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ABSTRACT
Discrete GPU accelerators, while providing massive computing
power for supercomputers and data centers, have their separate
memory domain. Explicit memory management across device and
host domains in programming is tedious and error-prone. To im-
prove programming portability and productivity, Unified Memory
(UM) integrates GPU memory into the host virtual memory sys-
tems, and provides transparent data migration between them and
GPU memory oversubscription. Nevertheless, current UM tech-
nologies cause significant performance loss for applications. With
AMD GPUs increasingly being integrated into the world’s leading
supercomputers, it is necessary to understand their Shared Vir-
tual Memory (SVM) and mitigate the performance impacts. In this
work, we delve into the SVM design, examine its interactions with
applications’ data accesses at fine granularity, and quantitatively
analyze its performance effects on various applications and identify
the performance bottlenecks. Our research reveals that SVM em-
ploys an aggressive prefetching strategy for demand paging. This
prefetching is efficient when GPU memory is not oversubscribed.
However, in tandem with the eviction policy, it causes excessive
thrashing and performance degradation for certain applications un-
der oversubscription. We discuss SVM-aware algorithms and SVM
design changes to mitigate the performance impacts. To the best of
our knowledge, this work is the first in-depth and comprehensive
study for SVM technologies.

CCS CONCEPTS
• Computer systems organization→ Heterogeneous (hybrid)
systems; Processors and memory architectures; • Software
and its engineering→Memory management; • Hardware→
Hardware accelerators.
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1 INTRODUCTION
Discrete GPU accelerators, with their massive parallel processing
capabilities and energy efficiency, are crucial for providing the
computing power of today’s HPC systems and data centers. They
enable significant advancements in areas such as climate model-
ing [7], bio-informatics [38], and AI. As of today, 90% of top 10
and more than 35% of top 500 supercomputers are accelerated by
discrete GPUs [41], providing about 50% of the performance share
of top 500 supercomputers. They have also become the predomi-
nant hardware for deep learning and large language models (LLMs)
training. For example, the BLOOM (176B parameters) is trained
over 1 million GPU hours using BigScience infrastructure [29], and
the GPT-3 (175B parameters) is estimated to be over several million
GPU hours [8].

Discrete GPU accelerators have their own separate memory do-
mains from the host memory domain. Programmers must invoke
memory copy functions and ensure the data residing in the GPU
doesn’t exceed GPU memory capacity. Explicit memory manage-
ment and data movement across domains are laborious and error-
prone, especially for memory-demanding workloads where the
memory footprint exceeds GPU memory. It is increasingly impor-
tant to relieve programmers of such tasks and make GPU program-
ming more productive and portable, as deep learning models and
social networks are increasingly larger [8, 29, 35, 44], and scientific
workloads are more data-intensive [7, 38].

Unified Memory (UM) integrates GPU memory into the host
virtual memory systems and transparently migrates data between
them. Additionally, UM supports GPU memory oversubscription, i.e.,
GPU kernels access more data than the GPU memory can hold,
significantly enhancing programming portability and productivity
for memory-demanding workloads. UM technologies have been
adopted by HPC frameworks such as Raja [6], Kokkos [9], and Trili-
nos [16] for writing portable applications on today’s and future’s
major HPC platforms, and by deep learning frameworks [12, 22, 34].
However, even with active research and improvement by ven-
dors and research community [3, 18, 23, 42], current UM technolo-
gies cause significant, or even prohibitive, performance degrada-
tion [25, 26, 46].

To bridge the performance gap between explicit memory man-
agement and Unified Memory (UM), a deep understanding of UM’s
design and identification of performance bottlenecks are crucial.
NVIDIA GPUs have been the primary choice for accelerators in
supercomputers and data centers, sparking significant research in-
terest in NVIDIA’s Unified Virtual Memory (UVM). Researchers
have examined UVM’s design, its impact on application perfor-
mance, and proposed optimization techniques [10, 13, 31]. In recent
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years, AMD GPUs have seen a notable growth in adoption, pow-
ering 7 of the 10 most energy-efficient supercomputers. Both the
fastest supercomputer, Frontier, and the upcoming leader, El Capi-
tan [28], utilize AMD GPUs for acceleration. However, AMD’s UM
technology, Shared Virtual Memory (SVM), hasn’t received much
research attention.

SVM has a distinct design from UVM, and the insights derived
for UVM may not be directly applicable to SVM. While both are
implemented as software drivers mirroring page tables on both the
host and the device, UVM is a technology developed for NVIDIA’s
specific hardware and drivers for performance, optimization, and ef-
ficiency. In contrast, SVM interfaces with the Linux kernel’s Hetero-
geneous Memory Management (HMM) [19, 32], which is designed
for broader hardware compatibility and integration. While HMM
is still in development, its unified framework is poised to greatly
simplify driver development and enhance application portability.

In this work, we delve into the design of the shared Virtual Mem-
ory (SVM) and examine its impact on the performance across a
variety of applications. We investigate its UMmanagement strategy,
architecture and components, page fault handling and data migra-
tion/eviction in demand paging. We further quantify its overhead
and the overall cost, and identify its performance bottlenecks and its
variations with applications’ data access. Using the fine-grain fault
and migration profiles, we classify the applications and their access
patterns, and reason the root causes of performance bottlenecks.

