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Abstract

Droplet generation is a fundamental component of droplet microfluidics, compartmentalizing 

biological or chemical systems within a water-in-oil emulsion. As adoption of droplet 

microfluidics expands beyond expert labs or integrated devices, quality metrics are needed 

to contextualize the performance capabilities, improving the reproducibility and efficiency of 

operation. Here, we present two quality metrics for droplet generation: performance versatility, 

the operating range of a single device, and stability, the distance of a single operating point from 

a regime change. Both metrics were characterized in silico and validated experimentally using 

machine learning and rapid prototyping. These metrics were integrated into a design automation 

workflow, DAFD 2.0, which provides users with droplet generators of a desired performance that 

are versatile or flow stable. Versatile droplet generators with stable operating points accelerate the 

development of sophisticated devices by facilitating integration of other microfluidic components 

and improving the accuracy of design automation tools.
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This work presents two new quality metrics for droplet generation, versatility and stability.

1 Introduction

Droplet microfluidics is a core component of many high-throughput platforms in 

biotechnology, including functional antibody discovery, drug screening, metabolic pathway 

optimization, and single-cell genomics.1–4 Typically, resource and time-intensive design 

iterations are necessary to achieve a desired performance, specifically when using poorly 

characterized biological samples5–7 or multiple component devices (e.g., generators, sorters, 

mergers).8–10 Knowledge from previously successful implementation needs to be captured 

through standardized designs, well-annotated fabrication protocols, automated computer-

aided design tools, and quality metrics to reduce the need for design iterations and make the 

design process more robust.11,12

Quality metrics provide essential insight into system performance (e.g., sensitivity and 

specificity of a diagnostic, sampling rate of an integrated circuit, or fuel economy of a car). 

Quality metrics for key microfluidic components are needed as small errors from bespoke 

device design, fabrication, and operation can accumulate between researchers, resulting 

in large performance deviations across different groups.13 Adoption of these metrics in 

microfluidic devices would improve the ease of implementation by non-experts, reduce 

batch variability, and provide important context on their stable and feasible performance 

range.

In droplet generation, the droplet size and generation rate are dictated by the geometric 

design of the device, flow conditions, fluid properties, and surface chemistry.14,15 

Monodisperse droplet generation at a single size and rate is essential for integration with 

other components and for encapsulation of cells, beads, or other reagents. T-junction, co-

flow, flow-focusing, and step-emulsification geometries alongside pressure-driven or flow-

rate-driven fluidic systems are commonly used for droplet generation with varying degrees 

of performance range (droplet sizes and generation rates) and parameter sensitivity.16–18 
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Flow-focusing devices can deliver a wide range of diameters and generation rates while 

maintaining high droplet monodispersity, often making them more desirable in comparison 

to other geometries.16,19

Flow-focusing geometries are traditionally designed by choosing an orifice width close to 

the desired droplet diameter. However, experimental evidence suggests that other design 

parameters including channel depth, oil inlet width, water inlet width, and outlet channel 

width play a significant role in determining the characteristics of droplet generation.20,21 

This design strategy arises from the complex fluid velocity fields and large design space 

in flow-focusing geometries, which prevents the introduction of generalizable and accurate 

scaling laws.

To this end, machine learning-based design automation tools have been introduced for flow-

focusing droplet generators that suggest a design that delivers a user-specified diameter and 

generation rate.22 However, microfluidic design automation tools have primarily focused 

on predicting performance as accurately as possible, taking little to no account for the 

performance range, stability of the operating point, and the difficulties in fabricating or 

operating the device.12

Here, we define versatility and stability, two quality metrics that streamline flow-focusing 

droplet generator design and operation. Versatile devices are ideal for on-chip component 

integration, resource-constrained settings, novice microfluidic operators, or early-stage 

discovery, where surveying a wide range of droplet sizes and generation rates is needed 

(Figure 1a). The broader operating range of these devices can also facilitate the integration 

of droplet generators with other microfluidic components. Stable droplet generators can be 

used to ensure that the operating point of the device is not near a regime change boundary 

(e.g., from dripping to jetting) (Figure 1b). These designs improve the robustness of droplet 

generation by avoiding large jumps in the observed performance from a regime change 

caused by small errors in fabrication, operation, or predictive models.

To characterize the effect of device geometry on these metrics, we capitalized on a 

previously developed machine learning tool, DAFD,22 to fully simulate the droplet generator 

design space. We established the influence of each parameter on versatility and stability with 

main effect analysis. Select devices were fabricated and used to experimentally validate each 

metric. Next, both metrics were integrated into the design automation algorithm to create 

quality metric-driven design automation of flow-focusing droplet generators, DAFD 2.0 

(Figure 1c). These metrics can be implemented to tailor the performance range of a device, 

improve the robustness of operation, or simplify the development of multi-component 

microfluidic devices (Figure 1d).

