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Abstract— In this article, a hard constraint (HC) and
domain-decomposition-based physics-informed neural network
(HCD-PINN) framework is introduced for nonhomogeneous
transient thermal analysis. In general, physics-informed neural
network (PINN) uses a global neural network to approximate
the solutions of partial differential equations (PDEs), and its
performance could decrease dramatically when the problem
becomes big or complex. To get this deficiency addressed and
simultaneously enhance the modeling capability of PINN, in this
work, the domain decomposition method (DDM)-based strategy
is introduced. In each subdomain, an independent neural network
is used to approximate the solution. Thereby, the size and
complexity of the neutral network are reduced. To facilitate
effective integration of solutions across different regions, an HC
method is proposed for automatic satisfaction of interface condi-
tions between adjacent subdomains. At the interface, continuity
conditions for temperature and heat flux are considered, with
heat flux continuity expressed in terms of the derivative of
temperature. Using the mixed residual method (MIM), continuity
conditions at the interface can be transformed into a linear
form of the neural network outputs. This eliminates the need
for differentiation, enabling automatic satisfaction of conditions
through the use of a predefined HC matrix. Ultimately, we merge
neural networks responsible for subdomains and interfaces, along
with the HC matrix, using a differentiable distance function.
This integration establishes a cohesive and unified framework.
To validate the efficiency and accuracy of HCD-PINN, several
numerical examples are studied and compared with previous
PINN methods, with COMSOL simulations as exact solutions.
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The experimental results demonstrate the superior accuracy of
our proposed method.
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I. INTRODUCTION

W
ITH the evolution process of semiconductor technol-

ogy, the integration density of integrated circuits (ICs)

is increasing continuously. Further fueled by the advanced 3-D

packaging technologies [1], [2], more devices and modules can

be integrated in a limited space, which leads to a significant

increase in the heat density of ICs. The increasing heat density

poses a serious challenge to thermal design, because uneven

thermal managements would easily result in the temperature

of the ICs being too high, while not only affecting the perfor-

mance and service life of the system but also compromising

the reliability of the system. Therefore, accurate and robust

thermal analysis of ICs is crucial for their reliable operation.

To facilitate the IC design, accurate transient thermal analysis

is essential.

To accurately and efficiently facilitate the thermal analysis,

various numerical methods have been proposed in the past

years. Finite element time-domain (FETD) method [3], [4], [5]

is a widely used method for thermal analysis, which discretizes

the domain into small elements and solves the heat transfer

equation for each element using the time-domain approach,

such as Euler method [4], generalized-³ method [6], leap

frog [7], and Runge–Kutta [8]. The spectral-element time-

domain (SETD) method [9], [10], [11] can be viewed as

a special case of FETD method, which discretizes solu-

tion domain with hexahedron and mainly uses high-order

polynomials to implement the interpolation [11]. The dis-

continuous Galerkin (DG) method [12], [13], [14], [15]

combines the finite-element method (FEM) and finite-volume

method (FVM). A term called “numerical flux” [16] is intro-

duced in DG for the communication of two adjacent elements,

which allows the DGTD method to model arbitrary shapes and

to achieve high-order accuracy.
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In recent years, unlike traditional numerical methods [3],

[4], [5], [9], [10], [12], [13], [14], a novel deep learn-

ing method termed as physics informed neural network

(PINN) [17], [18] has been proposed to solve nonlinear PDEs

without spatial and temporal discretization. It uses automatic

differentiation [19] as a differential operator to represent the

derivatives, avoiding discretization.

In PINN, a fully connected neural network (FCNN) is

used as the surrogate model for the solution of PDEs. The

model can be trained to approximate the solutions exactly

using the optimizer [20], [21] to minimize the sum of loss

terms of conditions in PDEs, which are governing equations,

boundary conditions, and initial conditions. PINN has been

proven to be effective in many fields such as flow mechan-

ics [22], [23], [24], material design [25], [26], heat transfer

analysis [27], [28], and geospatial modeling [29], [30].

For the traditional PINN, an FCNN is used as the surro-

gate model to approximate the solution of a PDE. Usually,

the outputs and the gradients of the FCNN are continuous.

However, for nonhomogeneous coefficient problems, due to

the discontinuous solutions and gradients, the approxima-

tion error becomes obvious. Thus, to enhance the capability

of PINN in addressing complex structures and irregular

domains, various approaches based on the domain decomposi-

tion method (DDM) have been proposed. Through tearing the

entire domain into a number of small subdomains, the com-

plexity of the PINN neural network is alleviated significantly.

For instance, the cPINN in [31] and the XPINN in [32] split

the whole domain into a set of nonoverlapping subdomains,

while the FBPINN [33] divides the solution domain into

multiple overlapping subdomains. To connect the solutions

among neighboring subdomains, the continuity conditions

across the interface are deployed as the constraints. These

methods unite the solutions of entire domain by introducing

new loss functions at the interfaces, which requires the neural

network to learn extra loss conditions and thus increase the

training cost [34].

