 8 32 64 46.33 29.67 1155.08 1388.99 53.51 41.21

Laghos 4 16 32 12.55 26.71 472.91 530.87 5.94 14.18
Laghos 8 32 64 12.62 26.81 469.59 532.28 5.93 14.27

Quicksilver 4 16 32 12.78 102.03∗ 546.99 915.82 - -
Quicksilver 8 32 64 13.63 106.15∗ 559.64 924.85 - -

TABLE II: Performance reported by each application at 4 and 8 nodes on Lassen and Tioga systems.
∗We do not compare the energy of Quicksilver across Lassen and Tioga due to anomalous execution time of the HIP variant.

to be minimal. In order to better understand its overhead, we
measured the execution time of three applications with and
without the flux-power-monitor loaded. Applications
were scaled from 1–32 nodes on Lassen, and 1–8 nodes on
Tioga. Each measurement was repeated six times.

In Figure 3, we show the percentage slowdown in the
execution time for each application at different node counts,
averaged over the six repetitions. We observe that the average
overhead is 1.2% on Lassen and 0.04% Tioga.

On Lassen, we observed that lower node counts ranging
from 1–2 nodes (blue bars in Figure 3) had a higher overhead
for some applications. With Laghos, we saw an average
overhead of 6.2% on one node and 8.2% on two nodes, and
with Quicksilver, we saw an average overhead of 9.3% on two
nodes. In order to investigate this, we looked at each repeated
run, which we show in Figure 4. The Y-axis in Figure 4 shows
a box-plot of the raw execution time in seconds for each
application, over the six repeated runs. The X-axis indicates
whether or not flux-power-monitor was loaded.

Here, we observed significant run-to-run variability in
Laghos and Quicksilver at these lower node counts (over
20%), even when the flux-power-monitor module was

not loaded. This run-to-run variation persisted for Laghos
when the flux-power-monitor module was loaded. This
variation explains the slowdowns we see on Lassen at low
node counts on these two applications. We attribute these
exceptional observations to run-to-run variability due to issues
such as jitter from operating system daemons [22] or the
influence of other user’s jobs due to congestion [8].

There were also some situations where we observed a
minor speedup, such as with LAMMPS and Quicksilver on
Lassen, and Quicksilver on Tioga. We don’t believe that using
flux-power-monitor can result in applications speeding
up. We did not analyze these further, and we attribute these
to run-to-run variation as well.

C. Static Job-Level Power Allocation

We establish a baseline for dynamic power management
(Section IV-D) by first discussing static power capping. We
leverage the Lassen system for these experiments as node-level
(as well as GPU-level) power capping capability is available
for users. Furthermore, Lassen reports node power directly,
including memory and uncore component power. We assume
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Fig. 3: Measured across six repeated runs, the average overhead of flux-power-monitor is 1.2% on Lassen and 0.04%
Tioga. Lower node counts (blue bars) on Lassen demonstrated run-to-run variability.
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Fig. 4: Run-to-run variation is observed in Laghos and Quick-
silver at low node counts.

an idle node power consumption of 400 W based on our
measurements, and power capping is enforced with Variorum.

We do not account for network power in this analysis.
Network power is typically in a tightly bounded range [26],
and we assume that it is a constant that can be deducted from
both the cluster-level and the node-level proportionally.

For this subsection and the next we design our experiments
to reflect the availability of total system power in practice.
Systems could be unconstrained, where all their components
can operate at full power simultaneously. Systems can also be
power-constrained (hardware-overprovisioned [28]), where all
components cannot operate at full power simultaneously.

We consider an 8-node cluster for our evaluation. We study
the performance and power usage of two HPC applications,
GEMM and Quicksilver, when executing as a 6-node and 2-
node job respectively, with a 10x problem size for Quicksilver
and double the iteration count for GEMM (with respect to
Table I). We focus on two applications to provide detailed
analysis of performance and power management.

Use Node- Derived Maximum Average
Case Level Max. GPU Power Power

Cap (W) Cap (W) Usage (kW) Usage (kW)
Unconstrained 3050 300 10.66 8.9
Power-constr. 1200 100 6.05 5.1
Power-constr. 1800 216 8.68 7.2
Power-constr. 1950 253 9.5 7.9

TABLE III: Static power allocation on an 8-node Lassen
allocation using IBM-provided node-level power capping.

