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ABSTRACT: Sea surface height observations provided by satellite altimetry since 1993 show a rising rate (3.4 mm yr~!)
for global mean sea level. While on average, sea level has risen 10 cm over the last 30 years, there is considerable regional
variation in the sea level change. Through this work, we predict sea level trends 30 years into the future at a 2° spatial reso-
lution and investigate the future patterns of the sea level change. We show the potential of machine learning (ML) in this
challenging application of long-term sea level forecasting over the global ocean. Our approach incorporates sea level data
from both altimeter observations and climate model simulations. We develop a supervised learning framework using fully
connected neural networks (FCNNs) that can predict the sea level trend based on climate model projections. Alongside
this, our method provides uncertainty estimates associated with the ML prediction. We also show the effectiveness of parti-
tioning our spatial dataset and learning a dedicated ML model for each segmented region. We compare two partitioning
strategies: one achieved using domain knowledge and the other employing spectral clustering. Our results demonstrate
that segmenting the spatial dataset with spectral clustering improves the ML predictions.

SIGNIFICANCE STATEMENT: Long-term projections are needed to help coastal communities adapt to sea level
rise. Forecasting multidecadal sea level change is a complex problem. In this paper, we show the promise of machine
learning in producing such forecasts 30 years in advance and over the global ocean. Continued improvements in predic-

tion skills that build on this work will be vital in sea level rise adaptation efforts.
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1. Introduction

Satellite altimeter observations since 1993 indicate that the
global mean sea level is rising at a rate of 3.4 mm yr~' and ac-
celerating by 0.08 mm yr ™2, as shown in studies (Nerem et al.
2018; Hamlington et al. 2020a). Global mean sea level has
risen 10 cm in the last 30 years. However, there is considerable
regional variation in the amount of sea level rise (Hamlington
et al. 2016) necessitating the need for a regional sea level
change analysis. With three decades of satellite observations,
we can now investigate the role played by anthropogenic cli-
mate change signals such as greenhouse gasses, aerosols, and
biomass burning in this rising sea level. Climate model projec-
tions can be used to estimate the extent of the causal contribu-
tions from such factors and forecast future sea level changes.
In Fasullo and Nerem (2018) and Fasullo et al. (2020b,a), two
large ensembles of climate models were studied to show that
the forced responses to greenhouse gas and aerosols have be-
gun to emerge in the regional pattern of sea level rise in the al-
timeter data. This motivates us to utilize climate models in our
framework. Our work uses machine learning to predict future
regional patterns of sea level change. It is part of a longer-
term research project that investigates the extent of contribu-
tions from anthropogenic climate-change signals to sea level
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change. Through our work, we show promising results demon-
strating the potential of neural network-based ML models.
Our framework uses both satellite observations and climate
model simulations to predict sea level trends 30 years into the
future at a 2° spatial resolution.

Forecasting long-term sea level change is a complex prob-
lem given the natural variability of the ocean, the wide range
of processes involved, and the complex nonlinear interactions
playing a role in sea level change. Some past studies have
used satellite altimeter data and adopted ML techniques to
perform sea level prediction. Tide gauge data have also been
used for similar tasks, but they suffer from the influence of lo-
cal coastal effects and poor spatial coverage, while satellite al-
timeter data provide nearly global coverage and are suitable
for working with open ocean sea level patterns. Many tide
gauges also suffer from time varying vertical land motion and
those that do not have collocated continuous GPS measure-
ments therefore contain significant uncertainty (Watson et al.
2015). Imani et al. (2017) make use of support vector regres-
sion for sea level prediction in the tropical Pacific Ocean. In
Braakmann-Folgmann et al. (2017), they utilize a combination
of convolutional neural network (CNN) + ConvLSTM (Shi
et al. 2015) layers to perform interannual sea level anomalies
(SLA) prediction over the Pacific Ocean. Zhao et al. (2019)
use a combination of least squares and neural networks to
produce sea level anomaly prediction in the Yellow Sea. Sun
et al. (2020) work with long short-term memory network
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(LSTM) for the South China Sea. Through their work in
Liu et al. (2020), the authors employ an attention-based
LSTM mechanism for sea surface height (SSH) forecasting in
the South China Sea. Balogun and Adebisi (2021) include
ocean-atmospheric features like sea surface temperature, sa-
linity, and surface atmospheric pressure to build support vec-
tor and LSTM models for the West Peninsular Malaysia
coastline. Nieves et al. (2021) make use of Gaussian processes
and LSTM to predict sea level variation along the regional
coastal zones. In Hassan et al. (2021), they compare various
machine learning techniques to predict global mean sea level
rise. An important part of the pipeline in Wang et al. (2022)
includes a ConvLSTM pipeline consisting of 3D convolutions
and attention modules for forecasting altimeter SLA on the
South China Sea. These techniques, however, are trained only
on the altimeter dataset which to date is only 30 years in
length; this can affect the performance of such data-driven
models as brought up in this latest survey by Bahari et al.
(2023). These approaches also do not use the insights pro-
vided by climate model projections that can potentially
inform on contributions of anthropogenic climate-change
signals. Moreover, these models address regional forecasting
with a lead time of a few days to a few years ahead but do not
go so far as to forecast sea level change over the global ocean
30 years in advance. Our work utilizes the climate model pro-
jections and addresses the problem at a much bigger spatial
scale that includes all the oceans and a much longer time hori-
zon in the future. It should be noted that the focus of this
work is to predict the sterodynamic component of the sea
level (with the global mean removed). The sterodynamic com-
ponent is the change in the sea level due to changing ocean
currents, temperature, and salinity (Gregory et al. 2019).

