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Abstract— This article proposes a new physics-assisted genetic
algorithm (PAGA) for decoupling capacitor (decap) optimization
in power distribution networks (PDNs), which is a highly efficient
approach to minimizing the number of decaps within an enor-
mous search space. In the proposed PAGA method, the priority
of the decap ports is first determined based on their physical
loop inductances. Then, an initial solution is quickly obtained by
placing decaps sequentially on the port with the highest priority.
Subsequently, a GA with prior physical knowledge is developed to
find better decap solutions progressively. A port removal scheme
that eliminates the low-priority ports and a modified mutation
operation that better guides the mutation direction are developed
to accelerate the convergence of the GA. The initial solution
and the proposed auxiliary schemes can significantly narrow
the search space and incorporate physical knowledge into the
GA, thus greatly accelerating the convergence process. Several
representative state-of-the-art algorithms and commercial tools
are thoroughly compared with the proposed PAGA in different
application scenarios. This new PAGA demonstrates better per-
formance in efficiently finding high-quality decap solutions and
exhibits strong robustness to handle real-world and large-scale
problems, which brings decap optimization algorithms to a new
benchmark.

Index Terms— Decoupling capacitor (decap) optimization,
genetic algorithm (GA), physical knowledge, port priority, power
distribution network (PDN).

I. INTRODUCTION

I
N MODERN high-speed integrated circuits (ICs), the
operating data rate and working current are continuously

increasing, and the power supply voltages are constantly
decreasing, rendering the power supply noises in power
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distribution networks (PDNs) more troublesome [1].
To reduce the noise in the power supply, the PDN impedance
needs to be minimized to meet the target impedance over
the frequency range of interest. Usually, large amounts
of decoupling capacitors (decaps) on a printed circuit
board (PCB) surrounding a high-speed IC are demanded to
suppress the PDN impedance and satisfy a target impedance.
Minimizing the number of decaps while satisfying the target
impedance is pursued in the industry to save cost and layout
area [2], [3]. However, efficiently seeking the optimal decap
solution for PDN design has been a longstanding challenge
due to the huge search space caused by different combinations
of decap locations and decap types.

Various approaches have been proposed to determine the
optimal selection of decaps. Metaheuristic searching algo-
rithms such as genetic algorithm (GA) [4], [5], [6], [7],
[8], [9] and particle swarm optimization (PSO) [10] have
been proposed for decap optimization and demonstrate good
performance in finding solutions with the minimum num-
ber of decaps. Recently, with the popularization of artificial
intelligence, machine learning (ML)-based methods, such as
reinforcement learning (RL) [11], [12], [13], [14], have been
broadly adopted in power integrity (PI) optimization problems.
In addition, some algorithms based on human experience and
knowledge have also been proposed to quickly determine the
decap distribution, such as the Newton–Hessian minimization
method [15] and several other approaches [16], [17], [18], [19],
[20] with different empirical knowledge and decision-making
rules.

However, decap optimization is a combinatorial optimiza-
tion problem with a large search space. In addition, different
decap locations are not independent, and the collaborative
contribution of different decaps should be considered, making
it impossible to optimize each decap individually [14]. There-
fore, it is a great challenge to efficiently find the optimal decap
solution and well-balance solution quality (i.e., minimizing the
number of decaps in this article) and optimization efficiency
in the huge search space. The conventional metaheuristic
algorithms [4], [5], [6], [7], [8], [9], [10] can find an optimal
decap combination, but the consumed computation time is
extremely long, especially when they are applied in large-scale
optimization problems with a large number of decap types and
locations. The RL-based methods [11], [12], [13], [14] require
a significant amount of time for data generation and model
training, and the robustness and generalization performance of

0018-9480 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on January 14,2025 at 16:14:59 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: NOVEL PAGA FOR DECOUPLING CAPACITOR OPTIMIZATION 4499

the RL models are difficult to ensure. The human-knowledge-
inspired methods [15], [16], [17], [18], [19], [20] can find
feasible decap solutions, but the solution quality cannot be
guaranteed for large-scale scenarios. In addition, some meth-
ods mentioned above [13], [20] can only optimize either the
selection of decap types or the decap locations, but not simul-
taneously. Moreover, most of these methods assume that all
decap types can be placed at each candidate location; however,
in real designs, there are usually different constraints on decap
sizes at different decap locations. Therefore, an algorithm
that can be applied in various real-world scenarios with high
optimization quality and efficiency is urgently needed.