We consider two use cases. The first is an unconstrained
system, where the cluster-level power bound is 24,400 W
(eight nodes at 3050 W each). The second is a power-
constrained system, where the cluster-level power bound is
set to 9600 W. With uniform and static allocation, this comes
to 1200 W per node. At any point of time during cluster
operation, a power management policy under effect (static or
dynamic) should not violate (that is, exceed) these cluster-level
power bounds. The overall objective is to compare different
power management policies in terms of their overall energy
use as well as individual application performance slowdowns,
especially in a power-constrained system.

Table III shows the measurements from an unconstrained
system (without any power capping) as well as from a power-
constrained system when executing DGEMM and Quicksilver
on 6 and 8 nodes, respectively. We show the impact of three
different IBM node-level power cap values: 1200, 1800 W
and 1950 W per node. We report the maximum cluster-level
power usage (maximum power measured, summed across all
nodes at all points in time when sampled every 2 seconds)
and the average cluster-level power usage. We also show the
maximum derived power cap per GPU, which is determined
by IBM when a node-level power cap is set.

Our first observation is that in an unconstrained scenario the
maximum power usage was only 10,657 W (10.66 kW) out
of an allowed 24.4 kW despite using all four GPUs across the
two applications, and with a highly compute-bound application
such as GEMM executing on 6 of the 8 nodes. This is a
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common trend in HPC systems, as most systems are worst-
case power provisioned [28]. We observe on Lassen that most
applications used less than 60% of provisioned power over
multiple years of operation [26].

Next, we observe that IBM’s default node-level power
capping algorithm is extremely conservative. With a cluster-
level power bound of 9600 W, we would have expected the
measured maximum power usage (column 4 in Table III) to
be close to 9.6 kW when each node had a power cap of 1200
W. Despite setting the PSR to 100%, indicating maximum
possible power to GPUs, IBM’s algorithm capped each GPU
to 100 W. The maximum power usage was 6048 W (6.05 kW),
well below the cluster-level bound of 9.6 kW.

As a result, we tested several other IBM node-level power
caps to identify when the measured maximum power usage
is close to the cluster-level bound of 9.6 kW. We found that
at 1950 W per node, the maximum power usage is 9.5 kW,
bringing it close to our desired constraint. We thus use the
1200 W and 1950 W node-level power caps as our baseline for
the flux-power-manager experiments in Section IV-D.

We also show usage data at a node power cap of 1800
W. Here, we observe that the average per-node energy when
executing GEMM and Quicksilver was 784 kJ, as opposed to
827 kJ when the power cap is set at 1950 W. We note that
this node-level power cap was optimal for the combination of
applications we were executing, but we do not have a clear
explanation for why this was the case. It is also important to
note that we found this optimal value through a manual sweep,
which is not ideal in terms of determining the appropriate static
cap for a certain set of jobs on a specific hardware. Our choice
of baselines (1200 W and 1950 W node power cap) do not
impact the comparative results for the dynamic power policies.

D. Dynamic Job-Level Power Management

We build on the experiments from Section IV-C to evaluate
the effectiveness of the proportional sharing and FPP algo-
rithms. Table IV compares the performance of GEMM and
Quicksilver for unconstrained, static (at 1950 W ), proportional
share, and FPP. Along with the application performance,
maximum node power usage (across all nodes) and the average
energy per node are also shown. Quicksilver experiences
minimal changes in its performance under a power constraint.
GEMM, being highly compute bound, experiences a slowdown
under the power-constrained use case. The advantage of a
proportional sharing approach is its ability to allocate power
based on the number of nodes, sharing power when needed
and reclaiming it when a job finishes. Compared to IBM’s
default approach (1200 W node power cap, static capping),
overall energy improved by 19% with an almost 1.59x per-
formance gain. Compared to the other static policy (1950 W
node power cap), energy improved by about 5.4%, due to
reduced power draw. With proportional share, GEMM receives
additional power when Quicksilver is not running, as shown in
Figure 5. We depict only one node each for each application,
as other nodes behave similarly. FPP reduces energy even
further, improving energy by 1.2% when compared to the

proportional sharing (performance degradation of 0.8%), by
6.6% when compared to static policy at 1950 W node power
cap (performance degradation of 4.5%), and by 20% when
compared to IBM’s default approach (performance gain of
about 1.58x). The timeline for FPP is shown in Figure 6.

