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Abstract—1In this article, a hard constraint (HC) and
domain-decomposition-based physics-informed neural network
(HCD-PINN) framework is introduced for nonhomogeneous
transient thermal analysis. In general, physics-informed neural
network (PINN) uses a global neural network to approximate
the solutions of partial differential equations (PDEs), and its
performance could decrease dramatically when the problem
becomes big or complex. To get this deficiency addressed and
simultaneously enhance the modeling capability of PINN, in this
work, the domain decomposition method (DDM)-based strategy
is introduced. In each subdomain, an independent neural network
is used to approximate the solution. Thereby, the size and
complexity of the neutral network are reduced. To facilitate
effective integration of solutions across different regions, an HC
method is proposed for automatic satisfaction of interface condi-
tions between adjacent subdomains. At the interface, continuity
conditions for temperature and heat flux are considered, with
heat flux continuity expressed in terms of the derivative of
temperature. Using the mixed residual method (MIM), continuity
conditions at the interface can be transformed into a linear
form of the neural network outputs. This eliminates the need
for differentiation, enabling automatic satisfaction of conditions
through the use of a predefined HC matrix. Ultimately, we merge
neural networks responsible for subdomains and interfaces, along
with the HC matrix, using a differentiable distance function.
This integration establishes a cohesive and unified framework.
To validate the efficiency and accuracy of HCD-PINN, several
numerical examples are studied and compared with previous
PINN methods, with COMSOL simulations as exact solutions.
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The experimental results demonstrate the superior accuracy of
our proposed method.
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I. INTRODUCTION

ITH the evolution process of semiconductor technol-
Wogy, the integration density of integrated circuits (ICs)
is increasing continuously. Further fueled by the advanced 3-D
packaging technologies [1], [2], more devices and modules can
be integrated in a limited space, which leads to a significant
increase in the heat density of ICs. The increasing heat density
poses a serious challenge to thermal design, because uneven
thermal managements would easily result in the temperature
of the ICs being too high, while not only affecting the perfor-
mance and service life of the system but also compromising
the reliability of the system. Therefore, accurate and robust
thermal analysis of ICs is crucial for their reliable operation.
To facilitate the IC design, accurate transient thermal analysis
is essential.

To accurately and efficiently facilitate the thermal analysis,
various numerical methods have been proposed in the past
years. Finite element time-domain (FETD) method [3], [4], [5]
is a widely used method for thermal analysis, which discretizes
the domain into small elements and solves the heat transfer
equation for each element using the time-domain approach,
such as Euler method [4], generalized-o method [6], leap
frog [7], and Runge—Kutta [8]. The spectral-element time-
domain (SETD) method [9], [10], [11] can be viewed as
a special case of FETD method, which discretizes solu-
tion domain with hexahedron and mainly uses high-order
polynomials to implement the interpolation [11]. The dis-
continuous Galerkin (DG) method [12], [13], [14], [15]
combines the finite-element method (FEM) and finite-volume
method (FVM). A term called “numerical flux” [16] is intro-
duced in DG for the communication of two adjacent elements,
which allows the DGTD method to model arbitrary shapes and
to achieve high-order accuracy.
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In recent years, unlike traditional numerical methods [3],
[41, [51, [9], [10], [12], [13], [14], a novel deep learn-
ing method termed as physics informed neural network
(PINN) [17], [18] has been proposed to solve nonlinear PDEs
without spatial and temporal discretization. It uses automatic
differentiation [19] as a differential operator to represent the
derivatives, avoiding discretization.

In PINN, a fully connected neural network (FCNN) is
used as the surrogate model for the solution of PDEs. The
model can be trained to approximate the solutions exactly
using the optimizer [20], [21] to minimize the sum of loss
terms of conditions in PDEs, which are governing equations,
boundary conditions, and initial conditions. PINN has been
proven to be effective in many fields such as flow mechan-
ics [22], [23], [24], material design [25], [26], heat transfer
analysis [27], [28], and geospatial modeling [29], [30].

