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The abstraction of a shared memory space over separate CPU and GPU memory domains has eased the bur-
den of portability for many HPC codebases. However, users pay for ease of use provided by system-managed
memory with a moderate-to-high performance overhead. NVIDIA Unified Virtual Memory (UVM) is cur-
rently the primary real-world implementation of such abstraction and offers a functionally equivalent testbed
for in-depth performance study for both UVM and future Linux Heterogeneous Memory Management (HMM)
compatible systems. The continued advocacy for UVM and HMM motivates improvement of the underlying
system. We focus on UVM-based systems and investigate the root causes of UVM overhead, a non-trivial task
due to complex interactions of multiple hardware and software constituents and the desired cost granularity.

In our prior work, we delved deeply into UVM system architecture and showed internal behaviors of page
fault servicing in batches. We provided quantitative evaluation of batch handling for various applications
under different scenarios, including prefetching and oversubscription. We revealed that the driver workload
depends on the interactions among application access patterns, GPU hardware constraints, and host OS com-
ponents. Host OS components have significant overhead present across implementations, warranting close
attention.

This extension furthers our prior study in three aspects: fine-grain cost analysis and breakdown, extension
to multiple GPUs, and investigation of platforms with different GPU-GPU interconnects. We take a top-down
approach to quantitative batch analysis and uncover how constituent component costs accumulate and over-
lap, governed by synchronous and asynchronous operations. Our multi-GPU analysis shows reduced cost of
GPU-GPU batch workloads compared to CPU-GPU workloads. We further demonstrate that while special-
ized interconnects, NVLink, can improve batch cost, their benefits are limited by host OS software overhead
and GPU oversubscription. This study serves as a proxy for future shared memory systems, such as those
that interface with HMM, and the development of interconnects.
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Extension of Conference Paper [4]: This extension makes the following additional contributions: (1) quantitatively analyzes
the batch cost and isolates the task components, and classifies them based on synchronous and asynchronous UVM oper-
ations; (2) investigates UVM costs in multi-GPU computing and reveals how the host OS operations change with involved
GPU devices; and (3) examines multiple platforms with different generations of GPUs and interconnects. These extensions
bring new insights into the dominant costs and root causes and the potential benefits and limitations of advanced hardware
features and platforms.
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1 INTRODUCTION

Graphics Processing Units (GPUs) have become a computational mainstay in modern HPC sys-
tems and paved the way for other accelerators in the HPC space. Discrete GPUs have separate
physical memory traditionally programmed through APIs and managed by device drivers. Multi-
ple technologies are being developed to abstract the complexity of separate CPU and GPU physical
memory domains to ease the burden of programming and increase codebase portability. Heteroge-
neous Memory Management (HMM) and NVIDIA Unified Virtual Memory (UVM) are two
independent yet potentially collaborative efforts. These technologies integrate device memory do-
mains into the OS virtual memory system and transparently migrate pages on demand across
devices. HMM is a Linux kernel feature that provides a generic interface for heterogeneous mem-
ory management to vendor- and device-specific drivers on commodity systems [15, 26]. NVIDIA
UVM presently offers an all-in-one approach combining paging and device drivers for NVIDIA
GPUs. It can also integrate with the HMM interface [44]. As of today, NVIDIA UVM has been pro-
lific, adopted by the US Department of Energy and in common HPC frameworks such as Raja [9],
Kokkos [11], and Trilinos [25].

Transparent demand paging and migration come with heavy performance costs, as noted by
prior studies [3, 23, 27-29, 52]. Figure 1 shows that the access latency generally increases by one
or more orders of magnitude compared to explicit direct management by programmers. While
such costs may be acceptable for applications with in-core computing on GPU memory, high-
performance systems suffer inefficient utilization as a consequence. Further, the out-of-core or
oversubscription capability comes at a much greater cost, largely prohibitive for most applications.
Prefetching mitigates but cannot overcome all of the costs, and could even increase it for some
memory-oversubscribed workloads [3, 19, 21, 28, 50, 51].

Understanding the overhead sources in transpar-

ent paging and migration is essential, especially . Data Transfer Time/Size
as the cost of delegating management to the OS © Direct Transfer
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supported on commodity systems. In this work, we yo°
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testbed for a novel low-level performance study for
both UVM and future HMM-compatible systems. Fig. 1. Access latency with unified virtual mem-
Using UVM, we can identify the root sources of per- ©ry increases by one or more orders of magnitude
formance concerns and attribute them to their roles ©Ver explicit direct management.
in HMM-based implementations.

In our prior work [4], we take a deep dive into the UVM system architecture and the internal
behaviors of page fault generation and servicing. We perform extensive analyses on the UVM
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driver workload’s basic units: page fault batches or groups of GPU-generated page faults. We in-
strument the nvidia-uvm driver to collect metadata containing targeted high-resolution timers
and counters for specific batch events, routines, and page fault arrival. Through extensive experi-
mentation and quantitative analyses, we obtain insights into where the UVM costs originate and
where performance optimization or design reconsiderations are applicable for UVM, HMM, and
future vendor-specific HMM systems.

This article includes significant extensions to our prior work [4]. First, we take a top-down
approach to quantitative cost analysis and isolation and uncover how the constituent costs ac-
cumulate and overlap, governed by synchronous and asynchronous operations. It locates the root
sources of dominant costs and potential gains from hardware and software improvements. Second,
we extend our study from single GPU to multi-GPU computing and show how batch workloads
are distributed among GPUs and how host OS operations change. Third, we investigate multiple
platforms with different CPU-GPU and GPU-GPU interconnects including PCle 3.0 and NVLink2.
We highlight the common costs shared by all platforms and pinpoint the components that benefit
interconnect hardware and software improvement.

Overall, this article examines a great breadth of functionality in UVM in a fine granularity over
multiple systems and provides a more complete and realistic understanding of UVM across differ-
ent devices and interconnects. We make the following main contributions:

e We conduct an in-depth study of the UVM system fault generation, batching and servicing,
and the core UVM work unit, offering perspective and rationale behind the design decisions
and constraints of the UVM system architecture.

e We quantitatively analyze the batch cost, its distribution over devices and software compo-
nents, and the impacts of prefetching and GPU memory oversubscription. We further isolate
the component costs based on synchronous and asynchronous UVM operations, pinpointing
dominant costs and root causes.

e Using UVM as an example of future HMM systems, we show that the driver workload de-
pends on the interactions among application access patterns, GPU hardware constraints, and
host OS components. We further isolate performance considerations to vendor-specific and
common codes among all implementations and discuss improvements for different cases.

o We extend to multi-GPU computing, revealing how the host OS operations change with
involved GPU devices.

e We examine multiple platforms with different generations of GPUs and CPU-GPU/GPU-
GPU interconnects, demonstrating the potential benefits and limitations specialized hard-
ware can have on the UVM system.

