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Communication
Enhanced Deep Learning Approach Based on the Conditional Generative

Adversarial Network for Electromagnetic Inverse Scattering Problems

He Ming Yao , Lijun Jiang , and Michael Ng

Abstract— This communication proposes a novel deep-learning (DL)

framework for the electromagnetic inverse scattering (EMIS) problems.

Solving EMIS problems is a challenging topic due to various difficulties,

such as intrinsic nonlinearity, high computation cost, high contrast, and

so on. To overcome these challenges, a novel DL-inspired approach is

presented in the context of conditional deep convolutional generative

adversarial network (CDCGAN), termed CDCGAN-EMIS. The proposed

CDCGAN is based on a generator with an EM forward solver and

the corresponding discriminator, both constructed by deep convolutional

neural networks (DConvNets). During the offline training step, the

generator learns a distribution between the measured scattered field data

and the corresponding contrasts (permittivities) of dielectric scatterers,

while the discriminator determines whether the presented samples are

real or fake. Therefore, such CDCGAN-EMIS can generate contrasts of

scatterers from measured scattered field data, by learning the distribution

between the known contrasts of scatterers and their corresponding field

and generating solutions. Based on the proposed CDCGAN-EMIS, EMIS

problems can be accurately solved even for extremely high-contrast

scatterers. Numerical examples indicate the accuracy and feasibility of

our method. The proposed CDCGAN-EMIS opens a novel path for the

DL-inspired real-time quantitative microwave imaging method for high-

contrast scatterers.

Index Terms— Convolutional generative adversarial network, electro-

magnetic inverse scattering (EMIS), high-contrast scatterer.

I. INTRODUCTION

The electromagnetic inverse scattering (EMIS) problem is exten-

sively applied in various fields, such as subsurface sensing [1],

microwave imaging [2], biomedical imaging [3], and so on. The

target of EMIS is exploring parameters by using received EM

information [4], [5], [6]. In the past few years, a large number of

methods have been reported for solving the EMIS problems, such

as the subspace optimization method [7], contrast source inversion

method [8], [9], contrast-source extended Born method [10], and Born

iterative method [11]. Unluckily, the inevitable ill-posedness and non-

linearity bring large limitations to these conventional methods [1], [2],

[3], [12]. These conventional methods usually employ regularization

containing prior information, so that EMIS problems can be stably

solved and the nonuniqueness can be relieved [12]. However, express-

ing prior information in rigorous mathematical formulations is usually
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quite difficult, so that it can hardly be incorporated [12]. Besides,

these conventional methods include gradient-based deterministic

methods, such as conjugate gradient methods and Gauss–Newton

methods [13]. Their general aim is iteratively minimizing the cor-

responding objective functions, where their partial derivatives are

computed with respect to model parameters in each optimization

iteration. Consequently, these gradient-based deterministic methods

usually suffer from higher memory and larger computation costs

caused by their iteration computation. Moreover, the optimization is

probably trapped in the local minima, because the derivatives cannot

distinguish the global property and the local one.

Machine learning (ML) [14], [15] is rapidly progressing in modern

computational science, such as high-performance computing [16],

[17], [18], remote sensing [19], [20], and field-circuit cosimula-

tion [21], [22]. ML techniques have also been proposed for EMIS

problems. [23], [24] have made use of the artificial neural network

(ANN) to solve EMIS problems. Recently, works originating from

deep learning (DL) are being reported for EMIS problems [25],

[26], [27], [28]. While DL approaches could illustrate relatively

satisfactory results, the current DL-based methods can be summarized

into three major categories.

1) The end-to-end DL-based method, where various DL modes are

directly utilized to replace conventional methods, such as iterative

optimization methods. In [26], [27], the initial inputs of the DL

method are obtained by conventional methods, for example, the back-

propagation (BP) method [29]. In [25], the encoder–decoder structure

based on the deep convolutional neural networks (DConvNets) is

proposed to directly use the measured scattered fields data as the

input to solve the EMIS problems.