For the traditional PINN, an FCNN is used as the surro-
gate model to approximate the solution of a PDE. Usually,
the outputs and the gradients of the FCNN are continuous.
However, for nonhomogeneous coefficient problems, due to
the discontinuous solutions and gradients, the approxima-
tion error becomes obvious. Thus, to enhance the capability
of PINN in addressing complex structures and irregular
domains, various approaches based on the domain decomposi-
tion method (DDM) have been proposed. Through tearing the
entire domain into a number of small subdomains, the com-
plexity of the PINN neural network is alleviated significantly.
For instance, the cPINN in [31] and the XPINN in [32] split
the whole domain into a set of nonoverlapping subdomains,
while the FBPINN [33] divides the solution domain into
multiple overlapping subdomains. To connect the solutions
among neighboring subdomains, the continuity conditions
across the interface are deployed as the constraints. These
methods unite the solutions of entire domain by introducing
new loss functions at the interfaces, which requires the neural
network to learn extra loss conditions and thus increase the
training cost [34].

In the traditional PINN formulations, the boundary con-
ditions (BCs) and the initial conditions (ICs) are mainly
incorporated into the training process of neural networks
through the form of loss functions, known as the soft con-
straints. Extensive researches [34], [35], [36], [37] make
efforts to integrate the boundary conditions into the neural
network solutions by modifying the structure of the neural
networks, which is referred as the hard constraints (HCs).
In [35], an HC method with a Ritz variation formulation is
proposed and integrated with the free neural network (PFNN)
method. In [37], an HC method is used to solve the forward
and inverse problems. Notably, a unified framework called
HC-Net [34] has been proposed to implement three common
types of boundary conditions using HCs, such as Dirichlet BC,
Neumann BC, and Robin BC. The HC [34], [36] not only
reduces the error in boundary conditions but also allows the
neural network to focus on learning the remaining equations,
thereby improving the performance of the neural network.

In general, thermal analysis is characterized by com-
plex structures and diverse material compositions. When
using traditional PINN for computations, significant errors
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are often present. In this article, we proposed an HC
for the interface condition enhanced domain decompo-
sition PINN framework termed as hard constraint and
domain-decomposition-based physics-informed neural net-
work (HCD-PINN) to solve the discontinuous and multiple
coefficient thermal analysis problems. Similar to the previously
mentioned DDMs [31], [32], the solution domain is divided
into several nonoverlapping subdomains, and the solution in
each individual subdomain is expressed using an independent
neural network. This scheme reduces the scale of each neu-
ral network, mitigating the training difficulty. To ensure the
continuous property of solutions across the interface, in this
work, the HC [34] strategy is resorted to. In contrast to the
traditional DDMs that introduce loss terms to achieve this
continuity, the HC method reduces the number of loss terms in
the neural network learning, thus enhancing the accuracy and
efficiency. The main idea of HC is to introduce a new neural
network for each interface and automatically satisfy continuity
through a derived matrix. The primary challenge lies in the
evaluation of the spatial derivatives of temperature for the heat
flux continuity at the interfaces. Therefore, we use the mixed
residual method (MIM) [38] method to reconstruct the outputs
of neural network, enabling the linear implementation of the
equation for heat flux continuity. The forthcoming sections
of this work will explicate the derivation process of HC
matrix. Finally, a continuously differentiable distance function
is introduced to combine the neural networks for subdomains
and interface networks, achieving an integrated structure.

Through comparative experiments, we observed that the
proposed framework is capable of addressing complex prob-
lems. Compared with the traditional PINN and DDM-based
PINN (XPINN), the proposed HCD-PINN can achieve higher
accuracy. As for the geometrically complex problem, PINN
requires a huge neural network to represent the solutions of
the PDEs, which is hard to train. However, the proposed
method needs smaller neural networks and fewer parameters
to approximate solutions, thus free of training difficulties.

The rest of this article is organized as follows. Section II
briefly introduces the formulation of problem including tran-
sient thermal analysis and structure of PINN. Section III
presents the formulation of HCD-PINN. Several numerical
results are shown in Section IV to demonstrate the effec-
tiveness of the proposed method. Specific conclusions are
summarized in Section V.

II. TRANSIENT THERMAL ANALYSIS
WITH TRADITIONAL PINNS
A. Transient Heat Transfer Problem
Assume that the domain of interest (DOI) for the transient
thermal analysis is denoted as £ with 0 representing the
boundary of DOI.