2 UVM BACKGROUND AND RELATED WORK

NVIDIA UVM provides Linux-like virtual memory between multiple computing devices through
paging, where page faults trigger data migration between host memory and accelerators. This
is aligned with the functional philosophy of HMM, a Linux kernel API that allows heterogeneous
device drivers to have first-class access to Linux page tables [15, 26]. The goal of UVM and HMM is
aligned, and the introduction of HMM will extend the functionality of UVM and UVM-like systems
to allow a unified memory management interface for user applications. The NVIDIA UVM driver
is among the first backend solutions to interface with HMM. However, to the best of our
knowledge, the full integration for x86_64 systems is yet under development [30, 44].
Provided that NVIDIA UVM is currently the primary real-world implementation of transparent
paging and migration across memory domains, we focus on UVM but draw insights applicable to
HMM.
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Fig. 2. The client-server UVM architecture. The clients are user-level GPU or host code, and the server is
the UVM driver residing on the host. lllustration of fault initiation and servicing between the host and a
single GPU (a) and between the host and two GPUs (b). Numbers are a forward reference to Figure 3 and
are discussed in detail in Section 4.

In this section, we provide an overview of the UVM system architecture and functionality. Also,
we note where these systems intersect and overlap with HMM support.

2.1 The UVM Architecture

UVM uses a client-server architecture between one or more software clients (user-level GPU or
host code) and the server (host driver) servicing page faults for all clients. The UVM host driver
on the host is open source with dependencies on the proprietary nvidia driver/resource manager
and the host OS for memory management. This driver is a runtime fault servicing engine and the
memory manager for managed memory allocations. Figure 2 illustrates the architecture with one
GPU client (a) and two GPU clients (b).

Any active thread on the GPU can trigger a page fault, as shown in Figure 2. Similarly, a thread on
the host can also trigger a page fault. Take a GPU page fault on a single GPU platform (Figure 2(a))
for example: the fault is generated and handled by the hardware thread’s corresponding pTLB [39]
. The thread may continue executing instructions not blocked by a memory dependency. Mean-
while, the fault propagates to the GPU memory management unit (GMMU), which writes the
corresponding fault information into the GPU Fault Buffer and sends a hardware interrupt to the
host @. The fault buffer acts as a circular array, configured and managed by the UVM driver [39].
The nvidia-uvm driver fetches the fault information, caches it on the host, and services the faults
through page processing @ and page migration @, where the former involves page table update
and TLB shootdown on the host and GPU page table update, and the latter involves page migration.

The GPU exposes two functionalities to the host via the GPU command push-buffer—host-to-
GPU memory copy and fault replay. As part of the fault servicing process, the driver instructs the
GPU to copy pages into its memory, generally using high-performance hardware “copy engines”
Once the GPU’s page tables are updated and the data is successfully migrated, the driver issues a
fault replay [53], which clears the waiting status of pTLB, causing them to “replay” the prior miss.

On a multiple GPU system, page processing @ and page migration @ may not be fully per-
formed on the host anymore. This change results in reduced UVM overhead. Take the scenario in
Figure 2(b) for example: GPU1 threads incur page faults and demand data residing on GPUO0. Page
processing that involves page unmapping and TLB shootdown now occurs on GPUO, resulting
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in less cost on the host due to offloaded work and overlapped GPU TLB shootdown and page ta-
ble updates [3]. Meanwhile, page migration is from GPUO to GPU1 and benefits from high-speed
GPU-GPU interconnects such as NVLink. More details about the cost reduction are presented in
Sections 4 and 6.

2.2 Fault Batching

GPU page fault delivery to the host requires two steps. First, the GPU sends an interrupt over the
interconnect to alert the host UVM driver of a page fault. The interrupt wakes up a worker thread
to begin fault servicing if none is awake. Second, the host retrieves the complete fault information
from the GPU Fault Buffer.

The nvidia-uvmdriver groups outstanding faults into batches in the host-side cache. The fault
batch is the fundamental unit of work. Batching allows the driver to ignore most interrupts and
thus serves as an optimization. The default fault retrieval policy reads faults until the batch size
limit (i.e., 256 faults) is reached or no faults remain in the buffer. The worker thread services one
batch after another and sleeps if it finds no new faults. Fault batching and fault handling policies
are the UVM driver’s independent decisions. For reference, device drivers are still responsible for
these actions in HMM implementations.

Pages in the same fault batch are processed and migrated in the same time step. For compatibility
with the host OS and future HMM implementations, UVM adopts the host OS’s page size for mi-
gration and tracking: 4KB pages for x86_64 systems and 64KB pages for Power9 systems. UVM has
additional internal abstraction for management and performance considerations. For x86_64, pages
are upgraded from 4KB to 64KB within the UVM runtime as a component of prefetching, emulating
the 64KB Power9 page size. Additionally, the driver splits all memory allocations into 2MB logical
Virtual Address Blocks (VABlocks) on GPUs. These VABlocks serve as logical boundaries; the
driver processes all batch faults within a single VABlock together, and each VABlock within a batch
requires a distinct processing step. UVM also tracks all physical GPU memory allocations from the
nvidia resource manager and evicts allocations at the VABlock granularity when needed.

2.3 Related Work

Prior work is primarily in three categories: (1) high-level analysis of UVM at the application level
and attempts in optimizing UVM performance for specific applications or problem spaces, (2) al-
terations to hardware or migration of software functionality into hardware via simulation, and (3)
lower-level analysis of UVM functionality in system software. Prior works do not perform deep,
fine-grain quantitative cost analysis on existing systems and architectures in the same level of
detail we present.