This article presents a novel and powerful physics-assisted
GA (PAGA) that can quickly determine the optimal decap
placement solutions for different real-world decap optimiza-
tion problems. The novel PAGA innovatively combines a GA
with prior physical knowledge, thus significantly narrowing the
search space and accelerating the convergence speed without
missing the optimal decap solution. The prior physical knowl-
edge refers to the priority of different decap ports determined
by their physical loop inductances. Based on the port priority,
an initial solution is obtained by placing decaps sequentially
on the prioritized locations. Further, a hybrid GA integrated
with the prior physical knowledge is developed to efficiently
find better solutions with fewer decaps based on the initial
solution. The proposed PAGA shows a noticeable advantage
in finding high-quality solutions with high time efficiency
compared to other methods in various application scenarios.
The proposed method can also consider the package size con-
straint of each decap location and support arbitrarily shaped
target impedances. The proposed PAGA method has strong
robustness and high reliability and solves the longstanding
contradiction between solution quality and optimization speed
in large-scale decap optimization problems.

The rest of this article is organized as follows. The decap
optimization problem is clarified, and some conventional decap
optimization algorithms are briefly introduced in Section II.
The details of the proposed PAGA are elaborated in Section III.
The proposed method is validated and compared with other
approaches and commercial tools through several application
cases in Section IV. Finally, a conclusion is presented in
Section V.

II. PROBLEM DESCRIPTION

In this section, the decap optimization problem in this article
is first defined. Then, some conventional decap optimization
methods as well as their advantages and limitations are briefly
summarized.

A. Problem Definition of Decap Optimization

Decap optimization can be regarded as a combinatorial opti-
mization problem that involves two sets of discrete variables.
One set of variables is N available decap locations denoted as
L1, L2, . . . , L N , and the other is M decap types represented
by D1, D2, . . . , DM . In the proposed GA method, the two
sets of variables are coded together into a 1-D integer array
V1, V2, . . . , VN . As shown in Fig. 1, the indexes of array
elements refer to the decap locations, and the values of the

Fig. 1. Example of variable encoding in the GA models. Ports are arranged
in a descending order of priority.

elements represent the decap types. The meaning of elite ports
and eliminated ports will be introduced later in Section III.
Considering that there can be no decaps placed at some
locations, the values of the array variables V1, V2, . . . , VN can
vary from 0 to M , where 0 means no decap and numbers
1 − M represent decap types. The total number of possible
cases for this problem is (M + 1)N , which is a huge number
and makes it impractical to perform a full search, especially
when the number of decap locations and the number of decap
types become considerable.

In this article, similar to some previous approaches [7],
[8], [9], [14], [15], [16], [20], the primary purpose of decap
optimization is to minimize the number of decaps while
ensuring that the PDN impedance satisfies a given target
impedance to save layout area and cost. Thus, the decap
optimization is summarized as a minimization problem with
the objective function expressed as

arg minV1,V2,......,VN
Ndecap

s.t. Zpdn( f ) f Z target( f ) (1)

where Ndecap represents the number of used decaps, namely,
the nonzero element in the array V1, V2, . . . , VN . Full-wave
simulations or some fast numerical algorithms [21], [22], [23]
can be adopted to obtain the Z -parameter matrix of a PDN,
where the ports of the Z -parameter are defined at the IC
observation port and the decap locations. Then, the PDN
impedance after placing decaps can be calculated using the
Z -parameter matrix by a segmentation method [24] as

Z ′
aa = Zaa − Zap(Z pp + Zdd)

−1 Z pa (2)

where p is the port indexes that are connected to the decaps,
a is the remaining port indexes without decap connection, and
Zdd is the impedance matrix of the decaps being connected.
This decap connection operation is the most time-consuming
part and must be performed repeatedly during the decap
optimization.