The governing PDEs of the transient heat equation are
defined as

AT (x,1)
PCy—p = =V VTN + Q. xe@ (1)
nx) kVT(x,t) = —h(T(x, 1) —T,), xe€dR (2
T(x,0) =Ty, xc®. 3)
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In the above formula, (1) is the heat equation, (2) and (3)
are the convective boundary condition and the initial condition,
respectively; Q, p, Cp,, and « denote the heat source, the
density, the heat capacity, and the thermal conductivity of the
material, respectively; T, and Ty indicate the ambient and ini-
tial temperature of the problem, respectively, and & represents
the convection coefficient of the boundary condition.

B. PINN Method for Transient Thermal Problem

In this work, PINNs use an FCNN to approximate the
solution of transient thermal equation. Namely,

T(x,t) = NN(x, t; 8) 4)

where f"(x, t) is the approximated solution, NN(x, #; ) is the
output of FCNN, (x, ¢) is the input of the network in the spatial
and time domains, and @ is the parameter of the network.

The neural network includes an input layer, an output layer,
and a certain number of hidden layers. The forward pass
between two layers is expressed as

yi=o(w;-x; +b;) )

where y; and x; denote the input and output of the ith layer,
respectively; w; and b; are the weights and biases of the
ith layer, which are trainable parameters; o (-) is a nonlinear
activation function, and the choice of o () will be discussed
later in Section I'V-C.

The parameters of the neural network can be trained by
minimizing the loss function defined as

L=wg Lo+wy Ly+w-L; 6)
with
N/ -~ 2
1 - 0T (x;,¢; A
£y =3 |pc, TED g i 0| @
Nei3 ot
Np ol 2
1 oT i li A
Ly = 2| O G =T (8)
Nb i=1 on
1 & 2
E,:EE}T(x,,O)—T(ﬂ (9)

where Ny, Nj, and N; represent the number of sampling points
pertinent to the governing equations, the boundary conditions,
and the initial data, respectively; and L,, £;, and £; are the
loss terms corresponding to the heat governing equation, the
boundary conditions, and the initial conditions, respectively.
The loss weights wg, wy,, and w; determine the relative impor-
tance of different terms. The role of loss weights is primarily
to balance the values of different loss terms to ensure balanced
convergence [41]. In this article, we estimated the magnitude
of each loss term in advance and determined loss weights to
make the values of loss terms relatively close. Across all the
studies in this article, the same weights are used for different
methods to minimize the influence of weights on the results
and purely compare the impact of neural network structures
on accuracy. The impact of loss weight on computational
accuracy will be discussed in Section IV-C.
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When solving time-domain problems, unlike the traditional
computational methods, PINN only requires adding time as an
additional dimension to the neural network’s training datasets.
Moreover, PINN is not sensitive to dimensions, making it
well-suited for solving high-dimensional problems. However,
for transient analysis, PINN does encounter certain issues,
such as the error accumulation over time and difficulties in
predicting the “sharpness” of the solution [39]. Efforts have
been proposed to overcome these problems, such as “sequence
to sequence” [39] learning and decomposition in the time
domain [40].

Traditionally, the main issue arises when the time span is
too long, whereas most activation functions are more adept at
computing inputs within the range of [—1, 1]. To address this
deficiency, we normalize the time domain as

t€[0,5] -t €[0,1] (10)

and thus, the derivative of temperature with respect to time
can be transformed as

AT (x, 1) . AT (x, 1)

a0 ot

By normalizing the time domain, the PINN can solve the
transient problems much more accurately.

(1)

III. FORMULATION OF PROPOSED HCD-PINN
A. HC for Initial Condition

For transient heat problems with known initial conditions,
when using PINNs, the HC method [34] incorporates the initial
conditions into the estimated solution as

f"(x, =T, 01— exp[—yt]) + To(x) 12)

where y is a hyperparameter for initial condition. T (x, 7) is
the output of the neural network. Ty(x) is usually given as the
initial condition for transient thermal analysis. (1 —exp[—yt])
ensures that at + = O the estimated solution is always
equal to Ty(x), and the larger y causes the initial conditions
satisfy better. However, too large y may cause the derivation
of (1 —exp[—yt]) with respect to ¢ too sharp, which will
deteriorate the accuracy of the neural network. Therefore,
in this article, y is set to 10.