High-level Analysis and Application Optimization. High-level analysis typically focuses
on either comparing UVM to traditional manually managed memory applications or comparing
UVM across different hardware platforms such as Power9 vs. x86 and NVLINK vs. PCle. The over-
all performance impact of UVM was studied in [28, 29, 52] on several applications for both non-
oversubscription and oversubscription. Manian et al. study UVM performance and its cooperation
with MPI across several MPI implementations [35]. Gu et al. produce a suite of benchmarks based
on the Rodinia benchmark suite to perform these kinds of evaluations [23]. Markidis et al. focus on
advanced features of UVM, such as runtime allocation hints and properties [14], while Gayatri et al.
focus on the impacts of prefetching and Power9 Address Translation Services (ATSs) [21]. Sev-
eral works have tried to improve graph-processing or graph-specific applications that have known
irregular processing by utilizing the remote mapping (DMA) capabilities of UVM as well as alter-
ing access patterns or data ordering to make accesses less irregular [22, 36, 38]. Shao et al. provide
application-level runtime analysis for oversubscribed multi-GPU workloads under UVM [45].
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Table 1. Experimental Platforms with Two Generations of GPUs and Two Types of
GPU-GPU Interconnects

Platform Host NVidia GPU Interconnect
CPU oS MEM | GPU (count) ~ UVM Driver MEM CPU-GPU GPU-GPU
I 32-core Epyc Fedora 33 128GB | Titan V (1) 460.27.04 12GBHBM2 | PCle 3.0 ~ NA

il Dual 20-core Xeon CentOS 8.2.2004 372GB | Tesla V100 (2) 470.42.01 16GB HMB2 | PCle 3.0 PCle 3.0
I Dual 20-core Xeon CentOS 8.2.2004 372GB | Tesla V100 (2) 470.42.01 16GB HMB2 | PCle 3.0 NVLink2

Hardware and System Alterations. Some works discuss fundamental changes to the UVM
architecture or UVM hardware to improve overall performance, whereas our work focuses on iden-
tifying performance characteristics and issues that are solvable on existing hardware/software.
Griffin offers architectural changes to enhance page locality for multi-GPU systems [7]. Kim et al.
simulate “virtual threads” to effectively increase the overall number of threads resident on the GPU
to better hide latency, along with increasing the fault batch size to allow the host to process more
faults at the same time [27]. Several works suggest replacements for UVM that diverge from the
demand-paging paradigm [6, 37]. Ganguly et al. use the existing but sparsely utilized page counters
system within the existing UVM ecosystem to improve performance for memory-oversubscribed
workloads [20], offer modifications to eviction and prefetching algorithms after integrating these
features into hardware [19], and present a runtime framework that uses online CPU-GPU inter-
connect traffic to dynamically choose a suitable memory management strategy in oversubscribed
workloads [18]. Similarly, Yu et al. also offer architectural changes to coordinate eviction and
prefetching [50]. Chang et al. instrument the UVM driver with an adaptive page migration scheme
to better serve temporal locality of GPU caches and spatial locality of GPU memory [12]. Li et al.
propose a dynamic memory management framework to curb the cost of oversubscription in UVM
by incorporating proactive eviction, memory-aware throttling, and capacity compression [32]. Li
et al. further analyze the page walk of GPU local page faults in multi-GPU workloads and offer
a mechanism of short-circuiting the page walk process to improve performance when migrating
data between GPUs [31].

Other works discuss similar system alterations outside the context of UVM and propose al-
ternative management schema. Haria et al. propose using a memory paradigm between physical
addressing and virtual addressing for system accelerators [24]. Qureshi et al. make a case for allow-
ing GPUs to manage accesses into Non-volatile Memory express (NVMe) backing storages to
reduce the overhead of CPU-centric storage access [42]. Suchy et al. incorporate their compiler and
runtime-based address translation into the Linux kernel as an alternative to the paging mechanism
used in virtual memory to reduce the overhead introduced by paging [47].

UVM System Analysis. These works are the most similar to ours. Allen and Ge focus on the
driver-level performance of prefetching, showing page-level access patterns and performance data
for the general case, but not the root source of UVM costs [3]. Kim et al. show an example of batch-
level size/performance data similar to ours [27]. In contrast, our work dives into the software- and
hardware-based root causes under different scenarios and quantitatively analyzes the construc-
tions of batches and cost breakdown.

3 EXPERIMENTAL ENVIRONMENT
We conduct experiments on three platforms presented in Table 1, one with a single GPU (Platform
I) and two with two GPUs (Platforms II and III). There are two generations of NVidia GPUs (Titan
V vs. Tesla V100) and two types of GPU-GPU interconnects (PCle 3.0 vs. NVLink2).

We collect all data through a modified UVM driver distributed alongside the NVIDIA driver.
We modify the UVM driver into two versions. One logs per-fault metadata for gathering overall
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statistics about faults such as their GPU SM of origin. The other is instrumented with targeted
high-precision timers and event counters for collecting batch-level data. Counters and timers are
used to collect higher-level events and timestamps in order to minimize the overhead. Batch data
is logged to the system log at the end of each batch using a reliable custom tool.

We use the applications in Table 2
for case studies. They are represen-

tative HPC applications; i.e., the ker-  [Benchmark FIPC Use Examples
nelsinclude sgemm Gauss-Seidel. and cuBLAS sgemm | Fluid Dynamics [46], Finite Element [8], Deep Learning [13]
e el

Table 2. Benchmarks Used in Evaluation and Analysis

) . stream Memory bandwidth (triad-only) [16]
FFT and are commonly used in vari-  [cufFT LAMMDPs [40, 48], Particle Apps [41],
ous HPC applications, and HPGMG is Molecular Dynamics [48], Deep Learning [33]

K K K Gauss-Seidel HPCG [17], AMR [10]
a full proxy application representing HPGMGFV | Proxy App for AMR [1]

algebraic multigrid methods.

4 OVERALL COST AND BREAKDOWN FOR BASE CASES

As discussed, a fault batch is the unit of UVM driver workload. Here we delve into the UVM
driver to find out what task components are involved in batch handling and the associated costs.
We concentrate on the base cases without prefetching or oversubscription. These base cases
serve as the references for evaluating prefetching and oversubscription in later sections. We further
compare and contrast page migrations in three system settings with varying source devices and
interconnects: CPU-GPU over PCle, GPU-GPU over PCle, and GPU-GPU over NVLink.

4.1 Timeline of Tasks in Batch Handling

CPU-GPU Page Migration. The UVM driver takes a batch as the basic unit and processes one batch
after another. Figure 3 shows the timeline of an individual batch for the CPU-GPU page migration.
Each batch consists of a sequence of tasks in order. Some tasks are completed by the host alone,
while two tasks, i.e., service faults and replay, need the collaboration of the destination GPU. For
these two tasks, the host requests the GPU to asynchronously perform its parts and waits for the
completion using a barrier at the end of the batch.

In this case, the host performs the following task components:

e Fetch Faults: Fetch entries from the GPU fault buffer, decode them, and store them in the
batch context.

e Preprocess: Deduplicate the faults in the batch; sort them by VA space, fault address, and
access type; and generate an ordered view of the faults.

e Service Faults: Scan through the ordered view of faults, group them by different VA blocks,
and service the groups. Servicing involves the operating system for kernel work, such as
page unmapping and TLB shootdown. The host also enqueues asynchronous tasks to the
GPU to complete servicing.

e Push Replay: Request the GPU to replay faults asynchronously.

e Flush Fault Buffer: Request the GPU to flush the fault buffer, preparing for the next itera-
tion of faults.

e Tracker Wait: Wait for all outstanding asynchronous GPU work to be completed before
completing the current batch. This serves as a synchronization barrier.