We reveal that SVM manages the unified memory by ranges, i.e.,
a range is a number (typically large) of contiguous pages. With
demand paging, a single fault can trigger an entire range migra-
tion, which in turn requires a range eviction if GPU memory is
oversubscribed. This management strategy is equivalent to the most
aggressive prefetching. We find that the current SVM design is ben-
eficial if the GPU is not oversubscribed, but otherwise causes ex-
cessive thrashing and performance degradation for applications
with certain temporal and spatial access patterns. Due to limited
information available, the eviction policy may evict the most in-
tensely reused data, further exacerbating thrashing. Our quantita-
tive analyses uncover that severe thrashing not only increases the
eviction-to-migration ratio, but more seriously increases the num-
ber of migrations by orders of magnitude for certain applications.
We establish that SVM-aware algorithm designs can significantly
improve performance, and discuss possible augmentations to SVM
design that could benefit broader applications.

We make the following main contributions:

• We reveal the SVM design and range migration/eviction in
demand paging, and quantitatively analyze the UM man-
agement overhead and the overall costs at fine granularity.
We identify the performance bottlenecks, their significant
increases under oversubscription, and their variations across
a variety of applications.
• We unveil the migration and eviction profiles and fault be-
haviors of diverse applications resulting from the interaction
between their memory access and SVM. These profiles are in-
dicative of performance and expose premature evictions and
severe thrashing in applications with intensive data reuse or
distributed data accesses.
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Figure 2: Example range creation for three 1.5 GB allocations

• We investigate potential benefits from SVM-aware applica-
tion algorithm design using case studies. We show that SVM-
awareness empowers us to mitigate performance bottlenecks
and improve performance by up to orders of magnitude. We
further discuss potential augmentations to SVM designs to
benefit a broader range of applications.
• To the best of our knowledge, this work is the first in-depth
and comprehensive study of SVM technology. As various
accelerators and devices are expected to interface with Linux
HMM, this work may shed light on optimal driver-specific
designs and library implementations for target applications.

2 SVM DESIGN AND ARCHITECTURE
Unified Memory (UM) integrates the device memory domain into
the host’s virtual memory system, providing a shared address space
for host processes and GPU kernels. UM transparently migrates
data between the two memory domains, and keeps track of the
physical memory locations on page tables, eliminating the need for
programmers to copy explicitly. UM supports oversubscription by
evicting old pages from GPU memory before migrating new ones.

Shared Virtual Memory (SVM) driver interfaces with Hetero-
geneous Memory Management (HMM) to interact with host page
tables. HMM is expected to be the standard Linux interface for var-
ious driver modules. Unlike the one-way communication from the
older drivers to the kernel, HMM creates a truly unified memory
by preventing the kernel from moving pages without alerting the
driver and causing many edge cases of failures.
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In this section, we detail SVM’s design and architecture. Our
experimental platform is one node from the LLNL Tioga super-
computer [27]; the node architecture matches those of the Frontier
supercomputer [33, 37, 40]. A node consists of a 64-core AMD 7A53
EPYC CPU, 512 GB DDR4 host memory, and four AMD Instinct
MI250X discrete GPUs connected to the host by 36GB/s bidirectional
Infinity Fabric. Each MI250X has two GPU compute dies connected
by 200GB/s bidirectional Infinity Fabric, each with 64 GB HBM2E
memory. Tioga uses the Tri-Lab Operating System Stack [30] ver-
sion 4 & amdgpu version 6.3.6, with 1 GB GPU memory alignment
in SVM. We use ROCM version 5.4.0. The experimental results
presented in this work only use one GPU compute die.

2.1 Ranges as SVM Management Units
Even though both host and device memory domains manage their
own address space in pages, SVM manages the unified memory in
ranges, as shown in Figure 1. Each SVM range is defined by a start
address and an end address and may comprise a substantial number
of contiguous virtual pages. The management operations include
allocation and deallocation, migration, and eviction.

Upon the receipt of a managed memory allocation from the run-
time, SVM constructs the ranges based on GPU memory alignment
and the allocation’s size. GPU memory alignment is determined by
its capacity, i.e., ⌊ capacity32 ⌋ rounded down to the nearest power of
two, and should be minimally 2 MB. For example, if a GPU has 48
GB available for SVM managed memory, then the alignment is 1
GB. In addition, the ranges must be aligned to allocation bound-
aries. With this range construction, an allocation should comprise
multiple ranges if it is large or across alignments.

Figure 2 depicts the range construction for an application with
three 1.5 GB allocations on a GPU aligned by 1 GB. The application
mimics matrix multiply. SVM constructs 7 ranges of varying sizes
for this application, with the smallest range at 175 MB and the
largest at 1 GB.

SVM receives faults at the page level from the device but services
with data migration at the range level. While a range may consist of
up to 256K pages, it only requires the servicing of a single page fault
to trigger the migration of the entire range, with the remaining
faults being dismissible. Thus, a received fault undergoes an initial
examination to determine if it is serviceable.

A fault is considered serviceable if it is recent and not duplicate.
Recent faults are those with timestamps falling within the specified
timeout period. Old unsatisfied faults would be replayed by the GPU
to generate recent faults. A recent fault is considered a duplicate
if it originates from the same page or range as a recent range
migration. Duplicate faults typically dominate, representing 97-
99% of the total faults generated by a kernel. They can arise from
various sources, including the same thread block processing data
with spatial locality, different thread blocks processing the same
data, and the same thread block processing data with temporal
locality. In practice, applications with a high degree of duplication
of faults can perform efficiently by consolidating them into a single
range transfer.
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Figure 3: Timeline of range migration for a serviceable fault.
“Evict" only occurs if there is insufficient space for “Alloc".

2.2 Page-Level Fault and Range-Level Migration
Each serviceable fault triggers SVM to migrate the range in which
the faulting page is. SVM keeps track of the residency of each range
and uses it to determine the migration direction (e.g., host-to-device,
device-to-host, or device-to-device). Due to page limits, we focus
on the host-to-device migration as it is the most important in GPU
computing.