2 Results

2.1 Rapid modeling of droplet generation

To determine if geometric parameters of a flow-focuser other than orifice width impact 

droplet generation, we analyzed previously published experimental data from 5 orthogonal 

flow-focusing devices with different design parameters while keeping the same orifice width 
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(Supplementary Table S1).21 These devices were tested at the same range of capillary 

number (0.066 – 1.06) and flow rate ratio (10 – 22) and their observed diameters and 

generation rates were used to compare their performance range. Capillary number and 

flow rate ratio were used as dimensionless representations of flow rates to maintain the 

generalizability of our findings to a broader range of channel dimensions. As shown in 

Fig. 2, the performance of these devices varied significantly despite having the same 

orifice width. Interestingly, some devices produced a broader range of droplet diameters 

or generation rates than others. Next, to establish the accuracy of previously validated neural 

networks in predicting the performance of aqueous-in-oil droplet generation,22 we predicted 

the droplet diameters and generation rates of the 5 orthogonal devices at the same range 

of capillary numbers and flow rate ratios. The neural network models closely recapitulated 

experimental observations (Fig. 2).

To guide experimental design and characterize the effect of device geometry on versatility 

and stability, we simulated the droplet generator performance space using these predictive 

models. This newly generated dataset had 4.2 million entries with an approximately equal 

representation in both dripping and jetting regimes (45% dripping and 55% jetting). 

The full-factorial parameter space and range details of the dataset are given in Table 

1. The distribution of the predicted droplet diameters and generation rates are shown in 

Supplementary Figure S1.

2.2 Versatility

Versatile droplet generators can produce a broad range of diameters and generation rates 

for a given range of capillary numbers and flow rate ratios. For each design, we used the 

predicted performance range for all flow conditions (Table 1) to establish three performance 

metrics: size versatility, the total range of observed droplet diameters; rate versatility, the 

total range of observed generation rates; and total versatility, the convex hull area of the 

observed diameters and generation rates (Fig. 1a). The same definitions were also used 

for analyzing regime-specific performance versatility in both dripping and jetting regimes, 

where data points were grouped according to their predicted regime and analyzed separately. 

A wide range of versatility scores was observed in both generation regimes (Supplementary 

Figure S2), suggesting that the design parameters of a droplet generator affect its versatility.

2.2.1 Main effect analysis—To characterize the effect of each geometric parameter on 

versatility, we performed main effect analysis on the size, rate, and total versatility metric 

scores separately for data points in dripping, jetting, and both regimes.23 The total versatility 

scores spanned 4 orders of magnitude across all devices, with the majority of designs having 

relatively low scores (Figure 3a). Geometric parameters, therefore, determine the total 

versatility (Figure 3b), as well as diameter and rate versatility as given in Supplementary 

Figures S3 and S4. These results indicate that optimization of geometric parameters is 

necessary to achieve a versatile device.

In the dripping regime, increasing the orifice length increased total versatility, likely because 

longer orifices delay the regime change from dripping to jetting to a higher capillary 

number.21 Increasing the normalized channel depth significantly reduced total versatility, 
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potentially because deeper channels limit the maximum possible generation rate and cause 

the regime transition from dripping to jetting to occur at lower capillary numbers.21 

Orifice width, normalized oil inlet, and outlet widths had only minor effects on total 

versatility, while normalized water inlet width had a negligible effect. The effects of all 

geometric parameters on diameter, rate, and total versatility are established and provided in 

Supplementary Figures S3 and S4 and are quantified using the coefficient of determination 

(R2) in Supplementary Tables S2 and S3. These results show that normalized channel depth 

and orifice size can be changed to generate droplets with a large range of diameters and a 

small range of generation rates, or vice versa. In contrast, normalized oil inlet width and 

normalized orifice length can tune size versatility or rate versatility without affecting the 

other, respectively.

In the jetting regime, geometric parameters also significantly affected versatility despite 

having notably different dynamics compared to the dripping regime,24 as shown in 

Supplementary Figure S4. Increasing normalized water inlet and outlet widths resulted in 

a notable decrease in total versatility. In contrast, increasing normalized oil inlet width 

produced a notable increase in total versatility. The influence of these parameters on 

versatility is likely from the resultant change in oil flow rate (for a given capillary number) 

and fluid acceleration through the orifice, both of which dictate droplet generation rate. This 

is supported by the high correlation between total versatility and generation rate versatility 

in the jetting regime (Supplementary Figure S4). Medium orifice widths yielded slightly 

higher total versatility scores in comparison to the extremes, which can be attributed to the 

smaller orifices delivering a broader range of generation rates, while larger orifices deliver 

a wider range of diameters. Normalized channel depth and orifice length were observed to 

have a negligible effect on total versatility in the jetting regime. These results indicate that 

the design of microfluidic droplet generators can be tailored to meet user requirements in 

delivering a versatile performance, or delivering a wide range of generation rates while only 

producing a narrow range of diameters or vice versa.

