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Enhanced Deep Learning Approach Based on the Conditional Generative
Adversarial Network for Electromagnetic Inverse Scattering Problems

He Ming Yao ™, Lijun Jiang ', and Michael Ng

Abstract— This communication proposes a novel deep-learning (DL)
framework for the electromagnetic inverse scattering (EMIS) problems.
Solving EMIS problems is a challenging topic due to various difficulties,
such as intrinsic nonlinearity, high computation cost, high contrast, and
so on. To overcome these challenges, a novel DL-inspired approach is
presented in the context of conditional deep convolutional generative
adversarial network (CDCGAN), termed CDCGAN-EMIS. The proposed
CDCGAN is based on a generator with an EM forward solver and
the corresponding discriminator, both constructed by deep convolutional
neural networks (DConvNets). During the offline training step, the
generator learns a distribution between the measured scattered field data
and the corresponding contrasts (permittivities) of dielectric scatterers,
while the discriminator determines whether the presented samples are
real or fake. Therefore, such CDCGAN-EMIS can generate contrasts of
scatterers from measured scattered field data, by learning the distribution
between the known contrasts of scatterers and their corresponding field
and generating solutions. Based on the proposed CDCGAN-EMIS, EMIS
problems can be accurately solved even for extremely high-contrast
scatterers. Numerical examples indicate the accuracy and feasibility of
our method. The proposed CDCGAN-EMIS opens a novel path for the
DL-inspired real-time quantitative microwave imaging method for high-
contrast scatterers.

Index Terms— Convolutional generative adversarial network, electro-
magnetic inverse scattering (EMIS), high-contrast scatterer.

I. INTRODUCTION

The electromagnetic inverse scattering (EMIS) problem is exten-
sively applied in various fields, such as subsurface sensing [1],
microwave imaging [2], biomedical imaging [3], and so on. The
target of EMIS is exploring parameters by using received EM
information [4], [5], [6]. In the past few years, a large number of
methods have been reported for solving the EMIS problems, such
as the subspace optimization method [7], contrast source inversion
method [8], [9], contrast-source extended Born method [10], and Born
iterative method [11]. Unluckily, the inevitable ill-posedness and non-
linearity bring large limitations to these conventional methods [1], [2],
[3], [12]. These conventional methods usually employ regularization
containing prior information, so that EMIS problems can be stably
solved and the nonuniqueness can be relieved [12]. However, express-
ing prior information in rigorous mathematical formulations is usually
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quite difficult, so that it can hardly be incorporated [12]. Besides,
these conventional methods include gradient-based deterministic
methods, such as conjugate gradient methods and Gauss—Newton
methods [13]. Their general aim is iteratively minimizing the cor-
responding objective functions, where their partial derivatives are
computed with respect to model parameters in each optimization
iteration. Consequently, these gradient-based deterministic methods
usually suffer from higher memory and larger computation costs
caused by their iteration computation. Moreover, the optimization is
probably trapped in the local minima, because the derivatives cannot
distinguish the global property and the local one.

Machine learning (ML) [14], [15] is rapidly progressing in modern
computational science, such as high-performance computing [16],
[17], [18], remote sensing [19], [20], and field-circuit cosimula-
tion [21], [22]. ML techniques have also been proposed for EMIS
problems. [23], [24] have made use of the artificial neural network
(ANN) to solve EMIS problems. Recently, works originating from
deep learning (DL) are being reported for EMIS problems [25],
[26], [27], [28]. While DL approaches could illustrate relatively
satisfactory results, the current DL-based methods can be summarized
into three major categories.

1) The end-to-end DL-based method, where various DL modes are
directly utilized to replace conventional methods, such as iterative
optimization methods. In [26], [27], the initial inputs of the DL
method are obtained by conventional methods, for example, the back-
propagation (BP) method [29]. In [25], the encoder—decoder structure
based on the deep convolutional neural networks (DConvNets) is
proposed to directly use the measured scattered fields data as the
input to solve the EMIS problems.

2) The cascaded structure method, where more than one component
based on DL with individual functions are cascaded together to
solve the EMIS problem [28], [29]. In [28], the two-step method
was first proposed to solve EMIS problems, where the first step
based on DConvNets is used to produce the coarsely reconstructed
results for high-contrast scatterers, and the second step based on the
U-net [27], [28] is further utilized to improve the quality of ‘images.’
[30] then presented a dual-module model for EMIS problems, where
the conventional ANN with two hidden layers is used in the first
step, followed by the U-net to improve the image quality.

