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Introduction

Abstract

Managing fuels is a key strategy for mitigating the negative impacts of wildfires
on people and the environment. The use of satellite-based Earth observation
data has become an important tool for managers to optimize fuel treatment
planning at regional scales. Fortunately, several new sensors have been launched
in the last few years, providing novel opportunities to enhance fuel characteri-
zation. Herein, we summarize the potential improvements in fuel characteriza-
tion at large scale (i.e., hundreds to thousands of km?) with high spatial and
spectral resolution arising from the use of new spaceborne instruments with
near-global, freely-available data. We identified sensors at spatial resolutions
suitable for fuel treatment planning, featuring: lidar data for characterizing veg-
etation structure; hyperspectral sensors for retrieving chemical compounds and
species composition; and dense time series derived from multispectral and syn-
thetic aperture radar sensors for mapping phenology and moisture dynamics.
We also highlight future hyperspectral and radar missions that will deliver valu-
able and complementary information for a new era of fuel load characterization
from space. The data volume that is being generated may still challenge the
usability by a diverse group of stakeholders. Seamless cyberinfrastructure and
community engagement are paramount to guarantee the use of these
cutting-edge datasets for fuel monitoring and wildland fire management across
the world.

et al., 2017) by leading to losses in biodiversity (Fide-
lis, 2020; Rosan et al.,, 2019) and ecosystem functioning

Wildland fires are essential ecological processes signifi- (Bond et al., 2005; McLauchlan et al., 2020). On the other

cantly altered by anthropic activities (Bowman hand, the occurrence of extreme fire events, wherein large
et al., 2013; Kelly et al., 2020; Pais et al., 2023). A direct areas are severely burned, has escalated in the last decades
consequence is a notable decline in global burned area (Adams et al., 2020; Fidelis et al., 2018; Lizundia-Loiola

that affects ecosystems that depend on fire (Andela et al, 2020; Stavros et al, 2014), causing social,
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economical, and environmental damages (Tedim
et al., 2018). Such events can become even more frequent
with warming and drying from climate change and com-
mensurate changes in fire season length and severity
(Abatzoglou et al., 2019; Jain et al., 2022; Pausas & Kee-
ley, 2021). Fire management has become a necessity to
ensure that wildland fires occur in the appropriate fre-
quency, intensity, and timing to maximize only their pos-
itive effects (Bowman et al., 2020).

Most of the strategies for fire control focus on fuel
management, as other factors may be rather difficult to
control (e.g., weather and topography) (Chuvieco
et al., 2014; Dulff et al., 2017; Pettinari & Chuvieco, 2020).
Reference data for fuel characterization are traditionally
dependent on field samples that may lack temporal and
spatial representation. Alternatives based on remote sens-
ing technologies are often necessary for spatially explicit
fuel characterization used in management decisions (Gale
et al, 2021). Fortunately, the increasing availability of
resources that are coming from the remote sensing field
can support fire managers worldwide in achieving this
critical goal.

Remote sensing with spaceborne sensors is a prominent
technique to characterize fuels over large areas. The asso-
ciated costs to launch satellite systems can be on the
order of millions of dollars ($U.S.) for large satellites
(e.g., >1000 kg such as Landsat), but the information they
provide far exceeds those costs (Craglia & Pogor-
zelska, 2020; Straub et al., 2019). This is particularly evi-
dent when data and products are made publicly available
(Turner et al., 2015; Wulder & Coops, 2014). A successful
example comes from NASA’s Landsat program initiated
in 1972. The long-term data archives from Landsat have
been made freely available for users worldwide since
2008. Similarly, the European Copernicus program has
adopted open policies for the Sentinel missions since
2013 (Jutz & Milagro-Pérez, 2020). The adoption of open
data policy from these two major Earth observation pro-
grams resulted in a significant increase of users and
insights to support advances in many science fields,
including fire management (Masek et al., 2020; Wulder
et al., 2022; Zhu et al., 2019).

There are several crucial topics to explore concerning
the use of spaceborne remote sensing data for supporting
fire management (Moore, 2019). In line with this, the
impact of fires on the environment was ranked 1st among
various biodiversity metrics to be measured from space
(Skidmore et al., 2021). Furthermore, a significant part of
research seems focused on Mediterranean and temperate
forests (Gale et al., 2021), and fuel classification systems
may not be available for many of the fire-prone ecosys-
tems worldwide (Abdollahi & Yebra, 2023)—such as trop-
ical savannas, which are essential for Earth’s carbon
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budget and biodiversity (Abel et al, 2020; Abreu
et al., 2017). Having globally available data for fuel char-
acterization is a promising asset to support advances in
fire research, management, and policy making.

Even with over 50 years of space-based Earth observa-
tions (Ustin & Middleton, 2021), we are in a new phase
where freely available data from spaceborne sensors at
finer spatial, spectral, and temporal resolutions are
becoming available. The objective of this article is to
identify the benefits arising from a new generation of
spaceborne sensors that can be used for fuel characteriza-
tion. We provide a summary of the needs and describe
the key characteristics of spaceborne sensors launched in
the last 5 years (2018-2022) to support advances in fuel
characterization at large scales. We further discuss
upcoming missions and tools to deal with the large data
volumes from these spaceborne sensors.