2) The cascaded structure method, where more than one component

based on DL with individual functions are cascaded together to

solve the EMIS problem [28], [29]. In [28], the two-step method

was first proposed to solve EMIS problems, where the first step

based on DConvNets is used to produce the coarsely reconstructed

results for high-contrast scatterers, and the second step based on the

U-net [27], [28] is further utilized to improve the quality of ‘images.’

[30] then presented a dual-module model for EMIS problems, where

the conventional ANN with two hidden layers is used in the first

step, followed by the U-net to improve the image quality.

3) The supervised gradient method (SDM) [14], [15], which

includes the offline training step and the online application step [31],

[32]. In its offline step, the training data are created with prior infor-

mation. In the online step, the contrasts of samples are reconstructed

by iteration computation using the learned descent gradients [31],

[32]. However, during both offline and online processes, SDM cannot

avoid EM forward computation in each optimization iteration [32].

In this work, we propose a novel DL framework for EMIS by

utilizing a conditional deep convolutional generative adversarial

network (CDCGAN) [33], [34], [35], termed CDCGAN-EMIS.

The proposed CDCGAN-EMIS consists of the generator (G), the

discriminator (D), and the forward solver (S). The generator (G)

makes use of measured scattering data to generate the contrast
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Fig. 1. Schematic of TMz wave scattering in Dobj.

(permittivity) “images” of scatterers, while the discriminator (D)

discriminates whether the generated “images” are real or fake. Plus,

the Forward Solver (S) realizes the EM forward process and computes

the EM scattered field resulting from the scatterers ‘generated’ from

G, so that the performance of G can be further improved. The EM

Forward Solver is based on the popular EM algorithm to realize EM

forward computation, described in Section II. The advantages of

this new DL framework can be summarized as: 1) during the offline

training process, specific prior information can be employed to create

training data. Thus, more prior information can flexibly be integrated

to enhance this proposed DL method; 2) the usage of DConvNet

greatly decreases the computation complexity of this DL-based

method. Besides, as a typical learning-based method [25], [26], [27],

[28], the proposed DL method only needs one-time computation and

never requires iteration optimization, which is superior to conven-

tional iterative optimization methods [1], [2], [3] and learning-based

iterative methods [31], [32]. Therefore, it can realize real-time

microwave imaging; and 3) the accuracy of this DL approach is

better than traditional methods for solving EMIS problems.

II. THEORY AND FORMULATION

A. Problem Formulation

The schematic of EMIS is shown in Fig. 1, in which the objective

domain (Dobj) is enveloped by M receivers uniformly distributed

in space. While the TMz incident field E in illuminates Dobj, it is

uniformly discretized into N×N pieces. M receivers work to receive

EM scattered field Es . Lippmann–Schwinger equations [36] formu-

late the whole EMIS process. The first formula is about interaction

within EM field on fragments of Dobj.

E t (r) = E in (r) + k2
0

∫

Dobj

G
(

r,r
′
)

χ
(

r
′
)

E t
(

r
′
)

d r
′ (1)

where the Green’s function for 2-D TMz wave is G(r, r
′) =

−( j/4)H
(2)
0

(k0|r − r
′|), where the second kind of zeroth-order

Hankel function H
(2)
0

is utilized. r
′ = (x ′, y′) and r = (x, y),

respectively, represent the coordinates of the source and field points

in Dobj. While k0 is the wavenumber of free space and E t is denoted

as the total EM field. We also have χ(r
′) = εr (r

′) − 1 as contrast

function. The reradiation of the total field E t of scatterers can be

computed into the scattered field, the relationship of which is:

Es (r) = k2
0

∫

Dobj

G
(

r,r
′
)

χ
(

r
′
)

E t
(

r
′
)

d r
′ (2)

where r = (xR, yR) denotes the position of receivers in Dobj.