B. Conventional Optimization Methods

As mentioned in Section I, numerous approaches have been
proposed for decap optimization. In this article, some represen-
tative state-of-the-art algorithms are reproduced and compared
with the proposed PAGA method. For a fair comparison,
some of these methods are slightly modified with their core
concepts maintained. These methods are briefly reviewed and
summarized as follows.

1) Sequential Search Method [6]: This method selects
decaps sequentially, and a GA is adopted to determine the
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location and type of each newly added decap. This method
can significantly improve the optimization speed but sacrifices
the solution quality [14]. Here, we replace the GA with a
full search to determine the location and type for each newly
added decap. Thus, the core concept of this method is retained,
and the solution quality of the full search will be better than
or at least the same as the GA. This reproduced method is
called the “sequential search method” in the remainder of this
article.

2) Sorting Search Algorithm [16]: In this algorithm, the
relative importance of the decap ports is first determined based
on their loop inductances, and this concept is also adopted in
the proposed PAGA of this article, which will be explained in
Section III. Based on the relative importance of the decap loca-
tions and the equivalent series inductances (ESL) of different
decap types, a complex decision-making procedure is proposed
to add decaps sequentially to the candidate locations. This
method is called the “sorting search method” in the remainder
of this article.

3) Newton–Hessian Method [15]: The Newton–Hessian
method optimizes the decap locations as continuous vari-
ables. In this method, the decaps are also added sequentially.
During each iteration, the decap type with the resonance
frequency closest to the frequency of the maximum impedance
is first selected. Subsequently, the Newton–Hessian minimiza-
tion method is applied to optimize the decap location to
minimize the maximum PDN impedance. This method needs
a closed-form expression of PDN impedance for location
optimization and only supports constant target impedances,
so the application scenario is greatly limited. To compare
this method with the proposed PAGA, we assume the decap
locations are discrete and traverse all locations instead of
using the Newton–Hessian minimization method during each
iteration.

4) GA Methods: The method proposed in [7] uses a
GA to optimize the power supply-induced jitter and the
PDN impedance. Here, the optimization target of this GA
method is modified to be the same as the proposed PAGA as
expressed by (1) for a fair comparison. A modified GA [8]
has been recently proposed that performs better in finding
the optimal decap solution than the conventional GA [7].
A size variation control scheme is presented to narrow the
search space and improve optimization efficiency. Another
GA method [9] has been proposed and performs better than
the modified GA [8] in efficiently finding high-quality decap
solutions.

These GA methods are expected to find the optimal solution
as long as enough searching time is given. However, as men-
tioned earlier, the total search space of the decap optimization
problem is enormous, and the PDN impedance evaluation
is time-consuming, which means the GA methods [7], [8],
[9] may need an unbearably long time to find the optimal
solution. None of the GA methods in [7], [8], and [9] have
exhibited enough scalability when facing large-scale decap
optimization scenarios. Thus, a new approach that can effec-
tively improve the optimization speed without missing the
optimal solution for large-scale decap optimization problems
is urgently demanded.

Fig. 2. Example of port priority distribution for a four-layer board with
40 decap ports. The port with the highest priority is annotated as 1. The
stackup of this board from the top to bottom layer is GND, PWR, GND, and
GND. The thickness of the dielectric layers is 0.2, 0.3, and 0.2 mm.

III. PROPOSED METHOD

In this section, several critical steps of the proposed decap
optimization method are elaborated, which include calculating
the port priority of the decap locations, determining the initial
solution, and finding the optimal decap solution using the
proposed PAGA.

A. Port Prioritization Based on Physical Inductance

Different decap locations have varying effects on sup-
pressing the PDN impedance due to their respective loop
inductances. According to physical understanding, decap loca-
tions that provide current return paths with smaller loop
inductances are usually more effective. Therefore, the method
proposed in [12] and [16] is adopted to quantitatively evaluate
the priority of each decap location.

Fig. 2 gives an example of the port prioritization result of
a PDN board with 40 decap ports. It shows that the locations
with smaller loop inductances are more likely to have higher
priorities. Thus, the prioritization result is consistent with our
physical understanding. As the decap optimization problem
focuses on a relatively low-frequency range, the inductances of
each port can be considered frequency-independent. Therefore,
we choose one representative frequency to perform the port
prioritization rather than the entire frequency range of interest,
significantly improving the prioritization efficiency.