In the traditional PINN formulations, the boundary con-

ditions (BCs) and the initial conditions (ICs) are mainly

incorporated into the training process of neural networks

through the form of loss functions, known as the soft con-

straints. Extensive researches [34], [35], [36], [37] make

efforts to integrate the boundary conditions into the neural

network solutions by modifying the structure of the neural

networks, which is referred as the hard constraints (HCs).

In [35], an HC method with a Ritz variation formulation is

proposed and integrated with the free neural network (PFNN)

method. In [37], an HC method is used to solve the forward

and inverse problems. Notably, a unified framework called

HC-Net [34] has been proposed to implement three common

types of boundary conditions using HCs, such as Dirichlet BC,

Neumann BC, and Robin BC. The HC [34], [36] not only

reduces the error in boundary conditions but also allows the

neural network to focus on learning the remaining equations,

thereby improving the performance of the neural network.

In general, thermal analysis is characterized by com-

plex structures and diverse material compositions. When

using traditional PINN for computations, significant errors

are often present. In this article, we proposed an HC

for the interface condition enhanced domain decompo-

sition PINN framework termed as hard constraint and

domain-decomposition-based physics-informed neural net-

work (HCD-PINN) to solve the discontinuous and multiple

coefficient thermal analysis problems. Similar to the previously

mentioned DDMs [31], [32], the solution domain is divided

into several nonoverlapping subdomains, and the solution in

each individual subdomain is expressed using an independent

neural network. This scheme reduces the scale of each neu-

ral network, mitigating the training difficulty. To ensure the

continuous property of solutions across the interface, in this

work, the HC [34] strategy is resorted to. In contrast to the

traditional DDMs that introduce loss terms to achieve this

continuity, the HC method reduces the number of loss terms in

the neural network learning, thus enhancing the accuracy and

efficiency. The main idea of HC is to introduce a new neural

network for each interface and automatically satisfy continuity

through a derived matrix. The primary challenge lies in the

evaluation of the spatial derivatives of temperature for the heat

flux continuity at the interfaces. Therefore, we use the mixed

residual method (MIM) [38] method to reconstruct the outputs

of neural network, enabling the linear implementation of the

equation for heat flux continuity. The forthcoming sections

of this work will explicate the derivation process of HC

matrix. Finally, a continuously differentiable distance function

is introduced to combine the neural networks for subdomains

and interface networks, achieving an integrated structure.

Through comparative experiments, we observed that the

proposed framework is capable of addressing complex prob-

lems. Compared with the traditional PINN and DDM-based

PINN (XPINN), the proposed HCD-PINN can achieve higher

accuracy. As for the geometrically complex problem, PINN

requires a huge neural network to represent the solutions of

the PDEs, which is hard to train. However, the proposed

method needs smaller neural networks and fewer parameters

to approximate solutions, thus free of training difficulties.

The rest of this article is organized as follows. Section II

briefly introduces the formulation of problem including tran-

sient thermal analysis and structure of PINN. Section III

presents the formulation of HCD-PINN. Several numerical

results are shown in Section IV to demonstrate the effec-

tiveness of the proposed method. Specific conclusions are

summarized in Section V.

II. TRANSIENT THERMAL ANALYSIS

WITH TRADITIONAL PINNS

A. Transient Heat Transfer Problem

Assume that the domain of interest (DOI) for the transient

thermal analysis is denoted as � with ∂� representing the

boundary of DOI.

The governing PDEs of the transient heat equation are

defined as

ÄC p

∂T (x, t)

∂t
= ∇ · »∇T (x, t) + Q, x ∈ � (1)

n(x) · »∇T (x, t) = −h(T (x, t) − Ta), x ∈ ∂� (2)

T (x, 0) = T0, x ∈ �. (3)
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In the above formula, (1) is the heat equation, (2) and (3)

are the convective boundary condition and the initial condition,

respectively; Q, Ä, C p, and » denote the heat source, the

density, the heat capacity, and the thermal conductivity of the

material, respectively; Ta and T0 indicate the ambient and ini-

tial temperature of the problem, respectively, and h represents

the convection coefficient of the boundary condition.

B. PINN Method for Transient Thermal Problem

In this work, PINNs use an FCNN to approximate the

solution of transient thermal equation. Namely,

T̂ (x, t) = NN(x, t; ¹) (4)

where T̂ (x, t) is the approximated solution, NN(x, t; ¹) is the

output of FCNN, (x, t) is the input of the network in the spatial

and time domains, and ¹ is the parameter of the network.

The neural network includes an input layer, an output layer,

and a certain number of hidden layers. The forward pass

between two layers is expressed as

yi = Ã(wi · xi + bi ) (5)

where yi and xi denote the input and output of the i th layer,

respectively; wi and bi are the weights and biases of the

i th layer, which are trainable parameters; Ã(·) is a nonlinear

activation function, and the choice of Ã(·) will be discussed

later in Section IV-C.