The GPU performs two asynchronous tasks to complete fault service and fault replay, respec-
tively. These tasks overlap with CPU tasks and thus their time costs are (partially) hidden.

e Service Faults: Fetch pages from the host using DMA, and map page and update pagetable
to make page information consistent between the host and GPU.

e Replay Fault: GPU MMU issues fault replay requests to uTLBs, which replay data access.
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Fig. 3. Timeline of major tasks for a single UVM batch for the CPU-GPU page migration. The host driver
performs a sequence of tasks in order while enqueueing two asynchronous tasks to the GPU device. The host
and the device synchronize to complete the current batch using a barrier. The circled numbers correspond
to those in Figure 2.

GPU-GPU Page Migration. In this case (not shown in Figure 3), the pages originally reside at the
source GPU instead of the host. The task of fault servicing is different from that in the CPU-GPU
case, while other tasks are the same. Specifically, the host initiates fault servicing and triggers the
source GPU to asynchronously unmap pages and shoot down TLB entries. The destination GPU
has the same asynchronous workload as shown in Figure 3 but migrates data from the source GPU
rather than the host.

4.2 Batch Cost and Breakdown

Now we examine the time cost for batch handling. We obtain the timing by instrumenting the
top-level function of the UVM driver that handles each individual batch and the task functions
it further invokes. While such timing is performed on the host, it captures the global cost and
encapsulates the asynchronous GPU tasks through the track wait time. We study three system
settings: CPU-GPU over PCle on Platform I, GPU-GPU over PCle on Platform II, and GPU-GPU
over NVLink on Platform III.

CPU-GPU On-demand Page Migration. Figure 4(a) shows the overall cost of batch handling
and the breakdown by the task components for cuBLAS sgemm on Platform I. The GPU generates
page faults and migrates pages on demand that reside on the CPU. As expected, the overall batch
time increases with the matrix size, and so do the component times. This is explained by the fact
that larger problems have more data and a larger number of pages, resulting in more page faults
and on-demand page migration.

Among the task components, fault servicing dominates, accounting for over 70% of the total
time. This cost is attributed to necessary actions performed by the operating system kernel. Such
actions include unmapping pages from the host pagetable and shooting down the TLB entries so
that the pages can be migrated to the GPU and mapped to the GPU pagetable. TLB shootdown
is costly on multicore systems because it involves the TLBs on each core. In addition, locks are
frequently used to prevent race conditions and coherency.

Fault fetching and preprocessing incur non-negligible costs, accounting for about 12% of the
total cost, respectively. Both task components are synchronous. The former involves fault metadata
transfer over the CPU-GPU interconnect, which has large access latency. The latter traverses the
fault cache and sorts the faults.

For cuBLAS sgemm on Platform I, the tracker wait time is relatively small, suggesting that the
asynchronous GPU tasks are completed in a similar amount of time as the CPU tasks. That is,
the costs of GPU pagetable update and page migration are effectively overlapped. Two other task
components, fault replay and buffer flush, incur negligible costs.
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Fig. 4. Distribution of time in nanoseconds (ns) among the UVM driver components across all batches.

GPU-GPU On-demand Page Migration. Figure 4(b) shows the experimental results of GPU-
GPU on-demand page migration for cuBLAS sgemm on Platform II. The GPU-GPU case is similar
to CPU-GPU in several aspects. First, the total batch time increases with the problem size. Second,
servicing time dominates and increases with the problem size. Third, fault fetching and prepro-
cessing do not vary with system settings, indicating the same host tasks for both cases.

We note several differences by contrasting the two cases. First, the total time in Figure 4(b) is
significantly smaller, i.e., by 60%. This reduction is mainly attributed to servicing time. Second,
while still dominating, servicing time only accounts for about 50% of the total time. Third, while
still insignificant, the tracker wait time is doubled.

The stark decrease in fault servicing time is due to the actual page table updates offloaded to the
source GPU. Fault servicing includes operations such as page unmapping and TLB shootdown on
the source device. In the CPU-GPU case, the host is actively involved and responsible for all these
required page table updates. In addition, TLB shootdown is particularly costly for synchronization
operations on multi-core CPU architectures with the software-based coherency [2, 5]. In the GPU-
GPU case, the host does not need to update its own page tables but mainly orchestrates work on
the GPUs. GPU page table updates and TLB shootdown are hardware based and relatively much
faster [49]. As a result, the host fault servicing time is more than halved.

The tracker wait time increase is noteworthy, even though it does not significantly contribute
to the total batch time. Tracker wait time is the synchronization barrier between the host driver
and the GPUs and measures the time the host waits for outstanding asynchronous GPU tasks to
complete. The increase indicates that the asynchronous GPU tasks are less overlapped than for
the CPU-GPU case. Tracker wait time would be more significant when advanced features of UVM
are enabled. These advanced features include prefetching and oversubscription; their impact is
discussed in Section 6.

The sum of service time and tracker wait time is halved in the GPU-GPU case. The reduction in-
dicates two pieces of information: (1) the overall improvement due to page table updates offloaded
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from the host to GPU and (2) the more efficient memory allocation and page handling by the GPU
than the host, which complies with the findings in [2].

Figure 4(c) shows the cost of GPU-GPU demand paging over NVLink for cuBLAS sgemm on
Platform III. Contrary to the intuition that GPU-GPU over NVLink could improve time over GPU-
GPU over PCle, the total cost and components do not vary with the interconnect for basic on-
demand paging without prefetching and oversubscription. This observation suggests that basic
on-demand paging is unable to sufficiently use the bandwidth of either PCle or NVLink.

4.3 Variations among Applications

Here we examine if the observations hold across the applications. Specifically, these observations
are (1) the dominance of the service time across platforms, (2) the decrease of service time of GPU-
GPU, and (3) the increase of tracker wait time of GPU-GPU. We note that the full service time is
the sum of service time and tracker wait time, provided the replay time is relatively much smaller.

Figures 4(d) through 4(f) show the batch time for Stream. All observations maintain, but with
a smaller increase in the tracker wait time. Given that the main asynchronous component is the
actual migration of data, we attribute the smaller increase in tracker wait time to Stream’s linear
access pattern, which allows for greater coalescing of data. These common observations motivate
the in-depth investigation of the impacting factors of the service time, which is discussed in the
following section.

