Check for
Updates

Promoting Fairness and Priority in k-Winners Selection Using IRV

Md Mouinul Islam
mi257@njit.edu
CS, NJIT
Newark, NJ, USA

Baruch Schieber
sbar@njit.edu
CS, NJIT
Newark, NJ, USA

ABSTRACT

We investigate the problem of finding winner(s) given a large num-
ber of users’ (voters’) preferences casted as ballots, one from each
of the m users, where each ballot is a ranked order of preference
of up to ¢ out of n items (candidates). Given a group protected
attribute with k different values and a priority that imposes a selec-
tion order among these groups, the goal is to satisfy the priority
order and select a winner per group that is most representative.
It is imperative that at times the original users’ preferences may
require further manipulation to meet these fairness and priority
requirement. We consider manipulation by modifications and for-
malize the margin finding problem under modification problem. We
study the suitability of Instant Run-off Voting (IRV) as a preference
aggregation method and demonstrate its advantages over positional
methods. We present a suite of technical results on the hardness
of the problem, design algorithms with theoretical guarantees and
further investigate efficiency opportunities. We present exhaustive
experimental evaluations using multiple applications and large-
scale datasets to demonstrate the effectiveness of IRV, and efficacy
of our designed solutions qualitatively and scalability-wise.

CCS CONCEPTS

« Information systems — Top-k retrieval in databases.

KEYWORDS

Fairness; k-Winners Selection; Instant Runoff Voting

ACM Reference Format:

Md Mouinul Islam, Soroush Vahidi, Baruch Schieber, and Senjuti Basu Roy.
2024. Promoting Fairness and Priority in k-Winners Selection Using IRV. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD °24), August 25-29, 2024, Barcelona, Spain. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3637528.3671735

1 INTRODUCTION

The task of finding the winner, i.e., the most favorable item or
candidate from a given set of m users’ (voters’) preferences over n
items (candidates), has found a wide variety of applications such as

KDD °24, August 25-29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0490-1/24/08.
https://doi.org/10.1145/3637528.3671735

This work is licensed under a Creative Commons Attribution
International 4.0 License.

1199

Soroush Vahidi
sv96@njit.edu
CS, NJIT
Newark, NJ, USA

Senjuti Basu Roy
senjutib@njit.edu
CS, NJIT
Newark, NJ, USA

in hiring candidate(s) for a job, selecting member(s) of a committee,
finding winning candidate(s) in a competition, in electoral voting,
or even in recommender systems. IRV (Instant Run-off Voting) is a
ranked choice voting mechanism that has been gaining popularity
lately as an electoral system in Australia, Ireland, and the U.S. [13,
15, 20, 25, 29, 31, 35]. In this paper, we study the applicability and
computational implications of adapting IRV to preference data to
enable group fairness while satisfying a priority order.
Preference data considering faculty hiring. Table 1 represents
ranked order of up to top-5 preferences over 7 candidates who
have applied to a faculty position. Preferences are provided by
10 committee members (voters). Each of these ranked orders of
preferences constitutes a ballot.

Committee member | 1st choice | 2nd choice | 3rd choice | 4th choice | 5th choice
Jack Zoey Mira

Emma Laura Gina Molly Kim Zoey
Monica Zoey Molly Kim Gina Sara
Daniel Zoey Molly Sara Gina

Max Mira Molly Sara Kim Zoey
John Sara Gina Kim Zoey

Amy Gina Sara Kim Mira Zoey
Alice Sara Gina Kim Molly Zoey
Bob Kim Gina Sara Molly Zoey
Steve Kim Gina Sara

Table 1: Preferences over 7(n) candidates by 10 committee
members(m) upto 5-th position (¢)

Fairness and priority order. Group fairness is studied considering
the protected attribute of the candidates to ensure equal representa-
tion of each group [22, 33]. The example assumes that research area
is one such protected attribute with k = 3 different values (it is not
hard to extend this to race, gender, ethnicity, or any other protected
attribute). The value of this attribute for each of the candidates and
the priority among these values is given in Table 2.

Priority Order | Protected attribute (area) | Candidates
First DM Molly, Laura
Second ML Gina, Kim, Sara
Third Al Zoey, Mira

Table 2: Fairness and Priority Orders

Goal. The goal is to return one candidate per protected attribute
group that is most representative of the committee members’ prefer-
ences while obeying the priority order of the groups. In our example,
we need to first select a Data Mining (DM) candidate, then a Ma-
chine Learning (ML) candidate, and finally an Artificial Intelligence
(AI) candidate. Selections are made in the priority order, and if at

https://doi.org/10.1145/3637528.3671735
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3637528.3671735
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3637528.3671735&domain=pdf&date_stamp=2024-08-24

KDD ’24, August 25-29, 2024, Barcelona, Spain

any point there are no more available positions, no more selections
are made. For instance, if there are 2 positions available and if both
the selected DM and ML candidates accepted their offers, then an
Al candidate will not be selected.

The IRV process. The IRV process [24, 30] is a multi-stage pro-
cess [7] that simulates n — 1 run-off rounds, where in each such
round one item is eliminated. The single item that survived the
eliminations after all rounds is the winner. More specifically, given
the original preferences of the users (voters), an initial tally of the
first choice votes of every candidate is performed in round 1. The
item that has the lowest number of first choice votes is eliminated.
Ties are broken arbitrarily. After the elimination, all the ranked
orders that include the eliminated item are updated, and the items
following this eliminated item in the ranked order are advanced
one place up. This concludes round 1. This is iterated n — 1 times,
namely, the tally is recomputed, and the item that has the lowest
number of first choice votes is eliminated, where ties are broken
arbitrarily.

Using the running example, as shown in the left of Table 4, the
IRV process eliminates Molly in round 1, Mira in round 2 (and the
respective vote gets transferred to Sara), and Gina in round 3. This
process continues further making Sara the winner after 6 rounds.
Motivation. The resurgence of IRV is motivated by a range of ex-
pected benefits, including, ensuring majority support for the winner,
reducing conflict within the electorate, reducing strategic voting,
and increasing diversity of the winners [30]. IRV is amenable to
incomplete ranked order, making the process further suitable for
applications where users are not obligated to provide full order.
Multiple recent works [16], [10] have demonstrated the superior-
ity of IRV over plurality voting [26], as well as positional voting
mechanisms (such as Borda [19]) to promote proportional represen-
tation of solid coalition and anti-plurality. IRV is used in elections
in Australia, Ireland, and several U.S. states [20, 31], demonstrating
its practical utility and effectiveness. Additionally, IRV can enhance
the diversity and fairness of recommendations in Al systems. Ta-
ble 3 summarizes some of the advantages of IRV compared to other
selection methods. Refer to Appendices A.1, A.2 for further details.

Anti- Proportional Suitable to
Method . . .
plurality | representation | incomplete order
Scoring based X X X
Plurality X X X
Positional X X v
IRV v v v

Table 3: Comparison of aggregation methods

IRV Margin computation. Recall that in our example the IRV
process chooses Sara as the winner of the ballots. Clearly, Sara
does not satisfy the priority order of selecting a DM candidate first.
Hence, some ballot modifications are needed. If Jack’s ballot in
Table 1 is changed by replacing Zoey with Molly, a series of 6 run-
off rounds are simulated after that, as listed in the right of Table 4,
which makes Molly the winner. If instead Laura is to be made the
winner, this will require at least 3 ballot modifications, for example,
by replacing the top choice of Alice, Monica, and John with Laura.
Intuitively too, Molly is a better choice because it is liked as the

1200

Md Mouinul Islam, Soroush Vahidi, Baruch Schieber, and Senjuti Basu Roy

second choice by 3 out of 7 original committee members. A similar
process must also be carried out for ML and Al independently. Our
goal is to find the minimum ballot modification that results in an
outcome that satisfies the k priority orders. We refer to this problem
as IRV margin computation [26] to satisfy k priority orders (denoted
by M@KIRY for k > 1 and MqIRYV for k = 1). To the best of our
knowledge, we are the first to initiate a principled study on this.