3) The supervised gradient method (SDM) [14], [15], which
includes the offline training step and the online application step [31],
[32]. In its offline step, the training data are created with prior infor-
mation. In the online step, the contrasts of samples are reconstructed
by iteration computation using the learned descent gradients [31],
[32]. However, during both offline and online processes, SDM cannot
avoid EM forward computation in each optimization iteration [32].

In this work, we propose a novel DL framework for EMIS by
utilizing a conditional deep convolutional generative adversarial
network (CDCGAN) [33], [34], [35], termed CDCGAN-EMIS.
The proposed CDCGAN-EMIS consists of the generator (G), the
discriminator (D), and the forward solver (S). The generator (G)
makes use of measured scattering data to generate the contrast
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Fig. 1. Schematic of TM, wave scattering in Dgp;-

(permittivity) “images” of scatterers, while the discriminator (D)
discriminates whether the generated “images” are real or fake. Plus,
the Forward Solver (S) realizes the EM forward process and computes
the EM scattered field resulting from the scatterers ‘generated’ from
G, so that the performance of G can be further improved. The EM
Forward Solver is based on the popular EM algorithm to realize EM
forward computation, described in Section II. The advantages of
this new DL framework can be summarized as: 1) during the offline
training process, specific prior information can be employed to create
training data. Thus, more prior information can flexibly be integrated
to enhance this proposed DL method; 2) the usage of DConvNet
greatly decreases the computation complexity of this DL-based
method. Besides, as a typical learning-based method [25], [26], [27],
[28], the proposed DL method only needs one-time computation and
never requires iteration optimization, which is superior to conven-
tional iterative optimization methods [1], [2], [3] and learning-based
iterative methods [31], [32]. Therefore, it can realize real-time
microwave imaging; and 3) the accuracy of this DL approach is
better than traditional methods for solving EMIS problems.

II. THEORY AND FORMULATION
A. Problem Formulation

The schematic of EMIS is shown in Fig. 1, in which the objective
domain (Dopj) is enveloped by M receivers uniformly distributed
in space. While the TM; incident field E'™ illuminates Do, it is
uniformly discretized into N x N pieces. M receivers work to receive
EM scattered field ES. Lippmann-Schwinger equations [36] formu-
late the whole EMIS process. The first formula is about interaction
within EM field on fragments of Dgp;.

E' (r) = EM (r) +k§/
Doy

where the Green’s function for 2-D TM, wave is G(r,r’) =

—( j/4)H(§2)(k0|r —r’|), where the second kind of zeroth-order

Hankel function Héz) is utilized. ' = (x/,y’) and r = (x,y),
respectively, represent the coordinates of the source and field points
in Dopj. While kg is the wavenumber of free space and E ! is denoted
as the total EM field. We also have x (r’) = &,(r') — 1 as contrast
function. The reradiation of the total field E! of scatterers can be
computed into the scattered field, the relationship of which is:

ES(r)= k(%/ G (r,r') x (F")E" (r') ar’ )
Dobj

where r = (xg, yg) denotes the position of receivers in Dgp;.
Solving EMIS problems has the aim of reconstructing the contrast
x (or permittivity &;) by EM scattered field. Usually, the traditional
methods have to introduce the objective function f(x), and try to
reconstruct the contrast by optimization methods [6], shown in the
following equation:

G (r,r') X (r') E' (r') dr’ D

N;
min: £ () =D |Ef — E] (0| + T (x) 3
i=1
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Fig. 2. Workflow of the proposed CDCGAN-EMIS: generator, Forward

Solver, and discriminator constitute the complete architecture.

where N; separate incident fields Em of Dop; induce scattered fields
E{. During iterative optimization, E7 (x) gradually approaches E.

The traditional methods transform the (1) and (2) into the dis-
cretized form as [4], [6]

E° =Gpg -diag (E') - & (4)

E' = E™+Gp - diag (E') - % 5)
where the size of ER an(LED can be set as MxN? and N? x
N2, respectively. Then, Gg = k3SyG(ry,,ry) and Gp =
kéSn/G(r,,,r,,/), where S,/ represents the area of the source piece,
np=1,...,M,n=1,.... N>, andn' =1,..., N2

B. CGAN Structure for EMIS

As the representative example of generative models, GANs model
the training of a generative network as a two-player minimax game,
where the generator is trained to learn a distribution of input and map
to the generated images and balance its performance by the discrimi-
nator [33], [34], [35], [38]. CGAN develops the method to control the
mapping from input to output by conditioning the standard generator
and discriminator on ‘extra information’ (e.g., the difference between
the ‘generated’ images and the ground-truthed images) [33], [34],
[35]. Thanks to its flexibly-added ‘extra information,” CGAN presents
the superiority in image-based tasks [33], [34], [35].