The parameters of the neural network can be trained by

minimizing the loss function defined as

L = wg · Lg + wb · Lb + wi · Li (6)

with

Lg =
1

N f

N f
∑

i=1

∣

∣

∣

∣

ÄC p

∂ T̂ (xi , ti )

∂t
− ∇ · »∇ T̂ (xi , ti )−Q

∣

∣

∣

∣

2

(7)

Lb =
1

Nb

Nb
∑

i=1

∣

∣

∣

∣

»
∂ T̂ (xi , ti )

∂n
+ h(T̂ (xi , ti ) − Ta)

∣

∣

∣

∣

2

(8)

Li =
1

Ni

Ni
∑

i=1

∣

∣T̂ (xi , 0) − T0

∣

∣

2
(9)

where N f , Nb, and Ni represent the number of sampling points

pertinent to the governing equations, the boundary conditions,

and the initial data, respectively; and Lg , Lb, and Li are the

loss terms corresponding to the heat governing equation, the

boundary conditions, and the initial conditions, respectively.

The loss weights wg , wb, and wi determine the relative impor-

tance of different terms. The role of loss weights is primarily

to balance the values of different loss terms to ensure balanced

convergence [41]. In this article, we estimated the magnitude

of each loss term in advance and determined loss weights to

make the values of loss terms relatively close. Across all the

studies in this article, the same weights are used for different

methods to minimize the influence of weights on the results

and purely compare the impact of neural network structures

on accuracy. The impact of loss weight on computational

accuracy will be discussed in Section IV-C.

When solving time-domain problems, unlike the traditional

computational methods, PINN only requires adding time as an

additional dimension to the neural network’s training datasets.

Moreover, PINN is not sensitive to dimensions, making it

well-suited for solving high-dimensional problems. However,

for transient analysis, PINN does encounter certain issues,

such as the error accumulation over time and difficulties in

predicting the “sharpness” of the solution [39]. Efforts have

been proposed to overcome these problems, such as “sequence

to sequence” [39] learning and decomposition in the time

domain [40].

Traditionally, the main issue arises when the time span is

too long, whereas most activation functions are more adept at

computing inputs within the range of [−1, 1]. To address this

deficiency, we normalize the time domain as

t ∈ [0, t0] → t ′ ∈ [0, 1] (10)

and thus, the derivative of temperature with respect to time

can be transformed as

∂ T̂ (x, t ′)

∂t ′
= t0

∂ T̂ (x, t)

∂t
. (11)

By normalizing the time domain, the PINN can solve the

transient problems much more accurately.

III. FORMULATION OF PROPOSED HCD-PINN

A. HC for Initial Condition

For transient heat problems with known initial conditions,

when using PINNs, the HC method [34] incorporates the initial

conditions into the estimated solution as

T̂ (x, t) = T̃ (x, t)(1 − exp[−µ t]) + T0(x) (12)

where µ is a hyperparameter for initial condition. T̃ (x, t) is

the output of the neural network. T0(x) is usually given as the

initial condition for transient thermal analysis. (1−exp[−µ t])

ensures that at t = 0 the estimated solution is always

equal to T0(x), and the larger µ causes the initial conditions

satisfy better. However, too large µ may cause the derivation

of (1 − exp[−µ t]) with respect to t too sharp, which will

deteriorate the accuracy of the neural network. Therefore,

in this article, µ is set to 10.

Using (12), the initial conditions are automatically satisfied

in the solution process. Consequently, the loss function (9) can

be eliminated. Thereby, the adoption of the HC method not

only reduces the training burden on the neural network, but

also makes the training process focus more on the other loss

components.

B. Domain Decomposition Method

To solve the heat transfer problem with different materials,

a DDM is introduced first. The main idea of DDM is to divide

the solution domain into several nonoverlapping subdomains

according to the type of material, ensuring that a single neural

network is built for each media

� = �
1 ∪ �

2 ∪ · · · ∪ �
M . (13)
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An independent neural network is used to approximate the

solution of each subdomain as

NSk(x, t) = NNk
sub

(

x, t; ¹
k
sub

)

: R
d+1 → R

d+1 (14)

where d is the dimension of heat transfer problems. NSk(x, t)

means the output of NN for subdomain �
k . The input dimen-

sion of NN is d + 1, including the spatial coordinates x

and time t . The output dimension is d + 1, including the

solution of heat transfer problems T (x, t) and its temperature

gradients p(x, t), which will be discussed in Section III-C.

C. HC for Interface Conditions

Suppose that ∂�
kl denotes the interface between two

neighboring subdomains �
k and �

l . At the subdomain inter-

face ∂�
kl , the continuity conditions are defined as

T k − T l = 0 (15)

nkl(x) · qk + nlk(x) · ql = 0 (16)

where nkl(x) and nlk(x) represent the unit normal vector

on the interface ∂�
kl from �

k to �
l and from �

l to �
k ,

respectively; The variable q denotes the heat flux given by

qk = −»k∇T k, x ∈ �
k . (17)

The temperature continuity at the interface between subdo-

mains �
k and �

l is enforced by (15), while the continuity

of the normal component of the heat flux density is enforced

by (16).