We work with 30-yr linear trends of the sea level time se-
ries. We note that the climate models do not accurately re-
produce all aspects of the trend pattern in altimeter data.
There is also more variability in the altimeter trends com-
pared to the climate models. We observed this in our previ-
ous work (Sinha et al. 2022), where a U-Net (Ronneberger
et al. 2015) model is trained on long periods of climate
model simulations to produce spatiotemporal predictions
30 years ahead. This U-Net model is then used to predict
the future altimeter data. However, these predictions
had much lower variability as compared to the altimeter
observations. This underscores the challenge of combining
modeled and observed fields in producing sea level
predictions.

Working with multidecadal global trends severely limits the
ground-truth data we have. Thus, we use the sea level trend
values at every spatial grid point to create a training dataset
for our ML model. With a 2° spatial resolution, we get a
180 X 90 (longitude X latitude) grid in our sea level trend
maps. This gives us a reasonably large dataset for training an
ML model even for a single 30-yr-long trend for each grid
point. We build a supervised learning framework using fully
connected neural networks (FCNNs) that learns a nonlinear
mapping of the climate model trends to predict the altimeter
trend while absorbing the biases that the climate models have
away from the altimeter observations. This is accompanied by
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FI1G. 1. Overall ML pipeline for the task of sea level trend predic-
tion using trends from climate models projections and altimeter
observations.

an interpretability study that explains the contributions of all
the climate models to our final prediction. Given that the
dominant factors driving sea level variability differ by re-
gion, we segment our spatial dataset and learn separate
FCNNs for each segmented region. We compare a partition
achieved using domain knowledge to a partition achieved
via spectral clustering. We show that segmenting the spatial
dataset improves the ML predictions. Spectral clustering
shows promise by predicting future trends with ML such
that their variability lies in the range we expect, given the
variability of the past altimeter observations. Our predic-
tions with spectral clustering also have lower uncertainties
in impactful areas.

2. Method

Our supervised learning pipeline is trained for the period
1993-2022. The spatial grid is flattened to create our dataset,
where each data point corresponds to an oceanic grid point.
For every grid point, a linear trend is computed over 1993—
2022 for the climate model ensemble means (described in
section 3), comprising the input features X. The trends com-
puted for the altimeter data (ground truth) make the label Y
for our supervised ML training. The global mean is removed
from both the climate model trends and the altimeter trend.
We get the supervision from the altimeter trend Y and the
features X to our ML model from the climate model hindcast
trends. In the inference phase, we predict trends for 30 years
later. This is done by taking the climate model projected
trends for 2023-52 and passing them through the learned ML
model to predict the altimeter trend. See the overall ML
framework in Fig. 1. The ML model is a FCNN trained with
mean squared error (MSE) as the loss. We ran experiments
with a random forest-based ML model, but it performed
poorly when compared to FCNN, showing the latter is more
suitable for learning the nonlinear mapping in our case. The
MSE is weighted, where the weights are the cosine of the
latitude of the grid points. This gives spatial weighting which
essentially assigns more weight to the equatorial regions and
less weight to polar regions.
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FIG. 2. Spatial segmentations obtained from (a) spectral clustering and (b) a domain-specified partition derived
from our physical understanding of the data, where the North Atlantic Ocean (olive) and North Pacific Ocean (cyan)
are assigned individual partitions, latitudes from south up to —30 are assigned another partition (brown), and the rest
belong to the fourth partition (pink).