5 ATTRIBUTES OF THE UVM DRIVER WORKLOAD

To understand the cause of the service time and its dominance, we investigate several key work-
load features and quantitatively analyze them. This section presents the details of the following
findings.

e Data movement: Data transfer from the source to the destination can incur a high cost but,
counterintuitively, is not the dominating factor. In addition, its cost can be fully or partially
overlapped due to asynchronicity.

e Host OS interaction: Some components, such as CPU page unmapping, require the host OS and
incur surprisingly significant overhead on the fault path.

o Fault distribution/access pattern: The distribution of faults over 2MB VABlocks determines the
trend for performance variance. The patterns are inherent to applications.

We first study the CPU-GPU setting on Platform I and then discuss the difference between the

GPU-GPU settings on Platforms II and III.

5.1 In-depth Examination of the CPU-GPU Case

5.1.1 Data Movement. Data movement is
the primary purpose of the UVM driver and o x10°_Polynomial Fit for Batch Data

sets the trend for performance. Data amount is 2.
. . . . o

the leading performance indicator in most UVM E J

) . . < 0.6 bl
scenarios for a given batch. Figure 5 demon- g " -

. . 804 f

strates that the average batch cost rises linearly & L
with the amount of data moved for all appli- 2 i eamo
cations. However, the average cost differs with O R TR T TR TR
applications, and there is a high variance for a Bateh Data Wraton Size (K®)
given application. Fig. 5. Best fit of batch time vs. batch data amount

Even though data movement is the primary migrated for one run of several applications.
purpose, its direct cost is not primary in a fault
batch. Instead, management is far more costly.
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We use the example of a moderately sized sgemm to demonstrate this point. Figure 6 shows that
transfer time accounts for less than 25% of the total batch time for almost all batches. This obser-
vation offers two insights: (1) Most batch servicing time is not spent on data transfer. While faster
hardware may benefit performance, the more significant issue is ensuring the driver efficiently
utilizes the interconnect subsystem. (2) The variance and skew must be derived from batch char-
acteristics, the driver software, and the driver’s interaction with the host OS and hardware. We
investigate the constituent components of the overall performance cost, including variance, in the
remainder of this section.

5.1.2  Host OS Interaction. Management operations for host memory frequently require expen-
sive interactions with the host OS. The host component of UVM is built on top of the existing
virtual memory system in the Linux kernel. Because of this, migrations are subject to additional
latencies incurred by existing mappings and the underlying virtual memory subsystem. We use
an existing, UVM-optimized application to demonstrate this issue—the HPGMG implementation
provided by NVIDIA [43].

Figure 7 shows an example of CPU-side

behavior influencing GPU fault performance le6 5
outcomes. The two subfigures show the same 2.5 .
problem with the same configuration, except 2.0 20E
(a) uses a single OpenMP thread, whereas (b) g s 15§
uses the default OpenMP thread configuration E D
(one thread per logical core). Notably, the for- g0 10{;‘5
mer configuration shows roughly twice the 05 ‘ 5 3
performance by simply disabling multithread- 00| o

ing, and the performance trend falls in line 0 200 400 600 800 °

. - Batch Data Migration Size (KB
with other applications that we have seen for atch Data Migration Size (KB)

a given data size. Fig. 6. The percentage of time spent per batch perform-
Further, page unmapping represents a sig- ing data transfer for sgemm. At most, the transfer time
nificant portion of execution time for many is approximately 25% of the total batch time but is typ-
batches, as represented by the tone of color in ically far lower.
Figure 7. Page unmapping is an operation in
the existing virtual memory system on the host that UVM extends to support faults from GPU.
Page unmapping is performed when the GPU touches a VABlock that is partially resident on the
CPU. In this scenario, the driver calls into the kernel function unmap_mapping_range () to unmap
all pages within the VABlock residing in host memory as part of the page migration. Interestingly,
we observe that OpenMP multithreading exaggerates this specific cost for HPGMG. We note that
this behavior does not occur in trivial cases, such as parallelizing data initialization in the sgemm
application, indicating that data access patterns and thread affinity play a role in this issue.

We draw two conclusions about host OS interaction from the data presented: (1) unmapping
host-side data takes place on the fault path and incurs significant overhead, and (2) certain host-
side parallelizations of an application using UVM can exaggerate these unmapping costs. The host
OS performs this operation, and the costs likely stem from issues with virtual mappings across
CPU cores, flushing dirty pages from caches and TLBs, NUMA, and other memory-adjacent issues.
Additionally, these operations do not take place in bulk due to the logical separation of VABlocks
within UVM. This is an area that deserves particular scrutiny as HMM also performs host page
unmapping on the fault path using host OS mechanisms, implying a similar cost could be applied to
all devices when using HMM [15, 26]. Design and implementation issues such as how unmapping
takes place and if it needs to be performed on demand deserve further investigation.
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time per batch spent unmapping host-resident pages. Multithreading incurs larger percentages for unmap-

ping.
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batches with similar workloads, more VABlocks  time. For the same data migration size, a higher cost

incur higher costs and cause more significant s associated with more VABlocks.

performance variation. This behavior is consis-

tent with our earlier observation that the driver handles VABlocks within a batch independently.
Processing each VABlock in parallel would be an intuitive optimization based on the driver

design but would be highly workload imbalanced due to the large standard deviation in per-batch

VABIlock representation. In Table 3, there is a wide variation in the number of VABlocks present in

each batch, and these distributions change with application. Additionally, there is a high variance

in the number of faults per VABlock. As discussed in our prior work [4], the root cause of this

inconsistency is that each fault batch contains pages from almost every SM on the GPU. Batched

faults originate from different execution contexts, with only a few pages representing each SM.

The sole benchmark with low variance is random access as it consistently has no locality within a

single VABlock but still represents a very small

workload per VABlock. Table 3. VABlock Source Statistics in a Batch

VABlock | Faults | Std. Dev. | Min. | Max.

5.2 Improvement /Batch | /VABlock
in the GPU-GPU Cases Regular 1127 593 510] 1| 83
As indicated by Figure 4, the host incurs a |Random 233.09 1.04 020] 1 6
1 ti .. faults in the GPU- sgemm 6.96 9.81 16.58 1| 128
smaller cost in servicing faults in the <Ceam 393 537 s 1 2
GPU case than in the CPU-GPU case. We at- [cufft 25.14 2.89 222 1] 129
tribute the reduction to unmapping/unmap- |gauss-seidel| 231 22.44 27.96] 1] 208
ping offloaded to the source GPU and possibly ~LPme 239 13.62 b72] 1] 212
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Fig. 9. The weights of page unmapping on the host for sgemm on three platforms. In the GPU-GPU cases,
the host incurs much less time by mainly orchestrating the unmapping on the source GPU and mapping on
the destination GPU.
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Fig. 10. The weights of data transfer setup time on the host for sgemm on three platforms. In the GPU-
GPU cases, the host incurs much less time by mainly orchestrating the unmapping on the source GPU and
mapping on the destination GPU.

less transfer time. In this subsection, we examine these explanations using experimental results
and confirm their correctness.