Characterizing fuels in wildland fire science

Fuels are any combustible material which in the context
of wildland fires includes the organic matter from both
live and dead vegetation (Duff et al., 2017; McLauchlan
et al, 2020). A wide range of fuel characteristics can be
measured to determine the proportion of the total fuel
data would burn under different environmental condi-
tions. This is required as fire-prone ecosystems vary in
vegetation structure, composition, and dynamics (Hollis
et al,, 2015). A common practical approach for describing
fuel attributes in different ecosystems comes from classify-
ing the attributes into homogeneous groups that have
similar responses to fire. The groups are defined as “fuel
types” or “fuel models” and are usually associated with
specific applications (Abdollahi & Yebra, 2023; Aragon-
eses & Chuvieco, 2021; Arroyo et al., 2008; Keane, 2013;
Riccardi et al, 2007). For instance, the McArthur
(McArthur, 1966) system for Australia provides a
straightforward way to monitor fire danger for two vege-
tation types: forest and grassland (Abdollahi &
Yebra, 2023; McArthur, 1966). On the other hand, the
Northern Forest Fire Laboratory (NFFL) system (Ander-
son, 1982) defines 13 classes that can be used for fire
behavior modeling. The NFFL includes classes such as
short grasses, hardwood litter, and logging slash. Scott
and Burgan (2005) have also introduced 40 fuel models
that may supplant NFFL in some applications. Overall,
we see that the classification systems are practical but
tend to be only locally applied. They are not presently
available for all fire-prone ecosystems in the world and
their transferability may be challenging (Abdollahi &
Yebra, 2023).

Integrating field information into remote sensing
approaches offers opportunities to incorporate additional

2 © 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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variables for fuel characterization (Dickman et al., 2023;
Gale et al,, 2021). Since fire is a physical process, there
are core biophysical and biochemical variables determin-
ing how fire will ignite and spread (Sullivan, 2017a,
2017b; Van Wagtendonk, 2006). Following Gale
et al. (2021) these variables might be grouped as: (i)
sub-fuel elements, such as biochemical compounds and
water, (ii) fuel elements, such as particle size and shape,
and (iii) fuel assemblages such as quantity and
distribution.

Biochemical compounds are related to fuel’s emissions
and flammability (Weise & Wright, 2014). Flammability
can be summarized as a combination of ignitability (how
easy the fuel ignites), combustibility (how intense is the
combustion), consumability (how much of the fuel can
be entirely combusted), and sustainability (how long the
fuel burns) (Anderson, 1970; Guerrero et al., 2021; Mar-
tin et al., 1993; Popovi¢ et al, 2021; White & Zip-
perer, 2010). In vegetation, chemical elements such as
cellulose, lignin, and resins are involved in combustion
and are highly variable depending on the species and eco-
system. Incombustible elements such as water also partici-
pate in the fuel’s reactions to fire. The fuel moisture
content (FMC) is a determinant component delaying fire
ignition, spread rate (Chuvieco, 2009), and the partition-
ing of gasses that will be emitted from a fire. In dead veg-
etation, FMC is affected by variations in meteorological
and microclimate conditions (Cawson et al., 2020; Mat-
thews, 2014; Pickering et al., 2021; Rakhmatulina
et al,, 2021). In live vegetation, the FMC depends on
plant physiology, adaptive traits, and soil water availabil-
ity (Nolan et al., 2020, 2022; Scarff et al., 2021). Fuel par-
ticle size and shape are also related to fuel flammability
(Van Wagtendonk, 2006). Finer particles are more sus-
ceptible to faster heat exchange and water removal
(Andrews, 2018; Rothermel, 1972). The surface area-to-
volume ratio of particles has been one of the main
descriptors of fuel particle size incorporated into fire
behavior models (Essaghi et al., 2016). Finally, the aggre-
gation and arrangement of fuel components is a crucial
determinant of fire ignition and spread (Gale
et al., 2021). The amount of material available for burn-
ing, the fuel load, is directly related to the amount of
energy released from a fire (Wooster et al., 2005) and the
carbon emissions (Van Wagtendonk, 2006) when condi-
tions are favorable for burning (e.g., low moisture). Fuels
can be horizontally or vertically connected, facilitating fire
spread. For example, the horizontal distribution of fuels
can be determinant to fire final extent. Meanwhile, verti-
cally connected fuels can facilitate canopy fires that are
harder to control (Menning & Stephens, 2007; Reszka
et al., 2020). Many species-specific traits are important
for how all these fuel metrics are present and will affect
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fire behavior (Richter et al.,, 2019). For instance, traits
such as leaf shape, bark thickness, and resin concentration
can affect flammability (Varner et al., 2022). Furthermore,
seasonal dynamics, physiological and phenological traits
(e.g., leaf decay and decomposition) can affect how fuels
accumulate (Sanchez-Lépez et al., 2023). When remote
sensing captures all these biochemical and biophysical
aspects that control fire combustion and behavior, it
offers a chance to move away from site-specific to trans-
ferable fuel characterization approaches.

Spaceborne remote sensing for large-scale
fuel characterization

Several variables associated with vegetation traits can be
retrieved from spaceborne remote sensors and associated
with the fuel characteristics. The most common ones are
summarized as the Remote Sensing Enabled Essential Bio-
diversity Variables (RSE-EBVs) (Skidmore et al., 2021)
(Figure 1). RSE-EBVs can be retrieved either directly
(e.g., canopy height) or derived through empirically and
physically based approaches (e.g., using aboveground bio-
mass models) (Duff et al., 2017; Franke et al., 2018;
Keane et al., 2001; Lamelas-Gracia et al., 2019; Verrelst
et al., 2019; Yebra et al., 2018). Biochemical components
of fuels are often retrieved with passive sensors, whereas
active sensors are more suitable for retrieving vertical
structure and fuel load (Szpakowski & Jensen, 2019; Vera-
verbeke et al., 2018).