a. Clustering

We segment our spatial grid into partitions or clusters and
observe the performance of the ML model when trained
based on these clusters, i.e., a separate FCNN is trained for
each cluster. This is based on the hypothesis that learning
ML model weights that are attuned to each cluster can be
more optimal than a single ML model for the entire globe.
Our study compares spectral clustering against a domain-
specified partitioning that is derived from our physical knowl-
edge of the data and proposed by the domain experts in the
team. The time series of the altimeter sea surface height
(with the seasonality removed) serves as the features for
spectral clustering. Empirical evaluation with k-means clus-
tering failed to perform close to spectral clustering and is not
included in the study. The spatial segmentations with spectral
clustering as well as the domain-specified partition can be
seen in Fig. 2. The spectral clustering, as observed by domain
experts, seemsto be influenced by the El Nifio-Southern
Oscillation (ENSO) phenomenon in the Pacific region. This
could be because of the similarity between spectral decompo-
sition and empirical orthogonal function (EOF) analysis and
the fact that ENSO is the leading mode of interannual cli-
mate variability (Vestergaard et al. 2010). This could be ben-
eficial as creating these clusters helps to treat ENSO-specific
regions separately. These partitioning strategies are com-
pared to each other and to a setup where the spatial grid is
not segmented at all.

b. Hyperparameter tuning and model architecture

We make use of k-fold cross validation (k = 5) to choose
the best hyperparameters for each cluster, ending up with dif-
ferent FCNN architectures per cluster. To elaborate further,
each of the orange and green clusters in the spectral clustering
setup as seen in Fig. 2a learns an FCNN consisting of three
hidden layers with 1024, 512, and 256 neurons, respectively.
For each of the other two smaller clusters, we use an FCNN
with two hidden layers and 256 and 128 neurons, respectively.
Each hidden layer is followed by a ReLU activation. The
12(0.000005) regularizer and a single dropout layer (0.2) are
applied to avoid overfitting in each of the ML models.

3. Dataset

Two types of data are used in this study: altimeter data and
climate model large ensemble (LE) experiments. The altime-
ter dataset is a monthly SSH data at 1/4° spatial resolution for
the time period 1993-2022. For the same duration, we obtain
monthly SSH at 1° spatial resolution from the ensemble means
of six different climate model LEs produced with CESM1 (Kay
et al. 2015), CESM2 (Danabasoglu et al. 2020), GFDLESM2M
(Dunne et al. 2013), MPIGE (Mabher et al. 2019), MPI-ESM1-2-
HR (Miiller et al. 2018), and MPI-ESM1-2-LR (Giorgetta et al.
2013). These LEs provide simulations for the twentieth and
twenty first centuries and are multimember ensembles of cli-
mate models running with small perturbations in the initial con-
ditions to estimate the distribution of internal climate variability
and forced climate change.

a. Preprocessing

Model simulations for individual members of the above
large ensembles are averaged to create the SSH variable. We
do this since we expect internal variability to be inherently un-
predictable while we expect the response to external forcings
(influences considered external to the climate system that im-
pact climate) to be both predictable and slowly varying. This
step not only removes noise but also reduces variability in the
climate model SSH data, while we have variability present in
the altimeter SSH data as it is a single field. Some of the
climate models operate under assumptions in which their
global mean is by definition 0. We, therefore, remove the
global mean in all the datasets including the altimeter. A spa-
tialsmoothing! is applied on the altimeter field to reduce the
influence of small-scale ocean eddies. The spatial SSH fields
for both the altimeter data and climate model output are re-
gridded to a 2° i.e., a 180 X 90 grid as it speeds up the compu-
tation while still keeping a reasonable resolution. For every
ocean grid point, a linear trend is fitted to the monthly SSH
time series for the 1993-2022 (30-yr) time period. This way, a
single trend map is obtained, for all the ensembles and the

! https://www.ncl.ucar.edu/Document/Functions/Built-in/exp_
tapersh.shtml.

Unauthenticated | Downloaded 01/16/25 05:32 PM UTC


https://www.ncl.ucar.edu/Document/Functions/Built-in/exp_tapersh.shtml
https://www.ncl.ucar.edu/Document/Functions/Built-in/exp_tapersh.shtml

4 ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS

VOLUME 3

(e —

MPI-ESM1-2-HR

MPI-ESM1-2-LR

GFDLESM2M -2

FIG. 3. The sea level trend maps for the six climate model LEs for the period 1993-2022 with their global mean removed. Here, the trend
values are visualized in millimeter per year.

altimeter (see Figs. 3 and 4). Working with trends helps to
avoid the monthly variability of the SSH fields. We can ob-
serve the differences between the altimeter and the climate
model trends, especially with respect to variability. The cli-
mate models do not accurately reproduce the trend pattern in
altimeter data, and there is a lot more variability in the altime-
ter trend as compared to the climate model trends.

b. Feature inputs and label for the ML model

The trends obtained via the above preprocessing are used
for the ML training. The climate model trends act as the input
X to our ML model, whereas the altimeter trends act as the
ground truth labels Y for our ML model.