In this communication, to realize reconstruction for high-contrast
scatterers, CDCGAN-EMIS is proposed based on the discriminator
and its corresponding generator with the Forward Solver for the
EM forward process. In terms of difficulties in accumulating a
large amount of training data in real experiments, the data from
the simulation have been employed for training DL models. Unlike
conventional GAN or CGAN models [33], [34], [35], [38], the
proposed CDCGAN-EMIS never only aims at creating new contrast
images. Instead, the proposed CDCGAN-EMIS is designed to learn
the nonlinear mapping between the data distribution of scattered EM
fields and the data distribution of the corresponding contrasts (per-
mittivities) of the objective domain and further solve EMIS problems
for the high-contrast samples with high precision. This proposed
CDCGAN-EMIS considers both the difference between ‘generated’
contrast images and the ground-truthed contrast images, and the
difference between the scattered field resulting from ‘generated’
contrast images and the input scattered field. In this way, the quality
of reconstructed contrast images can be ensured with high accuracy.

As presented in Fig. 2, the proposed CDCGAN-EMIS consists
of three modules: the generator (G), the discriminator (D), and
the Forward Solver (S). The generator (G) makes use of measured
scattered data to generate the contrast (permittivity) “images” of
scatterers, while the discriminator (D) discriminates whether the
generated “images” are real or fake. While G creates the scat-
terer ‘images’ according to its input EM scattered field E¥, the
discriminator accepts both the ground-truthed scatterers ‘images’
and the ‘images’ generated from the generator and computes the
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difference between the distributions of the two sets of data [33], [34],
[35]. Thus, the discriminator guides the generator to create patterns
that share common features with the input scatterers. As a typical
CGAN structure, the difference between the created ‘images’ and
the ground-truthed ‘images’ is taken into consideration to improve
the performance of the prediction of G. Meanwhile, to make the
structures ‘learn’ the effect of created scatterers on EM scattered
field, the loss function also involves the difference between the input
EM scattered field E® from the generator and the EM scattered field
E* computed from the forward solver. During the training process,
we update the weights in the generator by backpropagation from the
losses defined by S and D.

1) The Forward Solver (S): The Forward Solver realizes the EM
forward process, which computes the EM scattered field from
targets. It is built to control the accuracy of the scattered
EM field of the generated contrast images during the process
of training the Generator. The popular method of moments
(MoMs) is chosen to be implemented into this solver to realize
the EM forward process [41], which does not require training
and is also shown in (2). The selected method, that is, MoM,
for the forward solver can ensure the accuracy of prediction for
the trained models. Due to the forward solver, CDCGAN-EMIS
can consider the difference between the scattered field resulting
from ‘generated’ contrast images and the input scattered field.
This difference will be added to the final loss of the generator.
Thus, the quality of reconstructed contrast images can be
evaluated from the perspective of their induced EM scattered
fields. The details of the Forward Solver are also demonstrated
in Fig. 2. Because of this EM Forward Solver, CDCGAN-EMIS
can make use of both the EM inverse process and the EM
forward process to evaluate the ‘quality’ of prediction, which
is impossible for the black-box method [17], [25]. Moreover,
because of this new evaluation mechanism, CDCGAN-EMIS
can make use of all possible data to improve its understanding
of EM’s physical mechanism.

2) The Discriminator (D): The discriminator is based on the
pixel-to-pixel DConvNet [14], [15], followed by the final clas-
sification layer [33], [34], [35], [38] to discriminate the realness
of the ‘images.” The detailed structure of the discriminator has
been demonstrated in Fig. 3. Its input is the ‘generated’ target
‘images’ from the generator and the ground-truthed ‘images,
both of which are with the size of N x N x 2 comprised of real
and imaginary parts of contrast ‘images.” Meanwhile, the final
output discriminates the realness of the ‘images.” Specifically,
the discriminator repetitively makes use of 3 x 3 convolution
with its stride as 2, leaky rectified linear unit (LeReLU), and
batch normalization (BN). Besides, the 0.2 dropout operation
is used [42].