Detailed spectral information is crucial for assessing
fuel biochemical compounds and FMC. For example,
FMC is a commonly estimated fuel attribute using space-
borne sensors (Garcia et al, 2020; Miller et al., 2023;
Yebra et al.,, 2018). This is facilitated by the existence of
known absorption features related to liquid water in the
near-infrared (NIR, ~750-1100 nm) and short-wave infra-
red (SWIR, ~1100-2500 nm) spectral regions, typically
centered at about 970, 1200, 1450, and 1940 nm (Kni-
pling, 1970) (Figure 2). Furthermore, water’s influence on
transpiration affects surface temperature and the emitted
energy from leaves (Gerhards et al.,, 2019). Sensors capa-
ble of capturing thermal infrared range (TIR, ~2500-
14 000 nm) range of the spectrum (Neinavaz et al., 2021)
have the potential to detect the temperature changes to
help understand the effects related plant water stress. In
addition, the plant water status impacts photosynthesis
that can be linked to pigment content and the emission
of solar induced fluorescence (Gerhards et al., 2019; Mer-
oni et al., 2009). Similarly, structural carbon-based com-
ponents (e.g., cellulose and lignin) and nutrients (e.g., N,
P, and K) are responsible for part of the variability in the
spectral response of vegetation in the NIR and SWIR
regions (Kokaly et al., 2009; Ustin et al., 2004).

© 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 3
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(A) Fuel characterization

(A1) Sub-fuel element

(A2) Fuel element

Timescale of major variation

Figure 1. Conceptual framework relating (A)
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(B) Spaceborne measurements

Chemical compounds (B1)

(B3) RSE-EBVs*
Chlorophyll content, Leaf
dry matter content, VOD,
species richness, canopy

cover, canopy height,
aboveground biomass, leaf
area index

Canopy structure

Horizontal and vertical
distribution

Load

_ Diversity

primary fuel characteristics retrieved with remote sensing data (Gale et al., 2021) and (B)

spaceborne Earth observation measurements that allow the collection of linking metrics such as the (B3) Remote Sensing Enabled Biodiversity
Variables (RSE-EBVs) (Skidmore et al., 2021). *RSE-EBVs list is not exhaustive. (B1) example of spaceborne large footprint lidar measurements, (B2)

example of sectra from hyperspectral sensors.
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Figure 2. Example spectra collected with a field spectrometer of live and dead vegetation from visible to shortwave infrared. Spectra examples
from the ECOSTRESS spectral library (Baldridge et al., 2009; Meerdink et al., 2019)—scripts for the library summarization and plotting the figures
available in Appendix S1 and online repository (Leite, 2023).

4 © 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

a ‘0 ‘$8¥€9S0T

wouy

:sdiy) suonIpuo) pue sud, a1 98 “[§70/10/91] uo A1eiqry autuQ KNI “LLIQIT 0prIojo) JO ANSIIAIUN £Q 9 [1°TIS1/T001°01/10p/w0d d1av'A

1oy/w100" KoL A1,

1NIPUOd-puE-

QSUAIIT SUOWIO)) AANEAIY) d[qear[dde ayy q pouIdA0S oIe SAOIIE () 9SN JO SN 10§ AIRIQIT dUIUQ) AJ[IA UO (



R. V. Leite et al.

Active sensors allow direct assessments of fuel vertical
structure and canopy-related metrics. This advantage
comes from the capability to generate 3D representations
through range measurements and penetration into vegeta-
tion vertical layers of sensors such as radar and lidar. The
signal tracking of synthetic aperture radar (SAR) sensors
is sensitive to either structure or dielectric characteristics
of vegetation (which includes vegetation moisture) (Kon-
ings et al., 2019) that can be assessed through polarimetry
(Li & He, 2022; Rao et al., 2020; Saatchi et al., 2007),
interferometry (Kumar et al., 2017; Zhou et al., 2009), or
tomography (Aghababaei et al, 2020; Tong Minh
et al., 2016) techniques. Lidar sensors often provide pre-
cise ranging measurements and have been widely used as
the state-of-the-art for vegetation structure mapping
using aerial and terrestrial platforms (Calders et al., 2020;
Eitel et al., 2016). Recent advances in spaceborne lidar
technology led to the launch of missions (see section
“New sensors, new opportunities”) to retrieve vegetation
vertical profiles, canopy metrics, and fuels across vertical
layers at finer spatial scale (Ashworth et al., 2010; Garcia
et al., 2012; Hoffrén et al., 2023).

The synergy between passive and active sensors offers
the potential for their combined use in fuel characteriza-
tion. Retrieving species diversity, for example, involves
looking at both the biochemical and structure traits of
vegetation (Rocchini et al., 2016). This is essential to sup-
port novel frameworks to fire behavior and effects model-
ing (Dickman et al., 2023; Nolan et al, 2022; Zylstra
et al., 2016). Furthermore, many fuel components such as
those from the surface (e.g., grasses and litter) can have
greater temporal dynamics and be harder to directly mea-
sure with remote sensors (Costa et al., 2020; Leite
et al., 2022; Oliveira et al., 2021). Improving the under-
standing of fuel dynamics could come from the integra-
tion of sensors that capture multiple structural and
compositional components (Sianchez-Lopez et al., 2023)
or offering higher temporal resolutions (Bajocco
et al., 2015; Verbesselt et al., 2007).

New sensors, new opportunities

The number of Earth Observation (EQO) missions has
exponentially increased in the last decades, bringing
opportunities for fuel characterization (Figure S1) (Ustin
& Middleton, 2021). We identified the EO missions
launched in the last 5 years (2018-2022) offering freely
available data (Table 1). We further restricted the sensors
to those offering a level of spatial detail that can facilitate
the relationship with field reference data for the needs of
fuel managers. These needs might be hard to define as
they can be based on specific applications, their relation-
ship to a management unit, or even users familiarity with
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current EO data products (Meddens et al., 2022). The
sensors we identified have a spatial resolution ranging
from 2 to 70 m considering some of the requirements
identified by (Meddens et al., 2022). Satellites carrying
multispectral sensors are joining space with other
long-term missions such as Landsat and Sentinel. Their
combination can leverage higher temporal resolution to
help in the understanding of fuel dynamics. Imaging spec-
trometers with bandwidths <13 nm measure the electro-
magnetic spectrum in higher spectral detail facilitating
chemical composition retrieval. Finally, lidar sensors give
unprecedented measures of vegetation vertical profiles
that are well related to canopy structure and fuel load
(Figure 3).