It is worth noting that altimeter records are not present for
all latitudes. We have both altimeter and climate model trend
values for 8001 global ocean points (excluding land grid

- -1

-2

FIG. 4. The altimeter sea level trend map for the period 1993
2022 with the global mean removed. Here, the trend values are vi-
sualized in millimeter per year.

points) that we use as the dataset for ML. We show trend val-
ues from the six climate models in Fig. 3 that serve as the in-
put features X for our ML model and the altimeter trend
value in Fig. 4 that serves as the label Y for training the ML
model. To summarize, the final dataset prepared for ML is a
tabular one, where the rows are the ocean grid points, and for
each row, we have the feature inputs given by the climate
model trends and label given by the altimeter trend. These
trend values are computed in centimeter per year and are nor-
malized by scaling them between 0 and 1 for training. After
training, in the inference phase, trends are predicted for 30
years later. Climate model projected trends are computed in
the same way for 30 years later, i.e., for 2023-52. These are
then passed through the learned ML model to predict the al-
timeter trend for 2023-52.

To reiterate, the focus of this work is to predict the sterody-
namic component of the sea level trend—with the global
mean removed.

4. Results

We report our results using different evaluation metrics for
the past and future time periods, since there is no ground
truth with which to evaluate future predictions.

a. 1993-2022

With the ground truth data available for this period, in
Table 1, we report the RMSE and mean absolute error (MAE)

TABLE 1. Comparing the ML prediction performance in terms
of weighted RMSE (mm yr~ 1), MAE (mm yr™}), and correlation
for different spatial segmentations for 1993-2022.

Method RMSE| MAE| CorrelationT
No clustering 0.72 0.51 0.82
Domain-specified partition 0.4 0.27 0.95
Spectral clustering 0.51 0.36 0.91
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scores on the historical (training) time period, for the two
spatial segmentation strategies, compared to applying our
supervised learning step directly to the entire spatial extent
(no clustering). Table 1 also shows the Pearson correlation
scores between the ML predicted trend and the true altime-
ter trend for 1993-2022. The RMSE, MAE, and correlation
scores are spatially weighted as described in section 2. The
domain-specified partition is observed to have better scores
(lower RMSE, MAE, and higher correlation) for the train-
ing period as compared to spectral clustering. Both the
domain-specified partition and spectral clustering scores are
considerably better than the no clustering setup. Each of the
segmented regions is examined by looking at each cluster’s
RMSE, MAE, and correlation scores. The trend predicted
by ML is visualized, and higher error zones are mostly
observed in the green cluster of Fig. 2a for spectral cluster-
ing and the olive cluster of Fig. 2b for domain-specified
partition.

While these scores explain the ML’s training performance,
our interest mainly lies in the future period prediction which
is detailed below.

b. 2023-52

It is harder to gauge the performance of any ML method
without the ground truth. In this case, we do a qualitative
analysis of the predicted trend in terms of cumulative variabil-
ity, to evaluate the ability of the ML models to predict trends
with variability similar to the variability of the 1993-2022 al-
timeter trend. Additionally, we compute the model uncer-
tainty of the ML models in their prediction. As often done in
the climate science domain, we also evaluate the ML models
solely with the climate model datasets (Monteleoni et al.
2011). These experiments are described later in this section.

We use the root-mean-square (RMS) value of the trend
(spatially weighted as in section 2) to quantify the notion of
variability in the trend. The RMS value is higher if the cumu-
lative variability is higher and vice versa. Figure 4 shows that
the altimeter trend from 1993 to 2022 has a high variability.
We computed the RMS value to be 1.23 mm yr~'. This gives
us the baseline variability of persistence, a standard baseline
approach in climate and weather forecasting, i.e., considering
this observed variability as an estimate of future variability. In
Figs. Sa—c), we show the future predicted trend obtained from
the ML model without any partitioning (no clustering), with
the domain-specified partition, and with a partition obtained
via spectral clustering, respectively. We computed the RMS val-
ues associated with trend predictions obtained from the three
strategies. Trend predicted with spectral clustering (Fig. 5c)
shows a high variability with RMS as 1.05 mm yr~! for 2023-52.
It is very close, though still slightly less than the altimeter trend
variability of the past. On the other hand, the trend predicted
with the domain-specified partition (Fig. 5b) shows a much
higher variability with RMS as 1.68 mm yr~'. The high predic-
tion red zone in the North Pacific Ocean could be dominating
the overall RMS value of the domain-specified prediction. This
emphasizes the need to use additional metrics and analyses to
evaluate our predictions rather than relying on a single overall
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FIG. 5. The trend estimates are predictions for the future period:
2023-52 in millimeter per year. The trend predicted with ML using
(a) no partitioning of the spatial grid (RMS: 0.81 mm yr™ 1), (b) the
domain-specified partition (RMS: 1.68 mm yr™ '), and (c) spectral
clustering (RMS: 1.05 mm yr ™).