Using (12), the initial conditions are automatically satisfied
in the solution process. Consequently, the loss function (9) can
be eliminated. Thereby, the adoption of the HC method not
only reduces the training burden on the neural network, but
also makes the training process focus more on the other loss
components.

B. Domain Decomposition Method

To solve the heat transfer problem with different materials,
a DDM is introduced first. The main idea of DDM is to divide
the solution domain into several nonoverlapping subdomains
according to the type of material, ensuring that a single neural
network is built for each media

Q= uQ’u...ue. (13)
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An independent neural network is used to approximate the
solution of each subdomain as
NS*(x, ) = NN&, (x, 7; 0%

sub sub) : Rd+] - Rd+1 (14)

where d is the dimension of heat transfer problems. NSK(x, 1)
means the output of NN for subdomain €*. The input dimen-
sion of NN is d + 1, including the spatial coordinates x
and time ¢. The output dimension is d + 1, including the
solution of heat transfer problems T (x, f) and its temperature
gradients p(x,t), which will be discussed in Section III-C.

C. HC for Interface Conditions

Suppose that 9 denotes the interface between two
neighboring subdomains Q¢ and @', At the subdomain inter-
face X, the continuity conditions are defined as

" —T' =0
n(x) - g" +n*x)-¢' =0

15)
(16)

where n*(x) and n'*(x) represent the unit normal vector
on the interface 92" from €F to @' and from €' to QF,
respectively; The variable ¢ denotes the heat flux given by

¢“ = —k"VTE,  x € QK. (17)

The temperature continuity at the interface between subdo-
mains ¢ and @' is enforced by (15), while the continuity
of the normal component of the heat flux density is enforced
by (16).

According to [38], an extra field p(x, t) is introduced as a
part of the solution to (1)

,Pa(x,1) =VT(x,1)

where Ty (x,t) = (T (x, t), p(x,t)) is the new solution of (1).

By applying (18) to (16), the continuity conditions can be
converted into the linear combinations of Ty (x, t), which are
given by

K_k("}lkl . pk(x’ t)) + K_l(ﬁlk . p](x’ t)) — O

px, ) =(pi(x,0),... (18)

19)

Instead of introducing new loss functions to learn (15)
and (19), we use HC to make them satisfied automatically [34].
Because the interface conditions have been transformed into
linear combinations of Ty (x, t), we can use matrix manipula-
tion to combine the outputs of NN.

First, for each interface, an additional NN is proposed for
HC as

(x,1; 08 ) RIFL 5 R™

nter

NI¥ (x, t) = NNV

inter

(20)

where NIF(x, f) means the output of NN for interface QM
d + 1 represents the input dimension, including the spatial
coordinates x and the time #; and m denotes the output
dimension, which is equal to the number of nonzero elements
dy in the normal vector of the interface. For example, if the
interface is perpendicular to the x-axis, then its normal vector
is n = (1,0,0), and the number of nonzero elements is
denoted as dy = 1. The relationship between m and dj is

dy=1,2

m = 1240 1)
2dy+2, dy>3.
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Then, we introduce a pair of HC matrices B’ (x) € RY*! x
R™ to reconstruct NI¥ (x, 1). Namely

T (x, 1) = BT (x)NI* (x, 1)
T (x, 1) = B~ (x)NI¥(x,1).

(22)
(23)
The interface conditions in (15) and (19) can be satisfied
automatically by the combination of the additional neural

network in (20) and a well-selected HC matrix B’ (x).
If dy = 1, the HC matrices can be obtained easily as

1 0
vore[s ¢

_ 1 0
Bw0=[o cooew)

Similarly, if d = 2, the HC matrix should be implemented
with m = 4 linearly independent vectors. The HC matrix is
expressed as

(24)

(25)

1 0 0 O
B+(x) =10 flz 0 ﬁ] (26)
| 0 -n; 0 1,
1 0 0 0
B_(X) =10 0 I”iz K]ﬁl (27)
_0 0 —ﬁl Klﬁz
where k1 = «k1(x)/k (x) is the contrast of the coeffi-

cients k(x).
The general solution for dj
in Appendix A.