B. Initial Solution Determination

After evaluating the priority of all decap ports, the second
strategy proposed is to determine a feasible initial solution
by iteratively connecting decaps to the unused port with the
highest priority. In each decap connection, the best decap type
that can minimize the area of the target impedance violation
is selected. Hence, by selecting and adding decaps to the
prioritized locations sequentially until the target impedance
is satisfied, an initial solution can be efficiently obtained.

In real decap optimization applications, decap ports can be
predesigned to allow only a specific package size or decap
type. This package size constraint makes it difficult to strictly
follow the method of initial solution determination mentioned
above. To solve this problem, a concept of subpriority for
each decap type is proposed. Namely, for each decap type,
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Algorithm 1 Initial Solution Determination
Var: L1, L2, . . . , L N : corresponding to prioritized

(high to low) decap locations based on inductances;
D1,D2, . . . ,DM : represent different decap types;
V 1,V 2, . . . ,V N : decap solution, initialized to 0;

Input: Ztarget( f ): target impedance, f is frequency;
for i ∈ {1, 2, · · · , M} do:

Find sub-priority of the locations for decap type Di

using one single frequency;
for i ∈ {1, 2, · · · , N} do:

for j ∈ {1, 2, · · · , M} do:
Connect decap type D j to its best empty

location with the highest sub-priority respectively;
end for

Find the best decap type D j minimizing
∑

f max
[

Zpdn( f ) − Z target( f ), 0
]

;
Choose the best location Lk of decap D j ;
Connect the best D j to location Lk (V k = D j );
if ∀ f : Zpdn( f ) f Z target( f ):

break;
end if

end for

Obtain the initial solution V 1, V 2, . . . , V N .

the subpriorities of the locations that allow this decap type
are calculated using the approach proposed in [12]. When all
the decap types are allowed at each location, the subpriority
lists for different decap types will be identical to the global
priority without considering package size constraints.

Using the calculated subpriority, an initial solution can be
quickly determined using Algorithm 1. The core concept of
Algorithm 1 is as follows. Each decap type is connected to
the port with the highest corresponding subpriority; hence, all
the decap types are, respectively, visited, and the decap type
that minimizes the area where the PDN impedance violates
the target impedance is selected and connected to its best
empty port with the highest subpriority; finally, a feasible
initial solution can be determined by adding decaps iteratively
until the target impedance is satisfied.

According to the method presented in [16], the port priority
is not affected by the decap type connected to it, which
means that the port prioritization calculation only needs to
be performed once. In addition, this method requires MN

times of PDN impedance evaluations at most to find the
initial solution after extracting the port priority or subpriority.
Therefore, the time efficiency of this algorithm is greatly
guaranteed. Even though this method may not find the optimal
solution, it provides a feasible starting point toward the optimal
solution and significantly narrows the search space, which
can remarkably accelerate the convergence process of the
proposed GA.

C. Proposed PAGA

Once a feasible initial solution is determined using
Algorithm 1, it can be continuously improved toward the opti-
mal solution. GA can be used to improve solution quality and
has recently become popular in decap optimization problems

[25], [26]. However, the conventional GA algorithms may need
an extremely long time to find a satisfactory solution. Thus,
some acceleration strategies are crucial to make the GA more
practical and valuable.

A size variation control scheme that limits the number of
used decaps in each population was proposed to accelerate the
convergence process in a modified GA [8]. This scheme has
been proven effective in accelerating the convergence process
and is adopted in this article’s proposed method.

In each iteration, the objective function of each population
to be minimized is calculated as

fobj =











−Nd , if ∀ f : Zpdn( f ) f Z target( f )

max
[

Zpdn( f ) − Z target( f ), 0
]

if ∃ f : Zpdn( f ) > Z target( f )

(3)

where Nd refers to the number of unused decap ports. When
the target impedance can be satisfied, the optimization objec-
tive is to minimize the number of decaps being used. However,
it is also possible that the no decap solution can be found
to satisfy the target impedance. Under this circumstance, the
optimization objective is to minimize the target impedance
violation.