The less than expected improvements of the two dynamic
policies when compared to the static policy with node power
cap of 1950 W can be attributed to GEMM being highly com-
pute intensive. Any reduction in power degrades performance
significantly, so there is less opportunity to save power while
preserving performance. For applications that are less compute
bound, a greater improvement in energy efficiency is expected.

We also want to acknowledge the fact that an FFT-based
approach does not work with applications that do not exhibit
periodic phase behavior. With GEMM, FPP first tries to reduce
power but sees that the period doubles and instantly gives back
the power to the application. In the case of Quicksilver, the
impact of power capping itself is quite small (compared to
the unconstrained scenario), so FPP converges early. We also
did not explore FPP parameters, such as the power capping
interval (which was set to 90 seconds) or the ranges for power
caps (we picked 50 W for power reduction, and 10–25 W for
our steps as shown in Section III-B2) in this paper. Exploring
this research space for phase-based applications and workflows
is part of our future work.

E. Impact on a Job Queue

We finally demonstrate the impact of the proportional shar-
ing and FPP policies on a real job queue with 10 jobs on a
16-node allocation on Lassen. Our job queue uses a random
mix of the four applications, with each application requesting
between 1–8 nodes. The job queue had 3 jobs with Laghos,
2 with Quicksilver, 3 with LAMMPS and 2 with GEMM,
making it a mostly compute-intensive queue. We opt for a
small cluster and job queue as these are actual runs and not
simulations. Using a job queue with hundreds of jobs could
take multiple hours or days of experiments across different
use cases. Flux schedules these jobs as any regular resource
manager would. Our results show that both the proportional
sharing policy and FPP, the overall makespan of the queue
(difference between when the last job ends and when the
first job was submitted) remains same with a value of 1539
seconds. The average per-job energy-per-node improved by
1.26% with FPP.

F. Demonstration on Non-MPI Applications

Figure 7 shows how proportional power capping can be
applied to any Flux job, whether or not it utilizes MPI.
The figure shows a Charm++ NQueens application running
on 2 nodes, alongside GEMM which executes on 6 nodes.
As expected, GEMM power consumption drops when the
NQueens application enters the system.

V. DISCUSSION

We encountered significant challenges during this study.
First, setting up Flux on Lassen was non-trivial. Lassen uses
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Use
Case
and
Policy

Node
Power
Cap
(W)

Max. Node
Power Usage
(W)

Exec.
Time
(s)

Avg. Node
Energy
(kJ)

GEMM QS GEMM QS GEMM QS
Unconstr. 3050 1523 952 548 348 726 177
Constr.
IBM
default

1200 841 820 1145 359 805 160

Constr.
Static 1950 1330 975 564 347 652 175

Constr.
Prop.
Shar.

1950 1343 939 597 347 612 170

Constr.
FPP 1950 1325 951 602 350 598 174

TABLE IV: Comparison of static and dynamic power capping.
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Fig. 5: Proportional Power Sharing Policy GEMM receives
additional power when Quicksilver is not executing.
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Fig. 6: FFT Based Power Policy (FPP): FPP algorithm
converges quickly for both application, as there is not a lot
of opportunity to save power while preserving performance.
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Fig. 7: Proportional Power Capping: GEMM and Charm++
NQueens application.