Multispectral sensors

Four multispectral missions with open data policies were
launched in the last 5 years. The spatial resolution of the
images from these sensors ranges from 2 to 70 m. The
missions include (launch date in parenthesis): CBERS-4A
(2019) (Oldoni et al., 2022; Vrabel et al, 2021),
Amazonia-1 (2021) (Moutinho, 2021; Oldoni et al., 2022;
Vrabel et al., 2021), Landsat-9 (2021) (Masek
et al, 2020), and ECOSTRESS (2018) (Fisher
et al., 2020).

CBERS-4A and Amazonia-1 were launched with the
objective of reducing revisit time of multispectral remote
sensors to track deforestation, especially in the Brazilian
Amazon rainforest (Moutinho, 2021; Vrabel et al., 2022).
They joined the previously launched CBERS-4 (Pinto
et al., 2016) to form a constellation of satellites with simi-
lar characteristics to collectively provide near-daily data
acquisitions. CBERS-4A/WPM panchromatic band spatial
resolution of 2-m has helped on the differentiation of tree
and shrub vegetation cover in an urban interface (Adorno
et al., 2023). This highlights the importance of open
satellite-based data at this spatial resolution for character-
ization of vegetation at a wildland-urban interface. Fur-
thermore, the combination of CBERS-4A/WFI and
Amazonia-1/WFI has allowed images of the same areas
every 5 days (Maurano et al., 2023). The possibility of
achieving a higher data frequency for an area by combin-
ing data from satellite constellations is a crucial step
towards characterizing temporally dynamic fuel character-
istics, such as moisture content (Quan et al., 2021; Yebra
et al., 2018).

Landsat-9 was launched in 2021, continuing the Land-
sat program legacy (Masek et al., 2020). Landsat-9 sensors
(OLI-2 and TIRS-2) have similar characteristics to Land-
sat 8 sensors (OLI-1 and TIRS-1) with bands in the
VNIR, SWIR, and thermal ranges of the spectrum.
Landsat-9 has an orbit that is 8 days out of phase from

© 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5
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Table 1. Description of spaceborne satellites and instruments launched in the last 5 years (2018-2022) with freely available data for research and

spatial resolution of 2-70 m.

Satellite/ Launch

Type instrument year Description References Useful links

Multispectral ~ ISS/ECOSTRESS 2018 ECOSTRESS has 5 spectral bands covering (Fisher et al., 2020) Data products/access:
the spectral range from 8000 to (ECOSTRESS, 2023)
12 500 nm, and has an additional band Tools/tutorials:
centered at 1600 nm for geolocation and (ECOSTRESS, 2023;
cloud detection. The spatial resolution is ecostress-utils, 2023)
~38 x 69 m that is resampled to 70-m
cells. Revisit time can be 1-5 days but is
dependent on the ISS orbit.

CBERS-4A/WFI- 2019 CBERS-4A system is composed of three (Oldoni et al., 2022; Data products/access:
MUX-WPM sensors: Wide-Field Imager (WFI), Pinto et al., 2016) (CBERS on AWS, 2023;
Multispectral camera (MUX), and INPE, 2023)
Wide-scan camera (WPM). The sensors Tools/tutorials: —
collect data in 4 bands (blue, green, red,
and NIR) with a spatial resolution of 55 m
(WFI), 16.5 m (MUX) and 8 m (WPM).
WPM has an additional panchromatic
band with a spatial resolution of 2 m.
Revisiting time is 31 days for MUX and
WPM and 5 days for WFI.
Amazonia-1/WF| 2021 Amazonia-1 satellite carries the WFI sensor (Moutinho, 2021; Data products/access:
to collect data in 4 bands (blue, green, Vrabel et al., 2022) (AMAZONIA-1 on
red, and NIR) at a spatial resolution of AWS, 2023)
~60 m with revisit time of 5 days. Tools/tutorials: —
Landsat-9/0LI-2 — 2021 Landsat 9 sensors (OLI-2 and TIRS-2) have (Masek et al., 2020) Data products/access:
TIRS-2 similar characteristics to Landsat 8 sensors (USGS, 2020; GEE data
(OLI-1 and TIRS-1) with bands in the VNIR, catalog, 2023a)
SWIR, and thermal ranges of the Tools/tutorials: (Landsat
spectrum. The spatial resolution of Science, 20233;
panchromatic, VNIR/SWIR, and TIR bands USGS, 2022)
is 15, 30, and 100 m, respectively. The
instruments have a revisit time of 16 days.

Hyperspectral  ISS/DESIS 2018 DESIS has 235 bands from 400 to (Alonso et al., 2019) Data products/access:
1000 nm. Bands in the VNIR region have (German Aerospace
bandwidths of 2.5 nm while in the SWIR Center (DLR), 2019a,
region the bandwidth is 3.5 nm. The 2019b)
images have 30 m resolution. Revisiting Tools/tutorials: —
time for data acquisition is dependent on
the ISS orbit. Revisiting time following the
ISS orbit can be ~3-5 days.