To further facilitate the convergence of the GA, a PAGA
with a port removal scheme and a modified mutation operation
is proposed to narrow the search space and incorporate more
physical knowledge into the GA. The number of decaps used
in the current best solution is also recorded, and all the
unused ports with lower priority are removed from the search
space. The corresponding variables of the removed ports in
all the populations are set to zero. At the same time, the
corresponding rows and columns of the unused ports are
also removed from the PDN Z -parameter matrix, which can
accelerate the mathematical operation of the decap connection
in (2).

Further, a modified mutation operation is proposed to better
guide the mutation direction. During the mutation operation,
variables corresponding to the removed ports remain zero
without participating in the mutation. For the unremoved ports,
a certain proportion of them with higher priority are defined as
the elite ports and will never be mutated to zero, as illustrated
in Fig. 1. A small elite port proportion will encourage the
GA to explore the search space more extensively, and a large
proportion will help fine-tune the current best solution. For
this article, the elite port proportion is set as 0.5. The other
unremoved ports will be mutated randomly to pursue a better
solution with fewer decaps.

The proposed port removal scheme and modified mutation
operation are reasonable since better solutions can be more
easily found among the locations with higher priorities due to
smaller physical inductances. The detailed process of the pro-
posed PAGA is elaborated in the pseudocode of Algorithm 2.

The proposed port removal scheme and modified mutation
operation accelerate the convergence process mainly in three
aspects. First, the search space is significantly narrowed.
After port removal, the total search space will be reduced
from (M + 1)N to (M + 1)N−E , where E is the number of
eliminated ports. Second, it incorporates the physical knowl-
edge of the relative port importance into the GA and better
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Algorithm 2 Proposed PAGA
Var: V 1, V 2, . . . , V N : variables corresponding to the

decap locations and decap types;
N d : no. of nonzero elements in variables V 1 ∼ V N ;

Input: Zpdn : Z-parameter matrix of PDN;
V

′

1, V
′

2, . . . , V
′

N : initial sol. using Algorithm 1;
Ztarget( f ): target impedance, f is frequency;
N g: no. of generations;
N p: population size;
V : size variation factor;

Fitness Function f obj: Eqn. (3);
for i ∈

{

1, · · · ,N g

}

do:
if i = 1 do:
Assign initial solution V

′

1 ∼ V
′

N to first population;
Randomly generate N p−1 populations;

end if

// Port removal

Count the number of used decaps D in best solution;
for j ∈

{

1, . . . ,N p

}

do:
Set N−D variables with lower sub priority to 0;

end for

Update Zpdn with unremoved ports;
Selection;
Crossover;
Modified Mutation (only for unremoved ports);
for j ∈

{

1, . . . ,N p

}

do: if N d < D − V or N d > D for j th population do:
Perform the size variation control scheme;
end if

end for

Compute f obj according to Eqn. (3);
Sort populations according to f obj;

end for

Obtain the final solution V 1, V 2, . . . , V N .

guides the mutation direction. Third, as mentioned earlier,
the most time-consuming part of decap optimization is the
PDN impedance evaluation when connecting decaps. It can
be shown from (2) that the computational complexity of the
Z -matrix algebraic operation for the decap connection posi-
tively correlates with the number of ports. When some ports
are removed, the time used for the impedance evaluation
will be decreased. As the number of decaps is iteratively
and progressively reduced in the decap optimization process,
the saved computation time for the decap connection will
gradually become considerable compared to the modified
GA [8] without matrix size reduction.

IV. METHOD VALIDATION

In this section, the performance and robustness of the
proposed PAGA approach are validated. Some representative
state-of-the-art algorithms and commercial tools, including
Ansys SIwave [27] and Cadence OptimizePI (OPI) [28],
are thoroughly compared with the proposed method. These
two commercial tools are separately compared with other
approaches in different scenarios. In each scenario, the
Z -parameter matrix is exported from the corresponding

TABLE I

DECAP LIBRARY

Fig. 3. Comparison of the overall performance between different GA methods
and proposed PAGA for Case 1.

tool (SIwave [27], OPI [28], or the boundary integration
method [21]) and used for decap optimization in other meth-
ods. The used decaps library is listed in Table I. All the
optimizations are performed on a personal computer with an
Intel i9 CPU.