score expressing cumulative variability. Notably, the predicted
variability of both spectral clustering and the domain-specified
partition is higher as compared to the no clustering setting
(RMS: 0.81 mm yr~!). This result strengthens our hypothesis
that segmenting the spatial grid and learning one ML model on
each segmented region yield predictions that can better capture
variability (with respect to persistence). Measuring the correla-
tion between the persistence and future predicted trend is also
useful as it is expected to be fairly high based on the climate
model experiments which also show a high correlation between
the past and future trend in their projections. This correlation is
much higher (0.59) for spectral clustering than the domain-
specified partition (0.45) and no clustering setup (0.27).

1) MODEL UNCERTAINTY

Providing uncertainties of machine learning predictions can
be extremely useful. For this application, we do so as another
way to evaluate our ML model’s future predictions. Gal and
Ghahramani (2016) showed theoretically that neural networks
with dropout layers can be interpreted as a Bayesian approxi-
mation of a deep Gaussian process. Thus, we can obtain uncer-
tainties with dropout neural networks without sacrificing
accuracy and with lesser computation cost as compared to the
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Bayesian models. This Monte Carlo dropout approach can
work with any existing neural networks trained with dropout
(Gal and Ghahramani 2016). This essentially simulates having
multiple models and helps to assess our ML model’s robust-
ness in terms of its prediction uncertainty.

Our FCNN model includes dropout layers to reduce over-
fitting while training, thus allowing us to use the Monte Carlo
dropout approach for uncertainty estimation. To do so, in the
inference phase, we perform multiple forward passes (with
different dropout masks) through our ML model. We then re-
port the mean of the ensemble of predictions as the prediction
outcome and their standard deviation as the prediction uncer-
tainty. Figure 6 shows the prediction uncertainty plots for
both spectral clustering and the domain-specified partition.
The predictions with the domain-specified partition (Fig. 6a)
show a higher overall variance in prediction. We observe
higher uncertainties in key areas that are critical for socioeco-
nomic impacts such as important parts of the Pacific Ocean,
whereas spectral clustering (Fig. 6b) predictions are more con-
fident in most of the Pacific Ocean and higher uncertainties are
concentrated in the Southern Ocean and parts of the North At-
lantic Ocean. We also studied the cumulative uncertainty by
taking the RMS of this model uncertainty over the global
ocean. Lower RMS is better as it indicates lower cumulative un-
certainty. The RMS for spectral clustering (0.19 mm yr™') is
better than the domain-specified partition (0.24 mm yr™ ') and
the no clustering scenario (0.3 mm yr~'). We observe that the
ML model is more certain with spectral clustering.

We also observed that some regions over which the ML model
with spectral clustering had higher uncertainties (Fig. 6b) had
high overlap with the regions where climate model projections
for 2023-52 had the highest disagreement (Fig. 8b).

2) INTERPRETABILITY STUDY

Through this interpretability study, our goal was to under-
stand the contribution of each climate model in the ML pre-
diction. While complex machine learning models can predict
accurate outcomes, it is extremely important to understand
why the ML model makes a certain prediction in order to
make it more interpretable. We use shapley additive explana-
tion (SHAP) Lundberg and Lee (2017) to compute the contri-
butions of each feature to a prediction outcome in order to
explain the prediction.

Lundberg and Lee (2017) in their work on SHAP show the
value of a linear explanation model that is an interpretable ap-
proximation to the original complex model by proposing a class
of methods: additive feature attribution methods. They use x
and f as the original inputs and prediction model, g as an expla-
nation model, and x’ as a simplified input such that x = &,(x"),
h, being a mapping function. Under the definition of additive
feature attribution methods as described in (Lundberg and Lee
2017), the explanation model g must satisfy g(z’) =~ f[h(2')],

where 7/ ~ x’, and can be written as g(z’) = ¢, + ZnM:1d>iz,’~,
7 € {0, 1} indicates whether a particular feature (out of M fea-
tures) is included or not with a binary value. Here, ¢; indicates
feature attribution or feature importance, i.e., how much this
feature contributed to the model’s outcome. Lundberg et al.
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FIG. 6. ML model uncertainty map in terms of standard deviation
(mm yr~ 1) over future prediction with (a) the domain-specified parti-
tion and (b) spectral clustering.