PRISMA/HYC-PAN 2019 PRISMA's Hyperspectral Camera (HYC) (Cogliati et al., 2021) Data products/access:
records 241 bands: 66 in the VNIR (~400— (ASI PRISMA, 2023)
1010 nm), 174 in the SWIR (~920- Tools/tutorials: (Busetto &
2500 nm), and one Panchromatic (PAN, Ranghetti, 2020;
400-700 nm). Bandwidths are <13 nm in prisma, 2023;
the VNIR and <14.5 nm in the SWIR rPRISMA, 2023)
regions of the electromagnetic spectrum.

PRISMA/HYC provides images of ~30 m
resolution. The PAN channel provides
images of ~5 m for finer assessments.
Revisiting time is 29 days at nadir and
7 days for off-nadir acquisitions.
(Continued)
6 © 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Table 1. Continued.

Next generation of spaceborne EO for wildland firemanagement

Satellite/ Launch
Type instrument year Description References Useful links

ISS/HISUI 2019 HISUI has 185 bands covering from 400 to (Matsunag et al., 2021;  Data products/access:
2500 nm with bandwidths of 10 nm in Matsunaga (HISUI, 2023; Japan
the VNIR and 12.5 nm in the SWIR et al., 2020) Space Systems, 2023)
regions of the electromagnetic spectrum. Tools/tutorials: —

The spatial resolution in HISUI images is
30 m along track and 20 m cross track.
Revisiting time follows ISS orbit.

ENnMAP/HSI 2022 EnMAP’s Hyperspectral Imager (HSI) carries (Guanter et al., 2015) Data products/access:
a sensor that records information in 242 (EnMAP, 2023a)
bands from 420 to 2500 nm with Tools/tutorials:
bandwidths of 6.5 nm in the VNIR and (EnMAP, 2023b;

10 nm in the SWIR regions of the Scheffler et al., 2020)
electromagnetic spectrum. The spatial

resolution of HSI images is 30 m. Revisit

time is 4 days for acquisitions up to 30°

off-nadir or 27 days for up to 5° off-

nadir.

ISS/EMIT 2022 EMIT has 285 bands from 380 to 2500 nm  (Green, 2022; Green Data products/access:
with bandwidths of <13 nm. Surface et al., 2020) (EMIT, 2023a; LP
reflectance products are delivered with DAAC, 2023a)
spatial resolution of 60 m. Revisit time Tools/tutorials:
follows the ISS orbit. (EMIT, 2023b, 2023c)

Lidar ISS/GEDI 2018 GEDI is mounted on the International Space  (Dubayah, Blair, Data products/access:

Station (ISS) and is the first spaceborne
lidar system designed to map forests. It is
a full-waveform lidar system composed of

et al., 2020; Dubayah,
Armston, Healey,
Bruening, et al., 2022)

(GEDI, 2023a, 2023b;
GEE data
catalog, 2023b;

three lasers that together shoot 8 laser
beams that illuminate the Earth’s surface
in ~25-m footprints separated 60 m along
track and 600 m across track.

ICESat-2/ATLAS 2018

~13 m footprint.

The ATLAS sensor on board ICESat-2 is a
photon-counting lidar shooting 6 laser
beams of green light (532 nm) to the
Earth surface. The beams are organized in
3 pairs about 3 km apart and with a
distance between paired beams of ~90 m.
Each beam illuminates an area within a

MAAP, 2023)

Tools/tutorials: (LP
DAAC, 2023b;
ORNL, 2023; Silva
et al., 2020)

Data products/access:
(IcePix, 2023; IceSat-
2, 2023)

Tools/tutorials:

(IcePix, 2023;
NSIDC, 2023)

(Shean et al., 2023;

SlideRule Earth, 2023)

(Markus et al., 2017)

Useful links include where to find or request the free products and examples of tools and tutorials available online. Detailed information on

Tables S2 and S3 is presented in the Appendix S1.

Landsat-8 which means that it is possible to have images
every 8 days while Landsat-8 and Landsat-9 are in orbit
together. The long-term history and spatial coverage of
the mission enable the generation of country-level
monthly burned area products to help understand spatial
temporal variability of fire (Neves et al, 2023). The
higher radiometric resolution of Landsat-9 contributes to
improved burned area mapping (Seydi & Sadegh, 2023).
The Landsat sensors also share similarities with European
Space Agency (ESA) Sentinel-2 images making it possible
to generate products such as the Harmonized

Landsat-Sentinel dataset (HLS) (Claverie et al., 2018) to
potentially improve revisit frequency to ~3 days depend-
ing on latitude.

The ECOsystem Spaceborne Thermal Radiometer
Experiment on Space Station (ECOSTRESS) represents a
significant improvement in the use of thermal bands in
spaceborne remote sensing to globally monitor plant
evapotranspiration at finer spatial and temporal resolu-
tion (Fisher et al.,, 2020). Previous sensors were con-
strained from capturing plant diurnal cycles by always
collecting data at the same time of the day (e.g., Landsat,

© 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 7
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Figure 3. Summary of core fuel characteristics retrieved with spaceborne sensors for available spectral, temporal, and spatial resolution. SAR
stands for synthetic aperture radar sensors; thermal sensors are included as part of multispectral.

MODIS, VIIRS, and Suomi-NPP) or by having coarser
spatial resolution (e.g., GOES). ECOSTRESS deployment
on the ISS allows data acquisition at different times of
the day using 5 thermal bands at ~70 m spatial resolution
and 1-5-day revisit time (higher latitudes are revisited
more frequently). Changes in plants’ evapotranspiration
throughout the day can be captured and used to inform
studies of plant water stress and its consequences (Xiao
et al., 2021). Plant water stress derived from ECOSTRESS
has been demonstrated to be a good predictor of fire
severity (Masara et al, 2022; Pascolini-Campbell
et al.,, 2022; Wilder & Kinoshita, 2022). Moreover, the
ability to monitor evapotranspiration can contribute to
the assessment of functional traits related to post-fire veg-
etation recovery (Poulos et al., 2021). By including ECOS-
TRESS into frameworks to assess post-fire effects with
multiple sensors, we can gain a more comprehensive
understanding of ecosystems’ resistance and resilience to
fire (Pérez-Cabello et al., 2021).