Solving EMIS problems has the aim of reconstructing the contrast

χ (or permittivity εr ) by EM scattered field. Usually, the traditional

methods have to introduce the objective function f (χ), and try to

reconstruct the contrast by optimization methods [6], shown in the

following equation:

min : f (χ) =

Ni
∑

i=1

∥

∥Es
i − Es

i (χ) ′
∥

∥ + αT (χ) (3)

Fig. 2. Workflow of the proposed CDCGAN-EMIS: generator, Forward
Solver, and discriminator constitute the complete architecture.

where Ni separate incident fields E in of Dobj induce scattered fields

Es
i
. During iterative optimization, Es

i
(χ)′ gradually approaches Es

i
.

The traditional methods transform the (1) and (2) into the dis-

cretized form as [4], [6]

Ēs = G R · diag
(

Ē t
)

· χ̄ (4)

Ē t = Ē in + G D · diag
(

Ē t
)

· χ̄ (5)

where the size of G R and G D can be set as M×N 2 and N 2 ×

N 2, respectively. Then, G R = k2
0

Sn′ G(rnr ,rn′) and G D =

k2
0

Sn′ G(rn,rn′), where Sn′ represents the area of the source piece,

nr = 1, . . . , M , n = 1, . . . , N 2, and n′ = 1, . . . , N 2.

B. CGAN Structure for EMIS

As the representative example of generative models, GANs model

the training of a generative network as a two-player minimax game,

where the generator is trained to learn a distribution of input and map

to the generated images and balance its performance by the discrimi-

nator [33], [34], [35], [38]. CGAN develops the method to control the

mapping from input to output by conditioning the standard generator

and discriminator on ‘extra information’ (e.g., the difference between

the ‘generated’ images and the ground-truthed images) [33], [34],

[35]. Thanks to its flexibly-added ‘extra information,’ CGAN presents

the superiority in image-based tasks [33], [34], [35].

In this communication, to realize reconstruction for high-contrast

scatterers, CDCGAN-EMIS is proposed based on the discriminator

and its corresponding generator with the Forward Solver for the

EM forward process. In terms of difficulties in accumulating a

large amount of training data in real experiments, the data from

the simulation have been employed for training DL models. Unlike

conventional GAN or CGAN models [33], [34], [35], [38], the

proposed CDCGAN-EMIS never only aims at creating new contrast

images. Instead, the proposed CDCGAN-EMIS is designed to learn

the nonlinear mapping between the data distribution of scattered EM

fields and the data distribution of the corresponding contrasts (per-

mittivities) of the objective domain and further solve EMIS problems

for the high-contrast samples with high precision. This proposed

CDCGAN-EMIS considers both the difference between ‘generated’

contrast images and the ground-truthed contrast images, and the

difference between the scattered field resulting from ‘generated’

contrast images and the input scattered field. In this way, the quality

of reconstructed contrast images can be ensured with high accuracy.

As presented in Fig. 2, the proposed CDCGAN-EMIS consists

of three modules: the generator (G), the discriminator (D), and

the Forward Solver (S). The generator (G) makes use of measured

scattered data to generate the contrast (permittivity) “images” of

scatterers, while the discriminator (D) discriminates whether the

generated “images” are real or fake. While G creates the scat-

terer ‘images’ according to its input EM scattered field Es , the

discriminator accepts both the ground-truthed scatterers ‘images’

and the ‘images’ generated from the generator and computes the
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difference between the distributions of the two sets of data [33], [34],

[35]. Thus, the discriminator guides the generator to create patterns

that share common features with the input scatterers. As a typical

CGAN structure, the difference between the created ‘images’ and

the ground-truthed ‘images’ is taken into consideration to improve

the performance of the prediction of G. Meanwhile, to make the

structures ‘learn’ the effect of created scatterers on EM scattered

field, the loss function also involves the difference between the input

EM scattered field Es from the generator and the EM scattered field

Es computed from the forward solver. During the training process,

we update the weights in the generator by backpropagation from the

losses defined by S and D.