The specific computation process is described by (6)

VD, G) = Ex~pguqy [l0gD (E*. X)]

+ E(Es.2)~pgs ) [1 —logD (E*, G (E*, Z))] (6)
where Z represents the projected noise to the generator, while
(E®, Z) has been combined to be the condition data input to the
generator. The noise Z is provided to the generator and defines
what a generative sample is according to its distribution [38], [39],
[40]. Additionally, D() stands for the probability computed from
the training dataset. While G(E®, Z) creates new contrast ‘images’,
D(E®, G(E®, Z)) offers the probability of these generated ‘images.’
Based on these functions, all weights in the generator and discrimi-
nator will be updated iteratively. The aim of the training process is:
1) maximizing the probability of accuracy in discriminating samples
created by the generator and that in training data and 2) minimizing
logD(E®, G(E®, Z)) to train the generator.
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Architecture of the discriminator for CDCGAN-EMIS.

Fig. 3.

1) The Generator (G): The generator of the proposed
CDCGAN-EMIS originates from the deep convolutional
encoder—decoder structure, which makes use of DConvNet
and has demonstrated excellent performance for EMIS
problems [25]. This structure is revised based on SegNet [43],
which is extensively applied in the image segmentation field.
The operation of the generator could be concluded to be the
“heterogeneous” process, which transforms measured scattered
fields into contrast ‘images.” The objective of the generator
is to generate data that the discriminator classifies as “real”
[33], [34], [35], [38]. Thanks to the balancing operation of
the discriminator, the generator can reasonably retrieve the
contrast of scatterers from the scattered fields.

Fig. 4 shows the specific internal structure of the generator. Named as
‘field data,” its input is set as the scattered field E, of which the size
is M x N; x 2. While N; incident fields and M receivers interact
in Dopj, the two tubes of input are filled by the real and imaginary
parts of E*. Meanwhile, the real and imaginary parts of scatterers
are filled into the two tubes of output. The proposed model does not
make use of the incidence E", because En keeps consistent for all
tests and there are no specific features for the proposed method.

In Fig. 4, three important parts are combined together into our
designed generator: encoding, decoding, and projecting. While its
encoding part encodes ‘field image’ E° and refines the input into
chunks of feature fragments, its decoding counterpart reinstalls the
feature fragments to generate the predicted contrast x’. The middle
projecting part projects and reshapes the noise input Z into the
structure to upscale the noise Z using a fully connected operation and
reshapes the output to the specified size. Specifically speaking, the
encoding part comprises the reduplicated usage of convolution with
the stride as 2, ReLU, and BN. Comparatively, the following decoding
part involves reduplicated usage of operations of up-convolution with
its stride as 2, BN, and ReLU, followed by the final convolution layer,
while a hyperbolic tangent (tanh) activation layer is installed to the
end, as shown in Fig. 4.

x' =G (E* Z). 0

The whole process in the generator is concluded as a ‘heteroge-
neous’ process, shown in (7), where the received scattered EM field
is transformed into the contrast ‘images’ of scatterers. In this process,
the deep convolutional encoder—decoder architecture transfer E* and
Z into the final output x. Hence, the generator can entirely complete
all operations of the traditional methods [7], [8], [9], [10], [11].

We should highligh some issues related to the generator
model.

1) Loss Function: While the loss function directly decides the
objective and the physical meaning of the generator, we have
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Fig. 4. Architecture of the generator for CDCGAN-EMIS.

to simultaneously take balance and difference into consideration.
We revised the loss function of the conventional CGAN by adding
Lg, shown in (8) and (9). In fact, the conventional CGAN usually uses
the first two terms (i.e., Lg and Lp) in (8) as the loss function [33],
[34], [35], because conventional image problems are not involved in
the physical meaning of EM scattering. In other words, we here add
the error between E* and E®’ into the loss function to estimate the
effect of the ‘image’ error on the EM scattering, shown in (9). In this
way, both the quality of the predicted ‘EM image’ and its effect on
EM scattering can be taken into consideration.

Thus, the full loss function of the generator is denoted as the
following equations:

Lr=Lg+MLp+MALg ®)

1
Ls=IE - EY)? ©)

10)

where L denotes the adversarial loss derived from (6). While L
indicates the mean square error (MSE) between x and the generated
x', Lg estimates the difference between ES and E¥, shown in (9)
and (10). While 4| = 50 and Ay = 100 are denoted as the weighing
parameters that represent the proportion of L, and Lg that account
for L and also demonstrate the importance of x and E¥. As shown
in (11), L represents the adversarial loss function for the generator,
which has been usually used for the conventional CGAN [33], [34].

o=y Sl (eo(e )] o
i=1

where m stands for the batch size, while i is the ith data in the batch.
Meanwhile, the loss function of the discriminator is defined as

o= 3o (0 (5.6 (£7.2)))
- Zfes(p ()]

During the training process, the discriminator tries to make the
score of ground truth close to 1 and that of fake inputs close to 0
[33], [34], [35], [38].