To migrate a range from host to device, the SVM driver provides
HMM the start and end addresses of the range and obtains a list
of source physical frame numbers (PFNs) necessary for data mi-
gration. HMM further leverages the built-in memory management
in the Linux kernel for host memory management and page table
operations.

Figure 3 shows the timeline of the host-to-device migration visi-
ble in the SVM driver. Essentially, the SVM driver sends commands
to the host and the device and synchronizes their operations. The
commands to the host/HMM include obtaining source PFNs, and
performing page unmapping and page table updates, and com-
mands to the device include allocating ranges and pages, initiating
direct memory copy, and performing page mapping and page ta-
ble updates. Note that the System Direct Memory Access (SDMA)
copy is asynchronous and used for page content copy, GPU page
mapping and unmapping, and page table updates. The associated
cost partly overlaps with SDMA setup and command issuing on
the SVM driver.

During the GPU memory allocation, if there isn’t enough avail-
able space for the range to be migrated, SVM must first evict one or
more residing ranges, as shown in Figure 3. SVM employs the least
recently faulted (LRF) policy to determine the next victim range
and continues to evict ranges until the available space becomes
sufficient. It’s important to note that eviction is costly, involving
various operations such as page mapping, unmapping, and content
copying as in migration, albeit in the opposite direction. We show
the quantitative costs in detail in section 2.4.

2.3 Overall SVM Architecture
Figure 4 presents the SVM architecture, and how its modules inter-
act to service a serviceable page fault originating from a compute
unit (CU). A page fault occurs if address translation using TLBs and
page tables fails. Upon the fault, the L2 TLB sends a “translation
negative acknowledgment” (XNACK) back to the CU and writes
an interrupt cookie to an on-device buffer Content-Addressable-
Memory (CAM) 1○, in which faults on the same pages can be filtered.
The interrupt controller reads from the buffer 2○ and passes these
cookies along to the SVM driver for servicing 3○. Meanwhile, the
CU retries the faulted access until translation succeeds.
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The SVM driver running on the host decodes the interrupt cookie.
This cookie contains the faulting page address, the timestamp, and
the access type. The driver determines if the fault is serviceable,
i.e., neither timed out nor a duplicate range.

For a serviceable fault, SVM creates a migrate_vma structure
and passes it to HMM along with the corresponding range in order
to get the host source page PFNs populated 4○. HMM performs a
page table walk over the range and unmaps all pages on the host
5○. The SVM driver then allocates memory on the GPU device as
needed for the migration 6○. Next, the driver sets up the System
Direct Memory Access (SDMA) mapping and issues commands 7○
to asynchronously copy data, perform paging, and update GPU
page tables 8○. Migration concludes at the synchronization point.

SVM architecture shows distinct strategies for fault handling
and unified memory management compared to NVIDIA’s Unified
Virtual Memory (UVM), which has garnered relatively more re-
search attention [1, 2, 24]. Table 1 presents the key differences.
Unlike UVM which batches page faults in a buffer and handles the
batch when the buffer is full, SVM receives a single fault each time
and handles it immediately. Such a strategy has two main advan-
tages. First, serviceable faults are serviced immediately to reduce
the turnaround time for individual accesses. Second, duplicate page
faults are quickly identified and dismissed from servicing. The main
disadvantage is that the SVM driver is heavily loaded with fault
interrupts, even after some faults are filtered in the CAM buffer on
the GPU side.

SVM manages the UM at the range granularity for allocation,
deallocation, migration, and eviction. While being varying sizes,
a range is typically orders of magnitude larger than a VABlock
(2 MB) used in UVM. If all migrated data are to be used, migrat-
ing an entire range effectively amortizes data access latency and
fully utilizes the host-device interconnect bandwidth. The range
granularity is beneficial for scenarios when GPU memory is not
oversubscribed or for applications whose data are not evicted be-
fore use. Otherwise, it causes significant performance issues for
two main reasons. First, GPU memory gets exhausted faster with
data not immediately needed, requiring evictions to make space for
subsequent migrations. Second, it causes severe thrashing, i.e., data
migrated but evicted before use must be migrated again. Thrashing
degrades performance in two ways: wasting time in migrating and
then evicting unused data, and more importantly increasing the
migration frequency. Case studies of severe thrashing are presented
in Section 3.4.

UM Feature SVM UVM
Fault batching No Yes
Fault handling Single fault Fault batch𝑎
UM (De)alloc Range (∈[4KB, 1GB]) VABlock (2MB)
Migration unit Range Page𝑏
Eviction unit Range VABlock
Eviction Policy Least Recently Faulted

𝑎 A batch consists up to a system-configurable 256 faults.
𝑏 64 KB without prefetching, and up to a VABlock with prefetching.

Table 1: SVM vs. UVM.
2.4 SVM UMManagement Costs
We quantitatively analyze the cost for SVM UM management. We
use Systemtap [39] to dynamically instrument and trace the SVM
driver functions and events. We run each instance twice for data
collection: first to measure the timing of SVM driver functions, and
then to capture events such as faults, migrations, and evictions.

Here we focus on the major cost items during fault servicing
and corresponding migration, based on Figure 3, and ignore others
including fault receiving, preprocessing, and filtering as their costs
are relatively small and negligible.
• cpu_unmap: collect and unmap host pages.
• SDMA_setup: create SDMA mappings, and issue SDMA
commands to perform copy, mapping, and page updates.
• alloc: allocate physical VRAM on the device. Note that this
item includes the cost of eviction if there is insufficient space
for allocation.
• cpu_update: update CPU page table with new mappings if
migration succeeded or restore old mappings if failed.
• misc: migrate page meta-data, non-overlapped SDMA copy,
and free copy mappings.

cpu_unmap and cpu_update manage pages and page tables
on the host side, and the actual data movement is encapsulated in
SDMA_setup and misc. All these costs are visible on the host and
are reflected in the application’s execution time.