> 3 problem is detailed

D. Smoothly Gradient Distance Function

In this section, the smoothly gradient distance func-
tions D(-) are introduced to connect the proposed NSk (x, 1)
and NI¥ (x, t). They are expressed as

[0, I<—B
2
(l:/;ﬂ)’ _p<l<p
D) =11, B<l<1-8 (28)
Y
W, l—B<l<1+p
1, 1+8<I
and
1, l<—-B
2
1_(1:;)7 B<i<p
Dyl)=141-1, B<l<1-8 (29)
2
0, 1+8 <l

where [ is the normalized distance between the points x and
interfaces; § is a hyperparameter, which controls the shape of
these two types of distance functions. In general, the value
of B is chosen as small as possible. However, a too small 8
makes the gradients of distance functions too sharp, which
will deteriorate the accuracy. In this article, 8 is set as 0.01.
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Fig. 1.

Schematic of the proposed DHC-PINN framework. The structure of the schematic is inspired by [43]. The solution domain is divided into several

subdomains based on materials. Neural networks for subdomain NS and NS~ are introduced to approximate the solution in Q% and ™, respectively. Neural
network NI is introduced for interface conditions. Note that although NI is served for interface conditions, the input spatial coordinates x should be the two
subdomains adjacent to the interface x € Q1 U Q™. Then, the aforementioned two types of neural networks are combined for each subdomain’s solution

through distance functions D(-) and HC matrix B(x).

The distance functions D;(/) and D,(l) are served as the
weights of NS(x, ¢) and NI(x, ), respectively. Since NS(x, ¢)
is merely responsible for the approximation inside the corre-
sponding subdomain, to ensure strict satisfaction of interface
conditions, its weight at the interface is set to be 0. On the
counterpart, NI(x, t) primarily contributes to the solution at
the interfaces, with its weight gradually decreasing as the
distance from the interfaces increases.

The proposed distance functions proves to be more perform-
ing than the one presented in [34]. The detailed experiments
are shown in Appendix B.

E. Framework of the Proposed HCD-PINN

Based on the theories listed above, the solution of heat
transfer problems in subdomain €F can be constructed via
the PINN as

TX (x, 1) = Dy (I e (0))NSK (x, 73 65,))

sub

my
+ D Do (ler () B ONT (2,15 0ly) - (30)
i=1
where li"mer(x) with i = 1,2, ..., m; denotes the distance to
interfaces of F and its m; neighbors.
For better understanding, the PINN-based neural network
framework structure for the thermal analysis is shown in Fig. 1.
Due to the application of the HC for the initial conditions,
the loss function (9) pertinent to the initial conditions can
be eliminated automatically. Thus, in subdomain k, the left
parameters of the proposed framework can be trained by
minimizing the loss function defined as below
M
L= (wg- Lo+ wy- Ly +w,-L}).
k=1

€29

with
2

N, ~
| pr 2T 0 — Vit P, n — 0F

1
L= — C
e= N 2P

(32)

Ny
1 . .
£y = Ny S|k ) - pr e, ) + hEE e 1) — T
i=1

(33)

1 i A 2
k ~k k

£k = N; ;Hp (xi, 1) = VT*(x;, 1) ]5- (34)
where Ny and N, represent the number of residual points
sampled in €% and the number of boundary points, respec-
tively; L’é‘,, £k, and L penalize the residuals of heat governing
equations, the boundary conditions, and the extra field (18) in
subdomain €2, respectively.

IV. NUMERICAL RESULTS

In this section, two numerical results comparing HCD-PINN
and PINN method [17] and DDM-based PINN method
(XPINN) [32] are shown to demonstrate the effectiveness and
accuracy of the proposed method.

The implementation of each method mentioned in this
section and the training of neural networks were conducted
using PyTorch [42]. The geometries of all the examples in this
section are modeled with Deepxde toolbox [18]. The residual
points, initial points, and boundary points used in training
are selected randomly through the pseudorandom algorithm
in Deepxde toolbox. To better explore the solution space [44],
a strategy for reselecting training points every 20 epochs is
adopted during the training process for each method.
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Fig. 2. Profile of the regions for Example I.

TABLE I
MATERIAL PROPERTY DETAILS OF THE FIRST EXAMPLE

£ (W/[m-K])  Cp(J/kg-K]) p(kg/[m?))
I 2 2 2
1 1 1 1

Region

For accuracy verification, the reference results are calcu-
lated by a finite-element-method-based commercial software
COMSOL Multiphysics.