New

Candidate | Tally | R1 [R2 | R3 | R4 | R5 | R6 Tally R1|R2 | R3 | R4 | R5 | R6
Zoey 3 3 3 3 3 4 2 2 2 2

Sara 2 2 3 4 4 6 8 2 2 3 3 3 5
Kim 2 2 2 2 3 2 2 2 2 2

Laura 1 1 1 1 1 1 1

Gina 1 1 1 1 1

Mira 1 1 1

Molly 0 1 2 2 3 5 5 7

Table 4: IRV rounds after ballot modification (left): Sara winner
IRV rounds after ballot modification (right): Molly winner

Why ballot modification? An alternative to ballot modification
could be the following - filter out candidates that do not satisfy
the priority order (e.g., delete all ML and Al candidates for finding
the top DM candidate) and run preference aggregation over the
remaining ones. We note that such a filtering process could lead to
undesired results. Imagine that there are 99 voters and n candidates,
denoted A, B,Cy, . .., Cp—2, where candidates A and B belong to the
group with the top priority and candidates C, ..., C,—2 belong to
another group. The preferences of 50 votersis C; > - -+ > Cp—2 > A
and the preferences of the other 49 votersis B > C; > - -+ > Cp—2.
An aggregation mechanism based on filtering will choose A as the
winner for the top priority group and C; for the other group. On
the other hand, modifying a single vote from Cy > --- > Cp—2 > A
toB > Cy > -+ > Cu_3 will result in choosing B and Cy, which
seems to be a much better reflection of the voters’ preferences.
We recognize the ethical concerns related to modifying votes
to promote fairness. In our work, we argue that modifying inputs
(votes) is more morally responsible than altering outputs (results).
This is because changing outputs inherently modifies the original
preferences. Our approach minimizes changes to the original prefer-
ences, making it a more responsible method. This approach aligns
with the concept of preprocessing versus postprocessing in fair
classification, which is widely accepted in the field. Prior work in
this line has also been conducted in ranking and recommendation
systems. References such as [10, 16, 26] support the ethical and
practical advantages of our method. By adopting this approach, we
ensure that the modifications are transparent, justified, and aimed
at promoting equitable representation.
Technical Contributions (Sections 3 and 4). We make multiple
technical contributions in terms of analyzing the studied problems
as well as designing solutions for them. We prove that MqIRYV is
NP-hard, even when the ballot size is at most £ = 2 by reducing an
instance of the known NP-complete problem Exact Cover by 3-Sets
(X3C) to an instance of MqIRV. Inspired by [13, 29] we then design
an algorithmic framework ALGExXACT that gives an exact solution
and considers all possible permutations of the candidates that end in
a candidate that satisfies the priority order. Solving ALGEXACT thus
requires repeatedly solving a subproblem DistTo, which, given
a permutation, finds the smallest number of ballot modifications
needed to ensure that the order of the candidates eliminated inn—1

Promoting Fairness and Priority in k-Winners Selection Using IRV

run-off rounds of IRV follow this order. Unfortunately, we prove
that the decision version of DistTo is NP-hard, even when ¢ = 3,
by reducing an instance of X3C to DistTo.

We further study efficiency opportunities of ALGEXACT by en-
abling early terminations via branch and bound. The idea is to
avoid making expensive DisTTo calls by computing a lower bound
on the margin for every possible suffix of every permutation, and
eliminating a permutation in its entirety if the lower bound on its
margin is not smaller than the current upper bound on the margin
of the MqIRYV instance. To that end, we design a lower bound com-
putation algorithm DisTToLB and an upper bound computation
algorithm MqIRVUB that are highly effective and computationally
lightweight. We also study the DistTTo problem under different
preference manipulation models - for example, we study how to
only add the smallest number of ballots to the existing set of ballots,
such that the priority orders are satisfied. We refer to this as the
D1sTTOoADD problem. We present an efficient exact solution for
the DisTTOADD problem. We also present an integer programming
formulation for MqIRV which is non-trivial. We finally design a
highly scalable heuristics that is shown to work well in practice.
Experimental Evaluations (Section 5). Our final contribution is
experimental — we use four real world large scale datasets motivated
by different electoral voting and recommender systems applications,
as well as one synthetically generated very large datasets. Our exper-
imental evaluations have the following findings: (a) We empirically
show that MqIRVresults in a significantly smaller anti-plurality
index [16] (i.e., it does not select candidates that are disliked by
the majority of voters) compared to alternative approaches such
as plurality voting [26] or Borda [19]. (b) We present an in-depth
case study demonstrating that ballot modification results in a lower
anti-plurality index compared to alternative approaches such as
filtering. (c) We demonstrate that ALGEXACT is optimal, yet more
scalable than existing solutions that could be adapted to our prob-
lem [29], [13]. (d) We empirically demonstrate the optimality of
D1sTTOADDALG and its scalability, as well as the quality and scal-
ability of our designed approximate solution by varying several
pertinent parameters and comparing with appropriate additional
baseline algorithms.

We present the discussion of related work in Section 6 and conclude
in Section 7.

2 DATA MODEL & PROBLEM

In this section, we describe the data model, following which we
formally define the problem and prove its hardness.

2.1 Data model

Ballot/preference. Preference of a user is elicited using a ballot b
containing a ranking up to position at most ¢, where ¢; is the i-th
preferred candidate. Using the running example, c¢; and c5 are Gina,
and Zoey, respectively of user Amy’s ballot.

Ballot profiles. The data contains the preferences/ballots 8 of m
users/voters over a set C of n items/candidates. Using the running
example, m = 10, n = 7. The columns in Table 1 show 5.
Preference aggregation. A preference aggregation method 7
takes B as input and selects a winner from the candidates/items.
Given fairness criteria and priority order, the goal is to make use of

1201

KDD ’24, August 25-29, 2024, Barcelona, Spain

B and ¥ multiple (k) times to select k different winners in the pri-
ority order. Table 2 shows k = 3 such constraints for recommending
top DM, ML, and AI candidates. We use IRV as ¥, as discussed in
more detail in Section A.2.

Preference manipulation models. We consider two different
preference manipulation models, where only the first one satisfies
the number of ballot invariance property (i.e., the total number of
votes remains unchanged) and is our primary focus in this work.

(1) Manipulation by modification. Given a ballot b with ranking
up to position j (j < ¢) positions, update any number of entries
in b considering candidates from C. As an example, Jack’s ballot
(see Table 1) is changed from Zoey, Mira to Molly, Mira. Note
that changing Daniel’s ballot from Zoey, Molly, Sara, Gina to
Mira, Kim also constitutes to a single ballot modification.

(2) Manipulation by addition. Add a new ballot b with ranking
of up to ¢ candidates from C.

Handling ties in IRV Recall that according to our definition ties
during the IRV process are broken arbitrarily. It is not difficult to
see that the way these ties are broken may impact the value of the
margin. Indeed, in our example of ballot modification candidate
Molly is the winner after just a single modification only in case
the ties are broken in a very specific way. We postulate that any
consistent choice would be effective in our case, since we use the
margin to distinguish among choices and are not interested in the
actual value of the margin.

2.2 Problem Definitions & Hardness

Problem Definition 1. MqIRV (IRV Margin satisfying a single
query constraint). Given a set of ballots B eliciting m voters ranked
preferences of up to { positions over a given set C of n candidates,
and a query constraint that specifies a subset of the candidates, find
the minimum number of ballots that need to be modified in order
to ensure that the winner of the IRV election belongs to the subset
specified in the query constraint.

Running Example. Referring to Table 2, if the query constraint
specifies selecting a DB candidate, then the minimum number of
ballot modifications required to ensure that is 1, where Zoey in
Jack’s ballot is swapped by Molly. If instead Laura is to be made the
winner, this will require 3 ballot modifications. Hence, the margin
to satisfy the query constraint is 1.

THEOREM 2.1. MqIRYV is NP-Complete, even when { = 2.
Proof is given in Appendix A.3.

Problem Definition 2. MqKIRV (IRV Margin satisfying k query
constraints.) Given a set of ballots B eliciting m voters ranked pref-
erences of up to £ positions over a given set C of n candidates, and
a query with k constraints, each specifies a subset of the candidates,
find the minimum number of ballots that need to be modified in or-
der to ensure that the winners of k independent invocations of the
IRV election (each starting from the original ballots) belong to the
respective subsets specified k query constraints.

THEOREM 2.2. M@KIRYV is NP-Complete, even when £ = 2.

Proor. Follows trivially from Theorem 2.1.

KDD ’24, August 25-29, 2024, Barcelona, Spain

Running Example. Considering the running example again (Ta-
ble 2), k = 3 and the ballots are shown in Table 1. The winner for
DB is Molly (margin = 1), for ML it is Sara (margin = 0), for Al it is
Zoey (margin = 1). The minimum number of ballot modifications
(margin) required to ensure all three constraints is 1+0+1 = 2.

3 ALGORITHMS FOR MqIRV AND MgKIRV

In this section, we focus on designing exact solutions for MqIRV
and M@KIRV. In Section 3.2 we discuss ALGEXACT, a branch-and-
bound algorithm for MqIRYV that is capable of effective pruning
of the search space. In Section 3.3 we present a non-trivial integer
programming formulation of MqIRV. These exact algorithms apply
also exact algorithms for for MgKIRYV as follows from the following
simple theorem.

THEOREM 3.1. An optimal solution for MqKIRV corresponds to
solving MqIRYV optimally k times.

3.1 Required Definitions

We first give some definitions that will be useful when discussing
our algorithms.