Figure 5 shows the cost items for three representative applica-
tions over various problem sizes ranging from small to large enough
to oversubscribe GPU memory by 56%. Note that each cost item
is accumulated over all the migrations in the kernel. From these
figures, we make some key observations.
• The total cost increases with problem size as expected be-
cause the number of migrations increases. However, the ap-
plications exhibit distinct growth trends. STREAM displays
two linear segments separated by oversubscription, with
the slope of the second segment being slightly larger. Both
Jacobi2D and SGEMMpresent three ormore segments. For Ja-
cobi2D, the second segment’s slope is the largest where GPU
memory is oversubscribed by less than 10%. For SGEMM,
the last segment’s slope is significantly larger, surpassing
the others by orders of magnitude.
• For small problem sizes without oversubscribing GPU mem-
ory, cpu_update is the largest individual component, fol-
lowed by SDMA_setup and alloc. These three account for
roughly 76% of the overall cost for all three applications.
• While all cost items increase under oversubscription, alloc
increases the most and becomes dominant across the appli-
cations. This increase is due to the evictions for freeing GPU
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Figure 5: The cost of SVM UMmanagement and range migration. SGEMM is shown in two windows as the magnitude of the
second visually erases the first.

Benchmarks Description Domain Source
STREAM Triad-only. Scaled dot product of two vectors. Synthetic RAJAPerf [17]
Conv2d Full convolution in a 2D space with varying weights. Machine Learning RAJAPerf [17]
Jacobi2d Forward then backwards adjacent convolution with equal weights. Machine Learning RAJAPerf [17]
BFS Breadth First Search graph traversal from randomly selected node. Graph Traversal EMOGI [35]
SYR2K Symmetric rank-2k update from ROCBLAS Linear Algebra rocBLAS [4]
SGEMM General matrix-matrix product from ROCBLAS Linear Algebra rocBLAS [4]
MVT Matrix-vector product followed by matrix-transpose-vector product. Linear Algebra RAJAPerf [17]
GESUMMV Sum of two scaled matrix-vector products. Linear Algebra RAJAPerf [17]

Table 2: Diverse benchmarks from multiple domains.

memory. Eviction comprises all other items in the opposite
direction, thus is costly. The slightly larger slope of the sec-
ond segment in STREAM suggests only a small number of
evictions, while the drastically larger slopes in Jacobi2D and
Sgemm suggest higher numbers of evictions.

These results indicate significant overhead for UM and demand
paging. When GPU memory is not oversubscribed, the actual data
movement across the host and device memory domains only ac-
counts for less than half of the overall cost, and is smaller than the
sum of UM management items including host and device mapping
and unmapping and page table updates. More seriously, the UM
management overhead increases substantially once GPUmemory is
oversubscribed, and becomes extremely high for applications such
as SGEMM.We examine how the overhead impacts the performance
of various applications in the following section.

3 WORKLOAD PERFORMANCE AND
PROFILES

We examine diverse GPU workloads and study how their perfor-
mances vary with GPU memory oversubscription. We further in-
spect their migration and eviction profiles, and use them to explain
the performance change. The applications represent multiple do-
mains as listed in Table 2. Some are directly from AMD ROCm im-
plementations (e.g., rocBLAS SYR2K and SGEMM), and others are
ported from RAJAPerf [17] implementations using Heterogeneous-
computing Interface for Portability (HIP) APIs. We modify respond-
ing allocations to utilize managed memory. We have examined over
a dozen applications but have only included those with complete
data across different problem sizes.
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Figure 6: Performance decreases with the degree of oversub-
scription for various applications under SVM.

3.1 Performance Impacts of Oversubscription
We use the term Degree of Oversubscription (DOS) to quantify
how much memory is used beyond the GPU’s available capacity for
unifiedmemory (UM). DOS is defined as𝑢𝑠𝑒𝑑_𝑠𝑖𝑧𝑒/𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑠𝑖𝑧𝑒×
100. Based on this definition, a DOS value exceeding 100 indicates
GPU memory oversubscription.

Figure 6 shows how performance varies with DOS with demand
migration across the applications. Application performance is mea-
sured using throughput, which can be compute rate (FLOPs per
Second) or memory throughput (GBs per second), and is normal-
ized to that at DOS = 78. We use normalization here to emphasize
the change in an application’s performance relative to the problem
size. While all applications’ performances decrease monotonically
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as DOS increases, they exhibit different patterns. We group the
patterns into three categories.

Category I: Performance declines moderately as DOS increases.
STREAM and Conv2d belong to this category, though their rates of
decrease are different. When oversubscribing GPU memory, appli-
cations in this category experience the least impact with demand
migration.

BFS appears to be in category I, warranting explanation. BFS’s
execution depends on the input graph and the start node. Our
case study uses a randomly generated graph with 10% of possible
edges and a randomly selected start node. While accesses to nodes
and edges are expected to be random, this randomness is confined
within ranges, and the accesses across the ranges still follow a linear
pattern.

Category II: Performance declines significantly once DOS sur-
passes 100, and then minimally changes thereafter. Jacobi2D be-
longs to this category and its performance decreases to about 40%
at 𝐷𝑂𝑆 = 109.

Category III: Performance drops close to zero when DOS sur-
passes 100 or more. The decline can be abrupt as seen in GESUMMV
and MVT, or gradual as in SGEMM. When oversubscribing, appli-
cations in this category experience the most impact using the SVM
on-demand migration.

What are the factors responsible for the varying performance
differences among the applications as DOS changes? To answer this
question, we inspect the migration and eviction profiles resulting
from the applications’ interaction with SVM. Limited by the long
time needed to gather experimental results, Figure 6 only displays
performance data for DOS values up to 156. Other questions that
naturally arise are: What are the performance of applications like
STREAM and Jacobi2D as DOS continues to increase? We estab-
lish the answers using insights from fine-grain application profiles
presented next.