Hyperspectral sensors

Between 2018 and 2022, five missions were launched carry-
ing imaging spectrometers with high spectral resolution
(e.g., bands narrower than 13 nm), namely, German Aero-
space Center (DLR) Earth Sensing Imaging Spectrometer
DESIS (Alonso et al., 2019; Krutz et al., 2019), PRecursore
IperSpecttrale della Missione Applicativa (PRISMA)
(Cogliati et al., 2021), Hyperspectral Imager Suite (HISUI)
(Matsunaga et al, 2020), Environmental Mapping and
Analysis Program (EnMAP) (2022) (Guanter et al., 2015),
and EMIT (Green, 2022; Green et al., 2020). The sensors
collect hundreds of bands in the visible to SWIR regions in
bandwidths lower than 13 nm at a spatial resolution of
30 m, except for EMIT’s products (60 m) (Figure 4).

High-level products from these sensors include geometri-
cally and atmospherically corrected (L2) image products
from DESIS, PRISMA, HISUI (for research purpose),
(Matsunaga et al.,, 2020), EnMAP, and EMIT. EMIT’s data
coverage focused on specific sites on the Earth’s surface
(updated data coverage can be found at EMIT’s open data
portal (EMIT, 2023a).

DESIS, HISUI, and EMIT are deployed on the Interna-
tional Space Station (ISS) that has a non-sun-
synchronous “shifting” orbit allowing data acquisition at
different times of the day but having limitations related
to data coverage. PRISMA has a nominal coverage speci-
fied between 70° N and S latitudes (Cogliati et al., 2021),
whereas EnMAP collects data globally in near-nadir mode
(view zenith angle <5°) (Guanter et al., 2015). Data avail-
ability and information related to data access or request
of the hyperspectral missions are available at the mis-
sions’ websites (Table 1). Even though many of the new
sensors do not have full Earth coverage or controlled
revisit time, their use is helping pave the way for upcom-
ing spaceborne image spectroradiometers.

The effectiveness of imaging spectroscopy for fire appli-
cations has been more widely demonstrated using data
from airborne platforms (Veraverbeke et al., 2018), and
the capabilities of the new hyperspectral sensors are just
starting to be fully unveiled. For example, effectively
deriving subpixel components for fuel map and fire sever-
ity classification has been demonstrated using PRISMA
data (Quintano et al., 2023). Recent studies have also
shown that species richness and diversity predictions
based on DESIS data can outperform predictions based
on multispectral data (Guo et al., 2023; Rossi & Gholiza-
deh, 2023). Nonetheless, the relationship between space-
borne spectroscopy-derived species richness to fire
behavior and effects is yet to be fully understood.

8 © 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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1 um = 1000 nm.

Lidar sensors

The spaceborne lidar missions Ice, Cloud, and Land Ele-
vation Satellite-2 (ICESat-2) (Markus et al.,, 2017) and
Global Ecosystem Dynamics Investigation (GEDI)
(Dubayah, Armston, Healey, Bruening, et al., 2022;
Dubayah, Blair, et al, 2020) were launched in 2018,
leveraging opportunities to improve fuel load and vertical
structure retrieval at global scales. They are based on dif-
ferent lidar technologies. The ATLAS sensor on ICESat-2
is a photon-counting lidar (operating at 532 nm) mean-
ing the receiver only needs the energy of a single return-
ing photon to trigger a measurement. GEDI, on the other
hand, onboard the (ISS) is a full-waveform lidar
(1064 nm) that operates by recording all the returned
energy as a function of time (Liu et al., 2021). Both sys-
tems operate in a sampling design with laser shots sys-
tematically spaced when they reach the Earth surface
(Figure 5). The requirements for developing spaceborne
lidar systems with global wall-to-wall coverage are yet to
be reached (Hancock et al., 2021).

ICESat-2 was launched following the ICESat mission
with most mission requirements related to measuring and
monitoring ice sheet changes (Markus et al., 2017). Nev-
ertheless, the utility of ICESat-2 data extends to vegeta-
tion applications (Duncanson et al., 2020; Narine
et al., 2020; Neuenschwander & Pitts, 2019). Vegetation
height and cover are available as ICESat-2 land, water,
and vegetation elevation products (ATLO08), and land/

canopy gridded products (ATL18). GEDI, on the other
hand, was the first spaceborne lidar sensor specifically
designed to map Earth’s vegetation with potential to fully
penetrate vegetation with 95-98% of canopy cover
(Dubayah, Blair, et al., 2020). GEDI provides high-level
products at the footprint level: vegetation height (L2A,
Dubayah, Hofton, et al., 2020), canopy cover and vertical
profile metrics (L2B, Dubayah, Tang, et al., 2020), and
aboveground biomass density (AGBD) (L4A, Dubayah,
Armston, Kellner, Duncanson, et al., 2022; Duncanson
et al., 2022; Kellner et al., 2023); and gridded at 1 km?
cells: gridded level 2 metrics (L3, Dubayah et al., 2021),
and gridded AGBD (L4B, Dubayah, Armston, Healey,
Yang, et al., 2022). Studies have reported root mean
square errors for canopy height metrics of ~1-4 m (Li
et al, 2023; Liu et al, 2021). For AGBD products, the
GEDI mission aims to achieve standard error <20% for
cells where AGBD is larger than 100, and <20 Mg ha™!
standard  error when AGBD is less  than
100 Mg hafl(Dubayah, Armston, Healey, Bruening,
et al., 2022). Currently, GEDI mission operations have
been paused, and it will resume operations in 2024
(Smith, 2023).