Signature. Let S be the set of all possible partial or total rankings
over C (including those that do not appear in 8). A signature s € S
is one such partial or total ranking. The total number of possible
signatures is |S| = Zizl (%) - x!. For example, both {Molly, Sara}
and {Zoey, Molly, Sara, Gina} are valid signatures even though the
former is not present in Table 1.

Tally t,(c) or first choice votes. The tally or first choice votes of
a candidate ¢ at round r, denoted as t,(c), is defined as the number
of ballots in round r in which c is the first choice candidate. Using
the running example, tally of Sara, Zoey, and Kim at the beginning
of round 5 are: t5(Sara) = 4, t5(Zoey) = 3, and t5(Kim) = 3.

3.2 AicExact for MqIRV

We propose an algorithmic framework ALGEXACT that is an exact
solution to the MqIRV problem. The algorithmic solution is de-
veloped by creating a branch and bound tree, akin to two prior
works [13, 29].

For a given winner w, the solution considers all possible per-
mutations of candidates that need to be eliminated (i.e., (n — 1)!),
where each permutation represents an elimination order simulating
n — 1 run-off rounds of IRV. The height of the tree is at most n. Each
node of the tree contains two values: (a) an elimination order r,
(b) a score that represents the number of ballot modifications to
realize 7 (we formalize that as DisTTo below). Each edge of the
tree represents the next candidate to be eliminated. An artificial
root node connects the branches of the subtree, where each subtree
represents a w € W as the winner, where W is the constrained
winner set specified by the query. Except for the fake root node, the
relationship between any parent and child nodes in the tree is as
follows: (i) At any parent node with elimination order 7, the child
node has elimination order 7/ = ¢ + x, for some ¢ € C — 7, and
(i) D1sTTo(rr) < DisTtTo(r”) [29]. The leaf nodes end with a full
permutation, where the last candidate is from W. The maximum
number of possible leaf nodes is = |[W| x (n — 1)!. ALGEXACT solves
the sub-problem DisTTo formalized below, repeatedly, at each node
of the branch and bound tree.

1202

Md Mouinul Islam, Soroush Vahidi, Baruch Schieber, and Senjuti Basu Roy

Algorithm 1 ALGExACT

Input: Ballot profile B, set of Candidates C, set of preferred
candidates W.
Output: MqIRV
ub = o
Ib=0
. initialize priority queue with tuples (w, 0) where w € W
: while queue.notEmpty() do
7, 1b = queue.pop()
forc e C\ m do
' =c+nxw
Ib = DisTTOLB(8B,C, n’)
if Ib > ub then
prune 7’
else
queue.add(r’, Ib)
end if
if |7’| == n then
ub = min(ub, D1stTo(8B,C, 1))
16: end if
17: end for
18: end while
19: MqIRV = ub
20: Return MqIRV

R A A o

e e i v
Qs W N = O

Problem Definition 3. DistTo. Given an elimination order over
the candidates it (complete or partial order, || < |C|) and a database
of ballot profiles B, find the minimum number of ballots that must
be modified to achieve .

THEOREM 3.2. Di1stTo is NP-hard, even when £ = 3.

Proof omitted due to space constraints.

ALGExACT explores the tree level by level (refer to Figure 9 in
Appendix A.4) and makes an attempt to prune part of the tree
based on the lower bound of a branch (which corresponds to an
elimination order) and an upper bound of the value the MqIRV
instance.

Definition 3.3. Upper bound of an instance MqIRVUB. Given
an MqIRYV instance, MqIRVUB is defined as an upper bound of
the number of ballots that must be modified to satisfy the query
constraint.

Definition 3.4. Lower bound (D1sTToLB) of DistTo(r). Given
an MqIRV instance and an elimination order sz, DIsTTOLB is a
lower bound on the number of ballots that must be modified to
achieve s, namely, DIsTTOLB(7r) <DistTo(7).

Running Example. Figure 9 shows one such partially constructed
tree for our running example.The candidates are represented by
their unique ids, and any red node and the sub-tree under them
are fully pruned. Each such red node has DisTToLB(x) that is
not smaller than the MqQIRVUB of the MqIRV instance (e.g.,
DistToLB([1,3,5]) = 4 is larger than MqIRVUB = 2). Compared
to prior works [13, 29], we propose both effective as well as com-
putationally efficient MqIRVUB and DisTTOLB solutions, as we
discuss in Section 4.

Promoting Fairness and Priority in k-Winners Selection Using IRV

3.3 IP for MqIRV

M(qIRYV can be formulated as an integer linear program (IP). The
objective of the IP is to minimize the number of ballot modifications
required to ensure that the winner is the preferred candidate. Next,
we describe how to formulate this IP.

min Z as subject to
seS

ms +as —ds = ys Vse§ (1)
mz2ys >0 VseS (2)
ms>ds >0 VseS8S 3)
m-ms>as >0 VseS8S (4)
Dlas=) ds 5)
seS seS
Ucic; +Ucse; = 1 V{ci,cj} cC (6)
Ucic; +Ucjer +Ucpe; 21 V{cicjer} SC (7)
Vs = ey Ttz e, VseSVéeC

Vie{l...,Is]} (8
Z(ys Vs eE) 2 Upg Z (ys "vse¢) VH{aecC)

S S

The IP for MqIRV

For each ballot signature s € S, let ms denote the number of
ballots with signature s in the original ballot profile. Define m =
iseS Ms, so that m counts the total number of ballots in the original
election profile. Note that the values of mg and m are determined
by the original election profile. Let a; denote the number of ballots
that are modified to s from a different ballot signature, ds denote
the number of ballots that are modified from s to another ballot
signature, and ys denote the total number of ballots with signature
s after the modifications.

Constraint 1 requires that the number of ballots with a new
signature s be equal to the number of ballots that originally had
the signature s, plus the number that changed from something
else to s, minus the number that changed from s to something
else. Constraint 2 states that the number of ballots that end with
signature s cannot be more than the total number of ballots that
were cast in the election. Constraints 3 and 4 require that one cannot
change more ballots of signature s than the number of ballots that
originally had the signature s, and that the number of ballots that
are modified to signature s must be nonnegative and no more than
the number of ballots that had a signature different than s originally.

Constraint 5 implies that the total number of ballots changed
from any signature is equal to the total number of ballots changed
to any signature.

Constraints 6 and 7 correspond to the elimination order. Assume
Cis the set of all candidates. For every pair {c;,cj} C C, define Ucic;
as a binary variable that is 1 iff candidate c; is eliminated before
candidate c;. For completeness also define uc, ¢, = 1, for every ¢; €
C. To guarantee that the variables u, ¢; define an order, Constraint 6
requires it to be antisymmetric and Constraint 7 requires it to satisfy
the triangle inequality.

1203

KDD ’24, August 25-29, 2024, Barcelona, Spain

For a signature s of an original ballot and candidates ¢ and ¢
(which may be equal), define the binary variable v 4z to be 1 iff
when candidate ¢ is eliminated ¢ is the top candidate in the signature
that had originally been signature s. Bit v ¢ z is trivially 0 if ¢ does
not appear in s. Let signature s = ¢y, ¢, . . ., cp, Where cy is the x-th
candidate on the ballot, ¢ is the top choice while c; is the bottom.
Assume from now on that ¢ = ¢;. For candidate c; in s, where
J <, bitvs, c; is 0 since c; is ranked higher than ¢; is s. Assume
from now on that ¢ # c;, for j € {1,...,i — 1}. Constraint 8 on
U ¢; ¢ ensures that all the candidates cy, ¢z, . . ., cj—1 are eliminated
before ¢ is eliminated, and in case c; # ¢, candidate c; is eliminated
after ¢ is eliminated. Thus signature s contributes to ¢;’s tally when
¢ is eliminated. Note that since by definition uc, ¢, = 1, we get
that vs¢, ¢, = 1, which holds trivially. The constraint in its current
format is not linear since it is a product of bits. Later, we show how
to convert it to linear constraints.

Constraint 9 is for every ordered pair of candidates ¢ # c. It
guarantees that if uz ; = 1, namely ¢ is eliminated after ¢, then in
the round in which ¢ is eliminated the number of ballots in which
¢ is the top candidate is at least the number of ballots in which ¢ is
the top candidate. The constraint is written as a product of bits and
an integer (later, we show how to convert it to linear constraints).

If we want to force candidate ¢ to be the winner we need to add
the constraints uz ; = 1, for every ¢ # ¢. Alternatively, if we want to
force candidate ¢ not to be the winner we need to add the constraint
2.é¢ Uz e = 1. In addition, we can change the objective function to
count only additions or only deletions or any linear combination
of additions, deletions, and modifications. For our case we set the
objective function to be: minimize } as, which is the number of
ballots modifications.