2.2.2 Experimental validation—To experimentally validate the versatility quality 

metric, the design parameters that led to the highest and lowest mean versatility in the 

dripping regime (according to the main effect analysis) were used to design two flow-

focusing droplet generators (see Supplementary Table S1). The two devices were fabricated 

and tested at the capillary number and flow rate ratio combinations at the edge of the convex 

hull of the simulations. If the observed droplet generation regime was in the jetting regime, 

the capillary number (i.e., oil flow rate) was reduced until droplet generation reached the 

dripping regime. Excitingly, the experimentally observed performance range between the 

two devices was notably different, with approximately a 4-fold difference in total versatility 

scores (Figure 3c–f). The more versatile device delivered a droplet diameter in the range of 

27.1 to 77.2 μm and rates of 67 to 515.9 Hz. In contrast, the less versatile device generated 

droplets 114.3 to 329.5 μm in diameter and rates between 9 to 36.4 Hz. The observed 

difference for these designs results partly from a delayed regime change from dripping to 

jetting while increasing the capillary number, thus enabling droplet generation at higher 

capillary numbers and therefore higher generation rates. Despite this larger capillary number 

range, the range of flow rates in the more versatile device was significantly smaller than the 
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less versatile device. The smaller flow rate range indicates that versatility stems from the 

geometric parameters of the device and not just the range of flow rates that result in dripping 

droplet formation (Figure 3d). Additionally, the smaller water and oil inlet widths of the 

versatile design suggest that geometries that further accelerate the fluid at the orifice result 

in a higher generation rate for a given flow rate. The small deviation of the predictive models 

from experimental data is expected given the small errors in our models for performance 

prediction and regime classification.22 Nonetheless, the main versatility characteristics are 

upheld (Fig. 3c, right three panels), instilling confidence that our models are successfully 

capturing the high-level behavior of the device.

To demonstrate the utility of the versatility metric in practice, we fabricated two devices 

capable of producing 100 μm diameter droplets at 100 Hz with predicted performances 

such that the versatile device’s performance range completely encompassed that of the less 

versatile device (Fig. 4; see Supplementary Table S1 for design parameters). As predicted, 

the versatile device had a significantly higher versatility compared to the less versatile 

device and encompassed 98.2% of its deliverable performance area, while the less versatile 

design only encompassed 49.2% of the deliverable performance area of the more versatile 

design (Fig. 4). The more versatile device could operate in the dripping regime within a 

wider range of flow rates; nonetheless, limiting the observed performance to similar flow 

rates (i.e., same as the less versatile device) still resulted in a much larger performance range 

in the more versatile device (Supplementary Figure S5).

2.3 Stability

During droplet generation, different fluidic regimes occur depending on the device geometry 

and flow rates of the operating point. A previously validated machine learning model was 

used to predict the generation regime for the 4.2 million data points.22 These data points 

were then labeled to be a regime boundary or not. A regime boundary was assigned if an 

adjacent point (+/− one step in flow rate ratio or capillary number) had a different predicted 

regime. Then, a “stability score” was assigned to each point as the Euclidean distance in 

flow rate values to a boundary point. Points on the boundary line were assigned a score of 

zero (see Methods, stability scoring for more detail).

For a given device geometry, a change in the capillary number or flow rate ratio would result 

in a 1-to-1 ratio change in oil flow rate or water flow rate according to Eq. 2. Therefore, 

for a given device geometry, using either flow rates or capillary number and flow rate ratio 

would result in the same relative Euclidean distance. Additionally, since operating errors 

typically occur in units of flow rates (e.g., ± 1 μL/hour), the Euclidean distance in flow rates 

was used instead of capillary number and flow rate ratio to develop an unbiased quality 

metric for different devices operating at either high or low flow rates.

2.3.1 Main effect analysis—Within the created dataset, a wide range of stability scores 

that spanned an order of magnitude was calculated (Supplementary Figure S6). The majority 

of data points were observed to have a relatively low stability score, further emphasizing 

the need to characterize and optimize stability. Main effect analysis was performed on the 
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stability scores of the 4.2 million data points to estimate the geometric design parameters 

that had the most influence over stability.