leverage the game theory literature to show that Shapley values
as ¢; satisty the definition and a few more desirable properties
of this class of methods (Shapley 1953; Young 1985). For the
computation of Shapley values (Lipovetsky and Conklin 2001),
marginal contribution of a feature i is computed by taking the
difference between the model f’s output with and without that
feature. The marginal contribution is computed for all possible
subsets S = F\ {i} (F is the set of all features), and a weighted
average over them gives the Shapley value as shown below
(from Lundberg and Lee 2017):

SI'(|F| — |S] — 1)
P 5gf\<i}m|||+VSU{i}(XSU<i}) ~fsbel (D)
In most cases, ML models cannot handle missing features, so
this is often approximated by integrating out the feature using
samples from a background dataset as discussed in §trumbelj
and Kononenko (2014) and Lundberg and Lee (2017). The
computation of SHAP becomes very challenging as the num-
ber of features increases. In Lundberg and Lee (2017), they
provide an approximation to obtaining the Shapley values via
Kernel SHAP (a model agnostic approximation).

Our interpretability analysis is based on SHAP as explained
above. We use Kernel SHAP from Python’s shap.Kernel-
Explainer to compute the contributions or feature importance
values of the climate models which are feature inputs to our
FCNNSs in order to explain the future prediction. We apply
SHAP on each of the clusters since we learn different ML
models for different clusters. Figure 7 shows a cluster level
feature importance ranking of all the climate models for the
spectral clustering setup. SHAP assigns a feature importance
to each climate model for the future prediction on each grid
point in the cluster. These importance values are averaged
over every cluster and shown in the bar plots in Fig. 7. Given
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FIG. 7. (top) The clusters obtained from spectral clustering and (bottom) the plot showing the feature importance
ranking of all the climate models based on their contribution to the future prediction as given by SHAP values. The
map with the spectral clusters is added to provide more context.

that we use scaling on the input features as well as the output
labels when training the ML models, the importance values
displayed in Fig. 7 are scaled as well. Overall, the SHAP val-
ues indicate that the CESM1, CESM2, and Max Planck Insti-
tute Grand Ensemble (MPIGE) large ensembles are more
important for all the clusters than others, suggesting that ML
model relied more on these for future predictions.
Furthermore, in order to verify the consistency of the
feature rankings, we used another popular explainability
method: local interpretable model-agnostic explanations
(LIME) (Ribeiro et al. 2016), as an additional method to com-
pute the feature contributions and provide a ranking of the
features in our ML model. Overall, we note a consistency in
the feature rankings generated by LIME and SHAP. We see
a strong match in feature rankings obtained via LIME when
the features had distinctly high or low scores with SHAP, sug-
gesting high consistency when features have distinctly high or
low scores compared to other features. For example, we see a
match in the best feature for the “Green” (top two features
match) and “Pink” clusters and a match in the worst features
of “Orange” and “Purple” clusters. Both methods yielded al-
most the same top three features with a slight change in their

top three ordering and similarly almost the same bottom three
features across all clusters. The slight change of ordering was
common where SHAP ranked features were not significantly
different.

3) EVALUATION WITH CLIMATE MODELS

While we do not have observations for the future to vali-
date our prediction outcomes, we do have climate model pro-
jections for the future. As often done in the climate science
domain, we perform an evaluation of our predictions using
only the climate model datasets. We train the same FCNN
models for 1993-2022 again, but this time using one of the cli-
mate model hindcasts as the training label instead of the al-
timeter data, and the rest of the five climate models as input
features (like in Monteleoni et al. 2011). We train six such
ML models treating each of the six climate models as the
training label one at a time. At the time of inference for
2023-52, we have the ground truth, i.e., climate model projec-
tions available for the future for each climate model, so we
measure RMSE, MAE, and correlation scores for the ML
prediction of the climate model trend against the true climate
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TABLE 2. An evaluation setup using climate models to simulate observation data so as to evaluate ML predictions for the future
period 2023-52. The performance score in terms of (a) correlation (higher the better) and (b) RMSE and (c) MAE (in mm yr~*, lower
the better) between the ML prediction of a climate model and the ground truth climate model projection. Results are computed for
predicting each of the six climate models one at a time (shown as the columns in the table) using the rest of them as input features. The
last column shows an average score obtained by averaging the scores over all climate models. The best results are highlighted in bold.