In the last two constraints, we used (i) product of bits, and more
generally (ii) product of a nonnegative number and bits. We show
how to linearize a product of a nonnegative number and bits as long
as we have an upper bound on the number. Let uy, . .., ux be x bits,
and A be a non-negative number. Assume that m is an upper bound
on A. (As in our case, since m is the total number of signatures.)
The constraints that replace z = A - IT}_, u; are as follows.

z<uj-m forie{1,...,x}
z<
X
z>A+ Zui—x)'m
i=1
z2>20

4 EFFICIENT ALGORITHMS

This section is dedicated to further investigation of computational
efficiency. In Section 4.1, we describe an improved algorithm for
computing DisTToLB. Due to space constraints we had to omit the
description of two additional algorithms: (1) an improved MqIRVUB
algorithm that is computationally efficient and can be applied as
an efficient heuristic for the MqIRV problem, and (2) an efficient
(polynomial time) algorithm for D1stTo in case only ballot addi-
tions are allowed. Thus, demonstrating that DistTTo becomes a
computationally tractable in this special case.

KDD ’24, August 25-29, 2024, Barcelona, Spain

4.1 AnImproved DisTToLB Algorithm

In this section, we discuss an improved lower bound calculation
algorithm for DisTTo(xr). The intuition is the following: given x
and two candidates ¢ and ¢’, if ¢ needs to be eliminated before ¢’
in round i, where t;(c) and t;(c’) are the number of first choice

votes of ¢ and ¢’ in round i, respectively, then at least [M

number of first choice votes from ¢ needs to go to ¢’. That is, Ib, the
lower bound of round i is calculated as the half of the difference
of tally between ¢ and ¢’. Finally, the maximum over all of these
is returned as the output of the algorithm. Algorithm 2 has the
pseudocode.

Algorithm Efficient ALGExAcT | Blom
Al: 1 Al: 143

Number of IP calls | ML: 1 ML: 108
DM: 2 DM: 107

Runtime (s) 0.057 0.626

Table 5: Efficiency improvement using MqIRVUB and
DisTToLB for the running example

Running example. Assume, & = [Gina, Molly, Zoey] = [4,6,0]
where 4 is eliminated first. Initially, t;(Gina) = 6, t1(Zoey) = 3,
t1(Molly) = 1. To ensure Ginais eliminated, at least max{[%] , {%]}
= 3 ballot modifications are required. After Gina is eliminated,
t2(Zoey) = 5, ta(Molly) = 4. Required modifications of the ballot to
ensure that Zoey wins = {%] = 0. Therefore, [b = max(3,0) = 3.

Using the running example, Algorithm 2 reduces a significant
number of DistTo (which is solved using IP) calls. For example,
[b = D1sTTOLB([4, 6,0]) = 3 < DistTo([4, 6,0]). Hence ALGEXACT
prunes the branch [4, 6, 0] without having to make an expensive
DistTo call (this is because [b for this branch > ub). Table 5 shows
efficiency improvement using Di1sTToLB and MqIRVUB inside
ALGEXACT over prior work [13].

Algorithm 2 Algorithm for DisTToLB

Input: Set of ballots B, an elimination order &
Output: DisTToLB(D1stTo(x))
b=0
: while || > 1 do
¢ = m.pop_front()
forc’ e 1\ edo
5. Ib = max(lb, [”C);&b
end for
7. end while
8: Return [b

oW

THEOREM 4.1. Algorithm 2 returns a valid lower bound on D1stTo(r).

Lemma 1. The running time of Algorithm 2 is O(n? + m¢).

5 EXPERIMENTAL EVALUATIONS
We conducted experiments to analyze our algorithms, implemented
in Python 3.8 on a Windows 11, i7, 16GB RAM setup. Results are

averages from 10 runs. The code and data could be found in the
github [3].

1204

Md Mouinul Islam, Soroush Vahidi, Baruch Schieber, and Senjuti Basu Roy

5.1 Experiment Design

We have three goals. (a) Assess the effectiveness of MgKIRYV (Sec-
tion 5.2). (b) Evaluate the quality of our designed algorithms for
MqIRYV and MgKIRYV problems (Section 5.3). (c) Evaluate their scal-
ability (Section 5.4). We analyzed four real-world and one synthetic
dataset, with comprehensive details provided in Table 6.

Dataset Name m n
NSW Senate
Election data

Description

533 1,520k | Candidates from five parties.

San Francisco Board of supervisors, district

Election data 18 193k attorney, and mayoral results.
MovieLens 100k 100k | User movie ratings.

Adressa News 100k 100k | News articles with user ratings.
Synthetic 1,000k | 1,000k | Random preference rankings.

Table 6: Real world and synthetic datasets
(m denotes number of candidates and n number of voters)

5.1.1 Baseline Algorithms. The following algorithms are imple-
mented.

1. Filtering-Borda [32]. We implement a baseline where candi-
dates who do not satisfy the query constraints are first filtered out.
Then, considering the remaining candidates, the preferences of the
voters are aggregated using the “positional” scoring mechanism
Borda [32] that assigns a score to each candidate corresponding
to the positions in which a candidate appears within each voter’s
ballot. This baseline is implemented to evaluate two aspects: 1. Why
a ballot modification is necessary, and 2. effectiveness of a different
positional aggregation mechanism and its effectiveness over IRV.
2. Plurality voting [21, 23]. The winner is the candidate who rep-
resents a plurality of voters’ first choice or, in other words, receives
more first choice votes than any other candidate. That makes plural-
ity voting among the simplest of all electoral systems. This baseline
is implemented to evaluate effectiveness of a non positional aggre-
gation mechanism and its effectiveness over IRV.

3. Blom et al. [13]. Magrino et al. [29] propose a simple lower
bound based on the DistTo of any 7 of length n. Given two elimi-
nation orders, if one is the suffix of another, then, the DistTo of the
suffix could be used as the D1sSTToLB of DistTo for the longer elim-
ination order. Blom et al. [13] propose an improved lower bound
over [29] based on the last round margin I(¢’, ¢) between any pair
of candidates ¢ and ¢’ (to ensure ¢’ is eliminated before c), where
I(c’, ¢) is half of the difference in the tallies of ¢’ and ¢ (first choice
votes). This idea is generalized to generate lower bound of margin
to ensure an elimination order ending in 7, which is max{I(¢’, c)},
wherec’ e C—m,c € 7.

4. Random. We implement an algorithm that runs iteratively. In
the first iteration, it randomly selects a ballot and modifies it. In
the next iteration, it doubles the number of selected ballots to be
modified (and selects those ballots randomly) and repeats the pro-
cess until the query constraints are satisfied.

5. IP for DistToAdd. We implement an integer programming based
solution for the Di1sSTTOADD problem.

These algorithms are compared against our proposed DisTToLB
and MqIRVUB solutions inside ALGExAcT. We also compare AL-
GAPPRX against these solutions and the implemented IP for MqIRV.
Finally, we compare our designed solution DisTTOADDALG with its
corresponding IP implementation.

Promoting Fairness and Priority in k-Winners Selection Using IRV

- I Plurality
£0.6) mm Filtering-Borda

8
candidates

9 10

Figure 1: Anti-plurality index using NSW election dataset

5.1.2 Measures. To evaluate anti-plurality, we measure the anti-
plurality index that is proposed in a related work [16]. Anti-plurality
index of a preference aggregation method is computed by looking
at each winner candidate i that the method produces and then
calculating the percentage of voters who prefer i the least (i.e.,
it is the last choice on their ballots). The average anti-plurality
index is then calculated by taking the average over multiple queries.
To evaluate the quality of our designed algorithms, we compare
approximation factors of margins produced by different algorithms
(margin produced by the proposed algorithm/ exact margin), as
well as compare the exact margin values. Finally, we compare the
effectiveness of the proposed algorithms based on the number of
expensive D1sTTo calls they make (smaller is better). To evaluate
scalability, we evaluate the pruning effectiveness of the algorithms
and the overall running time.

5.1.3 Query and Parameters. Query constraints are generated ran-
domly but by using party affiliation for NSW datasets, race of the
candidates from the San Francisco Election dataset, and movie genre,
and news type of the last two datasets, respectively. For evaluating
MqIRYV, we vary the size of the ballot (£), number of users (m), and
the number of candidates (n). We consider various combinations
over these parameters to cover a wide range of recommendation
settings. The default values are n = 10, £ = 4 and m = 1000.

5.2 Goal 1: Analyzing Anti-plurality

For these experiments, NSW dataset is used. For each query, the set
W is selected arbitrarily based on the 5 different party affiliations
of the candidates — Labor Party or LAB, Christian Democratic
Party or CDP, National Party or NLT, Liberal Party or LIB, The
Greens or GRN. We compare average anti-plurality index of MqIRV
margin computation based on plurality voting [21, 23] and margin
computation based on Filtering-Borda in Figure 1 after running
133 queries. These results clearly indicate that MqQKIRYV results in
significantly anti-plurality compared to the other baselines.