According to [38], an extra field p(x, t) is introduced as a

part of the solution to (1)

p(x, t) = (p1(x, t), . . . , pd(x, t)) = ∇T (x, t) (18)

where TN (x, t) = (T (x, t), p(x, t)) is the new solution of (1).

By applying (18) to (16), the continuity conditions can be

converted into the linear combinations of TN (x, t), which are

given by

»k(n̂kl · pk(x, t)) + » l(n̂lk · pl(x, t)) = 0. (19)

Instead of introducing new loss functions to learn (15)

and (19), we use HC to make them satisfied automatically [34].

Because the interface conditions have been transformed into

linear combinations of TN (x, t), we can use matrix manipula-

tion to combine the outputs of NN.

First, for each interface, an additional NN is proposed for

HC as

NIkl(x, t) = NNkl
inter(x, t; ¹ kl

inter) : R
d+1 → R

m (20)

where NIk(x, t) means the output of NN for interface ∂�
kl ;

d + 1 represents the input dimension, including the spatial

coordinates x and the time t ; and m denotes the output

dimension, which is equal to the number of nonzero elements

d0 in the normal vector of the interface. For example, if the

interface is perpendicular to the x-axis, then its normal vector

is n = (1, 0, 0), and the number of nonzero elements is

denoted as d0 = 1. The relationship between m and d0 is

m =

{

2d0, d0 = 1, 2

2d0 + 2, d0 g 3.
(21)

Then, we introduce a pair of HC matrices Bi (x) ∈ R
d+1 ×

R
m to reconstruct NIkl(x, t). Namely

T̂ kl
N (x, t) = B+(x)NIkl(x, t) (22)

T̂ lk
N (x, t) = B−(x)NIkl(x, t). (23)

The interface conditions in (15) and (19) can be satisfied

automatically by the combination of the additional neural

network in (20) and a well-selected HC matrix Bi (x).

If d0 = 1, the HC matrices can be obtained easily as

B+(x) =

[

1 0

0 1

]

(24)

B−(x) =

[

1 0

0 »+(x)/»−(x)

]

. (25)

Similarly, if d = 2, the HC matrix should be implemented

with m = 4 linearly independent vectors. The HC matrix is

expressed as

B+(x) =





1 0 0 0

0 n̂2 0 n̂1

0 −n̂1 0 n̂2



 (26)

B−(x) =





1 0 0 0

0 0 n̂2 »1n̂1

0 0 −n̂1 »1n̂2



 (27)

where »1 = »+(x)/»−(x) is the contrast of the coeffi-

cients »(x).

The general solution for d0 g 3 problem is detailed

in Appendix A.

D. Smoothly Gradient Distance Function

In this section, the smoothly gradient distance func-

tions D(·) are introduced to connect the proposed NSk(x, t)

and NIkl(x, t). They are expressed as

D1(l) =











































0, l f −´

(l + ´)2

4´
, −´ < l f ´

l, ´ < l f 1 − ´

(1 + ´ − l)2

4´
, 1 − ´ < l f 1 + ´

1, 1 + ´ < l

(28)

and

D2(l) =











































1, l f −´

1 −
(l + ´)2

4´
, −´ < l f ´

1 − l, ´ < l f 1 − ´

1 −
(1 + ´ − l)2

4´
, 1 − ´ < l f 1 + ´

0, 1 + ´ < l

(29)

where l is the normalized distance between the points x and

interfaces; ´ is a hyperparameter, which controls the shape of

these two types of distance functions. In general, the value

of ´ is chosen as small as possible. However, a too small ´

makes the gradients of distance functions too sharp, which

will deteriorate the accuracy. In this article, ´ is set as 0.01.
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Fig. 1. Schematic of the proposed DHC-PINN framework. The structure of the schematic is inspired by [43]. The solution domain is divided into several
subdomains based on materials. Neural networks for subdomain NS+ and NS− are introduced to approximate the solution in �+ and �−, respectively. Neural
network NI is introduced for interface conditions. Note that although NI is served for interface conditions, the input spatial coordinates x should be the two
subdomains adjacent to the interface x ∈ �+ ∪ �−. Then, the aforementioned two types of neural networks are combined for each subdomain’s solution
through distance functions D(·) and HC matrix B(x).

The distance functions D1(l) and D2(l) are served as the

weights of NS(x, t) and NI(x, t), respectively. Since NS(x, t)

is merely responsible for the approximation inside the corre-

sponding subdomain, to ensure strict satisfaction of interface

conditions, its weight at the interface is set to be 0. On the

counterpart, NI(x, t) primarily contributes to the solution at

the interfaces, with its weight gradually decreasing as the

distance from the interfaces increases.

The proposed distance functions proves to be more perform-

ing than the one presented in [34]. The detailed experiments

are shown in Appendix B.

E. Framework of the Proposed HCD-PINN

Based on the theories listed above, the solution of heat

transfer problems in subdomain �
k can be constructed via

the PINN as

T̂ k
N (x, t) = D1

(

lk
inter(x)

)

NSk
(

x, t; ¹ k
sub

)

+

mk
∑

i=1

D2

(

l i
inter(x)

)

Bi (x)NIi
(

x, t; ¹ i
inter

)

(30)

where l i
inter(x) with i = 1, 2, . . . , mk denotes the distance to

interfaces of �
k and its mk neighbors.