The use of data from spaceborne lidar sensors has been
essential in advancing the mapping and comprehension
of vegetation structural characteristics in fire science. For
example, ICESat-2 data has helped capture structural
changes in vegetation due to fire (Konduri et al., 2023;
Liu et al, 2019). ICESat-2 data capabilities for

© 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 9
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Figure 5. Figure exemplifying data collection over vegetation of spaceborne lidar sensors ICESat-2/ATLAS and GEDI. These sensors collect data in
(A) a sampling pattern with footprints of ~13 m (ATLAS) and ~25 m (GEDI); (B1, B2) are subsets of the transects. The ICESat-2/ATLAS transect
(B1) has the points classified for noise, vegetation, canopy top, and ground, available in the product ATLO8. Figure (C1) is a density plot for a
250 m subset of the ICESat-2/ATLAS transect. Figure (C2) is the returned energy from a single GEDI footprint. Scripts to make the plots are

available in the appendix (in Appendix S1) and on an online repository
(Shean et al., 2023; SlideRule Earth, 2023).

characterizing fuels remains largely unexplored (Brown
et al,, 2023). The use of GEDI data has helped improve
fuel classification (Hoffrén et al., 2023), predict fuel load
across vegetation vertical layers (Leite et al., 2022), and
also quantify fire-related structural changes in vegetation
(Huettermann et al., 2023). The derivation of other
structure-related fuel characteristics such as canopy base
height and canopy bulk density still needs to be explored.
GEDI and ICESat-2 are both sampling sensors, which
means that the data is not collected “wall-to-wall” (Fig-
ure 4). This can be overcome with their integration with
imaging sensors (Potapov et al., 2021). Joining these com-
plementary capabilities can help to improve mapping fuel
characteristics in space and time (Myroniuk et al., 2023).
This is particularly important for fuels that are temporally
dynamic such as those from lower vegetation layers (e.g.,
surface and ground fuels) (Leite et al., 2022).

Looking forward

Long-term Earth observation programs
continuation

Long-term programs that have contributed to the advance
of space-based EO are expected to develop new sensors in
the decades ahead. The follow-on of the Landsat missions

(Leite, 2023). GEDI and ICESat-2/ATLAS tracks extracted with SlideRule

named Landsat-Next (Landsat Science, 2023b) will have
improved spatial, temporal, and spectral resolutions fea-
turing 26 bands, spatial resolutions of 10-60 m. The
Landsat-next mission is designed as a constellation of
three satellites, enabling a 6-day revisit time. Landsat Next
satellites are expected to be launched in late 2030 and to
collect data with its predecessor Landsat-9 (Wulder
et al.,, 2022). The ESA is working to carry on the legacy
of the Sentinel missions into the future. Soon, the
upcoming Sentinel-1C and Sentinel-1D missions should
replace Sentinel-1B  (decommissioned in 2022) and
Sentinel-1A for C-band SAR data acquisition every 6 days
(Geudtner et al., 2021). Later this decade, the Sentinel-1
Next Generation mission will extend C-band data collec-
tion into the 2030s featuring improvements in data acqui-
sition characteristics (Zonno & Matar, 2021). In the same
time frame, ESA is also planning to introduce enhance-
ments in the optical components of Sentinel-2 and
Sentinel-3 in new missions (Loscher et al., 2020). Finally,
we also note that there are references for data starting to
be open for the Gaofen satellites that are part of the Chi-
nese High-Resolution Earth Observation System program
(Chen et al., 2022; Liu et al., 2023). Lower-level products
may be available requiring additional processing before
applying them to end uses (Chen et al., 2022; Zhong
et al, 2021), but analysis ready data are also under

10 © 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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development (Zhong et al., 2021). Similarly, the Sustain-
able Development Science Satellite-1 (SDGSAT-1),
launched in 2021 and developed by the Chinese Academy
of Sciences, is expected to provide freely available data
(Ge et al., 2022).

Upcoming missions

Unprecedented SAR datasets are expected in the next few
years. The SAR missions NISAR and BIOMASS are
planned to be launched in 2024. NISAR will have global
data collection using the L band and will be the first sat-
ellite to allow dual-frequency analysis by acquiring data
using L and S bands on selected sites (Kellogg
et al.,, 2020). NISAR will also have an exact repeat cycle
of 12 days that will allow more frequent interferometric
combinations and analysis. The mission will collect over
85 TB of data per day and plans to meet the requirements
of yearly biomass disturbance mapping at 100 m spatial
resolution, though lower-level products will be delivered
at finer spatial resolutions (e.g., instrument nominal reso-
lution of 7-48 m depending on acquisition mode) (Blu-
menfeld, 2017; NISAR, 2018). Meanwhile, BIOMASS is
the first spaceborne sensor operating at the P-band, which
is the SAR band with the highest penetration capability in
dense vegetation and likely most effective to measure veg-
etation biomass (Quegan et al., 2019). BIOMASS acquisi-
tion parameters will further allow the production of
vegetation profiles through tomographic analysis of the
returning signal for the first three years of its life cycle.
BIOMASS mission requirements include biomass and for-
est height maps at 200 m resolution and forest distur-
bance at 50 m resolution (Quegan et al., 2019). Note that
there might be restrictions for BIOMASS operation that
may limit data availability in some regions of the world
(Quegan et al., 2019). Nevertheless, great opportunities
arise from the integration of NISAR and BIOMASS with
GEDI that are planned to operate together until the end
of the decade. Their combination is boosted by their pres-
ence in the Multi-Mission Algorithm and Analysis Plat-
form (MAAP, Albinet et al, 2019), a joint NASA-ESA
collaborative cloud computing environment. Other SAR
missions are also planned toward the end of the 2020—
2030 decade such as TanDEM-L (Moreira et al., 2015;
Schandri et al., 2022), ALOS-4 (Motohka et al., 2019,
2021), ROSE-L (Geudtner et al.,, 2021), and CBERS-6
(CLBRIEF, 2023; gl, 2023) to continue to support
SAR-based vegetation analysis.