5.2.1 A case study. We present a case study to demonstrate efficacy
of MqIRV to overcome anti-plurality. A smaller subset of NSW
election data is used that contains 12 candidates and 33, 553 voters.
A query is generated to select candidates that are either LIB or
LAB. This makes W = {2,5, 8,10} (these numbers are the unique
ids of the candidates). MqQIRYV selects candidate 8 as the winner,
while, Plurality voting and Filtering-Borda both select candidate
5. Upon further analysis, it appears that a total of 9884 voters like
candidate 5 as their first choice, while a total of 5411 voters dislike
candidate 5 (these voters place candidate 5 as their last choice on
their ballots). For candidate 8, these two numbers are 9483 and 1863,
respectively. In fact, about 25% of the voters put candidate 5 as one

1205

KDD ’24, August 25-29, 2024, Barcelona, Spain

of their 3 least preferred candidates compared to only 2% voters that
do so for candidate 8. This case study anecdotally demonstrates the
efficacy of MQIRV to overcome anti-plurality. This case study also
demonstrates why filtering based approach could skew the results,
which MqIRYV avoids by looking at the entire ballot and the order
of all candidates.

5.3 Goal 2: Analyzing Quality

Approximation factor. In Table 7, we present the approximation
factors of the MqIRV problems solved using different algorithms.
The results are shown for 4 real datasets. Two of the exact solutions
are compared against the IP formulation of MqIRV and exhibit
approximation ratio of 1, as expected. ALGAPPRX has an approxi-
mation ratio between 1.91 and 3.15. On the other hand, Random
has an approximation ratio between 3.61 and 4.21. As analyzed
analytically, D1ISTTOADDALG is an exact solution of DisTTOADD
and has an approximation ratio of 1.

Dataset ALGExACT | DisTTOADD | ALGAPPRX | Random
NSW dataset 1 1 1.97 3.41
San Francisco Election | 1 1 1.98 3.96
MovieLens 1 1 1.99 3.42
Adressa News 1 1 3.15 4.21

Table 7: Approximation factor of the algorithms

Margin. Figure 2 shows the box plot of difference in margin for
ALGAPPRX and ALGEXACT varying n for all 4 real datasets over 10
different queries. These results corroborate that ALGAPPRX is an
effective solution across all 4 datasets.

We also analyze the margin difference between ALGAPPRX and
Random using one synthetic dataset and 3 real datasets varying
n up to 1 million. For each run, we keep the number of ballots
m = n. Figure 5 shows ALGAPPRx always returns smaller margin
than Random. Using MovieLens data, Random margin is about 20
times larger than ALGAPPRX.

Number of DistTo IP calls. Finally, we show that ALGExACT re-
quires significantly less number of IP calls compared to Blom (Fig-
ure 6). On Adressa News dataset on n = 10, ALGEXACT invokes
about 17 times less number of IP calls than what Blom does. These
results demonstrate the effectiveness of our proposed DisTToLB
and MqIRVUB solutions, compared to the adapted version of [13].

5.4 Goal 3: Analyzing Scalability

Running time. In these experiments (Figure 3), we compare run-
ning time in seconds for ALGExAcT, ALGAPPRX, and Blom on 4 real
world datasets by varying n, while keeping ¢ and m fixed. The ex-
act algorithms show that the running time increases exponentially
with increasing n. ALGAPPRX is almost 24333 times faster than Blom
for n = 12 using MovieLens dataset. While ALGEXACT is 7.6 times
faster than Blom for n = 12 using MovieLens dataset.

Figure 7 presents effect of varying ¢ and m on running time
of ALGExAcT, ALGAPPRX, and Blom on 2 real world datasets. As
expected, running time ALGEXACT does not significantly vary with
increasing m and ¢, as it is mostly driven by exponential 2" cost of
branch & bound tree exploration.

Running time in very large scale data. For these experiments,
we compare running time of our efficient solution ALGAPPRX and
compare that with Random. Figure 8 shows that the running time of

KDD ’24, August 25-29, 2024, Barcelona, Spain

ALGAPPRKX is significantly smaller than Random. Using the Adressa
News dataset with n = 100k, m = 100k and [= 4, the runtime for
Random is about 100 times higher than ALGAPPRX.

Running time of DisTTOADDALG. Figure 4 compares the running
time between our exact solution Di1sTTOADDALG for DisTTOADD
with IP based implementation (DistToIPADD). DistToIPAdd run-
time increases exponentially with n as expected, whereas, D1sT-
ToADDALG runs in O(n?) time. For MovieLens dataset with n = 10
D1sTTOADDALG is 53 times faster than DistToIPAdd.

5.5 Summary of Results

Our first observation is that, MqKIRYV significantly promotes lower
anti-plurality, whereas, the other baselines do not. The case study
demonstrates that ballot modification selects winner with lower
anti-plurality index than plurality voting and a filtering based ap-
proach (Filtering-Borda) that could be myopic at times. Our
second major observation is that our designed ALGEXAcT enabled
by effective lower bound Di1sTToLB and upper bound MqIRVUB
algorithm is highly effective as well as computationally efficient
compared to their counterparts Blom. Third, ALGAPPRx exhibits
empirical approximation factor around 2 (for 3 of the datasets) and
runs significantly faster than the exact solutions (order of magni-
tude faster) and the Random baseline. Finally, consistent with our
theoretical analysis, DIsTTOADDALG returns an exact solution for
DisTTOADD, runs in polynomial time, and is significantly faster
(about 53 times for some datasets) than the IP based solution.

6 PRIOR WORK

We present related work covering three areas: (a) preference ag-
gregation methods, (b) how to minimally update preferences so
that the produced outputs satisfy additional criteria, and (c) multi-
stage preference aggregation methods and their margin of victory
computation.

We remark that it is evident from this prior work that we are
the first to study an IRV based multi-stage preference aggregation
procedures [7]. Also, our margin finding problem MqKIRYV is dif-
ferent from previously known Margin of victory (MoV) problems,
and our hardness results and algorithmic solutions to this problem
extend the state of the art in this area.

Preference aggregation. Preference aggregation is closely studied
in the context of group recommendation [1, 2, 5, 8, 9, 14, 28, 34],
with the goal of selecting one or top-k items that are most suitable
to the preference of all users in the group. These are also studied
while promoting fairness in ranking and recommendation [33, 38].
In [16], the authors empirically demonstrate that multi-stage vot-
ing methods, such as STV and IRV offer benefits over positional
preference aggregation methods (e.g., plurality voting, approval
voting) in the recommendation contexts by handling hyperactive
users in a more equitable and fair way.

Changing original preferences. The second line of related work
exists in how to minimally update the original preferences of the
users so that the produced outputs satisfy additional criteria.

1206

Md Mouinul Islam, Soroush Vahidi, Baruch Schieber, and Senjuti Basu Roy

Some leading criteria include maximizing the satisfaction of some
specific users considering rating based preference aggregation meth-
ods in top-k recommendation [9], changing the original winner,
that is, computing margin, or producing Margin of victory (MoV), or
satisfying fairness criteria [26, 36], to name a few. Among these, the
most relevant to this work is the previous work on computing MoV.
There are two types of MoV: constructive and destructive. In the
constructive (destructive) version, the goal is to find the minimum
number of changes to the ballots that is needed so that a special
candidate is (not) elected. [37] has investigated the computational
complexity and (in)approximability of computing MoV for various
voting rules, including approval voting, all positional scoring rules,
etc. [11] has introduced a sampling based probabilistic algorithm for
finding the margin of victory, which can be used for many voting
rules.

Multi-stage preference aggregation methods and their mar-
gin of victory computation. Multi-stage methods, such as STV
and IRV, were introduced in the 19th century in electoral voting
systems. [6] demonstrated that determining whether the MoV in an
IRV election is at most 1 is NP-hard for both constructive and de-
structive versions. Moreover, there is no 2-approximation algorithm
for it unless P = NP. In [17] the coalitional weighted manipulation
is investigated. In [27] the authors present a branch and bound
algorithm that calculates possible winners when only part (rather
than all) of the ballots are accessible. The usage of [27] is to gener-
ate information on the result of an election and to announce it on
election night, even when there are still some ballots that have not
been counted. MoV of IRV [30] and STV [24] is studied in many
related works [4, 12, 13, 29].

7 CONCLUSION

We study the suitability of Instant Run-off Voting (IRV) as a prefer-
ence aggregation method to select k different winners to promote
group fairness and priority. We formalize an optimization problem
that aims at finding the margin, i.e., the smallest number of modifi-
cations of original users’ preferences (ballots) so that the selected k
winners satisfy all these query constraints. We present principled
models and several non-trivial algorithmic and theoretical results.
Our experimental analyses demonstrate suitability of IRV as a pref-
erence aggregation method over plurality voting and a filtering
based approach, as well as corroborate our theoretical analysis.

This work opens up many interesting directions — as an ongoing
work, we are investigating how to design approximation algorithms
with theoretical guarantees for MqIRV. We are also studying how
our proposed solution ALGEXACT could be adapted to compute the
margin for single transferable voting (STV) schemes.