For better understanding, the PINN-based neural network

framework structure for the thermal analysis is shown in Fig. 1.

Due to the application of the HC for the initial conditions,

the loss function (9) pertinent to the initial conditions can

be eliminated automatically. Thus, in subdomain k, the left

parameters of the proposed framework can be trained by

minimizing the loss function defined as below

L =

M
∑

k=1

(

wg · Lk
g + wb · Lk

b + we · Lk
e

)

. (31)

with

L
k
g =

1

N f

N f
∑

i=1

∣

∣

∣

∣

ÄkCk
p

∂ T̂ k(xi , t)

∂t
− ∇ · »k p̂k(xi , t) − Qk

∣

∣

∣

∣

2

(32)

L
k
b =

1

Nb

Nb
∑

i=1

∣

∣»k(n̂(xi ) · p̂k(xi , t)) + hk(T̂ k(xi , t) − Ta)
∣

∣

2

(33)

L
k
e =

1

N f

N f
∑

i=1

∣

∣

∣

∣ p̂k(xi , t) − ∇ T̂ k(xi , t)
∣

∣

∣

∣

2

2
. (34)

where N f and Nb represent the number of residual points

sampled in �
k and the number of boundary points, respec-

tively; Lk
g , Lk

b, and Lk
e penalize the residuals of heat governing

equations, the boundary conditions, and the extra field (18) in

subdomain �k , respectively.

IV. NUMERICAL RESULTS

In this section, two numerical results comparing HCD-PINN

and PINN method [17] and DDM-based PINN method

(XPINN) [32] are shown to demonstrate the effectiveness and

accuracy of the proposed method.

The implementation of each method mentioned in this

section and the training of neural networks were conducted

using PyTorch [42]. The geometries of all the examples in this

section are modeled with Deepxde toolbox [18]. The residual

points, initial points, and boundary points used in training

are selected randomly through the pseudorandom algorithm

in Deepxde toolbox. To better explore the solution space [44],

a strategy for reselecting training points every 20 epochs is

adopted during the training process for each method.
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Fig. 2. Profile of the regions for Example I.

TABLE I

MATERIAL PROPERTY DETAILS OF THE FIRST EXAMPLE

For accuracy verification, the reference results are calcu-

lated by a finite-element-method-based commercial software

COMSOL Multiphysics.

In this article, all the neural networks are trained with

two optimization methods, Adam optimizer [20] and second-

order L-BFGS optimizer [21]. When the loss function is

optimized to be small enough with Adam optimizer, we use the

quasi-Newton, full-batch gradient-based L-BFGS optimizer

for further optimization. All the experiments are conducted on

a desktop with Intel 3.6-GHz Core (TM) i9 CPU and 16-GB

RAM under Windows Operating System. For convenience,

we define the structure of NN (4) used in this article as: [a] +

[b] × c + [d], which means that the NN has input layers with

a neurons, c hidden layers with b neurons in each hidden layer,

and output layer with d neurons.

A. Two-Dimensional Heat Convection with Rectangle

and Semicircular Domain

For the first example, a theoretical 2-D model composed

of two different materials is investigated, which is specifically

designed to validate the effectiveness of the proposed method

in addressing 2-D inhomogeneous problems. As illustrated

in Fig. 2, the whole domain is a rectangular region divided by a

quarter circle into two parts. The dimensions of the rectangular

region are 2 × 1.5 m, and the radius of the circle is r = 1 m.

The materials in Regions I and II are totally different, where

the material parameters are listed in Table I.

Within the entire domain, a constant heat source defined

as Q = 50 W/m3 is introduced. The boundaries of the

region are subjected to the convective heat condition with

h = 1 W/m2. We conducted computations to analyze the

temperature variation process in t ∈ [0, 10] s under the initial

temperature T0 = 300 K.

We compared the performance of three methods in

solving this problem: PINN [17], XPINN [32], and the

TABLE II

COMPARATIVE EXPERIMENTAL RESULT FOR EXAMPLE I

proposed method. The details of comparative experiments are

shown as follows.

1) PINN: Original PINN Method The whole solution

domain is approximated by a single neural net-

work. In this method, the number of residual points

is N f = 8192, the number of boundary points is

Nb = 2048, and the number of initial points is

Ni = 2048. The structure of NN is [3] + [60] × 5 + [1].

2) XPINN: Original XPINN Method The solution domain

is divided into two subdomains, and two independent

NN are used for each subdomain. In this method,

N f = 4096, Nb = 1024, Ni = 1024, and Ninter = 512

extra points are collocated for XPINN. The structure of

NN in each subdomain is [3] + [40] × 5 + [1].

3) HCD-PINN: Proposed HCD-PINN Method The solution

domain is divided into two subdomains. In this method,

N f = 4096, and Nb = 1024. The structure of NN in

this method is NI:[3] + [30] × 5 + [3], and NS:[3] +

[30] × 5 + [4].