In the dripping regime, increasing capillary number caused the largest decrease in stability 

values (Fig. 5a). This is expected, as the regime transition from dripping to jetting occurs 

as the capillary number increases. Increasing orifice size increased the stability score; this 

may be attributed to a reduced flow acceleration through larger orifices for a given change 

in flow rates that delays the regime change from dripping to jetting. Similar to orifice width, 

it is expected that larger normalized channel depths (i.e., deeper channels) increase stability 

by reducing flow acceleration through the orifice. However, larger normalized depths also 

facilitate regime change from dripping to jetting at lower capillary numbers. Therefore, 

normalized depth minimally affects stability overall. A negligible effect on dripping regime 

stability was observed in other design parameters.

In the jetting regime, an inverse effect of capillary number on stability was observed, as 

the chance of a regime boundary (i.e., a transition from jetting to dripping) decreases 

drastically as capillary number increases (see Supplementary Figure S7). Increasing orifice 

width, normalized depth, and oil inlets increased stability in the jetting regime. This can 

be attributed both to a lower sensitivity to changes in flow rates due to a smaller flow 

acceleration at the orifice and to the positive correlation of these parameters with oil flow 

rate for a given capillary number and flow ratio, as described in Eq. 2.

2.3.2 Experimental validation—The stability metric was experimentally validated by 

fabricating two devices with design parameters that resulted in the highest and lowest 

average stability scores in the dripping regime according to the main effect analysis shown 

in Fig. 5a (see Supplementary Table S1 for design parameters). Between capillary numbers 

of 0.05 and 0.27 and flow rate ratios of 2 and 22, predictions for each device showed a 

much larger dripping performance space in the more stable device (206 out of 230 points; 

see Fig. 5b, left) compared to the less stable device (29 out of 230 points; see Fig. 5c, 

left). Experimentally, the regime boundary was found by increasing the capillary number 

and flow rate ratio until a regime change was observed. As predicted, experimental regime 

boundaries showed a similar difference; although the regime boundary was not exactly the 

same, the dripping performance space of the more stable device was much larger (167 out of 

230 points; Fig. 5b, right) compared to the less stable device (47 out of 230 points; Fig. 5c, 

right).

This discrepancy between experimental and simulated data is to be expected: the 

architecture of our predictive tool utilizes separate models for each regime, and therefore 

datapoints on the regime boundary are at the edge of the training set distribution. 

Furthermore, experimental data close to the regime boundary are inherently unstable, 

with droplet generation regularly changing between each regime due to small changes in 

flow rates, device fabrication, surface properties, or operation. Therefore, we would expect 

some discrepancy between the simulated and experimental data around the regime change 

boundary. For instance, the more stable device and less stable device were predicted to 

deliver similar performance at a capillary number of 0.05 and flow rate ratio of 15.3 (103 μm 

size, 45Hz rate for the less stable device, 110 μm size, 38Hz rate for the more stable device). 
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When running these devices experimentally, a generation rate of 42 Hz is observed for both 

devices, however, a droplet size of 63.6 μm (38% experimental error) is observed for the 

less stable device, while the more stable device delivered a diameter of 92.57 μm (16.1% 

experimental error), as shown in Figure 5d. This discrepancy is therefore mitigated by the 

introduction of a stability metric: by generating stable points, the user can be assured that the 

datapoint is far away from the regime boundary and thus errors from fabrication, testing, or 

predictive models are limited.

2.4 Design automation integration

To facilitate the utility of quality metrics in the microfluidics community, both versatility 

and stability were implemented in a new design automation algorithm to develop DAFD 

2.0.22 In the previous version, DAFD automated droplet generator design by picking 

the closest experimental point in the dataset and then making adjustments to the design 

parameters, iterating until the difference between the specified and predicted performance 

is within a set threshold (Fig. 6a). In DAFD 2.0, a user-specified number of closest points 

are selected and optimized in parallel to produce multiple candidate results (Fig. 6b). The 

closest points are ignored before optimization if they have the same geometric features 

as those already chosen. Optimized points are scored by versatility or stability and then 

ranked according to the user-specified quality metric. Thus, the resulting point would have 

both the desired behavior and a contextual understanding of its versatility or stability. If a 

user would like to optimize by both versatility and stability, we recommend that the user 

first optimize by versatility to get a specific device with a broad operating range, and then 

optimize by stability, fully constraining the design automation algorithm to the previous 

solution’s geometric design parameters. This would then give the user an output with both 

high versatility and stability. A companion report is generated to report different metric 

scores and visualize the user’s device information on its deliverable diameter and generation 

range in each regime and the operating regime of the device based on its capillary number 

and flow rate ratio (Supplementary Figure S8). An additional sensitivity analysis (which 

would evaluate the changes in droplet size or generation rate as any of the input parameters 

are changed) can be generated by the user via a previously developed “Tolerance Test.”22

The efficacy of design automation with quality metrics was validated by comparing design 

automation results for 100 μm diameter droplets generated at 150 Hz in the dripping regime. 