3.2 Migration and Eviction Profiles
The performance impact is determined by the complex interplay be-
tween the application’s memory request and SVMUMmanagement.
As noted before, performance degradation under oversubscription
is primarily attributed to eviction and, even more significantly, to
thrashing. Eviction is on the critical path, meaning eviction is only
initiated by the migration request in the opposite direction, which
is blocked until eviction is completed. Eviction doubles the cost of
migration and delays the migration and computation. In general,
the more an application evicts, the larger the performance loss it
suffers.

In an on-demand migration memory model, eviction is inevitable
for problem sizes that exceed the GPU’s physical memory. While
eviction directly results in performance loss, some evictions are
more costly. Eviction has two types: permanent eviction, which
displaces data no longer needed, and premature eviction, which
displaces data required for current or future computation. Perma-
nent evictions simply increase migration costs, while premature
evictions further lead to thrashing, which has a compounding effect
by increasing the eviction-to-migration ratio and the number of
migrations.

Premature evictions occur in applications with certain temporal
and spatial access patterns. The temporal pattern involves data
reuse, and particularly the repeated traversal of one or more mem-
ory allocations. Such a pattern is commonly found in algorithms
with nested loops, such as BLAS-2 and BLAS-3 algorithms. Any
eviction of the repeatedly traversed allocations is premature, ne-
cessitating the subsequent migration. The spatial pattern involves
successive accesses of a small amount of data that is distributed
across the ranges of the same allocations. Applications displaying
such patterns rapidly fill the GPU’s memory, leading to frequent
evictions, of which a significant portion is premature.

Figure 7 shows migration and eviction profiles at 𝐷𝑂𝑆 = 109
across the applications. The data are collected using Systemtap
as described in Subsection 2.4. It is worth noting that the profiles
only reveal partial information, i.e., transfers of ranges across host-
device interconnect that involve the SVM driver. They are unable
to show access to data within the ranges or data re(use) on the
GPU device. Missing information such as the number of faults a
migration satisfies is crucial for identifying performance bottle-
necks and opportunities for optimization. We discuss it in detail in
Subsection 3.3.

Applications in Category I such as STREAM and Conv2d in-
volve only permanent evictions. The ranges of each allocation are
migrated in a linear streaming fashion, and all allocations are con-
currently accessed. Once GPU memory is oversubscribed, ranges
migrated the earliest are evicted successively. These applications
don’t have data reuse.

BFS iterates over multiple GPU kernels using the same data
and thus incurs premature evictions. Determined by the linear
traversal of the edge list’s ranges and the minimal computation,
BFS’s degradation complies more with category I.

Applications in Category II such as Jacobi2D also exhibits linearly
progressed range migrations over all of its allocations. However,
Jacobi2D experiences premature evictions: ranges are evicted and
then re-migrated a short time later. Jacobi2d iterates the same data
accesses and computations, and Figure 7d illustrates two iterations.
Execution with a larger problem size should have the same migra-
tion and eviction profiles but with an earlier onset of eviction in
the initial iteration.

There are two subtypes of applications in Category III. One type
includes applications SGEMM and SYR2K that exhibit linearly pro-
gressed range migrations and premature evictions for allocations,
similar to Jacobi2d. A key feature is that their prematurely evicted
data are intensively reused for computation at present and in the
future, manifested by immediately re-migrating the same ranges
after evicting them.

The other subtype in Category III such as MVT and GESUMMV
display spatial patterns where successive data accesses are dis-
persed across the allocations as in matrix transpose. A large number
of unique ranges are migrated and evicted simultaneously. GPU
memory is quickly filled and evictions occur very early in the ap-
plication’s execution. Although MVT and GESUMMV do not reuse
data as intensively as Sgemm and SYR2K , they experience similar
thrashing. GESUMMV suffers more thrashing than MVT with two
large allocations instead of one.

What is the performance of applications like STREAM and Ja-
cobi2D as DOS continues to increase? We derive that STREAM’s
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Figure 7: Migrations and evictions over execution time at 𝐷𝑂𝑆 = 109. The y-axis is subdivided by allocation boundaries. White
spaces are respective to smaller allocations. Though invisible, they also experience migration and evictions. Their invisibility is
a result of the presentation: enlarging these data points causes the currently visible ones to occupy a solid-filled space.
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Figure 8: Overall fault densities for application executions
with problem sizes at 𝐷𝑂𝑆 = 109.

performance asymptotically approaches half of the highest per-
formance when 𝐷𝑂𝑆 < 100. As DOS increases, every migration,
except the ones before the GPU memory is fully occupied, requires
an eviction, which involves the same operations in the opposite
direction. When the eviction-to-migration ratio approaches 1, per-
formance halves. Using the same analysis, we derive that Jacobi2D’s
performance approaches 0.36.

3.3 Fine-Grain Fault Behaviors
Migration and eviction profiles offer incomplete information and
cannot entirely quantify the performance differences among the
applications. Here, we delve into the detailed fault behaviors and
assess how effectively they are handled by migrations.

We use fault density to refer to the number of faults that are
satisfied by a given migration. Here faults include both serviceable
and dismissed to reflect the data request of applications. The higher

the fault density is, the more effective a migration is. There are two
conditions for an application to obtain high fault density. First, the
application must consecutively request a large amount of data in
the same range. Second, these accesses must occur simultaneously
or in a small enough time frame, e.g., the time taken to service
a fault. Applications with linearly progressed access inherently
meet the first condition, but other access patterns may also meet
it. The second condition is predominately driven by the arithmetic
intensity, typically measured by the compute per data access [43],
of an application. Greater arithmetic intensity results in lower fault
density by enlarging the time window between accesses.