In the COMSOL software, Nt = 20 385 points and

40 271 triangle meshes with second-order Lagrange elements

are tested as the standard solutions. The computation time for

COMSOL is about 136 s. In this example, the loss weights

are set as (wG, wBC , wE ) = (1, 1, 1).

To avoid the “division by zero issue” and simultaneously

enhance the contrast of the experimental results, we choose

T1 = 273.15 K as the reference temperature and calculate the

mean absolute percentage error (MAPE) as

MAPE =

∑n
i=1

∣

∣T̂ i − Ti

∣

∣

∑n
i=1(Ti − 273.15 K)

(35)

where n is the number of testing points generated from

COMSOL Simulations; T̂ i and Ti are obtained from NNs and

COMSOL, respectively. The experimental result of Example I

is shown in Table II. In this table, the MAPE of T and the

number of trainable parameters in each method are compared.

It is observed that the accuracy of the proposed method is

significantly higher than those from other methods with fewer

trainable parameters.

Table III gives the training and the prediction times for

each method. The first and second columns show the training

times for one Adam and L-BFGS epoch, respectively; the third

column shows the total training time and the fourth column

gives the prediction time for one point. It can be observed that

the HCD-PINN method does not significantly increase training

time compared with the other methods. However, in terms

of the prediction time, there is a certain increase due to the
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TABLE III

TRAINING AND PREDICT TIME FOR EXAMPLE I

Fig. 3. Trajectories of relative error of T in Example I as a function of
training epoch for PINN, XPINN, and HCD-PINN.

Fig. 4. Temperature distribution (unit: K) at t = 10 s by (a) COMSOL and
(b) HCD-PINN. Error distribution (unit: K) with respect to COMSOL results
at t = 10 s by (c) HCD-PINN and (d) PINN.

necessity of combining outputs from multiple neural networks

into the HCD-PINN.

To validate that all the methods are able to converge during

the training, the variations in MAPE with respect to T are

presented in Fig. 3. Notably, the proposed method achieves

the minimum relative error, which is further emphasized

in Fig. 4. In Fig. 4, the temperature distributions solved by

COMSOL and the proposed method at t = 10 s are plotted.

In addition, the absolute differences between our proposed

method, the PINN method, and the COMSOL are also given

in Fig. 4. It can be seen that the maximum temperature error

for DHC-PINN is 0.244 K, while the maximum error for the

PINN method is 1.909 K.

Fig. 5. Profile of the structure for Example II.

TABLE IV

THERMAL PARAMETERS OF THE CHIP

B. Three-Dimensional IC Chip Package

In the second example, a 3-D IC chip package with four

pins mounted on a printed circuit board (PCB) is studied.

The structure of IC chip package is shown in Fig. 5. The

dimensions of the bottom chip, the top chip, and pin are

50 mm × 49 mm × 5 mm, 50 mm × 49 mm × 5 mm,

and 50 mm × 4 mm × 40 mm, respectively. The chip is

composed of two different materials, whose property details

are given in Table IV.

The power distribution of chip is a Gaussian pulse [13]

defined by Q = 107 exp[−t2/100] W/m3. All the surfaces of

the chip are enforced by the convective boundary conditions

with an ambient temperature of Ta = 300 K and convection

coefficient of h = 200 W/[m2 · K]. The time scale of the

example is t ∈ [0, 250] s. To balance the loss terms, the loss

weights are set as (wG, wBC , wE ) = (1, 106, 104).

In this example, the performances of four representative

methods are compared. Namely, PINN, XPINN, PINN-IC, and

the HCD-PINN. As shown in Fig. 5, the structure is composed

of six regular rectangular solids. When using methods related

to DDM such as XPINN and the HCD-PINN, we teared the

solution domain into two small regions based on different

materials. However, for the purpose of achieving a uniform

distribution of the sampling points, in each rectangular region

the number of sampling points is set to be equal. In this

example, N f = 1536, Nb = 768, and Ni = 512. In addition,

Ninter = 512 sampling points are chosen on the interface

between two neighboring subdomains. The details of the

comparative experiments are shown as follows.

1) PINN: Original PINN Method In this method, the struc-

ture of NN is [4] + [60] × 5 + [1].

2) XPINN: Original XPINN Method The solution domain is

divided into two subdomains. In this method, the struc-

ture of NN in each subdomain is [4] + [40] × 5 + [1].

3) PINN-IC: PINN Method with HC for initial condition,

the details can be seen in Section III-A. In this method,

the structure of NN is [4] + [60] × 5 + [1].
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TABLE V

COMPARATIVE EXPERIMENTAL RESULT FOR EXAMPLE II

Fig. 6. Temperature distribution (unit: K) at t = 50 s by (a) COMSOL and
(b) HCD-PINN. Error distribution (unit: K) with respect to COMSOL results
at t = 50 s by (c) HCD-PINN and (d) PINN.

4) HCD-PINN: Proposed HCD-PINN The solution domain

is divided into two subdomains. In this method, the

structure of NN in this method is NS:[4] + [30] ×

5 + [4], and NI:[4] + [30] × 4 + [2].