Two solutions were generated by using either traditional design automation or design 

automation with quality metrics. Both solutions had a predicted performance within 1 μm or 

1 Hz of the specified droplet size and rate, respectively (Fig. 6ai & bi). In DAFD 2.0, the 

same device ranked highest in both overall versatility and stability scores. The quality-metric 

driven solution had a predicted versatility of 24,796, 40% higher than the default solution 

(see Fig. 6aii & bii), as well as approximately a 6-fold higher stability score (0.71 for the 

ranked device, 0.13 for the original solution).

A regime change can cause a significant change in the observed performance, as shown 

in Fig. 6aii & bii, demonstrating the importance of the stability metric to improve the 

robustness of droplet generation against small perturbations in fabrication and testing. 

Quality metric integration can play an important role in improving the accuracy and 

McIntyre et al. Page 8

Lab Chip. Author manuscript; available in PMC 2024 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reproducibility of microfluidic design automation while increasing the understanding and 

accessibility of microfluidics to the broader research community. DAFD 2.0 is freely 

available to users at http://dafdcad.org and the source code is made available at https://

github.com/CIDARLAB/DAFD_Metrics.

3 Discussion

In this study, we introduced versatility and stability, two quality metrics for microfluidic 

flow-focusing droplet generators. Operating points with a high stability score are far away 

from a fluidic regime change (e.g., from dripping to jetting) and therefore are more robust 

to performance errors from small fabrication or flow-based errors as well as inaccuracies in 

predictive models. Stable operating points can be particularly helpful for multi-component 

devices, where droplet size and generation rate are less affected by pressure fluctuations or 

the required operating conditions of other components.8 In addition, predictive models may 

be less accurate when operating close to a regime change boundary due to data sparsity 

around the boundary and a higher sensitivity observed performance to small variations in 

flow rates and geometric tolerances. Versatile droplet generators are capable of delivering a 

wider range of diameters and generation rates for a given range of flow conditions. Versatile 

designs could be used for rapid data generation, minimizing the number of devices needed 

to explore the output space and reducing time and cost requirements. For example, the same 

performance space that was previously mapped with 25 orthogonal devices21 can be mapped 

with only 5 versatile devices with more than 99% coverage, a substantial reduction in the 

number of devices that have to be fabricated and tested (Supplementary Figure S9). While 

helpful, manual analysis of quality metrics can be time-consuming and require significant 

expertise to understand what parameters can be changed to improve each metric while 

adhering to the desired droplet size and rate. To this end, versatility and stability were 

integrated into the DAFD design automation software to generate device designs that can 

both deliver user-specified performance as well as maximizing versatility or stability.

These metrics can facilitate the integration of droplet generators with other microfluidic 

components, selecting for large overlaps in their operating range or high stability, reducing 

the need for multiple devices to achieve different droplet properties. Double emulsion 

generation is one application where versatility and stability can be used in tandem to 

optimize performance.25 In double emulsion generation, matching the generation rates at 

the two flow-focuser junctions is essential for producing single-core double emulsions.4,26 

Minimizing size differences between the inner and outer emulsion (i.e., oil shell thickness) 

can also be essential if double emulsions are going to be processed in a size-restricted 

system such as a commercial FACS machine.25 High size versatility and low rate versatility 

in both of the linked droplet generators would enable the generation of different inner and 

outer diameters while limiting changes in generation rates that make unwanted products (e.g. 

multiple or no cores). High stability in performance would avoid failure modes stemming 

from a regime change in either of the two flow-focusing droplet generators.

Although these metrics are created and validated with a droplet generation dataset with 

DI water and mineral oil in a polycarbonate device, transfer learning could be used to 

expand DAFD and the developed metrics to other fluids and fabrication methods such as cell 
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media, fluorinated oils, and PDMS. In transfer learning, a small-scale dataset is used to tune 

an existing model previously generated on a larger dataset. The overall fluid dynamics of 

droplet generation are expected to be similar even when different fluids are used, therefore, 

leveraging geometry to improve versatility and stability is also expected to hold true for 

different fluids.

To this end, we evaluated the versatility and stability of the devices used in Figures 4 and 5 

with a different fluid combination, switching out DI water for lysogeny broth (LB) bacterial 

cell media, which is 80% more viscous than DI water (1.8 mPa·s).27 In the versatile and 

less versatile devices, a marked difference in dripping versatility was observed, despite a 

reduction in versatility in both cases compared to DI water and mineral oil (Figure 7a). A 

cause of this versatility reduction was observed in the stability devices: in both cases, a 

significant shift to lower capillary numbers was observed in the regime change boundary. 

Despite this shift, the more stable device exhibited a larger number of fluid conditions in the 

dripping regime than the less stable device (Figure 7b).