Figure 8 presents the fault densities across the applications. Over-
all, applications in Category I such as STREAM and Conv2d have
the highest fault densities. They both have linearly progressed
accesses. Between them, Conv2D has a somewhat lower fault den-
sity with its higher arithmetic intensity. Next comes Jacobi2d in
Category II. While Jacobi2d also has linearly progressed accesses,
it involves evictions which enlarges the time frame for the same
number of faults. Applications in Category III such as MVT and
Gesummv have the lowest fault densities for their successive ac-
cesses are distributed over the ranges. BFS is an exception, with
linearly progressed accesses and low arithmetic intensity but a very
low average fault density as those in Category III. This is explained
by its random and sparse accesses of the edges and nodes within
the ranges.

Each application’s fault density has a certain range and dis-
tribution. Figure 9 shows how the fault density varies over time
(Figure 9a-c) and over allocations using three applications (Fig-
ure 9d-f). STREAM’s fault density largely falls in [150, 250] over
time. SGEMM has a lower average fault density below 50 for it is
computationally intensive. The spikes correspond to periods dur-
ing which data migration occurs without concurrent computation.
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Figure 9: Variation of fault density over time (a-c) and over allocations (d-f) at 𝐷𝑂𝑆 = 109.

GESUMMV’s fault density varies over time and fluctuates around
20 because it successively accesses to data distributed over ranges.

As shown in Figure 9d-f, only specific page numbers have a non-
zero fault density and trigger migrations, while others encounter
zero faults because their requests are already satisfied by the range
migrations. Migration-triggering pages in STREAM and SGEMM
are uniformly distributed across their allocations, complying with
their linearly progressed data accesses. These pages correspond
to those located at the start of the ranges. Note that each bar en-
capsulates a large number of such pages. The average faults per
migration is 2, indicating duplicate faults. Migration-triggering
pages in GESUMMV are not only more densely distributed but
also have significantly lower faults per migration, approximately
0.05, or 20 migrations vs a single fault due to severe thrashes. This
is explained by scarce and distributed successive data requests in
GESUMMV.

3.4 Thrashing and Escalated Costs
Applications in Category III encounter thrashes, and their frequency
increase with the degree of oversubscription. Here we study impacts
of thrashing and associated escalated costs.

Figure 10 shows the increases of the eviction-to-migration ratio
and migration counts with DOS. The eviction-to-migration ratio is
0 at 𝐷𝑂𝑆 < 100 across the applications except BFS which algorith-
mically transfers data from the device to the host. The ratio quickly
increases to 1 for applications in Category III, but only gradually
increases for other applications, especially for application in Cate-
gory I. A higher ratio corresponds to a higher cost per migration,

and a ratio of 1 indicates each migration involves an eviction and
thus doubled cost per migration.

The most severe performance degradation results from the order
of magnitude increase in the migration counts. As DOS increases,
the counts for applications in Category III increase drastically by
an order of magnitude or more, and increase exponentially for
SGEMM and SYR2K once DOS reaches 140. In contrast, the counts
for STREAM and Conv2d only increase linearly, doubling when
DOS doubles. The count for Jacobi2d initially exhibits a jump and
then proceeds to increase linearly.

4 CONSIDERATIONS AND DISCUSSIONS
We discuss how application performance can be improved with
SVM-aware algorithms and potential changes in SVM design.

4.1 SVM-Aware Algorithm Design
Understanding the SVM design empowers us to identify the per-
formance bottlenecks in existing algorithms and redesign them
to optimize their interactions with SVM. In this section, we use
SGEMM and Jacobi2d as case studies to demonstrate SVM-aware
algorithm design. These case studies do not require changes to the
current SVM design and parameters.

Jacobi2d’s performance suffers in oversubscribed problem sizes
due to an excessive amount of thrashing that is more than necessary.
Jacobi2d iterates over two consecutive GPU kernels involving two
matrices, each performing a partial convolution over one matrix
to update the other, shown in Algorithm 1. Both kernels traverse
matrix data elements in the same manner, i.e., from the first to the
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Figure 10: Performance impacts of thrashing. The number
of migrations are normalized to those at 𝐷𝑂𝑆 = 78

Algorithm 1 Original Jacobi2d GPU Implementation
GPU_Kernel1:
𝐵 [𝑖, 𝑗] ← 0.2× (𝐴[𝑖, 𝑗] +𝐴[𝑖 − 1, 𝑗] +𝐴[𝑖 + 1, 𝑗] +𝐴[𝑖, 𝑗 − 1] +
𝐴[𝑖, 𝑗 + 1])

GPU_Kernel2:
𝐴[𝑖, 𝑗] ← 0.2 × (𝐵 [𝑖, 𝑗] + 𝐵 [𝑖 − 1, 𝑗] + 𝐵 [𝑖 + 1, 𝑗] + 𝐵 [𝑖, 𝑗 − 1] +
𝐵 [𝑖, 𝑗 + 1])

Algorithm 2 SVM-Aware Jacobi2d GPU Implementation
GPU_Kernel1:
𝐵 [𝑖, 𝑗] ← 0.2× (𝐴[𝑖, 𝑗] +𝐴[𝑖 − 1, 𝑗] +𝐴[𝑖 + 1, 𝑗] +𝐴[𝑖, 𝑗 − 1] +
𝐴[𝑖, 𝑗 + 1])

GPU_Kernel2:
𝐴[𝑁 − 𝑖, 𝑀 − 𝑗] ← 0.2 × (𝐵 [𝑁 − 𝑖, 𝑀 − 𝑗] + 𝐵 [𝑁 − 𝑖 − 1, 𝑀 −
𝑗] +𝐵 [𝑁 − 𝑖 + 1, 𝑗] +𝐵 [𝑁 − 𝑖, 𝑀 − 𝑗 − 1] +𝐵 [𝑁 − 𝑖, 𝑀 − 𝑗 + 1])

last row and from left to right within each row. Under oversubscrip-
tion, the first kernel evicts the first rows needed at the beginning of
the second kernel execution, while the second kernel then progres-
sively evicts the later rows needed soon by itself. Consequently,
each range undergoes premature eviction and thrashing.
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Figure 11: Timeline of migrations and evictions of the SVM-
aware Jacobi2d implementation for small oversubscription.
Compared to Figure 7d, thrashing is reduced significantly.