ACKNOWLEDGMENTS

The work of Md Mouinul Islam, Soroush Vahidi, Baruch Schieber
and Senjuti Basu Roy is supported by the following funding agen-
cies: (1) National Science Foundation award number(s): 1942913,
2007935, 1814595 (2) Office of Naval Research award number(s):
N000141812838, N000142112966

Promoting Fairness and Priority in k-Winners Selection Using IRV

Figure 2: Margin difference between ALGAPPRX and ALGEXACT varying n

40

[}

v

£

O .

]

£

5 .
c 20

: 0 “i i%
©

Zo0

456 7 8 9101112
candidates (n)

(c) MovieLens

150
—— AlgApprx
Eloo —— AlgExact
P —— Blom
£
-

4 6 8 10 12
candidates (n)

(c) MovieLens

Figure 3: Runtime for ALGAPPRX, ALGEXACT, and Blom varying n

0 4k o
£ £ 20 .
23k g
g g
=
3 2k 3 10 -
c c
‘B1k)
o -
= . = o0 o
4 5 6 7 8 9 10 4 5 6 7 8 9 10
candidates (n) # candidates (n)
(a) NSW Election (b) San Francisco Election
100
—— AlgApprx 40 AlgApprx
- —— AlgExact 0 - IB\:gExact
b —— Blom ° om
g 50 £20
= F
o V]
6 8 10 4 6 8 10
candidates (n) # candidates (n)
(a) NSW Election (b) San Francisco Election
" 40 .
600/ — DistToAddAlg —— DistToAddAlg
= —— DistTolPAdd —— DistTolPAdd
0 400
E
=200
V]
4 6 8 10 12 4 6 8

candidates (n) # candidates (n)

(a) NSW Election (b) San Francisco Election

400

—— DistToAddAlg
—— DistTolPAdd

Time (s)
N
o
o

4 6 8 10 12
candidates (n)

(c) MovieLens

Figure 4: Runtime for D1sTToOADDALG and DisTToIPADD

I AlgApprx
mm Random

EEE AlgApprx
mmm Random

EEE AlgApprx
mmm Random

50k 100k 500k 1000k
candidates

200 500 800 1000 5k
candidates

10k 50k 100k
candidates

(a) Synthetic (b) MovieLens (c) Adressa News

Figure 5: Margin for ALcApPRx and Random

1.4k
4| mmm AlgExact 3/ ™8 AlgExact B AlgExact
LM I Blom K] mm Blom 1.0« EEE Blom
[[P K]
e 2 2 0.6k
#* * 1k #*
0.2k
2 256 7 8 9101112 2

5 6 7 8 9 I
candidates (n)

5 6 8 9
candidates (n) # candidates (n)

(a) NSW Election (b) MovieLens (c) Adressa News

Figure 6: #IP calls for ALGAPPRX and ALGEXACT varying n

1207

4
—— AlgApprx
33 —— AlgExact
=~ —— Blom
]
£?
=
1
4 5 6 7

Maximum ballot size (l)

(a) Adressa News varying [

KDD ’24, August 25-29, 2024, Barcelona, Spain

¢ 1.0k K
<

[

]

£ 0.6k

T

£

0.2k .

]

s R | R

4 5 6 7 8 9 10
candidates (n)

(d) Adressa News
40
—— AlgApprx
- —— AlgExact
b —— Blom
020
£
=
0
4 6 8 10
candidates (n)
(d) Adressa News
300
—— DistToAddAlg
72000 — DistTolPAdd
A
= 100
1]
4 6 8 10
candidates (n)
(d) Adressa News
10 — AlgApprx
- —— AlgExact
b —— Blom
o
£ 5
0

V] 10k 20k 30k
ballots (m)

(b) Adressa News varying m

Figure 7: Runtime for ALGAPPRX, ALGEXACT, and Blom varying [, m

2

600 —— AlgApprx 200
—— AlgApprx - Random — AlgApprx

7 400] — Random % n —— Random
‘g gt gloo
i 200 Fl—_— - [

[o 0

100k 500k 1000k 250 500 750 1000 20k 60k 100k

candidates # candidates # candidates
(a) Synthetic (b) MovieLens (c) Adressa News

Figure 8: Runtime for ALGAPPRX & Random

KDD ’24, August 25-29, 2024, Barcelona, Spain

REFERENCES

(1]

(2]

(3]
(4]

w1
=

[10]

(11

[12]

[13

[14]

[15]

=
&

[17]

[18

[19]

Sihem Amer-Yahia, Behrooz Omidvar-Tehrani, Senjuti Basu, and Nafiseh Shabib.
2015. Group recommendation with temporal affinities. In International Conference
on Extending Database Technology (EDBT).

Sihem Amer-Yahia, Senjuti Basu Roy, Ashish Chawlat, Gautam Das, and Cong
Yu. 2009. Group recommendation: Semantics and efficiency. Proceedings of the
VLDB Endowment 2, 1 (2009), 754-765.

Anonymous. 2023. Git link. https://anonymous.4open.science/r/selection_
queries_using_irv-5AD0/README.md.

Manel Ayadi, Nahla Ben Amor, Jérome Lang, and Dominik Peters. 2019. Single
Transferable Vote: Incomplete Knowledge and Communication Issues. In 18th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS
19). International Foundation for Autonomous Agents and Multiagent Systems,
Montreal QC, Canada, 1288-1296. https://hal.science/hal-02307486

Linas Baltrunas, Tadas Makcinskas, and Francesco Ricci. 2010. Group recommen-
dations with rank aggregation and collaborative filtering. In Proceedings of the
4th ACM Conference on Recommender Systems. 119-126.

John J. Bartholdi and James B. Orlin. 1991. Single transferable vote resists strategic
voting. Social Choice and Welfare 8, 4 (1991), 341-354. http://www.jstor.org/
stable/41105995

Senjuti Basu Roy. 2022. Returning Top-K: Preference Aggregation or Sortition,
or is there a Better Middle Ground? SIGMOD Blog (2022).

Senjuti Basu Roy, Laks VS Lakshmanan, and Rui Liu. 2015. From group rec-
ommendations to group formation. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 1603-1616.

Senjuti Basu Roy, Saravanan Thirumuruganathan, Sthem Amer-Yahia, Gautam
Das, and Cong Yu. 2014. Exploiting group recommendation functions for flexible
preferences. In 2014 IEEE 30th International Conference on Data Engineering. IEEE,
412-423.

Rachel Behar and Sara Cohen. 2022. Representative Query Results by Voting. In
Proceedings of the 2022 International Conference on Management of Data. 1741—
1754.

Arnab Bhattacharyya and Palash Dey. 2021. Predicting winner and estimating
margin of victory in elections using sampling. Artificial Intelligence 296 (2021),
103476. https://doi.org/10.1016/j.artint.2021.103476

Michelle Blom, Peter J. Stuckey, and Vanessa J. Teague. 2017. Towards Computing
Victory Margins in STV Elections. arXiv:1703.03511 [cs.GT]

Michelle Blom, Peter J. Stuckey, Vanessa J. Teague, and Ron Tidhar. 2015. Efficient
Computation of Exact IRV Margins. arXiv:1508.04885 [cs.Al]

Da Cao, Xiangnan He, Lianhai Miao, Yahui An, Chao Yang, and Richang Hong.
2018. Attentive group recommendation. In The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval. 645-654.

David Cary. 2011. Estimating the Margin of Victory for Instant-Runoff Voting.
In Conference on Electronic voting technology/workshop on trustworthy elections.
USENIX Association, San Francisco, CA.

Abhijnan Chakraborty, Gourab K Patro, Niloy Ganguly, Krishna P. Gummadi,
and Patrick Loiseau. 2018. Equality of Voice: Towards Fair Representation in
Crowdsourced Top-K Recommendations. arXiv:1811.08690 [cs.SI]

Vincent Conitzer, Tuomas Sandholm, and Jérome Lang. 2007. When Are Elections
with Few Candidates Hard to Manipulate? J. ACM 54, 3 (Jun 2007), 14:1-14:33.
https://doi.org/10.1145/1236457.1236461

Palash Dey and Y. Narahari. 2015. Estimating the Margin of Victory of an Election
using Sampling. arXiv:1505.00566 [cs.AI]

Peter Emerson. 2013. The original Borda count and partial voting. Social Choice
and Welfare 40 (2013), 353-358.

1208

[20]

[21

[22]

[23

[24]

[25

[26]

[27

[28

™
20,

[30

(31

[32

[33

&
=

[35

(36]

[37

&
&,

Md Mouinul Islam, Soroush Vahidi, Baruch Schieber, and Senjuti Basu Roy

FairVote. 2000-2024. Proportional RCV Information. https://fairvote.org/our-
reforms/proportional-ranked-choice-voting-information/.

Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, and Nimrod Talmon. 2017. Multi-
winner voting: A new challenge for social choice theory. Trends in Computational
Social Choice 74, 2017 (2017), 27-47.

David Garcia-Soriano and Francesco Bonchi. 2021. Maxmin-fair ranking: indi-
vidual fairness under group-fairness constraints. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. 436-446.

Bernard Grofman, Guillermo Owen, and Scott L Feld. 1983. Thirteen theorems
in search of the truth. Theory and Decision 15, 3 (1983), 261-278.

Wm. H. Hare. 1871. Application of Mr. Hare’s System of Voting to the Nomi-
nation of Overseers of Harvard College. Journal of Social Science: Containing
the Transactions of the American Social Science Association 3-4 (1871), 192-198.
https://books.google.com/books?id=W7QRAAAAYAA]

Steven Hill and Robert Richie. 2005. Success for instant runoff voting in San
Francisco. National Civic Review 94, 1 (2005), 65-69.

Md Mouinul Islam, Dong Wei, Baruch Schieber, and Senjuti Basu Roy. 2022. Satis-
fying complex top-k fairness constraints by preference substitutions. Proceedings
of the VLDB Endowment 16, 2 (2022), 317-329.

Alborz Jelvani and Amelie Marian. 2022. Identifying Possible Winners in Ranked
Choice Voting Elections with Outstanding Ballots. Proceedings of the AAAI
Conference on Human Computation and Crowdsourcing 10, 1 (Oct. 2022), 114-123.
https://doi.org/10.1609/hcomp.v10i1.21992

Jae Kyeong Kim, Hyea Kyeong Kim, Hee Young Oh, and Young U Ryu. 2010. A
group recommendation system for online communities. International Journal of
Information Management 30, 3 (2010), 212-219.

Thomas Magrino, Ronald Rivest, Emily Shen, and David Wagner. 2011. Comput-
ing the margin of victory in IRV elections. In 2011 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections (EVI/WOTE 11). USENIX Associ-
ation, San Francisco, CA, 4-4. https://www.usenix.org/conference/evtwote-
11/computing-margin-victory-irv-elections

Eamon McGinn. 2020. Rating Rankings: Effect of Instant Run-off Voting on
participation and civility. http://eamonmcginn.com.s3.amazonaws.com/papers/
IRV_in_Minneapolis.pdf

Robert A. Newland. 1972. Only half a democracy. Representation, Journal of
Representative Democracy 12, 49 (1972), 38.

Shmuel Nitzan and Ariel Rubinstein. 1981. A further characterization of Borda
ranking method. Public Choice (1981), 153-158.

Evaggelia Pitoura, Kostas Stefanidis, and Georgia Koutrika. 2022. Fairness in
rankings and recommendations: an overview. The VLDB Journal (2022), 1-28.
Abinash Pujahari and Dilip Singh Sisodia. 2020. Aggregation of preference
relations to enhance the ranking quality of collaborative filtering based group
recommender system. Expert Systems with Applications 156 (2020), 113476. https:
//doi.org/10.1016/j.eswa.2020.113476

Anand D. Sarwate, Stephen Checkoway, and Hovav Shacham. 2012. Risk-Limiting
Audits and the Margin of Victory in Nonplurality Elections. Statistics, Politics
and Policy 3, 3 (December 2012), 29-64. https://doi.org/10.1515/spp-2012-0003
Dong Wei, Md Mouinul Islam, Baruch Schieber, and Senjuti Basu Roy. 2022. Rank
aggregation with proportionate fairness. In Proceedings of the 2022 ACM SIGMOD
International Conference on Management of Data. 262-275.

Lirong Xia. 2012. Computing the Margin of Victory for Various Voting Rules. In
Proceedings of the 13th ACM Conference on Electronic Commerce (EC ’12) (Valencia,
Spain). Association for Computing Machinery, New York, NY, USA, 982-999.
https://doi.org/10.1145/2229012.2229086

Meike Zehlike, Ke Yang, and Julia Stoyanovich. 2021. Fairness in ranking: A
survey. arXiv preprint arXiv:2103.14000 (2021).

https://anonymous.4open.science/r/selection_queries_using_irv-5AD0/README.md
https://anonymous.4open.science/r/selection_queries_using_irv-5AD0/README.md
https://hal.science/hal-02307486
http://www.jstor.org/stable/41105995
http://www.jstor.org/stable/41105995
https://doi.org/10.1016/j.artint.2021.103476
https://arxiv.org/abs/1703.03511
https://arxiv.org/abs/1508.04885
https://arxiv.org/abs/1811.08690
https://doi.org/10.1145/1236457.1236461
https://arxiv.org/abs/1505.00566
https://fairvote.org/our-reforms/proportional-ranked-choice-voting-information/
https://fairvote.org/our-reforms/proportional-ranked-choice-voting-information/
https://books.google.com/books?id=W7QRAAAAYAAJ
https://doi.org/10.1609/hcomp.v10i1.21992
https://www.usenix.org/conference/evtwote-11/computing-margin-victory-irv-elections
https://www.usenix.org/conference/evtwote-11/computing-margin-victory-irv-elections
http://eamonmcginn.com.s3.amazonaws.com/papers/IRV_in_Minneapolis.pdf
http://eamonmcginn.com.s3.amazonaws.com/papers/IRV_in_Minneapolis.pdf
https://doi.org/10.1016/j.eswa.2020.113476
https://doi.org/10.1016/j.eswa.2020.113476
https://doi.org/10.1515/spp-2012-0003
https://doi.org/10.1145/2229012.2229086

Promoting Fairness and Priority in k-Winners Selection Using IRV

A APPENDIX
A.1 Different Aggregation Mechanisms

Plurality voting. In a plurality voting system, each voter is allowed
to vote for one candidate, and the candidate who receives the most
votes wins, regardless of whether they secure a majority of the votes.
This system is straightforward and easy to understand but can result
in a "winner-takes-all" outcome where the elected representative
may not reflect the preference of the majority of voters. For instance,
in our current example, Zoey wins the plurality vote with just 3
ballots in her favor. However, Zoey is also the least favored choice
of 5 voters, underscoring the system’s limitation in capturing the
majority’s true preference.

Scoring based. In scoring-based voting systems, voters score each
candidate independently on a scale (e.g., 0 to 5 or 1 to 10). The scores
for each candidate are then aggregated to determine the winner.
This system allows voters to express not just a preference order
but also the intensity of their preferences. Examples of scoring-
based voting systems include Range Voting and Approval Voting.
However, when the users provide preferences in a ranked order,
there is no standard way to convert those preferences to scores.
Positional voting. Positional voting systems allow voters to rank
candidates in order of preference. The most common form of po-
sitional voting is the Borda Count, where points are assigned to
positions on the voters’ preference lists. Using the running example,
Gina emerged as the clear winner of Borda Count with a total of
17 points (3 points from Emma, 1 point from Monica, 0 point from
Daniel, 2 points from John, 4 points from Amy, 3 points from Alice,
3 points from Bob, 1 points from Steve.). Gina’s consistent ranking
as a second top choices of many voters secured her victory.

A.2 IRV Properties

IRV is known to satisfy properties [16] that other preference aggre-
gation measures are unable to accommodate.
IRV promotes proportional representation for solid coali-
tions. In social choice theory, a solid coalition for a set of candidates
is defined as a set of voters who all rank every candidate in that set
higher than any candidates outside that set. This criterion requires
that if the number of such voters is at least half of the total number
of voters, then one of those candidates from that set must win.
Consider a scenario in which two candidates with similar ide-
ologies compete over the same pool of voters, resulting in divided
votes and potentially allowing a third candidate with a different
ideology that has fewer overall votes to win. IRV fulfills this crite-
rion, whereas plurality voting [23] fails to do so. To demonstrate
this property, notice that in our running example, there exists a
solid coalition of voters who like ML (refer to Table 1 which shows
5 of the 10 users, John, Amy, Alice, Bob, and Steve rank the three
ML candidates Gina, Kim, Sara higher than any other candidate).
Clearly, if user preferences are aggregated using plurality voting,
none of the ML candidates will be returned as the winner since Zoey
has the highest number of first place votes, and will be selected as
the winner. On the contrary, IRV will select Sara as the winner, and
hence it is resistant to the ballot splitting problem.
IRV promotes anti-plurality. In social choice theory, the majority
loser criterion was proposed to evaluate single-winner elections. It

1209

KDD ’24, August 25-29, 2024, Barcelona, Spain

states that if a majority of voters prefer every other candidate over
a given candidate, then that candidate must not win. IRV fulfills

this criterion [16] (as there is a solid coalition for the rest of the
candidates). Indeed, the candidate Zoey is the last choice of 6 out
of the 10 users (Table 1), and thus IRV will not select it. Contrarily,
plurality voting will select Zoey as the winner. In [16] this criterion
is extended to define anti-plurality which requires that no candidate
among the bottom x% of the ranked choices for the majority of the
voters should be selected. Although not guaranteed, it is empirically
shown in [16] that IRV fulfills this extended criterion anti-plurality
frequently.