A. Case 1: Randomly Generated Board

A four-layer PDN board with 120 ports generated by the
method proposed in [21] is used to validate the proposed
optimization method. The stack-up of this board is the same
as the example in Fig. 2, and the voltage regulator module
(VRM) is modeled as an R–L circuit with R equal to 3 m�

and L equal to 2.2 nH. The target impedance is a constant
value of 0.5 m� over the frequency range from 200 kHz
to 1 MHz. The overall performance of the proposed PAGA
is compared with other methods regarding solution quality
and time efficiency. In all the GA algorithms, including the
GAs in [7], [8], and [9], and the proposed PAGA, all the
hyperparameters are the same as follows: the population size
Np is set to 50, the size variation factor is set to 2, the mutation
probability is set to 0.1, the cross probability is set to 0.5, and
the elite port ratio (the ratio of the number of elite ports to
the total number of nonempty ports) is set to 0.5.

The convergence process of the proposed PAGA and other
GA methods is compared in Fig. 3. The flat region at the
beginning of the proposed PAGA and the GA in [9] stands
for the time used for port prioritization and initial solution
determination. The flat region at the beginning of other GA
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TABLE II

OPTIMIZATION RESULT COMPARISON—CASE 1

Fig. 4. Optimized impedance curves of the final solutions by different
methods for Case 1. The Newton–Hessian method is called the “Newton
method” for simplicity.

methods stands for the consumed time to find a feasible
solution. All the GAs are iterated 300 times, and the number
of decaps in the final solution of the four approaches is 79,
43, 24, and 24, respectively. It can be found that the initial
solution saves lots of time and makes a critical contribution to
the fast convergence of GA. After a feasible solution is found,
the proposed PAGA can quickly converge to a much better
solution with 24 decaps, while the GAs in [7] and [8] take
a much longer time and still miss the optimal solution. It is
shown that the convergence speed and solution quality of the
proposed PAGA are remarkable and overwhelming compared
with other GA methods.

Besides comparing the proposed method with different GA
approaches, we also compare it with several other algorithms.
The consumed time and the number of decaps of different
methods are listed in Table II. As mentioned earlier, the
sequential search [6] and Newton–Hessian [15] methods can-
not find the optimal solution because they optimize different
decaps individually rather than collaboratively. The sorting
search method [16] cannot find a feasible solution even after
a long search. It should be pointed out that we have only
reproduced the core concepts of these three methods. The
time consumption may be affected by various factors in
the algorithm implementation. Thus, the time consumption
of the three methods [6], [15], [16] is not compared in
Table II. Nevertheless, the comparison in Table II shows that
the solution quality of the proposed method is the highest,
while a high time efficiency is also guaranteed.

The optimized PDN impedance results of different methods
are plotted in Fig. 4. It is shown that the solutions found by
the sequential search [6] and Newton–Hessian [15] methods

Fig. 5. Decap solution distribution of the proposed method for Case 1. The
annotations stand for the decap types number in the decaps library.

have a severe over-design problem. Too many decaps with
large capacitance values are used in these solutions, which is
unnecessary to satisfy the target impedance. In addition, the
decap solution distribution of the proposed PAGA is shown in
Fig. 5. The 24 decaps are placed on 24 ports with the highest
priorities near the IC, which agrees well with our engineering
experience. The results show that the proposed PAGA can
find a high-quality solution in an extremely short time, thus
well-balancing solution quality and time consumption.

B. Case 2: Two Real-Product Applications

To compare the proposed PAGA with the commercial tools,
two PCBs in practical industry applications are adopted. The
first board has 16 layers in total with a size of approximately
160 100 mm. There are 123 candidate board-level decap loca-
tions in total. Due to product confidentiality concerns, more
details of the PCB are not shown. Decap optimization can
be performed after the Z -parameter matrix defined at the IC
port and decap ports is simulated and exported. This can also
be extended to handle package-level decap optimization prob-
lems. We first compare the performance of the proposed PAGA
with the Ansys SIwave tool. We optimize the PDN impedance
to meet a piecewise target impedance. The first segment of
the target impedance is set to 5 m� from 1 to 3.5 MHz, and
the second segment is set to 11 m� from 3.5 to 10 MHz.
All the parameters of the GA methods are set to be the same,
and the maximum number of iterations is 100.