In the SVM-aware algorithm, we adjust the traversal order of
the second kernel, i.e., from the last to the first row, and from right
to left within each row, as in Algorithm 2. Such an adjustment
allows the next kernel to fully reuse data residing on the GPU
memory in the same iteration and across the consecutive iterations.
Figure 11 shows the migration and eviction timeline for the SVM-
aware Jacobi2d implementation. Compared to the timeline of the
original implementation, shown in Figure 7d, we see significantly
less evictions needed for the same computation.

SGEMM’s performance drops to 0% of relative performance.
While the source code is unavailable to the public, its migration
and eviction profiles in Figure 7e indicate that SGEMM first simul-
taneously migrates the entire allocation of each factor matrix, and
then computes the product matrix row by row. As the number of
computed rows of the product matrix is large enough to fill the
GPUmemory, new rows to be computed cause the eviction of factor
matrix elements currently needed in computation. At this point,
computation halts to re-migrate the newly evicted factor elements,
which causes the eviction of the remaining factor elements. This
chain of thrashing over factor matrix elements continues until the
computed product rows become the least recently faulted and are
evicted to make space for the new product rows. We speculate that
SGEMM computes the total sum for a single product element at
once by using an entire row of one factor to multiple an entire
column of the other.

SGEMM is not scalable to support large problem sizes. For large
problem sizes that cannot simultaneously fit both factor matrices
in the GPU memory, the ranges of both factors are in a constant
state of thrashing, depicted in Figure 12a.

We design a naive but SVM-aware GPU SGEMM implementation
SGEMM-svm-aware, solely for the purpose of demonstrating the
benefits of SVM-awareness instead of ultimate performance opti-
mization. SGEMM-svm-aware migrates the entire column factor
matrix to the GPU, and assigns a GPU thread block with a factor
sub-matrix and the corresponding product sub-matrix to compute
partial sums of the product elements. The total sums are carried out
across the thread blocks. Computation only needs a chuck of rows
for the row factor and the product at a time, and progresses over
the rows. SGEMM-svm-aware significantly reduces the amount
of thrashing, as shown in Figure 12b. Specifically, only one factor
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Figure 12: Migration and eviction profiles of SGEMM and
SGEMM-svm-aware at 𝐷𝑂𝑆 = 156.

matrix (middle allocation) experiences thrashing twice, and the
others encounter permanent evictions only.

Figure 13 presents the overall performance improvement using
the SVM-aware algorithms. These algorithms show advantages
over the counterparts in two aspects: preventing sudden drops in
performance and elevating the lower performance limits. The SVM-
aware Jacobi2d improves the performance at 𝐷𝑂𝑆 = 109 by more
than 2X and improves the lower limit by 1.5X. SGEMM-svm-aware
achieves a performance of 0.75 at 𝐷𝑂𝑆 = 156, in comparison to
near zero with the counterpart, resulting in a speedup by several
orders of magnitude. We recognize this algorithm only scales to
𝐷𝑂𝑆 ≈ 300, and a different algorithm is needed if DOS grows past.

4.2 Driver Design Considerations
We focus on eviction-related implementation and design as eviction
causes the most severe performance degradation. We first discuss
implementations without changing the current design of policies
and then discuss design alternatives.

Parallel Implementation. As shown in Figure 3, eviction is a
synchronous event in the SVM driver, blocking migration of data
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Figure 13: Comparison between the performance degradation
of the original and SVM-aware Jacobi2d implementations.

needed in computation. Upon a migration request, SVM performs
one eviction and then attempts the allocation again. In case of
success, migration follows. Otherwise, SVM continues to perform
another eviction and re-attempt until there is sufficient space. A
migration involving one eviction results in doubled cost. A migra-
tion involving a series of evictions and allocation attempts not only
increases the cost by multi-fold, but is error-prone. We observe
in our experimental data that some allocations could take up to
15 seconds (a timeout in SVM for eviction; all these timeouts are
removed in the figures).

Parallel implementations explore overlapping eviction and mi-
gration usingmultithreading, i.e., one thread per eviction/migration.
Parallel implementations are feasible, as the driver has the knowl-
edge of ranges to be evicted and migrated. Such parallelization,
though involving locks, is expected to improve performance, es-
pecially for migrations involving multiple evictions. The current
SVM already includes mechanisms for quick rollbacks in case of
allocation failures. It can be adapted to support multithreading.

Eviction Policy. The Least Recently Faulted (LRF) policy evicts
the range that has been migrated to the GPU earliest, ignorant of
whether the range has been actively used or will be needed in the
future while residing on the GPU. Consequently, it tends to evict
the most intensely reused “hot” data from the GPU for SGEMM and
alike, drastically degrading their performances.

A commonly used policy is the Least Recently Used (LRU). How-
ever, LRU requires the driver to timestamp page access on the GPU,
which is too costly. Instead, we can explore simplified versions
such as the Clock algorithm [20], which groups the ranges into
two types: hot and cold. To avoid the prohibitive communication
overhead between the device and the driver, the device could keep
a copy of the range metadata and make the eviction decision. It
would be trivial for the device to communicate the decision to the
driver using existing communications.