1) The Forward Solver (S): The Forward Solver realizes the EM

forward process, which computes the EM scattered field from

targets. It is built to control the accuracy of the scattered

EM field of the generated contrast images during the process

of training the Generator. The popular method of moments

(MoMs) is chosen to be implemented into this solver to realize

the EM forward process [41], which does not require training

and is also shown in (2). The selected method, that is, MoM,

for the forward solver can ensure the accuracy of prediction for

the trained models. Due to the forward solver, CDCGAN-EMIS

can consider the difference between the scattered field resulting

from ‘generated’ contrast images and the input scattered field.

This difference will be added to the final loss of the generator.

Thus, the quality of reconstructed contrast images can be

evaluated from the perspective of their induced EM scattered

fields. The details of the Forward Solver are also demonstrated

in Fig. 2. Because of this EM Forward Solver, CDCGAN-EMIS

can make use of both the EM inverse process and the EM

forward process to evaluate the ‘quality’ of prediction, which

is impossible for the black-box method [17], [25]. Moreover,

because of this new evaluation mechanism, CDCGAN-EMIS

can make use of all possible data to improve its understanding

of EM’s physical mechanism.

2) The Discriminator (D): The discriminator is based on the

pixel-to-pixel DConvNet [14], [15], followed by the final clas-

sification layer [33], [34], [35], [38] to discriminate the realness

of the ‘images.’ The detailed structure of the discriminator has

been demonstrated in Fig. 3. Its input is the ‘generated’ target

‘images’ from the generator and the ground-truthed ‘images,’

both of which are with the size of N × N × 2 comprised of real

and imaginary parts of contrast ‘images.’ Meanwhile, the final

output discriminates the realness of the ‘images.’ Specifically,

the discriminator repetitively makes use of 3 × 3 convolution

with its stride as 2, leaky rectified linear unit (LeReLU), and

batch normalization (BN). Besides, the 0.2 dropout operation

is used [42].

The specific computation process is described by (6)

V (D, G) = Eχ∼pdata(χ)

[

logD
(

Es , χ
)]

+ E(Es ,Z)∼p(Es ,Z)

[

1 − logD
(

Es , G
(

Es , Z
))]

(6)

where Z represents the projected noise to the generator, while

(Es , Z) has been combined to be the condition data input to the

generator. The noise Z is provided to the generator and defines

what a generative sample is according to its distribution [38], [39],

[40]. Additionally, D() stands for the probability computed from

the training dataset. While G(Es , Z) creates new contrast ‘images’,

D(Es , G(Es , Z)) offers the probability of these generated ‘images.’

Based on these functions, all weights in the generator and discrimi-

nator will be updated iteratively. The aim of the training process is:

1) maximizing the probability of accuracy in discriminating samples

created by the generator and that in training data and 2) minimizing

logD(Es , G(Es , Z)) to train the generator.

Fig. 3. Architecture of the discriminator for CDCGAN-EMIS.

1) The Generator (G): The generator of the proposed

CDCGAN-EMIS originates from the deep convolutional

encoder–decoder structure, which makes use of DConvNet

and has demonstrated excellent performance for EMIS

problems [25]. This structure is revised based on SegNet [43],

which is extensively applied in the image segmentation field.

The operation of the generator could be concluded to be the

“heterogeneous” process, which transforms measured scattered

fields into contrast ‘images.’ The objective of the generator

is to generate data that the discriminator classifies as “real”

[33], [34], [35], [38]. Thanks to the balancing operation of

the discriminator, the generator can reasonably retrieve the

contrast of scatterers from the scattered fields.

Fig. 4 shows the specific internal structure of the generator. Named as

‘field data,’ its input is set as the scattered field Es , of which the size

is M × Ni × 2. While Ni incident fields and M receivers interact

in Dobj, the two tubes of input are filled by the real and imaginary

parts of Es . Meanwhile, the real and imaginary parts of scatterers

are filled into the two tubes of output. The proposed model does not

make use of the incidence E in, because E in keeps consistent for all

tests and there are no specific features for the proposed method.