MPI-ESM1- MPI-ESM1-  GFDL
CESM1LE CESM2LE MPIGE 2-HR 2-LR ESM2M  Average
(a) Correlation?
Persistence 0.74 0.74 0.73 0.53 0.49 0.74 0.66
ML with domain-specified partition 0.79 0.73 0.74 0.37 0.49 0.48 0.6
ML with spectral clustering 0.82 0.81 0.82 0.39 0.6 0.43 0.65
(b) RMSE]
Persistence 0.58 0.6 0.69 0.83 0.95 0.72 0.73
ML with domain-specified partition 0.56 0.69 0.73 0.96 0.99 0.99 0.82
ML with spectral clustering 0.49 0.56 0.58 0.93 0.86 1.01 0.74
(c) MAE|
Persistence 0.39 0.41 0.38 0.46 0.6 0.46 0.45
ML with domain-specified partition 0.38 0.46 0.47 0.56 0.6 0.64 0.52
ML with spectral clustering 0.33 0.35 0.37 0.53 0.56 0.64 0.46

model projected trend. We show the weighted correlation
metrics in Table 2a, weighted RMSE scores in Table 2b, and
weighted MAE scores in Table 2c for both the spectral clus-
tering and domain-specified partition setups. They are evalu-
ated against the persistence scores for each of the climate
models (here, persistence is using the climate model hindcast
from 1993 to 2022 as the prediction for the future 2023-52). It
should be noted that the climate model projections substan-
tially differ from each other which makes this prediction task
harder for ML. Figure 8 shows the trend maps from all the cli-
mate models for the future period 2023-52 and a standard de-
viation plot showing the variance in their projections.

Based on the correlation, RMSE, and MAE scores, it can
be seen that ML with spectral clustering outperforms the
domain-specified partition on nearly all the climate models, fall-
ing slightly behind only for the case of GFDLESM2M. It also
performs better than the persistence on all the climate models
except MPI-ESM1-2-HR and GFDLESM2M. We observed that
the regions where MPI-ESM1-2-HR and GFDLESM2M predic-
tions with the spectral clustering setup have higher errors (in parts
of the Southern Ocean and the North Atlantic Ocean) are some
of the regions where these two climate models have disagreement
over with the remaining climate model projections (see Fig. 8).
Comparing the average correlation, RMSE and MAE scores (last
column in Table 2) over all the six ML models based on the six
climate model labels show spectral clustering to be better than
the domain-specified partition and very close to the persistence.

4) EXPERIMENT WITH VARYING NUMBER OF CLUSTERS

We do a comparative study by varying the number of clus-
ters (n clusters) obtained with spectral clustering and compar-
ing their prediction performance based on the evaluation
schemes discussed before. Specifically, for n clusters as 2, 4, 8,
16, 32, and 64, we present Table 3 where we compare their
training error in terms of RMSE and MAE, cumulative vari-
ability of the future trend prediction in terms of its RMS, and
the ML model uncertainty in prediction quantified by the

RMS of model uncertainty. We also include the correlation of
the predicted trend with the past altimeter trend (1993-2022).
Additionally, we add another column which provides spectral
clustering’s performance scores when evaluated solely with
the climate models. This last column reports an average corre-
lation score as derived in section 4b(3).

With an increase in the number of clusters, there are fewer
data points per cluster, so the training data size for each ML
model decreases. Table 3 indicates that the training RMSE
and MAE decrease with increasing n clusters. This is expected
as the training process will tend to overfit more with smaller
training data per cluster. The RMS that represents the cumu-
lative variability of the future prediction outcome is observed
to increase with the increase in n clusters (except for a small
drop for n clusters = 32). Notably, the model uncertainty
drops and then increases, especially when working with a
larger number of clusters like n clusters = 32 or 64, as quanti-
fied by the RMS in the third column. For such high n clusters,
there is a huge decrease in the training data points per cluster
and this can lead to more variance in ML’s prediction, reducing
its confidence. Higher n clusters show predicted trends to be gen-
erally more correlated with the past altimeter trend. The last col-
umn based on evaluation with climate models does not show a
significant performance change with n clusters. The score, how-
ever, drops slowly with more n clusters. For a qualitative compar-
ison, we plot the predicted trend for 2023-52 as generated by the
ML model with 4, 8, and 16 spectral clusters in Fig. 9.

While we observe slightly better predictions with eight
spectral clusters (from Table 3), we work extensively with the
4-cluster spectral clustering setup in order to have a fair com-
parison with the domain-specified partition with four parti-
tions in our case. Having a higher number of clusters also
makes it harder for the domain experts to interpret its physi-
cal implications. Additionally, upon examining the prediction
maps closely from Fig. 9, it can be noted that the difference
across various clusters can mostly be seen in the predicted
strength of the trends (higher for higher n clusters which also
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FIG. 8. Plot showing (a) the climate model projected trends in millimeter per year for 2023-52 and (b) the standard deviation in their pro-
jections in millimeter per year.

contributes to its higher RMS) and notably not the general from the climate models and use them in our ML pipeline to
prediction patterns themselves. obtain the future trend predictions. The drift is computed as
the linear trend from the overlapping 250 years from the pre-
industrial control run using annual mean at each latitude and
longitude and subtracting that drift from the historical and fu-