Granularity. The large range sizes exacerbate eviction and the
cost. A single data access missed on the GPU triggers the migration
of the entire range. Such behavior is the extreme case of aggres-
sive prefetching, which rapidly fills the GPU memory and leads to
oversubscription and frequent thrashing.

Reducing themigration granularity or enabling adaptive “prefetch-
ing” would significantly benefit applications in Category III. Ad-
justing the range size would benefit applications with sparse or
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non-linear accesses and improve application SVM and alike. Instead
of immediately migrating an entire range after one data request,
the driver could migrate the range only after an access count has
been reached or a percentage of data has been requested, similar to
access counter based and density-based prefetching in UVM [15].

Zero-Copy instead of Demand Paging. The SVM driver sup-
ports both demand paging and zero-copy for accessing unified
memory. With zero-copy, the device accesses data residing on the
host at the cache line granularity. Each zero-copy incurs a large
latency across the interconnect in comparison to local memory
accesses. However, zero-copy is expected to benefit applications
that experience severe thrashing under demand paging [35]. For
such applications, the driver can allocate a portion of data in GPU
memory for optimal utilization and allocate the remaining data on
the host, accessing them via zero-copy.

5 RELATED WORK
Prior works studying the performance of unified memory systems
can be looked at in two categories: (1) application-level analysis
that focuses on the performance of select GPU applications utilizing
different memory configurations and (2) system-level analysis that
focuses on breaking down the components and features of unified
memory implementations then directly profiling their cost. Most
prior work exists in UVM with some work beginning to break into
various HMM implementations, including SVM.

Application-Level Analysis works focus on the performance
of GPU applications in unified memory models. These works span
comparing performance between unified memory and programmer-
managed GPU memory, analyzing the impact of various hardware
on unified memory, identifying key application features impacting
unified memory, and attempting to mitigate the performance loss
of unified memory. Several works exist examining the performance
differences between non-unified and unified memory across CUDA
applications with combinations of prefetching & oversubscription
[25, 26, 36, 46]. Chien et al. further examine the impact of mem-
ory hints and advice the programmer can provide in CUDA on
application performance [11]. Xu et al. introduce a framework that
relates application features with UVM hints, removing the need for
programmers to decide which hints to use [45]. Gayatri et al. study
the impact of Address Translation Services (ATS) for Power systems
on unified memory [14]. All works discussed so far are in NVIDIA’s
ecosystem. To our knowledge, little work has examined unified
memory in AMD’s ecosystem except [21], which evaluates the per-
formance of AMD GPU applications across user-managed memory,
zero-copy remote access, and non-xnack managed memory.

System-Level Analysis works are the closest in relation to
our work. Kim et al. identify the fault batching behavior of UVM,
provide initial results on the relationship between batch size and
batch cost, and propose a thread oversubscription technique for
the GPU to mitigate large amounts of small batches [24]. Allen and
Ge explore the driver-level impact of prefetching in UVM, provide
initial insight on distinct components of UVM batches, and high-
light how application access patterns influence GPU performance
[1]. Allen and Ge further explore the components associated with
servicing on-demand faults in UVM and how batch features influ-
ence the cost of various components [2]. Our work explores the

behavioral features of AMD’s unified memory, identifies the unique
interplay between vendor UM and HMM, and analyzes the cost
distribution in servicing on-demand page faults in an HMM-based
unified memory.

Optimization works implement novel changes to unified mem-
ory drivers in order to lessen their performance cost. Chang et al.
present an adaptive pagemigration scheme that enhances NVIDIA’s
UVM driver to dynamically migrate pages for irregular applica-
tions [10]. Ganguly et al. combine hardware prefetching and a
novel pre-eviction policy to improve performance of oversubscribed
UVM applications [13]. Li et al. propose a framework with proactive
eviction, memory-aware throttling, and capacity compression to
improve the performance of GPU oversubscription [31]. Such work
is largely driven by application-level insights, while ours delves into
the driver-level design and can be used in combination to optimize
performance further.

6 CONCLUSION AND FUTUREWORK
In this work, we have examined the SVM design and its interface
with the Linux kernel’s HMM, and studied the performance impacts
on a diverse set of GPU workloads. We find that the SVM design,
especially the SVM ranges, are different from UVM. This design
results in significant performance degradation for certainworkloads
under oversubscription. We show this performance degradation
can be mitigated in part with SVM aware algorithms. We further
discuss SVM design changes that would reduce the performance
issues.

There is ample work to be done for SVM and in the larger field of
unified memory. We have intentionally focused on demand paging
from host to device, dismissing the directions from device to device
and from device to host. The experiments presented throughout this
paper solely use memory allocated through hipMallocManaged().
SVM/HMM allows other memory allocation such as malloc() and
pinning on the host. Some combinations of various allocations may
have observable performance effects.

Extending the work to different systems is another possibility.
AMD’s next generation of HPC processors, MI300 [5], are in the
form of Accelerated Processing Units (APU) with tightly coupled
CPU cores and GCDs in a shared processing unit. All CPU cores
and GCDs share the same physical memory. The implications this
architecture will have on SVM are unknown. Further analyzing
HMM and its interface supporting various GPU devices is another
avenue. At the start of this work, SVM was the only robust unified
memory system utilizing Linux’s HMM component. UVM has since
been extended to support HMM [18].

Lastly, this work serves as a first step in analyzing and improv-
ing the current SVM implementation. The SVM-aware algorithm
designs can serve as a base for other applications to improve per-
formance under SVM. The discussed driver-level changes can be
attempted and tested on actual systems.
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