Figure 9 presents the weights of page unmapping and TLB shootdown on the host batch time
on three platforms. The host spends 50% on average of batching time in page unmapping and
page mapping, which is encapsulated in serving faults in the CPU-GPU case on Platform I, in
comparison to 15% in the GPU-GPU cases. This is because in the latter cases, the host mainly or-
chestrates the activities on the two GPUs without updating its own page tables. Figure 10 presents
the weights of data transfer on the host batch time on three platforms. The data transfer has a sim-
ilar percentage of the total batch time across the platforms. The higher total time in the CPU-GPU
case indicates a larger absolute data transfer time.

6 EFFECTS OF PREFETCHING AND OVERSUBSCRIPTION

In practice, UVM offers two features by default to support its use in real applications—prefetching
and oversubscription. Prefetching is fundamental to allowing UVM applications to achieve per-
formance comparable to programmer-managed memory applications [3]. Oversubscription fur-
ther simplifies programming, allowing applications to work with out-of-core data, but typically
at a high performance cost. In this section, we analyze these two features, primarily identifying
(1) how costs from the prior section translate into real workloads, (2) how prefetching and over-
subscription impact batches qualitatively and quantitatively, and (3) how they differ with system
settings.
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Fig. 11. Overall batch time and breakdown for oversubscribed applications. The red vertical dashed lines
delimit non-oversubscription and oversubscription. Top: Stream. Bottom: CUBLAS. Left: CPU-GPU over PCle.
Center: GPU-GPU over PCle. Right: GPU-GPU over NVLink.

6.1 Overall Performance Impacts

6.1.1  Oversubscription. Oversubscription causes one major change to the driver workload:
once destination GPU memory is filled, the UVM driver must evict some VABlocks before mi-
grating the on-demand pages. Eviction presents an immediate detriment in performance because
each eviction is associated with page table updates on both the source and the destination devices
and data transfer between them. Eviction is handled solely in the service task component.

Figure 11 shows the performance of the UVM driver for Stream and sgemm. Once GPU memory
is oversubscribed, batch time increases by more than 3X. Essentially, every batch task has a much
higher cost. Oversubscription also causes a shift in the distribution of batch components. Service
time is still a dominating factor. Tracker wait time grows to a substantial portion of the batch
time (e.g,. for sgemm), indicating that eviction makes the GPU’s workload greater than the CPU’s
workload. By inspecting the source code of UVM, we find that eviction involves a three-step
process: try to allocate memory space on the GPU but with a failure, evict victim VABlocks, and
re-try to allocate space. While each step incurs overhead, the eviction is especially costly, as
detailed in Section 6.2.1. Furthermore, the host memory is the hard-coded destination for eviction.
This causes GPU-GPU migration to span three memory locations: host memory, the source GPU’s
memory, and the destination GPU’s memory.

The advantage of GPU-GPU disappears for oversubscribed problems, causing the total times
across the three platforms to be similar for both benchmarks. This total time is determined by
eviction, which is the same among the three platforms. The increase in tracker wait time offsets
the decrease in service time using GPU-GPU. In contrast to the significant performance gain for
non-oversubscribed problems, GPU-GPU only achieves 1.17X speedup over CPU-GPU for over-
subscribed sgemm, and GPU-GPU over NVLink additionally achieves a 1.05X speedup.
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Fig. 12. Overall batch time and breakdown for prefetching enabled workloads. Each plot shows a side-by-side
comparison of non-prefetching (left bars) and prefetching (right bars).

6.1.2  Prefetching. UVM utilizes a runtime prefetching routine as part of the default behavior.
Upon a page fault, UVM fetches not only the requested page but also other pages in the same
VABlock. Through prefetching, UVM amortizes the transfer latency and obtains a high bandwidth
over the interconnect. Prefetching reduces the total number of faults generated during application
executions and increases the coverage of pages in a batch. Like eviction, prefetching is handled
entirely in the service component of the driver.

Compared to the base case, prefetching boosts the performance of the UVM driver by roughly
an order of magnitude as shown in Figure 12. Except for tracker wait time, all other tasks’ times
are smaller with prefetching. This is mainly due to the reduced number of faults and batches: the
prefetched pages satisfy the requests in the future and avoid page faults. The same application
generates fewer faults and batches.

Tracker wait time with prefetching increases significantly and can be on par with service time.
This increase indicates that the host waits longer for the asynchronous GPU tasks to complete the
batches. Prefetching migrates a larger amount of pages in each batch compared to the base case.
These additional pages require data transfer over the interconnect and page table updates on the
GPU, leading to increased costs that are harder for the host tasks to overlap.

With prefetching, GPU-GPU over PCle has a decreased advantage relative to CPU-GPU over
PCle, i.e., ~1.09X vs. 2.0X without prefetching. In addition, GPU-GPU over NVLink outperforms
GPU-GPU over PCle. It obtains a much higher speed, e.g,., 1.7X vs. 1.09X for Stream. Specifically,
the higher bandwidth and lower latency of NVLink reduce the data transfer time offloaded to
the GPU. This in turn allows for better overlap of the synchronous and asynchronous workloads,
which is manifested through the smaller track wait time.

6.1.3  Oversubscription + Prefetching. Coupling these two features results in more interesting
behavior and aligns with real-world usage. In oversubscribed problems, prefetching may migrate
pages that will be evicted before use. The costly evictions diminish the benefits of prefetching.
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Fig. 13. Overall batch time and breakdown for oversubscribed, prefetching-enabled workloads. Each plot
shows a side-by-side comparison of non-prefetching (left bars) and prefetching (right bars).

Prefetching still boosts performance for some oversubscribed problems, but the gain depends
on the application. Stream and sgemm have significantly different results for prefetching-enabled
oversubscribed problems, as shown in Figure 13. Prefetching boosts the performance of Stream
by 2.5X for oversubscribed problems over the executions without prefetching. This is a reduction
from the 10X speedup for non-oversubscribed problems. Further, the advantage of GPU-GPU and
NVLink disappear, and all three hardware configurations have a similar total time.

Prefetching still greatly boosts the performance of oversubscribed sgemm problems, i.e., by 8X
compared to executions without prefetching. It is a reduction from the 10X speedup for non-
oversubscribed problems. The advantage of GPU-GPU and NVlink still maintains for sgemm.