The current hyperspectral missions should lay ground
for a future of imaging spectroscopy from space. The Sur-
face Biology and Geology (SBG) mission (Schimel &
Poulter, 2022; Stavros et al., 2023) and Copernicus
Hyperspectral Imaging Mission for the Environment

Next generation of spaceborne EO for wildland firemanagement

(CHIME) mission (Nieke & Rast, 2018) are the next gen-
eration of this type of sensor. SBG and CHIME will have
global coverage, bandwidths <10-nm in the VSWIR, and
spatial resolution of 30 m. Revisit time can be potentially
less than 8-days by combining SBG and CHIME datasets
(Poulter et al., 2023).

Finally, in the context of wildfire science, it is impor-
tant to mention the first satellite with design planned for
operational wildfire monitoring in Canada named Wild-
FireSat (Johnston et al., 2020). This mission is under
development and delivers images with coarser resolution
than others cited in this article because the mission plan-
ning is focused on different objectives such as having
near-real time data acquisitions, measuring wildfire
behavior, and mapping smoke plumes. A key step toward
the development of the sensors is the interaction with
end-users to determine mission requirements including
temporal resolution, data coverage, and latency (Crowley
et al., 2023; Johnston et al., 2020; McFayden et al., 2023).

Maximizing EO data impact

The present and future EO sensors (Figure 6) are produc-
ing an increasing volume of data to meet the needs of a
diverse group of users, which presents both opportunities
and challenges. Making data open and easily accessible
for the target users plays a critical role in the effective uti-
lization of EO data. There has been a notable increase in
the number of participating agencies operating and mak-
ing satellite datasets available through several spatial data
infrastructures. It is important to note, nonetheless, the
significance of upholding standards for data validation
and quality reporting to facilitate user’s interoperability
across multiple sensors (Niro et al., 2021). Not all the
datasets are easily available yet. Many efforts are being
made to deliver higher-level products, e.g., by building
data cubes for specific countries (e.g., Ferreira et al., 2020;
Giuliani et al., 2017; Lewis et al., 2017) and developing
harmonized data products (e.g., Claverie et al., 2018).
Additionally, following standardized structures and speci-
fications such as the Spatio-Temporal Asset Catalog
(STAC) (Simoes et al., 2021; STAC, 2021) can simplify
data access by reducing the need to develop specific pipe-
lines to access and process each available dataset.

Current trends to process the available datasets point
to through data streaming and cloud computing, which
reduce the need to download large amounts of data and
in-house high-performance computing resources. Avail-
able cyberinfrastructures have facilitated this effort by
combining data access and processing capabilities into a
single platform (e.g., Google Earth Engine, Sentinel Hub,
Open Data Cube, MAAP—Gomes et al., 2020). Improve-
ments may be necessary to provide more levels of data

© 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 11
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Figure 6. Timeline of data collection for the new satellites and instruments. Mission length is represented as a sum of both nominal (darker
color) and potential (lighter color) mission lifetimes, which may depend on several factors. Names in the dotted lines represent previous missions

to acknowledge the continuation of long-term Earth observation programs.

readiness to meet needs of users with a range of comput-
ing skills, improve communication with stakeholders, and
allow the reproducibility of methods (Gomes et al., 2020).
The deployment of public cloud cyberinfrastructure (e.g.,
NSF’s Cyverse) is a prominent alternative to facilitate
access to advanced computing resources to allow a range
of users to process the data that is becoming available
(McIntosh et al., 2023; Swetnam et al., 2024). The collab-
orative nature of these infrastructures aligns well with
open science principles, which include making the
approaches transparent and accessible (Vicente-Saez &
Martinez-Fuentes, 2018). This accountability is essential
to ensure that methods can be effectively transferred and
adapted by different users.

In this sense, community engagement is an important
factor for co-developing the next generation of spatial
data infrastructure and products to increase and diversify
the number of EO data users. Actively hearing a diverse

range of users creates more inclusive and usable data
products. Furthermore, the awareness of how the data
could impact local communities in different ways has to
be considered (de Lima et al., 2022; Walter et al., 2021).
This collaborative approach is essential for leveraging the
full potential of EO data ensuring that it contributes to
cross-scale social and environmental sustainability.

Conclusion

Wildland fire management is essential to maintain the
functionality of ecosystems and reduce the risks of
extreme fire events. Leveraging the use of a new genera-
tion of spaceborne sensors can help managers to achieve
these crucial goals. Fuel load and vertical structure can be
obtained due to the penetration capacity of spaceborne
active sensors, such as GEDI. New sensors collecting data
in narrow bands of the electromagnetic spectrum can

12 © 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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improve the retrieval of key biochemical constituents
across large areas. Finally, data integration between lidar,
hyperspectral, and constellations of multispectral and
radar sensors may give the opportunity to scale up fuel
characteristics in space and time to understand fuel
dynamics. It is noteworthy that several missions are
planned for this decade such as BIOMASS, NISAR, SBG,
CHIME, and Landsat-Next to ensure the continuity of
the use of EO systems for fuel characterization. The
increasing availability of cross-mission data products,
open-source tools, and seamless cloud-computing plat-
forms is crucial for enabling the use of these cutting-edge
datasets by multiple stakeholders across the world.
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