We perform an experiment with the spectral clustering ture estimates. Figure 10 shows the trend prediction for 2023-52
setup (with four clusters) where we remove the model drift as a result of this experiment. We observe the RMS to be

5) EXPERIMENT WITH MODEL DRIFT REMOVED FROM
CLIMATE MODELS

TABLE 3. Comparing ML with spectral clustering performance across n clusters: 2, 4, 8, 16, 32, and 64. It shows the training errors
(RMSE and MAE), RMS of the future predicted trend, RMS of the ML model uncertainty in prediction, correlation of the future
predicted trend with the past altimeter trend, and an average correlation score when evaluated only with the climate model datasets
as described in section 4b(3). All the scores are weighted and the RMSE, MAE, and RMS measures are in millimeter per year.

RMS of future Correlation of Avg correlation
predicted trend RMS of ML predicted trend on evaluation
(cumulative model with past with climate
n clusters  Training RMSE  Training MAE variability uncertainty altimeter trend models
2 0.62 0.44 0.99 0.23 0.45 0.68
4 0.51 0.36 1.05 0.19 0.59 0.65
8 0.43 0.29 1.11 0.17 0.69 0.67
16 0.34 0.23 1.5 0.17 0.67 0.62
32 0.38 0.26 1.29 0.24 0.69 0.62

64 0.29 0.2 1.61 0.25 0.67 0.64
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(€)
F1G. 9. The ML predicted trend in millimeter per year for the fu-

ture period 2023-52 with spectral clustering with (a) 4, (b) 8, and
(c) 16 clusters.

1.23 mm yr~ ! and its correlation with the past altimeter trend to
be 0.65, which are slightly higher than our original spectral clus-
tering experiment setup with four clusters (see Fig. 5c). These
results without the model drift are similar and sandwiched be-
tween the results we see with the varying number of clusters
without the model drift removed (see Table 3). Further investi-
gation into this will be conducted in future studies.

5. Discussion

In our framework, fully connected neural networks learn to
map climate model projections to altimeter trends. We also pre-
sent an interpretability study that uses SHAP values to explain
the contributions of all the climate models to the final prediction.
Spectral clustering shows promise in this application by generat-
ing future predictions with ML such that their variability lies in
the range we expect, given the variability of the past altimeter ob-
servations. These ML predictions have lower uncertainties in im-
pactful areas as shown before. Spectral clustering also shows
robustness as it yields better predictions than the one with the
domain-specified partition when evaluated solely with climate
models, as described in section 4b(3). The future predictions are
expected to be correlated well with the past altimeter trend, and
a higher correlation is observed with the predictions obtained
from spectral clustering than the domain-specified partition.

VOLUME 3

FIG. 10. The ML predicted trend in millimeter per year for the
future period 2023-52 using climate models after removing the
model drift in them (spectral clustering with four clusters setup).

Our prediction highlights the regional variation in the pre-
dicted sea level trend. It is worth noting that the climate
model projections used in our framework are “RCP85” and
“SSP370” scenarios. These mostly lie in the high level of emis-
sion scenarios where a few policies have been put in place to
reduce emissions and warming and tackle climate change. Un-
der such circumstances, our prediction outcomes indicate a
rising sea level trend, without considering the global mean sea
level (GMSL) change, around regions such as Japan, India,
the South China Sea, the Maritime Continent, Australia, the
Gulf Coast and the eastern seaboard of the United States,
and Mexico. Overall, these predictions suggest that many ex-
isting hotspots of sea level rise, including highly populated
zones in the western Pacific Ocean and along the U.S. Gulf
Coast, will continue to experience rates of sea level rise in ex-
cess of the global average (GMSL). Some of these areas may
be limited in their ability to adapt to such changes which
could increase the risk of major impacts of sea level rise in the
coming decades.

6. Conclusions

We show the effectiveness of neural networks in multideca-
dal sea level trend prediction at a 2° spatial grid leveraging
the projections from climate model large ensembles. We dem-
onstrate that segmenting the spatial grid into partitions em-
ploying spectral clustering improves the ML predictions by
learning a dedicated ML model per partition. We also supple-
ment our predictions with uncertainty estimates which could
be more helpful in interpreting the results. While our frame-
work presents promising results, it is important to note that
climate model projections become less certain over time,
making long-term predictions based on them challenging.
The climate models used in our setup do not incorporate
melting ice sheets and their effects on future sea level change
(Hamlington et al. 2020b). It is pertinent to utilize this to im-
prove the predictions further. The predictions can potentially
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also improve if we incorporate factors such as wind and tem-
perature, harnessing deep neural networks’ capabilities in
handling these diverse data.
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