In Fig. 4, three important parts are combined together into our

designed generator: encoding, decoding, and projecting. While its

encoding part encodes ‘field image’ Es and refines the input into

chunks of feature fragments, its decoding counterpart reinstalls the

feature fragments to generate the predicted contrast χ ’. The middle

projecting part projects and reshapes the noise input Z into the

structure to upscale the noise Z using a fully connected operation and

reshapes the output to the specified size. Specifically speaking, the

encoding part comprises the reduplicated usage of convolution with

the stride as 2, ReLU, and BN. Comparatively, the following decoding

part involves reduplicated usage of operations of up-convolution with

its stride as 2, BN, and ReLU, followed by the final convolution layer,

while a hyperbolic tangent (tanh) activation layer is installed to the

end, as shown in Fig. 4.

χ ′ = G
(

Es , Z
)

. (7)

The whole process in the generator is concluded as a ‘heteroge-

neous’ process, shown in (7), where the received scattered EM field

is transformed into the contrast ‘images’ of scatterers. In this process,

the deep convolutional encoder–decoder architecture transfer Es and

Z into the final output χ . Hence, the generator can entirely complete

all operations of the traditional methods [7], [8], [9], [10], [11].

We should highligh some issues related to the generator

model.

1) Loss Function: While the loss function directly decides the

objective and the physical meaning of the generator, we have
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on January 16,2025 at 18:15:14 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 4. Architecture of the generator for CDCGAN-EMIS.

to simultaneously take balance and difference into consideration.

We revised the loss function of the conventional CGAN by adding

L S , shown in (8) and (9). In fact, the conventional CGAN usually uses

the first two terms (i.e., LG and L p) in (8) as the loss function [33],

[34], [35], because conventional image problems are not involved in

the physical meaning of EM scattering. In other words, we here add

the error between Es and Es ’ into the loss function to estimate the

effect of the ‘image’ error on the EM scattering, shown in (9). In this

way, both the quality of the predicted ‘EM image’ and its effect on

EM scattering can be taken into consideration.

Thus, the full loss function of the generator is denoted as the

following equations:

L F = LG + λ1L p + λ2L S (8)

L S =
1

N
∥Es − Es ′∥2 (9)

L p =
1

N
∥χ − χ ′∥2 (10)

where LG denotes the adversarial loss derived from (6). While L p

indicates the mean square error (MSE) between χ and the generated

χ ′, L S estimates the difference between Es and Es , shown in (9)

and (10). While λ1 = 50 and λ2 = 100 are denoted as the weighing

parameters that represent the proportion of L p and L S that account

for L F and also demonstrate the importance of χ and Es . As shown

in (11), LG represents the adversarial loss function for the generator,

which has been usually used for the conventional CGAN [33], [34].

LG = −
1

m

m
∑

i=1

[

log
(

1 − D
(

Es,i , G
(

Es,i , Z i
)))]

(11)

where m stands for the batch size, while i is the i th data in the batch.

Meanwhile, the loss function of the discriminator is defined as

L D = −
1

m

m
∑

i=1

[

log
(

D
(

Es,i , G
(

Es,i , Z i
)))]

−
1

m

m
∑

i=1

[

log
(

1 − D
(

Es,i , χ i
))]

. (12)

During the training process, the discriminator tries to make the

score of ground truth close to 1 and that of fake inputs close to 0

[33], [34], [35], [38].