IRV vs. Plurality Voting. A popular voting mechanism is plurality
voting, that selects that the winner that receives the highest number
of top ranked votes. Using Table 1, note that plurality voting will
choose Laura as the winner among the candidates in DM area,
even though it is clear that between Laura and Molly, the latter is
more preferred by the users. As we will demonstrate later our IRV
based process will indeed choose Molly. Finally, it is known that
finding the margin (the number of ballots that must be substituted
in order to change the original winner [18, 26, 35, 37]) for IRV is
NP-hard [13], making IRV less susceptible to manipulation.

IRV vs. Scoring based Voting. Scoring-based voting systems face
challenges in terms of the proportionality of solid coalitions, anti-
plurality, and having the complete preferences of voters in a way
that accurately reflects voter intent. In scoring-based voting sys-
tems, the proportionality of solid coalitions as a strong preference
for a particular candidate can be undermined if voters give nearly
as high scores to other candidates, thus not providing a clear ad-
vantage to the coalition’s preferred candidate. This aspect can also
impact anti-plurality; since voters might give high scores to a can-
didate who is the last choice by the majority of the voters, this can
lead to a winner who is disliked by most. In contrast, IRV upholds
all three of these properties.

IRV vs. Positional Voting. Positional Voting, like the Borda Count,
focuses on selecting the most preferred candidate rather than re-
flecting the depth of support among multiple choices. This may
lead to a winner-takes-all outcome, often favoring the candidate
with the highest first-choice or second-choice support, potentially
disregarding the proportional strength of coalitions. For the same
reason, Positional Voting can select a winner who is the last choice
by the majority of voters. Let’s consider an example where voters
rank five candidates A, B, C, D, and E in order of preference. In
this election, there are 20 votes of preference order {A, D, E, C},
indicating that A is ranked first, followed by D, E, and C; 10 votes of
preference order {B, C, E, A}; and 11 votes of preference order {C, B,
D, A} are cast. Applying the Borda Count, Candidate A accumulates
60 points (20 votes * 3 points), Candidate B, C, D, E accumulates
52, 53, 51 and 30 points respectively. Therefore, under the Borda
Count, Candidate A emerges as the winner with the highest total
points of 60. However, notice there is a solid coalition of B and C
formed by 21 voters (they are preferred by 21 voters, more than
half of voters, than any other candidates). IRV will select one of the
candidates of group B or C. Again, A is the last preference by the
majority of voters (21 voters), yet still wins the election, showing
an anti-plurality scenario.

KDD ’24, August 25-29, 2024, Barcelona, Spain

A.3 Hardness Results: MqIRV is NP-Complete
THEOREM A.1. MqIRVis NP-Complete, even when £ = 2.

Proor. The hardness proof is by reducing an instance of the
known NP-hard problem 3-Exact Cover problem (3XC) to an in-
stance of MqIRV. Our proof is inspired by the NP-Hardness proof
of [6].

Consider an election in which m voters need to elect k = 1
candidate out of n candidates. In the election, each voter casts
his/her ballot for two candidate in ranked order. The final candidate
is determined using the IRV process. For a given instance of the
election, we define the margin as the number of ballot changes
required to ensure that a specific candidate wins.

We prove that computing the margin is NP-Complete. It is straight-
forward that the problem is in NP since the outcome of an IRV
election can be computed in polynomial time. The NP-hardness
is proved by reduction from the 3-Exact Cover problem (3XC). In
this problem, we are given a universal set {e1,...,e3,},andm > n
subsets Sq,...,S;, of size 3 each. We need to determine whether
there are n sets whose union is the universal set.

Suppose that we are given an instance of the 3XC problem. We
show how to define a related IRV margin problem and then prove
that the IRV has a margin n if and only if the answer to the respective

3XC problem is Yes.
The IRV problem has 2m+3n+2 candidates by, ..., by, c1, ..., cm,
e1,...,e3n and u, v. We must ensure that u wins the election. There

are 6m + m® + m(m + 5) + 3n(2m + 10) + 2m + 11 + 2m + 13 =
2m? + 6mn + 15m + 30n + 24 ballots as follows:

e For every i € [1..m], let S; = {ex, ey, ez }. There are 6 ballots
that we call “cover ballots”. These ballots are two of each
[bi, ex], [bis ey]: and [b;, e;]

For every i € [1..m] there are m ballots [b;, ¢;]

For every i € [1..m] there are m + 5 ballots [c;, b;]

For every i € [1..3n] there are 2m + 10 ballots [e;, v]

There are 2m + 11 ballots [v, u]

There are 2m + 13 ballots [u, v]

Suppose that the 3XC instance has an exact cover. Let the indices
of the sets in the cover be ji ..., jn. We change n ballots as follows.
For every i € [1..n] change a ballot [bj,,cj,] to [cj;, bj,].

We successively eliminated all candidates who got the least num-
ber of votes, which is initially m+5. There are m candidates with this
number of votes: m — n candidates cy, for x € [1.m] \ {j1...,jn},
and n candidates by, for x € {j1 ..., jn}. As a result of eliminating
the m — n candidates cy, the number of votes of the candidates by,
forx € [1.m] \ {j1 ..., jn} jumps to 2m + 11. As a result of elimi-
nating the n candidates by, the number of votes of the candidates
cx, for x € {j1...,jn}, jumps to 2m + 5. Also, since the union of
the n sets Sy, x € {j1...,jn}, is the universal set, the elimination
of by in the 6n “cover ballots” causes the number of votes of every
e; to jump to 2m + 12.

Next, the n remaining candidates ¢y, for x € {ji ..., jn}, with
2m + 5 votes are eliminated. This does not change the vote of

1210

Md Mouinul Islam, Soroush Vahidi, Baruch Schieber, and Senjuti Basu Roy

any other candidate. Lastly, the m — n candidates by, for x €
[1.m]\ {j1...,Jjn}, and v each with 2m + 11 votes are eliminated.
None of the e; is eliminated at this point because all of them have
2m + 12 votes. Then, all e;s will be deleted, each with 2m + 12 votes,
and, finally, u wins with 2m + 11 + 2m + 13 = 4m + 24 votes.

We need to prove the other direction. Namely, if the margin
is n then there is an exact cover. Suppose that the outcome of
the elections can be changed to be u by at most n ballot changes.
Since candidate v has one more vote than each of the 3n candi-
dates e, .. ., e3,, we need to increase the votes of all the candidates
e1, ..., e3n by atleast 2 so that none of the e; is eliminated before v is
eliminated. Because if any of e;s is eliminated before v is eliminated,
then the second choice of e;’s ballot goes to v and the votes of v
increase to 4m + 21. Then all e; and u will be eliminated, and v wins
the election, and u loses. The only way to ensure that none of ¢;s
is eliminated before v is by eliminating some of the candidates b;.
This can be done by ballot changes that reduce the number of votes
of some of the candidates b; by 1 and increase the number of votes
of the respective candidates c;. This will cause some candidates
b;j to be eliminated and thus increase the votes of the resulting
elements e; in the “cover ballots” corresponding to these candidates
bj. Since we can make only n ballot changes and since the cover
ballots of any candidate b change the votes of only the 3 candidates
from {ey, ..., e3n} that correspond to the set S, the n candidates
bj eliminated first must correspond to an exact set. O

A.4 Figures

A L
[5], Ib=1.0 [0], Ib=0.0
ub=2 ub=2 ub=2 ub=2

]ub:z
[1,3,5] , 5,1,0]; [4,6,0] ,
1b=4.0 1b=1.0 1b=3.0
ub=2
[4,2,3,5,1,0] [4,2,3,5,1,0],
, Ib=1.0 Ib=1
ub=2 1

[6,4,2,3,5,1,0],
1b=1.0

Figure 9: Partially explored tree for ALGExAcT , the
candidates are represented with their ids, where red nodes
and their subtrees are pruned

	Abstract
	1 Introduction
	2 Data Model & Problem
	2.1 Data model
	2.2 Problem Definitions & Hardness

	3 Algorithms for MIRV and MkIRV
	3.1 Required Definitions
	3.2 algEx for MIRV
	3.3 IP for MqIRV

	4 Efficient Algorithms
	4.1 An Improved DistToLB Algorithm

	5 Experimental Evaluations
	5.1 Experiment Design
	5.2 Goal 1: Analyzing Anti-plurality
	5.3 Goal 2: Analyzing Quality
	5.4 Goal 3: Analyzing Scalability
	5.5 Summary of Results

	6 Prior Work
	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Different Aggregation Mechanisms
	A.2 IRV Properties
	A.3 Hardness Results: MIRV is NP-Complete
	A.4 Figures