6.2 Detailed Analysis of the CPU-GPU Case

6.2.1 Oversubscription. Oversubscription allows applications to exceed GPU memory capacity
by using a form of LRU eviction to swap pages back to the host. Upon a page fault, when GPU
memory is oversubscribed, the UVM driver automatically evicts “cold” data back to the host to
make room for new data at the granularity of 2MB VABlock. During this process, the GPU device
must first identify a victim VABlock, unmap it in the pagetable, and transfer the block to the
host.

The eviction incurs significant cost. Figure 14(a) shows batch timing data for Stream using
a problem size that exceeds GPU memory. The batch distribution follows a somewhat expected
trend: many batches are executed before full GPU memory allocation without requiring eviction,
and others (colored) evict one or more VABlocks. Predictably, blocks containing evictions incur
greater overheads to (1) fail allocation, (2) evict a VABlock and migrate the data back to the host,
and (3) restart the block migration process, including host unmapping, data transfer, GPU mapping,
and page population, a process by which pages are filled with zero values before data is migrated
to them.
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Fig. 14. Stream under oversubscription. Left: Multiple “levels” for the same eviction count. Right: A level may
not include a portion of CPU unmapping.

In addition to the overhead of eviction, the batch time under oversubscription also depends on
whether the VABlock on demand has been previously evicted from the GPU and remapped to
the host. If the VABlock on demand is resident on the CPU and mapped on the host pagetable,
then both costs of GPU eviction and CPU-GPU migration are accounted for in the overall time.
In contrast, if a VABlock has been evicted from GPU but not remapped to the host, then the host
does not have to re-pay the large unmap_mapping_ranges() cost for migration back to the device,
cutting a significant portion of the time and creating the lower-cost levels of batches. This property
is seen by comparing the pair of figures in Figure 14, where the lower “level” for the same number
of evictions always has near-zero unmapping range cost.

6.2.2  Prefetching. The prefetching mechanism is a type of density prefetching, sometimes called
tree-based prefetching, and is described in detail in [3, 19, 27]. The prefetcher’s scope is limited to
a single VABlock and is only reactive; the prefetcher only flags pages within a VABlock currently
being serviced for faults up to the full VABlock.

Prefetching reduces the number of batches (data points) by 93%; compare Figure 15(a) against
Figure 6 for the previously seen sgemm with prefetching disabled. The relative performance trend
is similar to the non-prefetching trend. However, some batches have highly exaggerated sizes due
to large prefetching regions, i.e., 20MB vs. 800KB.

Many instances of very high-cost batches would have been considered outliers. These batches
are traceable to the behavior seen in Figure 15(b), showing that up to 64% of batch time is spent in
GPU VABIlock state initialization not present in other batches. This time is largely attributed to two
operations: (1) create DMA mappings for every page in the VABlock to the GPU, so that the GPU
can copy data between the host and GPU within that region, and (2) create reverse DMA address
mappings and store them in a radix tree data structure implemented in the mainline Linux kernel.
These mappings are compulsory when a VABlock is first accessed and cannot be eliminated by
prefetching. However, not every batch requires these DMA mappings to have the same high cost.
In-line timing during these high-cost DMA batches shows that the majority of time is spent in
the radix tree portion of this operation, indicating some performance issues potentially associated
with that data structure. We do not present the data here for the low-level timing creates significant
skew in the overall timing information.

The overall characteristic of prefetching shows that reducing the overall number of batches is
highly effective in speeding up UVM, even though it means performing larger quantities of work
in the short term. The side effect is that prefetching makes the inconsistent DMA mapping take
up a more significant proportion of the overall cost.

6.2.3  Eviction + Prefetching. Finally, eviction combined with prefetching creates the most com-
plex scenario. Prior work has shown that the combination of prefetching and eviction can harm
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Fig. 15. Batch profiles of sgemm with prefetching enabled. The mid-range cost batches are significantly re-
duced, and the high-end outliers correspond to negative performance impacts from creating and storing
DMA mappings.
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Fig. 16. Batch profiles of sgemm as a time series. Prefetching occurs throughout the execution and evictions
typically occur later. Unmapping and GPU state setup occur regularly throughout the application, and GPU
state setup does not always have excessively high overhead.

performance for applications with irregular access patterns [3, 27, 52]. We evaluate this scenario
by comparing prefetching-enabled and -disabled scenarios for the same applications.

Figure 16 shows sgemm with combined eviction and prefetching properties as a time series. While
not shown, the range of data transfers is still extended, but not to the full 20MB range observed
in the prefetching example alone; we attribute this to reduced block access density for the larger
problem size.

We confirm that prefetching is still active and driving the larger batch sizes. Prefetching tends
to happen earlier where the VABlock is consistently resident on the CPU, and subsequent accesses
to the same VABlock can drive a robust prefetching response. Eviction ranges are remarkably
similar to the non-prefetching data-set, fitting into the same sizes and ranges. The eviction set
has relatively low batch sizes because evictions are caused by paging in new VABlocks, which
have low access density at first. Non-eviction batches that include new VABlocks tend to have
smaller batch sizes but must pay the high CPU unmapping cost discussed in the prior section.
CPU unmapping cost can occur at any time during execution as new VABlocks are touched but
tend to diminish later in execution after each VABlock has been touched by the GPU at least
once. Though it is intermittent, creating DMA mappings can still have a high overhead. The high
overhead may be caused by the growth of the underlying radix tree, but further investigation is
required.

Overall, we confirm our intuition about when these batch features may occur and confirm
that many of the cost relationships discussed earlier still account for a large quantity of runtime
even with eviction and prefetching enabled. Additionally, we find that eviction costs need to be
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optimized independently from the host OS performance. Prefetching can significantly reduce the
total number of batches but is unable to mitigate the cost of each remaining batch.

6.3 Benefits of NVLink

Platform III has the same configuration as Platform II, except that it has the NVLink2 GPU-GPU
interconnect vs. the PCle GPU-GPU interconnect. Compared to PCle 3.0, NVLink2 has higher
peak bandwidth (i.e., 5X), lower latency (i.e., 45%), and cache coherence [34]. Here we discuss how
NVLink’s advantage is leveraged in UVM.

First, the base cases fail to leverage the benefits of NVLink. Without prefetching, only the on-
demand pages are transferred across the interconnect. These pages are insufficient to saturate
either PCle or NVLink bandwidth. Meanwhile, all page faults are handled in the critical path for
which the host requests the GPUs to service the faults and transfer the pages. The synchronous
cost on the host is the bottleneck, determining the total cost.