2) Computational Complexity: The computation of the proposed
generator is done on the reduplicated usage of convolutions, BN, and
activation layers, where the operation count depends on convolution
operation due to the small size of the filter kernel [25], [26], [27],
[28], [44]. For its encoder part, the input has the size of M X N; X
2, while R filters have the size of K x K in all f layers. Hence,
its computation complexity is O(MN; K2R’F ) [44]. Plus, the
computation in the decoding part actually shares the same operation
as the encoding part (in the opposite direction). Therefore, while
they share the same scale of parameters, only their output size
(as input in the encoding part) becomes N x N x 2. Hence, the

1
L. = — ATy
p Nllx X

(12)

‘w/x\mm\xm (NTB)x(NI8)<1280

B ReLU
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computational complexity in the decoding part can be concluded as
O(N2K2R%f). Usually, the size of input field “image” is chosen
to be approximated to that of the output contrast “image” [25],
[26], [27]. Thus, the generator approximately has the computational
complexity of O(N2 f 2R? f) [44], which is smaller than most of
conventional iterative optimization methods for EMIS, including
Gauss—Newton [1], [2], [3], and the iterative learning-based method,
such as SDM [31], [32].

III. NUMERICAL EXAMPLES
A. Numerical Setup and Offline Training

In this section, the specific offline training and testing of
CDCGAN-EMIS are described. It should be highlighted that the train-
ing of the proposed CDCGAN-EMIS is merely based on one group
of synthetic datasets, that is, MNIST [25], [26], [27], [28]. In Dobj
presented in Fig. 1, each sample from MNIST has the size as A x A
(A = 1 m is the wavelength in free space) with the relative permittiv-
ity &, while each sample is evenly discretized as 20 x 20 fragments
(i.e., N 20). Dopj is uniformly surrounded by 20 receivers (M =
20) with the distance as 30 A, while 20 TM; incident plane waves,
respectively, illuminate Dop; from the direction evenly distributed
within [0°, 360°), (i.e., N; = 20). The training and testing data are
created by the full-wave EM simulations [45]. As the challenge for
the traditional methods, we set the relative permittivity of the non-
homogeneous number-shaped scatterers from MNIST as ¢, €(1, 8].
We randomly choose 5000 samples from MNIST to create the training
data. Normalized mean-square error (NMSE) and structural similarity
index (SSIM) have been used as quantitative indicators to explain
the result of retrieved “images” [25], [26], [27]. For comparison, the
Gauss—Newton method [13] has been employed to reconstruct the
contrasts of the samples, as illustrated in Sections III-B and III-C.

In fact, training GANSs is challenging, because the generator and the
discriminator compete against each other during the training. Usually,
if one network learns too quickly, the other network may fail to
learn [38]. The training in this work involves the training of both dis-
criminator and generator with the alternating order method [33], [34],
[35], [38]. We highlight that the discriminator has to take the ‘frozen’
operation, which means it will not be trainable. In this way, during the
process of training the generator, the weights of the discriminator are
not to be updated. This newly proposed CDCGAN-EMIS is bench-
marked in MATLAB 2020a with DL Toolbox [46]. Adaptive Moment
Estimation (Adam) optimizer is utilized to optimize the loss function.

B. Performance on Number-Shaped Scatterers

In Section II-B, the proposed CDCGAN-EMIS has been tested
on 1000 new samples from MNIST. Fig. 5 presents the comparison
between the reconstruction from the Gauss—Newton method and
that from this DL method (the imaginary part of the contrast of
scatterers is all zero, and the corresponding channels are all zero).
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(b) ©