These results suggest both versatility and stability can be generalized to other fluid 

combinations; however, as the fluid combinations begin to differ more significantly from 

DI water and mineral oil, we anticipate the conservation of such properties within the same 

geometric designs to be limited. Additional machine learning models capable of predicting 

performance and regime change across fluid combinations are needed. Machine learning 

has been used to extend these predictive models to fluids commonly used in life science 

applications in a fluid-agnostic manner, broadening the resource of droplet generator design 

automation across the microfluidic community.26 Currently, such models are unable to 

predict regime changes in different fluid types, limiting the adoption of the presented quality 

metrics.

By combining machine learning,12 device standardization,10 and both rapid and high-

resolution fabrication techniques,28–34 metric-driven microfluidic design automation can be 

applied across fluid combinations and droplet microfluidic component libraries and play an 

important role in reducing the barrier to adoption in microfluidics.

4 Conclusions

The development of versatility and stability quality metrics was made possible by leveraging 

large-scale predictions using machine learning-based models for flow-focusing droplet 

generators. These metrics were also experimentally validated by fabricating and testing 

devices with high and low versatility and stability scores. The quality metric-driven devices 

were demonstrated to significantly improve versatility and stability when compared to 

traditionally designed devices. The use of both quality metrics by the broader community 

was made available through integration with an open-source and online design automation 

tool, DAFD, which now generates user-specified performance while also optimizing for 

stability or versatility. To our knowledge, this is the first integration of quality metrics 

in droplet microfluidics that are specifically made to improve the reproducibility and 

robustness of droplet generators while reducing design iterations and facilitating integration 

with downstream microfluidic components.
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5 Methods

5.1 Simulation of droplet generation with machine learning-based predictive models 
using the DAFD tool

Droplet generation with DI water and NF 350 mineral oil was simulated using the 

“performance prediction” module of the DAFD (Design Automation of Fluid Dynamics) 

tool previously developed by our group.22 In brief, neural networks predicting droplet 

diameter and generation rate across two generation regimes of dripping and jetting (four 

models in total) are trained on a large experimental dataset consisting of 888 data points 

from 43 unique flow-focusing devices. These models can then be used to predict output 

droplet size (25 – 250 μm) and generation rate (5 – 500 Hz) from input design parameters 

and flow conditions. DAFD was used to simulate a full-factorial design space of the 

input parameters, totaling approximately 4.2 million data points from 28,125 unique flow-

focusing geometries (Table 1). The 150 flow conditions include 10 flow rate ratios between 

2 and 22 and 15 capillary numbers, comprised of 6 evenly spaced capillary numbers between 

0.05 and 0.1 and 9 evenly spaced capillary numbers between 0.161 and 1.05. These capillary 

numbers were chosen to give a roughly equal distribution of data points in the dripping and 

jetting regimes. The models can be accessed online at http://dafdcad.org/ and the source 

code for the models can be downloaded to be used as local versions at https://github.com/

CIDARLAB/DAFD/. The simulated datasets used in this study can be generated at https://

github.com/CIDARLAB/DAFD_Metrics.

5.2 Versatility scoring

To find the versatility of a device, the 2D convex hull of the performance space 

(droplet size and generation rate) was calculated using the SciPy spatial library (https://

www.scipy.org/ ).35 The total versatility score for the device was calculated as the area of 

the convex hull. Droplet size and generation rate versatility scores were calculated by their 

respective ranges (maximum predicted value minus minimum predicted value). Any devices 

with less than 3 points in a droplet generation regime are given a versatility score of −1 

and are excluded from downstream analysis as a convex hull cannot be formed. This was 

repeated using points in the dripping or jetting regime to generate regime-specific versatility 

scores.

5.3 Stability scoring

The stability of a single point is found by first labeling droplet generation regime boundary 

points within the device’s performance space that has an adjacent point of a different regime 

(from a step in capillary number or flow rate ratio). Next, the Euclidean distance (d) in 

oil and water flow rates in μL/min from the point in question to each boundary point was 

calculated, where:

d = Qoil_boundary − Qoil_point
2 + Qwater_boundary − Qwater_point

2 (1)

The stability score is then set as the minimum distance to a boundary point.
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5.4 Metric integration with design automation

The design of flow-focusing droplet generators is automated by finding the closest 

experimental point to the user specification, as described previously.22 Next, this starting 

point is optimized by increasing and decreasing each of the eight design parameters to 

produce 16 candidate designs. The design with a predicted performance that is closest to 

the desired performance is chosen and this process is repeated until the predicted point is 

below a set threshold value. User constraints can be added to limit the search space. The 

experimental starting point is returned if it is already within the threshold.