The optimization results of different approaches are listed
in the upper part of Table III, and the impedance results are
compared in Fig. 6. It can be found that the solution provided
by the Ansys SIwave tool also has an over-design problem.
In addition, the SIwave tool performs a parallel computation
with a 24-core CPU, while the other methods are implemented
without parallel computation. Even so, the proposed method
still finds the final solution faster than the SIwave tool, and the
solution quality of the proposed method is also much better.

It is worth mentioning that when we lower the second
segment of the target impedance to 10 m�, the SIwave
tool fails to find a feasible solution within 100 iterations,
while the proposed method can still rapidly find a solution
with 14 decaps. This indicates that the proposed method has
stronger robustness than the algorithm used in the SIwave tool.

The second board has 12 layers in total with a size of
approximately 160 × 30 mm, and there are 68 candidate
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Fig. 6. Optimized impedance curves by the final solution of SIwave and
proposed method for the first board of Case 2.

TABLE III

TIME AND DECAP NUMBER COMPARISON—CASE 2

Fig. 7. Optimized impedance curves by the final solution of OPI and proposed
method for the second board of Case 2.

board-level decap locations. The optimization target of this
PDN board is an R–L-type target impedance, which means
that the optimization target is an impedance curve equivalent
to the series connection of a resistor and an inductor. The
R-value is set to 2 m�, and the L value is set to 0.11 nF.
Here, we compare the performance of the proposed PAGA
with the OPI tool [28].

The optimization results of different methods are listed in
the lower part of Table III, and the impedance curves are
plotted in Fig. 7. Similar to the SIwave tool, the OPI tool
also performs a parallel computation with a 24-core CPU.
It can be found that the proposed method can find a solution
with an impedance curve similar to that of the OPI tool.
However, it has a notable advantage in decap number and
time consumption. The optimization results of these two real

Fig. 8. Arbitrary-shaped PDN board model with size constraints for Case 3.

Fig. 9. Comparison of convergence process between different methods for
Case 3.

production applications show that the proposed PAGA exhibits
a noticeable advantage regarding the optimization efficiency
and solution quality compared to the other GAs in [7], [8],
and [9], and commercial tools [27], [28].

C. Case 3: With Package Size Constraints

In this case, the layout of the PCB and the decap ports
have been predesigned, which means each decap port has a
constraint on the decap package size. We assume that each
decap port only allows the placement of a decap with the same
package size compared to the original port design. A PCB
layout that contains 120 decap locations with different package
sizes is shown in Fig. 8. The decap ports are grouped according
to their package sizes. The decap ports with the 0402 package
are on the bottom layer under the target IC, and the other
ports are on the top layer. Other unused areas are reserved
for traces and other components. The VRM is modeled as an
R–L circuit with R equal to 0.3 m� and L equal to 1 nH.

In the proposed PAGA, the global priorities of the decap
ports are first determined using the approach proposed in [16].
For each package size, the subpriorities of all the correspond-
ing ports of this package size are defined by maintaining the
same order as the global priority. Then, an initial solution is
rapidly determined by Algorithm 1 and continuously improved
toward the optimal solution by Algorithm 2. During each
iteration, those unused ports with lower subpriorities will be
removed according to the proposed port removal scheme in
Algorithm 2.

The convergence of decap optimization is shown in Fig. 9,
and the optimized PDN impedance curves by different meth-
ods are shown in Fig. 10. The target R is set to 1.2 m�,
and the target L is set to 0.08 nH. Since other methods [6],
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Fig. 10. Optimized impedance curves by the final solution of different
methods for Case 3.

Fig. 11. Convergence process of the proposed method for five independent
runs. The PDN board is the same as the board in Case 1. The flatten region at
the beginning stands for the time consumed in initial solution determination.