2) Computational Complexity: The computation of the proposed

generator is done on the reduplicated usage of convolutions, BN, and

activation layers, where the operation count depends on convolution

operation due to the small size of the filter kernel [25], [26], [27],

[28], [44]. For its encoder part, the input has the size of M ×Ni ×

2, while R filters have the size of K × K in all f layers. Hence,

its computation complexity is O(M Ni K 2 R2 F) [44]. Plus, the

computation in the decoding part actually shares the same operation

as the encoding part (in the opposite direction). Therefore, while

they share the same scale of parameters, only their output size

(as input in the encoding part) becomes N × N × 2. Hence, the

computational complexity in the decoding part can be concluded as

O(N 2 K 2 R2 f ). Usually, the size of input field “image” is chosen

to be approximated to that of the output contrast “image” [25],

[26], [27]. Thus, the generator approximately has the computational

complexity of O(N 2 f 2 R2 f ) [44], which is smaller than most of

conventional iterative optimization methods for EMIS, including

Gauss–Newton [1], [2], [3], and the iterative learning-based method,

such as SDM [31], [32].

III. NUMERICAL EXAMPLES

A. Numerical Setup and Offline Training

In this section, the specific offline training and testing of

CDCGAN-EMIS are described. It should be highlighted that the train-

ing of the proposed CDCGAN-EMIS is merely based on one group

of synthetic datasets, that is, MNIST [25], [26], [27], [28]. In Dobj

presented in Fig. 1, each sample from MNIST has the size as λ × λ

(λ = 1 m is the wavelength in free space) with the relative permittiv-

ity εr , while each sample is evenly discretized as 20 × 20 fragments

(i.e., N 20). Dobj is uniformly surrounded by 20 receivers (M =

20) with the distance as 30 λ , while 20 TMz incident plane waves,

respectively, illuminate Dobj from the direction evenly distributed

within [0◦, 360◦), (i.e., Ni = 20). The training and testing data are

created by the full-wave EM simulations [45]. As the challenge for

the traditional methods, we set the relative permittivity of the non-

homogeneous number-shaped scatterers from MNIST as εr ∈(1, 8].

We randomly choose 5000 samples from MNIST to create the training

data. Normalized mean-square error (NMSE) and structural similarity

index (SSIM) have been used as quantitative indicators to explain

the result of retrieved “images” [25], [26], [27]. For comparison, the

Gauss–Newton method [13] has been employed to reconstruct the

contrasts of the samples, as illustrated in Sections III-B and III-C.

In fact, training GANs is challenging, because the generator and the

discriminator compete against each other during the training. Usually,

if one network learns too quickly, the other network may fail to

learn [38]. The training in this work involves the training of both dis-

criminator and generator with the alternating order method [33], [34],

[35], [38]. We highlight that the discriminator has to take the ‘frozen’

operation, which means it will not be trainable. In this way, during the

process of training the generator, the weights of the discriminator are

not to be updated. This newly proposed CDCGAN-EMIS is bench-

marked in MATLAB 2020a with DL Toolbox [46]. Adaptive Moment

Estimation (Adam) optimizer is utilized to optimize the loss function.

B. Performance on Number-Shaped Scatterers

In Section II-B, the proposed CDCGAN-EMIS has been tested

on 1000 new samples from MNIST. Fig. 5 presents the comparison

between the reconstruction from the Gauss–Newton method and

that from this DL method (the imaginary part of the contrast of

scatterers is all zero, and the corresponding channels are all zero).
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on January 16,2025 at 18:15:14 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 5. Comparisons of retrieved relative permittivities of scatterers in
MNIST. (a) Ground truth. (b) Gauss–Newton. (c) CDCGAN-EMIS.

Fig. 6. Performance of the proposed CDCGAN-EMIS on the MNIST dataset:
Statistical histograms of the image quality for the retrieved permittivities and
fitting of its normal density function. (a) NMSE. (b) SSIM.

Fig. 7. Comparisons of retrieved relative permittivities of scatterers in
‘Letter’. (a) Ground truth. (b) Gauss–Newton. (c) CDCGAN-EMIS.