IBM’s Spectrum MPI, which relies on PMIx. Further, there is
limited support for updated packages and modules. Installing
Flux involved installing a custom version of Open-PMIx and
bootstrapping Flux accordingly. As we were evaluating on an
early access system with Tioga, obtaining high-performance
HIP variants for the applications was another challenge. For
example, we could not obtain a HIP variant for SW4lite.
Quicksilver results were unexpected, as we discussed in Sec-
tion IV, and Kripke execution failed on the Tioga system. Ap-
plication developers and domain scientists are still addressing
these issues at the time of writing this paper. We discussed the
anomalies with IBM’s node-level power capping in our results.
In addition to these, we observed that on some nodes at a low
node-level power cap (1200 W), NVIDIA GPU power capping
failed intermittently, either picking up the last set power cap or
defaulting to the maximum power cap. Supercomputing sites
often rely on vendors to provide reliable power capping for
power-constrained scenarios. We observed in our experiments
that this is often not the case. Adopting dynamic power
capping techniques in production requires these algorithms
to be effective as per stated guidelines. Documentation on
granularities of power capping, error bounds, and steady state
convergence is sparse in the public domain, delaying adoption
of such techniques at scale.

VI. SUMMARY AND FUTURE WORK

We presented a vendor-neutral, production quality, and low
overhead job-level power management framework based on
Flux. We discussed flux-power-monitor for teleme-
try and demonstrated its effectiveness on the Lassen
and Tioga systems with a low overhead of 0.4%. With
flux-power-manager we presented FPP, a proportional
share and a novel, hierarchical FFT-based dynamic power
management policy called. Our results show that FPP reduces
job-level energy consumption by 1% compared to proportional
share policy, and by 20% compared to the default IBM static
power capping policy. Our future work involves exploring
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various parameters for FPP, studying diverse job queues in
converged computing setups, and power-performance opti-
mizations for complex scientific workflows.

ACKNOWLEDGMENTS

We thank Dr. Barry Rountree for his contributions to an
early version of flux-power-monitor, and Dr. Thomas
Scogland for his insightful review and suggestions. We are also
grateful to the Flux team for their debugging help. This work
was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-CONF-868257), and
partially supported by U.S. National Science Foundation under
Grants CCF-1942182.

REFERENCES

[1] IBM OCC Firmware Interface Specification for Power9, 2019.
URL: https://github.com/open-power/docs/blob/P9/occ/OCC P9 FW
Interfaces.pdf.

[2] Charm++: Parallel Programming with Migratable Objects, 2024. URL:
https://charm.cs.illinois.edu/research/charm.

[3] Flux RFC Index: RFC 3/Flux Message Protocol and RFC 5/Flux Broker
Modules, 2024. URL: https://flux-framework.readthedocs.io/projects/
flux-rfc/en/latest/spec 5.html.

[4] PowerAPI Reference Implementation and Plugins, 2024. URL: https:
//github.com/pwrapi/pwrapi-ref.

[5] REGALE: Open Architecture for Exascale Supercomputers, 2024. URL:
https://regale-project.eu/.

[6] Dong H. Ahn, Jim Garlick, Mark Grondona, Don Lipari, Becky
Springmeyer, and Martin Schulz. Flux: A next-generation resource
management framework for large hpc centers. In 2014 43rd International
Conference on Parallel Processing Workshops, pages 9–17, 2014.

[7] AMD INSTINCT MI250 Microarchitecture. AMD Instinct MI250 Mi-
croarchitecture, 2024. ROCm Documentation. URL: https://rocmdocs.
amd.com/en/latest/conceptual/gpu-arch/mi250.html.

[8] Abhinav Bhatele, Kathryn Mohror, Steven H. Langer, and Katherine E.
Isaacs. There goes the Neighborhood: Performance Degradation due to
Nearby Jobs. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’13,
New York, NY, USA, 2013. Association for Computing Machinery.

[9] Harsh Bhatia, Francesco Di Natale, Joseph Y. Moon, Xiaohua Zhang,
Joseph R. Chavez, Fikret Aydin, Chris Stanley, Tomas Oppelstrup,
Chris Neale, Sara Kokkila Schumacher, Dong H. Ahn, Stephen Her-
bein, Timothy S. Carpenter, Sandrasegaram Gnanakaran, Peer-Timo
Bremer, James N. Glosli, Felice C. Lightstone, and Helgi I. Ingolfsson.
Generalizable coordination of large multiscale workflows: Challenges
and learnings at scale. In SC21: International Conference for High
Performance Computing, Networking, Storage and Analysis, 2021.