In this example, all the models are trained using 2000 iter-

ations for Adam optimization and 1000 iterations for

L-BFGS optimization. As for the COMSOL simulation,

Nt = 169 447 points and 931 874 tetrahedron meshes with

second-order Lagrange elements are selected, serving as the

reference solution to compare the performance of each model.

The computation time of COMSOL is about 386 s. The

MAPE at each sampling time, the average MAPE over

the entire time, and the sizes of each model are presented

in Table V. It can be observed that the proposed method

exhibits the highest accuracy in both the almost time and in

average. Table VI gives the training and predict time for each

method.

In Fig. 6(a) and (b), we compare the temperature dis-

tributions solved by COMSOL and the proposed method

at t = 50 s. In addition, the differences between our proposed

method, the PINN method, and the COMSOL simulation are

also provided. As can be seen, the maximum temperature

Fig. 7. Transient temperature at r = (0, 0, 50) mm solved by COMSOL,
HCD-PINN, xPINN, PINN, and PINN-IC.

Fig. 8. Trajectories of relative error of T in Example II as a function of
training epoch for PINN, XPINN, PINN-IC, and HCD-PINN.

TABLE VI

TRAINING AND PREDICT TIME FOR EXAMPLE II

error for the proposed method is 1.760 K, while that of

PINN is 3.929 K, which shows that our method is more

accurate.

To further verify the accuracy of the proposed method,

in Fig. 7, the transient temperature at r = (0, 0, 50) mm is

studied and compared with COMSOL and the other methods.

It is evident that the proposed method aligns most closely with
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TABLE VII

MAPE OF T ON DIFFERENT ACTIVATION FUNCTIONS FOR EXAMPLE I

TABLE VIII

MAPE OF T ON DIFFERENT ACTIVATION FUNCTIONS FOR EXAMPLE II

TABLE IX

MAPE OF T ON DIFFERENT LOSS WEIGHTS FOR EXAMPLE I

TABLE X

MAPE OF T ON DIFFERENT LOSS WEIGHTS FOR EXAMPLE II

COMSOL simulation results. We plot the variation in MAPE

of T during the training epoch in Fig. 8. It can be seen that

HCD-PINN has converged to the lowest relative error among

different methods.

C. Study of Activation Functions and Loss Weights

In this section, we study the impact of different activation

functions and loss weights on the experimental results.

First, we compared the performances of four commonly

used activation functions (tanh, sigmoid, softplus, and swish)

via two canonical examples. In Tables VII and VIII, the

MAPEs of the time-domain temperature T for the two

examples with different activation functions are presented.

It can be seen that except sigmoid in Example I, HCD-

PINN achieves higher accuracy than PINN. Comparing various

activation functions, we found that tanh, softplus, and swish

yielded similarly excellent results. The poorer accuracy

associated with sigmoid stems from its lack of negative

output.

Second, to study the influence of unbalance loss terms,

we changed the loss weights to take some ablation studies.

In each example, we repeated the experiment with fixed we

but varied wg , wb. Tables IX and X give the MAPE of time

domain T with different loss weights. In general, different loss

weights result in varying accuracies. When loss weights are

significantly different in proportion, errors tend to increase.

In comparison to Example I, the accuracy in Example II is

more affected by loss weights, which is attributed to more

complex geometric structure. For Example I, changes in loss

weights by around ten times have almost no impact on the

error.

V. CONCLUSION

In this article, an HC and DDM enhanced PINN frame-

work is introduced for solving transient thermal problems

in complex structures. The application of DDM enhances

the representative capability of PINN, allowing the use of

multiple neural networks to compute solutions for com-

plex regions. Meanwhile, the HC method ensures continuity

between solutions in different subdomains, reducing the num-

ber of loss terms that the neural networks need to learn

during training. This, in turn, alleviates the computational

burden and improves approximation accuracy. Therefore, com-

pared with the traditional PINN and DDM-based XPINN,

the proposed method demonstrates higher accuracy in solv-

ing transient heat problems involving complex regions with

different material compositions. The introduced computational

framework empowers PINN to handle complex problem sce-

narios, paving the way for applications of scientific machine

learning.

APPENDIX A

In this Appendix, a general solution for the HC matrix

is studied. We take the parameter ³1 as the contrast of the

coefficients ³(x)

»1 = »+(x)/»−(x). (36)

The interface condition can be expressed as

T +(x) = T −(x) (37)

»1n̂+ · p+(x) = n̂− · p−(x). (38)

If dimension of the problem is d(d g 3), the HC

matrix Bi (x) can be defined as Bi (x) ∈ R
d+1 × R

2×(d+1).

And Bi can be represented using four separate matrices

B+(x) =

[

1

N(x) O r(x)

]

(39)

B−(x) =

[

1

O N(x) »1r(x)

]

. (40)

The first part is 1 in the first column, which is served

for (37), and O is the null matrix with dimension d × d .

The vacant positions in the matrices are filled with zeros.