Second, prefetching leverages the benefits of NVLink by transferring a large amount of data
in each batch and reducing the total number of batches and page faults. Meanwhile, the host in-
curs less time due to reduced page faults. The higher peak bandwidth of NVLink results in a less
asynchronous cost of larger batches that appear with prefetching. Consequently, NVLink does
not suffer the same growth of tracker wait time in the case of prefetching non-subscribed prob-
lem sizes. In contrast, the larger batches saturate PCle bandwidth, causing the host to wait for
synchronization.

Third, oversubscription diminishes the benefits of NVLink2. Oversubscription, as it is currently
implemented, always evicts pages back to the host memory. This causes the CPU-GPU PCle inter-
connect to become active for data eviction. Depending on the amount of oversubscription and the
applications, the CPU-GPU PCle interconnect can quickly become the bottleneck, causing the in-
crease in tracker wait time and limiting the overall performance. We anticipate that the advantage
of GPU-GPU over NVLink2 maintains if the CPU-GPU interconnect was NVLink2.

7 DISCUSSION
7.1 Performance Factors

Data movement unexpectedly contributes only a small percentage of the overall cost. This suggests
that improvements to basic hardware, such as interconnect bandwidth and latency, would still
improve performance but would not eliminate the underlying bottlenecks.

Host OS overhead. Page table updates, particularly page mapping and unmapping, are the dom-
inating factor. Some user code parallelization schemes can exacerbate these costs. Page table up-
dates are three-party tasks, including the host UVM driver making requests and the migration
source and destination devices asynchronously performing updates. In the case where the host
serves as the migration source or destination, page (un)mapping and DMA setup are particularly
costly, as they take place on the fault path and these operations are slower on CPUs than GPUs.
Page (un)mapping is not intended to happen in frequent bursts with real-time constraints, as is
the case with UVM and HMM. With the projection that HMM will be common code to support
various devices, and UVM is commonplace today, further investigation is necessary to determine
if page (un)mapping functionality can be improved to (1) incur less overall overhead and (2) avoid
excessive costs based on the chosen parallelization of user applications. Alternatively, performing
these operations asynchronously and preemptively may be preferable for GPU computing.

Driver Serialization. The driver, which orchestrates page table updates and page migration
among the source and destination, is serial. Theoretically, the driver could handle the VABlocks
in parallel. However, our workload analysis shows that parallelization would create a severe
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workload imbalance. Parallelizing faults per SM may be more reasonable if devices support tar-
geted per-SM replay. While these workload features are specific to NVIDIA GPUs, any vendor
implementing HMM for parallel devices will encounter similar concerns and delays.

Oversubscription and eviction provide additional programmer flexibility. Oversubscription signif-
icantly increases the costs due to the required eviction from the GPUs. Even though the host OS
does not intervene, the combined OS and eviction costs are exceedingly high. More cost-effective
oversubscription requires optimization independent of the host OS as the underlying performance
issues stem from the eviction algorithms and user applications.

Prefetching is an effective performance optimization technology by eliminating large numbers
of fault batches. However, prefetching cannot mitigate the cost of individual batches with high
DMA and CPU unmapping overhead. The current prefetching strategy is constrained within a
VABlock and synchronous on the critical path. Increasing the prefetching scope to more than
one VABlock or asynchronous prefetching could be more beneficial to regular workloads but may
also complicate eviction. Prefetching and eviction must be co-developed for devices for optimal
performance.

7.2 Multi-GPU Computing

Three-memory Command and Data Path. Multi-GPU computing essentially makes the UVM com-
mand and data path include three entities: host, source GPU, and destination GPU. The host UVM
driver sends requests to the source and destination GPUs and orchestrates their operations. The
data path consists of segments for page migration from the source GPU memory to the destination
and segments for page eviction from the destination GPU memory to the host. GPU-GPU demand
paging is faster when no eviction is involved, thanks to the faster page table updates and TLB
shootdown by GPUs.

Oversubscription and Eviction. Eviction causes the host memory to be part of the fault data path.
This change leads to much poorer performance than multi-GPU computing without oversubscrip-
tion for three reasons. First, the host virtual memory system is slower in updating page tables and
shooting down TLB entries. Second, the CPU-GPU interconnect may be slower than the GPU-GPU
interconnect and takes longer to transfer the same amount of data. Third, eviction is on the critical
path and blocks the migrations until VABlock space is available.

7.3 Effects of Advanced Interconnects on Demand Paging

The system must meet several conditions to fully benefit from advanced interconnect such as
Nvidia’s NVLink2 and AMD’s Infinity Fabric. First, prefetching must be in place to transfer a large
amount of data to saturate the bandwidth and amortize the cost. Second, the prefetched pages
should effectively reduce page faults. Third, all interconnections in the fault data path must be
equipped with advanced interconnects, because the weakest link limits the overall performance.
These interconnections include those from the migration source to the destination and those from
the eviction source to the destination.

Presently, UVM evicts pages to the host memory by default, no matter how many GPU devices
are available on the system and whether the GPU-GPU interconnect is faster than the CPU-GPU
interconnect. This default setting leverages the larger host memory capacity but may suffer from
the low CPU-GPU bandwidth and high OS overhead. Adapting the eviction destinations to system
configurations and workload characteristics may be an effective optimization.

7.4 Additional System Considerations

Our experimental environments have equal page sizes on the host and device sides. In an environ-
ment where host page size differs from device page size, the least common multiple will be used
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in UVM. We do not evaluate such a system, but our methodology is not impacted by such changes
and would still remain usable.

UVM currently applies to single-node communication. Several GPUs across a rack or cluster
are managed by UVM locally, and each GPU in a node communicates with the UVM driver for
unified memory. The next generation of NVLink is slated to introduce atomics across systems,
implying that unified memory may span multiple nodes eventually. While this would certainly
scale the reach of UVM, our analysis will still be relevant outside the context of any inter-node
communication that would need to be added to UVM.

8 CONCLUSION

In this work, we perform fine-grain quantitative analyses of UVM demand paging and isolate the
costs of tasks on the fault command and data paths among the host and GPU devices. By examin-
ing three settings of UVM page migrations with different source and destination devices and in-
terconnects, we reveal synchronous and asynchronous tasks in UVM demand paging and discover
key UVM performance factors and dominating costs. We find that the service component of the
UVM driver is the dominating synchronous component, primarily fueled by page table operations
such as unmapping source pages and remapping destination pages. We find that asynchronous
components become a larger contributor in the presence of prefetching and oversubscription. We
demonstrate how prefetching effectively reduces the cost of the dominating task, servicing, and
how oversubscription changes the overlap between synchronous tasks and asynchronous tasks.
In addition, we identify the benefits and constraints of inherent UVM features and hardware en-
hancements, such as NVLink allowing better overlap of synchronous and asynchronous tasks in
the presence of prefetching.
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