[10] Christopher Cantalupo, Jonathan Eastep, Siddhartha Jana, Masaaki
Kondo, Matthias Maiterth, Aniruddha Marathe, Tapasya Patki, Barry
Rountree, Ryuichi Sakamoto, Martin Schulz, et al. A Strawman for an
HPC powerstack. Technical report, 2018. URL: https://www.osti.gov/
biblio/1466153.

[11] Julita Corbalan and Luigi Brochard. EAR: Energy management
framework for supercomputers. Technical report, 2019.
URL: https://www.bsc.es/sites/default/files/public/bscw2/content/
software-app/technical-documentation/ear.pdf.

[12] Alex de Vries. The growing energy footprint of artificial intelligence.
Joule, 7(10):2191–2194, 2023. URL: https://www.sciencedirect.com/
science/article/pii/S2542435123003653.

[13] Jianru Ding and Henry Hoffmann. DPS: Adaptive Power Management
for Overprovisioned Systems. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’23, New York, NY, USA, 2023. Association for
Computing Machinery. doi:10.1145/3581784.3607091.

[14] Veselin A. Dobrev, Tzanio V. Kolev, and Robert N. Rieben. High-order
curvilinear finite element methods for lagrangian hydrodynamics. SIAM
Journal on Scientific Computing, 34(5):B606–B641, 2012.

[15] Jonathan Eastep, Steve Sylvester, Christopher Cantalupo, Brad Geltz,
Federico Ardanaz, Asma Al-Rawi, Kelly Livingston, Fuat Keceli,
Matthias Maiterth, and Siddhartha Jana. Global extensible open power
manager: A vehicle for HPC community collaboration on co-designed
energy management solutions. In Julian M. Kunkel, Rio Yokota, Pavan
Balaji, and David Keyes, editors, High Performance Computing, pages
394–412, Cham, 2017. Springer International Publishing.

[16] Neha Gholkar, Frank Mueller, Barry Rountree, and Aniruddha Marathe.
Pshifter: Feedback-based dynamic power shifting within HPC jobs for
performance. In Proceedings of the 27th International Symposium on
High-Performance Parallel and Distributed Computing, pages 106–117,
2018.

[17] Richard D. Hornung, Holger E. Hones, and USDOE National Nu-
clear Security Administration. RAJA Performance Suite, 9 2017. URL:
https://www.osti.gov//servlets/purl/1394927.

[18] Baolin Li, Rohan Basu Roy, Daniel Wang, Siddharth Samsi, Vijay
Gadepally, and Devesh Tiwari. Toward Sustainable HPC: Carbon
Footprint Estimation and Environmental Implications of HPC Systems.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’23, 2023.

[19] Aniruddha Marathe, Peter E Bailey, David K Lowenthal, Barry Roun-
tree, Martin Schulz, and Bronis R de Supinski. A run-time system for
power-constrained HPC applications. In High Performance Computing:
30th International Conference, ISC High Performance 2015, Frankfurt,
Germany, July 12-16, 2015, Proceedings 30, pages 394–408. Springer,
2015.

[20] Marcel Marquardt, Jan Mader, Tobias Schiffmann, Christian Sim-
mendinger, and Torsten Wilde. Powersched: A HPC System
Power and Energy Management Framework. Technical report,
2018. URL: https://cug.org/proceedings/cug2023 proceedings/includes/
files/pap113s2-file1.pdf.

[21] Daniel J. Milroy, Claudia Misale, Giorgis Georgakoudis, Tonia
Elengikal, Abhik Sarkar, Maurizio Drocco, Tapasya Patki, Jae-Seung
Yeom, Carlos Eduardo Arango Gutierrez, Dong H. Ahn, and Yoonho
Park. One step closer to converged computing: Achieving scalability
with cloud-native hpc. In 2022 IEEE/ACM 4th International Workshop
on Containers and New Orchestration Paradigms for Isolated Environ-
ments in HPC (CANOPIE-HPC), pages 57–70, 2022.

[22] Oscar H. Mondragon, Patrick G. Bridges, Scott Levy, Kurt B. Fer-
reira, and Patrick Widener. Understanding Performance Interference
in Next-generation HPC Systems. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’16. IEEE Press, 2016.

[23] Pratyush Patel, Esha Choukse, Chaojie Zhang Íñigo Goiri, Brijesh
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