Fig. 5. Comparisons of retrieved relative permittivities of scatterers in
MNIST. (a) Ground truth. (b) Gauss—Newton. (¢c) CDCGAN-EMIS.
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Fig. 6. Performance of the proposed CDCGAN-EMIS on the MNIST dataset:
Statistical histograms of the image quality for the retrieved permittivities and
fitting of its normal density function. (a) NMSE. (b) SSIM.
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Fig. 7. Comparisons of retrieved relative permittivities of scatterers in
‘Letter’. (a) Ground truth. (b) Gauss—Newton. (¢c) CDCGAN-EMIS.
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So, we do not present the image for this channel. Besides, in
Sections III-B and III-C, the image for the all-zero channel will also
not be presented. Obviously, the final outputs match much well with
their corresponding ground truth, despite the new sample shape and
extremely high heterogeneous contrast. But, the traditional method
(Gauss—Newton method) nearly cannot realize successful reconstruc-
tion. What is more, as shown in Table I, this proposed DL approach
needs less time to complete a computation than the Gauss—Newton
approach. Actually, the Gauss—Newton method has to use about 6 s
to complete 10x iteration computation for one test sample, while
the final reconstruction results are very bad, as presented in Fig. 5.
On the contrary, this proposed CDCGAN-EMIS merely uses less than
0.03 s to successfully realize reconstruction for one sample with high
precision. In addition, this CDCGAN-EMIS only requires one-time
computation and never needs iteration computation.

6137

TABLE I
PERFORMANCE COMPARISON OF CDCGAN-EMIS AND GAUSS—NEWTON

Reconstruction MNIST Letter
CDCGAN-EMIS 0.029028s 0.028924s
Gauss-Newton (10 times iteration) 5.95312s 6.01896s
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Fig. 8. Performance of the proposed CDCGAN-EMIS on ‘Letter’ datasets:

Statistical histograms of the image quality for the retrieved permittivities and
fitting of its normal density function. (a) NMSE. (b) SSIM.

In Fig. 6, the statistical analysis of tests is demonstrated: NMSE of
reconstruction obtained from the generator has the average as about
0.05, while the SSIM average obtained from this proposed method
could overcome 0.9. Hence, EMIS problems could be successfully
solved by our CDCGAN-EMIS.

C. Performance on Letter-Shaped Scatterers

In this section, a new synthetic dataset, called ‘Letter,” is proposed
to demonstrate the power and generality of the proposed CDCGAN-
EMIS. In ‘Letter’, the nonhomogeneous letter-shaped scatterers are
assumed to be randomly located in Dgp;. The size of samples in
‘Letter’ has been set to A x A, while their relative permittivities &,
are randomly set into the range of (1,8].

Fig. 7 illustrates the comparison between the reconstruction from
the Gauss—Newton approach and that from our proposed CDCGAN-
EMIS. Similarly, its final reconstruction outputs match much well
with the ground truth, despite the extremely high heterogeneous con-
trast and the new test sample shapes. However, Gauss—Newton nearly
cannot realize successful reconstruction. What is more, as shown in
Table I, this proposed approach uses less time (less than 0.03 s)
to complete a computation than the Gauss—Newton method. Taking
into consideration that the training of this DL model merely relies
on MNIST, its final predictions for ‘Letter’ can demonstrate its
success in realizing EM inversion. These results also have illus-
trated the excellent generalization ability of this CDCGAN-EMIS.
We randomly select 1000 samples from ‘Letter’ to evaluate the
reconstruction performance of CDCGAN-EMIS. Fig. 8 presents the
statistical analysis for reconstruction performance on the selected
samples NMSE average of retrieved results of the generator arrives at
about 0.2, while the SSIM average of the generator could overcome
0.74, which shows CDCGAN-EMIS can successfully solve EMIS
problems.

IV. CONCLUSION

The new DL framework for EMIS problems has been proposed,
based on CDCGAN. The proposed CDCGAN-EMIS can solve var-
ious challengeable EMIS problems for conventional methods, such
as high contrast, intrinsic nonlinearity, high computation cost, and
so on. The proposed CDCGAN is based on the generator with
an EM Forward Solver and the corresponding discriminator. In the
offline training of the proposed CDCGAN-EMIS, the generator learns
‘mapping’ between the scattered field data and the corresponding
contrasts of dielectric scatterers, while the discriminator evaluates the
presented samples. As a result, the proposed CDCGAN-EMIS can
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generate contrasts of scatterers from measured scattered field data,
by “learning” mapping between the known contrasts of scatterers
and their corresponding field and “composing” new solutions. Based
on the proposed CDCGAN-EMIS, EMIS problems can be accurately
solved even in extremely high-contrast scatterers cases. Numerical
examples demonstrate its feasibility and precision. The proposed
CDCGAN-EMIS provides novel thinking for DL-inspired real-time
quantitative microwave imaging methods for high-contrast scatterers.
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