The next part is the basis of the null space for the following

equation, in the meanwhile ensuring the degrees of freedom

of the NN outputs:

n(x) · p(x) = 0. (41)

The matrix N(x) ∈ R
d × R

d is given by

N(x) = [´1(x); ´2(x); . . . ; ´d(x)]T. (42)
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Here, ´k(x) is the Gram–Schmidt orthogonalization [34] of

normal vector n̂(x), which is performed as

´k(x) = ek −
(

ek · n̂(x)
)

n̂(x), k = 1, . . . , d (43)

where ek is the kth row of the identity matrix Id . The matrix

N(x) can be expressed as

N(x) = Id − n̂(x)Tn̂(x) (44)

which satisfies that

n̂(x) · N(x)R = n̂(x) ·
(

Id − n̂(x)Tn̂(x)
)

R

=
(

n̂(x) − n̂(x)n̂(x)Tn̂(x)
)

R

= 0 (45)

where R ∈ R
d is an arbitrary column vector.

The last part is a column vector r(x), whose dimension is d

r(x) = [n1(x), n2(x), . . . , nd(x)]T. (46)

The proof of the proposed HC matrix is expressed as

follows. The unknowns (u+(x), p+(x)) and (u−(x), p−(x))

in the interface are transformed as

(u+(x), p+(x)) = B+(x)NI j (x) (47)

(u−(x), p−(x)) = B−(x)NI j (x). (48)

After decomposing the HC matrices, we obtain the follow-

ing expressions:

u+(x) = NI j (x)[1] = u−(x) (49)

where NI j (x)[1] means the first column of output of NI j (x),

and (37) is satisfied.

By incorporating (45) and (46) into (47) and (48), we get

n̂+(x) · p+(x) = n̂(x) · N(x)NI j (x)[2 : d + 1]

+ n̂ · r(x)NI j (x)[2d + 2]

= n̂ · r(x)NI j (x)[2d + 2] (50)

n̂−(x) · p−(x) = n̂(x) · N(x)NI j (x)[d + 2 : 2d + 1]

+ »1n̂ · r(x)NI j (x)[2d + 2]

= »1n̂ · r(x)NI j (x)[2d + 2]. (51)

From (50) and (51), the interface condition (38) is satisfied

automatically. And the proposed HC matrix (39) and (40)

satisfies the interface condition. In addition, p−(x) and p+(x)

are composed of different parts of NI j (x). Therefore, they are

linearly independent, ensuring the degrees of freedom of the

outputs.

To validate the proposed HC matrix, a 3-D normal vector

example is studied. Similar to Section II, the solution domain

is composed of two geometries. One is a cube with size of

1.5 × 1.5 × 1.5 labeled as Region I, and the other is a

sphere with a radius of 1 labeled as Region II. The material

property details of the region are shown in Table I. Other

parameters of the problem are set as follows: Q = 50 W/m3,

h = 1 W/[m2 · K], time scale t ∈ [0, 4] s, T0 = 300 K,

Ta = 300 K, NNmain:[4] + [40] × 5 + [4], and NNinter:[4] +

[30] × 4 + [8]. The framework is trained with 3000 itera-

tions of Adam optimization and 1000 iterations of L-BFGS

optimization.

Fig. 9. Temperature distribution (unit: K) at t = 4 s by (a) COMSOL.
Error distribution (unit: K) with respect to the exact solution at t = 4 s by
(b) HCD-PINN.

TABLE XI

COMPARATIVE EXPERIMENTAL RESULT FOR DISTANCE FUNCTIONS

Fig. 10. Variation in relative error compared with HC-Net and HCD-PINN
for (a) Example I and (b) Example II.

The temperature distribution by COMSOL and error dis-

tribution comparing the proposed method and COMSOL is

shown in Fig. 9. The maximum temperature error compared

with COMSOL is 0.7529 K. The mean relative error in total

time is 0.405%. The experimental result shows the efficiency

of the proposed HC matrix.
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APPENDIX B

In this appendix, we compare the proposed distance function

with that shown in [34]. HC-net is a unified framework for

geometrically complex PDEs by introducing HC for BCs

and ICs. In HC-net, the two types of distance functions are

lq(·) and exp[−´sl
q(·)], corresponding to D1(·) and D2(·)

in this article, respectively. ´s ∈ R is a hyperparameter of

the “hardness” in the spatial domain. The inputs of distance

functions are the normalized distance between the points x

and interfaces.

To validate that the proposed distance functions,

D1(·) and D2(·) are more suitable for the interface problems.

We take comparison experiments presented in Section IV with

two kinds of distance functions. In the above experiments,

all the network structures and domain decomposition results

are identical. The hyperparameter ´ in (28) and (29) is set

to 0.01, and ´s in HC-Net is set to 5.

The average MAE results of both the methods are shown

in Table XI. The variations in relative errors during training are

studied in Fig. 10. From the experimental results, it is evident

that compared with the distance function proposed by HC-Net,

the distance function used in our proposed method achieves

higher accuracy. Moreover, during the training process, our

method exhibits faster convergence and is more straightfor-

ward to train.
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