Metric-driven design automation is achieved by using a similar algorithm. Rather than 

picking one starting point, user-specified “top-k” closest points are chosen. To guarantee a 

diversity of candidates, new points are not considered if they are within 10 μms or 0.25 

from the orifice size or normalized geometric parameters of the previous point, respectively. 

The multiple starting positions are then simultaneously optimized in the same way as the 

previous version. Once optimized, the versatility and stability scores are calculated. A total 

of 230 flow conditions are used to define device boundaries, consisting of 10 flow rate ratios 

evenly spaced between 2 and 22 as well as 23 capillary numbers comprised of 18 evenly 

spaced points between .05 and .5 and 5 evenly spaced points between .5 and 1.

Candidates are then ranked by the metric specified by the user, with the most versatile or 

stable point recommended. All candidate points are available in a separate .csv file that 

users can download for reference. The source code for metric-driven design automation is 

available at https://github.com/CIDARLAB/DAFD_Metrics/.

5.5 Main effect analysis

As described previously23 and used before on a similar dataset,21 main effect analysis was 

used to approximate the relative influence that each design parameter had on stability and 

versatility. The 4.2 million data points were binned into each unique input parameter, and the 

average metric value for each bin was calculated. The effect of each value is quantified using 

the correlation coefficient (R2).

5.6 Microfluidic fabrication and operation

Microfluidic geometries were directly etched into polycarbonate slabs using a desktop CNC 

micromill (Bantam Tools), as described previously.29 Once etched, devices are cleaned with 

first sonication in IPA and DI water and then a soft brush. Next, devices are sealed with 

an 81 μm thick double-sided adhesive (Adhesives Research ArCare 90445). Microfluidic 

devices are then placed in a vacuum to remove any air bubbles and ensure proper bonding 

between the adhesive and the device layers.

Droplet generation with colored DI water and NF 350 mineral oil with 5% V/V Span 80 

surfactant (Sigma Aldrich) was actuated with syringe pumps (Harvard Apparatus). Images 

were captured with a high-speed camera (IDT X-Stream) mounted to an inverted microscope 

(Zeiss). For illumination at high frame rates, an 18,000 lumen LED light source (Expert 

Digital Imaging) is used. The droplet size and generation rate of each experiment were 

measured by manually analyzing droplet generation videos to measure the generation rate, 
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and subsequently calculate the diameter using the water flow rate and conservation of mass 

equation.

5.7 Flow rate calculation

Capillary number and flow rate ratio are commonly used as dimensionless flow parameters 

to describe and characterize the fluid flow in flow-focusing droplet generators.24 Here, the 

flow rate of water and oil are calculated based on the capillary number, flow rate ratio, fluid 

properties, and device geometry, as given in Eq. 2:

Qoil = Ca . ⋅ σ ⋅ H ⋅ W oil

μoilW water
1

Or . − 1
2W oil

Qwater = Qoil

ϕ ,
(2)

where Qoil is the oil flow rate, Ca. denotes capillary number, σ represents the surface tension 

between the continuous and dispersed phases, H is channel depth, μoil denotes dynamic 

viscosity of oil, ϕ represents flow rate ratio, and W water, W oil4, and Or. are water inlet, oil inlet, 

and orifice widths, respectively. The viscosity of the NF 350 mineral oil is 57.2 mPa.s and 

the surface tension between the oil and DI water is 0.005 N/m.36 The flow rate ratio and the 

flow rates for both water and oil can be readily calculated using Eq. 2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Versatility and stability are established and characterized as new quality metrics for flow-

focusing droplet generators. (a.) Size, rate, and total versatility are defined using the droplet 

diameter range, generation rate range, and the convex hull of observed performance while 

testing the device over the flow condition design space, respectively. (b.) Stability is defined 

as the 2-D Euclidean distance of oil and water flow rates from a specified point to a 

regime change boundary. (c.) These quality metrics were integrated into the DAFD design 

automation workflow to develop the next generation of the online tool that can achieve 

user-specified performance while maximizing desired quality metrics. (d.) Versatility and 

stability metrics can be used in applications such as tailoring the performance range of 

a device, improving the robustness of droplet generation, or simplifying multicomponent 

microfluidic development, such as a double emulsion generator.
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Fig. 2. 
(a.) To understand the effect of geometric parameters other than orifice width on droplet 

generation, five devices were designed with a 75 μm wide orifice and orthogonal other 

geometric parameters. (b.) Taking data under the same flow conditions from a previous 

publication,21 drastically different performance ranges are observed from these orthogonal 

devices, indicating that design parameters other than orifice width influence behavior. (c.) 