[9], [15], [16] cannot deal with the scenarios with decap size
constraints and the SIwave tool does not support R–L-type
target impedances, here, we focus on the comparison with
the OPI tool [28] and the GA methods [7], [8]. The
Z -parameter matrix used in this example is also extracted
using the OPI tool. The optimization result shows that the
OPI tool takes approximately 600 s to find a solution with
58 decaps within 500 iterations, while the proposed PAGA
converges to a solution with 48 decaps within less than 100 s.
The final solution of the proposed PAGA includes six decaps
with a 0402 package, nine decaps with 0603 package, ten
decaps with 0805 package, and 23 decaps with 1206 package,
while the OPI tool uses 12, 13, 10, and 23, respectively. The
optimized impedance curves also indicate that the OPI tool has
an over-design problem. Therefore, the validation result of this
case demonstrates that the proposed PAGA can also tackle the
decap optimization scenarios with decap size constraints and
has a noticeably better performance than the OPI tool and
other GA methods [7], [8].

D. Robustness Validation

In this section, the robustness of the proposed method is
validated in two aspects: repeatability and scalability. First,
the repeatability of the proposed method is validated by con-
ducting five independent runs on the optimization of the PDN
board of Case 1. As shown in Fig. 11, all five runs converge to
a solution with 24 decaps within 80 s, which demonstrates the
high repeatability of the proposed method. Additionally, the
repeatability of different GA methods is also compared and

TABLE IV

REPEATABILITY COMPARISON OF DIFFERENT METHODS FOR CASE 1:
TIME (S)—DECAP NUMBER

Fig. 12. Time consumption and solution quality of different GA methods
for Case 3 as the number of decap ports increases.

listed in Table IV. The sequential search [6] and Newton–
Hessian [15] methods are performed only once since they
will give a deterministic result without randomness. The result
shows that the proposed PAGA has excellent repeatability
and stability in converging to a high-quality decap solution
(the best solution among all the existing approaches). The
exceptional repeatability of the proposed PAGA is achieved by
three main reasons. First, the determined initial solution using
Algorithm 1 provides a reasonable starting point. Second, the
port removal scheme significantly narrows the search space.
Third, the modified mutation operation (i.e., the elite port
scheme) can better guide the optimization toward the optimum
solution.

Moreover, the scalability of the proposed PAGA when
dealing with large-scale problems is also validated. When
the total number of decap ports becomes enormous, the total
search space will increase exponentially. Fortunately, the time
demanded by the proposed PAGA will not increase severely
due to the several proposed techniques, including the initial
solution determination, the port removal scheme, and the
modified mutation operation. Fig. 12 demonstrates the trend
of time consumption and decap solution as the number of
ports increases. The result shows that the proposed PAGA can
maintain high time efficiency in large-scale problems while
the efficiency of other GA methods degrades significantly.
Namely, the proposed PAGA exhibits exceptional scalability.
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V. CONCLUSION

This article proposes a powerful PAGA for high-speed and
high-quality decap optimization, which has a noticeable advan-
tage over other state-of-the-art approaches and commercial
tools. Some auxiliary schemes that narrow the search space
and incorporate physical knowledge into the GA are proposed
to accelerate the convergence process significantly. Various
application scenarios with different-shaped target impedance
and decap size constraints validate the effectiveness of the
proposed approach. Strong robustness, high time efficiency,
and high solution quality can be simultaneously achieved by
the proposed PAGA for large-scale PDN problems. The pro-
posed PAGA paves a novel path and builds a new benchmark
for decap optimization given the simulated Z-parameters (or
S-parameters) of a PDN structure.

The proposed method can be extended to other PDN
decap optimization scenarios, such as package-level decaps or
3-D heterogeneous ICs [29], [30], as long as the impedance
observation port and decap ports are well-defined and the
corresponding Z -parameters (or S-parameters) are provided.
Also, the proposed PAGA can be applied to other decap
optimization scenarios with different objectives, such as
minimizing decap cost or area, suppressing transient PDN
noise, or reducing power supply-induced jitter [7]. Moreover,
optimizing the decap locations as continuous variables for
arbitrarily shaped PDN structures will be pursued without
requiring Z -parameter (or S-parameter) simulations.
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