So, we do not present the image for this channel. Besides, in

Sections III-B and III-C, the image for the all-zero channel will also

not be presented. Obviously, the final outputs match much well with

their corresponding ground truth, despite the new sample shape and

extremely high heterogeneous contrast. But, the traditional method

(Gauss–Newton method) nearly cannot realize successful reconstruc-

tion. What is more, as shown in Table I, this proposed DL approach

needs less time to complete a computation than the Gauss–Newton

approach. Actually, the Gauss–Newton method has to use about 6 s

to complete 10× iteration computation for one test sample, while

the final reconstruction results are very bad, as presented in Fig. 5.

On the contrary, this proposed CDCGAN-EMIS merely uses less than

0.03 s to successfully realize reconstruction for one sample with high

precision. In addition, this CDCGAN-EMIS only requires one-time

computation and never needs iteration computation.

TABLE I

PERFORMANCE COMPARISON OF CDCGAN-EMIS AND GAUSS–NEWTON

Fig. 8. Performance of the proposed CDCGAN-EMIS on ‘Letter’ datasets:
Statistical histograms of the image quality for the retrieved permittivities and
fitting of its normal density function. (a) NMSE. (b) SSIM.

In Fig. 6, the statistical analysis of tests is demonstrated: NMSE of

reconstruction obtained from the generator has the average as about

0.05, while the SSIM average obtained from this proposed method

could overcome 0.9. Hence, EMIS problems could be successfully

solved by our CDCGAN-EMIS.

C. Performance on Letter-Shaped Scatterers

In this section, a new synthetic dataset, called ‘Letter,’ is proposed

to demonstrate the power and generality of the proposed CDCGAN-

EMIS. In ‘Letter’, the nonhomogeneous letter-shaped scatterers are

assumed to be randomly located in Dobj. The size of samples in

‘Letter’ has been set to λ × λ , while their relative permittivities εr

are randomly set into the range of (1,8].

Fig. 7 illustrates the comparison between the reconstruction from

the Gauss–Newton approach and that from our proposed CDCGAN-

EMIS. Similarly, its final reconstruction outputs match much well

with the ground truth, despite the extremely high heterogeneous con-

trast and the new test sample shapes. However, Gauss–Newton nearly

cannot realize successful reconstruction. What is more, as shown in

Table I, this proposed approach uses less time (less than 0.03 s)

to complete a computation than the Gauss–Newton method. Taking

into consideration that the training of this DL model merely relies

on MNIST, its final predictions for ‘Letter’ can demonstrate its

success in realizing EM inversion. These results also have illus-

trated the excellent generalization ability of this CDCGAN-EMIS.

We randomly select 1000 samples from ‘Letter’ to evaluate the

reconstruction performance of CDCGAN-EMIS. Fig. 8 presents the

statistical analysis for reconstruction performance on the selected

samples NMSE average of retrieved results of the generator arrives at

about 0.2, while the SSIM average of the generator could overcome

0.74, which shows CDCGAN-EMIS can successfully solve EMIS

problems.

IV. CONCLUSION

The new DL framework for EMIS problems has been proposed,

based on CDCGAN. The proposed CDCGAN-EMIS can solve var-

ious challengeable EMIS problems for conventional methods, such

as high contrast, intrinsic nonlinearity, high computation cost, and

so on. The proposed CDCGAN is based on the generator with

an EM Forward Solver and the corresponding discriminator. In the

offline training of the proposed CDCGAN-EMIS, the generator learns

‘mapping’ between the scattered field data and the corresponding

contrasts of dielectric scatterers, while the discriminator evaluates the

presented samples. As a result, the proposed CDCGAN-EMIS can
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generate contrasts of scatterers from measured scattered field data,

by “learning” mapping between the known contrasts of scatterers

and their corresponding field and “composing” new solutions. Based

on the proposed CDCGAN-EMIS, EMIS problems can be accurately

solved even in extremely high-contrast scatterers cases. Numerical

examples demonstrate its feasibility and precision. The proposed

CDCGAN-EMIS provides novel thinking for DL-inspired real-time

quantitative microwave imaging methods for high-contrast scatterers.
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