These results can be accurately recapitulated with a machine learning-based predictive 

model.
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Fig. 3. 
The geometric parameters of a flow-focusing device can be adjusted to tune device 

versatility. (a.) The versatility score of a large-scale simulated dataset was calculated (28,125 

devices) to produce a wide range of scores. (b.) Main effect analysis is used to quantify the 

effect of variations in geometric parameters on performance versatility for both dripping and 

jetting regimes. The effect of geometric parameters on the total versatility (the convex hull 

area of possible droplet diameters and rates) for the dripping regime is shown. The effect 

of geometric parameters on droplet diameter versatility, generation rate versatility, and total 

versatility in both regimes are provided in Supplementary Figures S3 and S4. The coefficient 

of determination (R2) values for all parameters are provided in Supplementary Tables S2 

and S3. (c.) Based on the main effect analysis, two droplet generators were designed using 

the parameters that resulted in the highest or lowest versatility. The performance of these 

devices was tested experimentally and predicted within the dripping regime and was shown 

to behave as expected both experimentally and in silico. (d.) The more versatile device 

exhibited a larger deliverable performance space in the dripping regime with a smaller range 

of flow rates. (e.-f.) Images of experimental results. Scale bars are 100 μm.
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Fig. 4. 
Direct comparison of versatile and non-versatile droplet generators. (a.) Two droplet 

generators capable of generating 100 μm diameter droplets at 100 Hz but drastically 

different versatility scores in the dripping regime and device geometry were manually 

selected. (b.) The predicted performance range of the more versatile design fully 

encompassed the deliverable performance range of the less versatile design. (c.) The 

more versatile design delivered an experimentally observed performance convex hull area 

approximately two times larger than the less versatile design while almost completely 

encompassing its performance space in the dripping regime. (d.-e.) Images of experimental 

results.
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Fig. 5. 
The design parameters of a flow-focusing device can be adjusted to tune its stability. (a.) 

Main effect analysis is used on 4.2 million data points to quantify the effect of variations 

of geometric and flow parameters on stability. The effect of parameters on stability for just 

the dripping regime is shown here, and the effect of design parameters in the jetting regime 

is provided in Supplementary Figure S7. The coefficient of determination (R2) values for 

all parameters are provided in Supplementary Table 2. To validate the findings on stability 

based on the main effect analysis, two droplet generators were designed using the geometric 

parameters that resulted in (b.) the highest or (c.) lowest stability. (b.-d.) The performance of 

these devices was both tested experimentally and predicted for the dripping regime and was 

shown to behave as expected both experimentally and in silico.
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Fig. 6. 
The newly established quality metrics were integrated into the DAFD design automation 

tool to deliver the desired droplet size and rate while maximizing the user-specified quality 

metric. (ai.) Previously, a user would specify a desired performance, and design automation 

would start by selecting the closest experimental point (i.e., diameter and rate) in the dataset 

and iteratively optimizing the design parameters until the desired performance was achieved. 

(aii.) This approach can generate designs that have a narrow range of diameters and rates 

that are less ideal for integration with other microfluidic components or operate close to 

a regime boundary, making it susceptible to large changes in performance from small 

errors. (bi.) In the newly developed metric-driven design automation tool (i.e., DAFD 2.0), 

the “top-k” closest data points are selected from the dataset, simultaneously optimized to 

achieve the desired performance, and then ranked according to the user-specified quality 

metric (i.e., performance versatility or stability). (bii.) The candidate with the highest quality 

metric is then selected, producing a desired behavior with maximized quality metric. While 

inputting the same performance of 150 μm droplets at 100 Hz into DAFD and specifying 

versatility and stability as quality metrics, the suggested design was observed to deliver a 

broader range of possible performance. The suggested design and operating point were also 

farther away from the boundary of regime change, thus making it more robust against small 

errors in fabrication and testing.
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Fig. 7. 
Generalization of versatility and stability to novel fluid combinations (LB media and mineral 

oil). (a.) Using the droplet generators from Figure 4, differences in versatility were still 

apparent between the more and less versatile devices. (b.) With the droplet generators from 

Figure 5, a marked shift in regime change boundary was observed in both devices. However, 

relative stability in the dripping regime between the more and less stable devices.
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Table 1

Range of design parameters, flow conditions, and the number of variations used in this study.

Parameters Range

Name Unit Lower bound Upper bound Number of variations

Geometry 28,125

Orifice width μm 75 175 5

Normalized* orifice length N.A. 1 3 5

Normalized* water inlet width N.A. 2 4 5

Normalized* oil inlet width N.A. 2 4 5

Normalized* channel depth N.A. 1 3 5

Normalized* outlet width N.A. 2 6 9

Flow condition 150

Flow rate ratio** N.A. 2 22 10

Capillary number N.A. 0.05 1.05 15

*
Parameters were normalized by dividing their value by the orifice width.

**
Ratio of oil flow rate to water flow rate.
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