In this article, all the neural networks are trained with
two optimization methods, Adam optimizer [20] and second-
order L-BFGS optimizer [21]. When the loss function is
optimized to be small enough with Adam optimizer, we use the
quasi-Newton, full-batch gradient-based L-BFGS optimizer
for further optimization. All the experiments are conducted on
a desktop with Intel 3.6-GHz Core (TM) i9 CPU and 16-GB
RAM under Windows Operating System. For convenience,
we define the structure of NN (4) used in this article as: [a] +
[b] x ¢ + [d], which means that the NN has input layers with
a neurons, ¢ hidden layers with b neurons in each hidden layer,
and output layer with d neurons.

A. Two-Dimensional Heat Convection with Rectangle
and Semicircular Domain

For the first example, a theoretical 2-D model composed
of two different materials is investigated, which is specifically
designed to validate the effectiveness of the proposed method
in addressing 2-D inhomogeneous problems. As illustrated
in Fig. 2, the whole domain is a rectangular region divided by a
quarter circle into two parts. The dimensions of the rectangular
region are 2 x 1.5 m, and the radius of the circle is » = 1 m.
The materials in Regions I and II are totally different, where
the material parameters are listed in Table I.

Within the entire domain, a constant heat source defined
as Q = 50 W/m?® is introduced. The boundaries of the
region are subjected to the convective heat condition with
h = 1 W/m?. We conducted computations to analyze the
temperature variation process in ¢ € [0, 10] s under the initial
temperature 7y = 300 K.

We compared the performance of three methods in
solving this problem: PINN [17], XPINN [32], and the
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TABLE I
COMPARATIVE EXPERIMENTAL RESULT FOR EXAMPLE I

Mean Absolute Percentage Error (MAPE) of T

Param

t=0s t=2>5s t=10s Average
PINN 0.393% 1.727% 1.671% 1.912% 15.0K
XPINN 0.110%  25297%  26.711% 21.741% 13.5K
HCD-PINN  0.002%  0.266% 0.219% 0.260% 11.8K

proposed method. The details of comparative experiments are
shown as follows.

1) PINN: Original PINN Method The whole solution
domain is approximated by a single neural net-
work. In this method, the number of residual points
is Ny =8192, the number of boundary points is
N, = 2048, and the number of initial points is
N; = 2048. The structure of NN is [3]+ [60] x 5+ [1].

2) XPINN: Original XPINN Method The solution domain
is divided into two subdomains, and two independent
NN are used for each subdomain. In this method,
Ny = 4096, N, = 1024, N; = 1024, and Niyer = 512
extra points are collocated for XPINN. The structure of
NN in each subdomain is [3] + [40] x 5 + [1].

3) HCD-PINN: Proposed HCD-PINN Method The solution
domain is divided into two subdomains. In this method,
Ny = 4096, and N, = 1024. The structure of NN in
this method is NI:[3] 4+ [30] x 5 + [3], and NS:[3] +
[30] x 5 + [4].

In the COMSOL software, N, = 20385 points and
40271 triangle meshes with second-order Lagrange elements
are tested as the standard solutions. The computation time for
COMSOL is about 136 s. In this example, the loss weights
are set as (wg, wge, wg) = (1,1, 1).

To avoid the “division by zero issue” and simultaneously
enhance the contrast of the experimental results, we choose
T, = 273.15 K as the reference temperature and calculate the
mean absolute percentage error (MAPE) as

Z:‘l:l’fi - Ti‘
Z;’zl(Ti —273.15 K)

where n is the number of testing points generated from
COMSOL Simulations; f‘i and 7; are obtained from NNs and
COMSOL, respectively. The experimental result of Example I
is shown in Table II. In this table, the MAPE of T and the
number of trainable parameters in each method are compared.
It is observed that the accuracy of the proposed method is
significantly higher than those from other methods with fewer
trainable parameters.

Table III gives the training and the prediction times for
each method. The first and second columns show the training
times for one Adam and L-BFGS epoch, respectively; the third
column shows the total training time and the fourth column
gives the prediction time for one point. It can be observed that
the HCD-PINN method does not significantly increase training
time compared with the other methods. However, in terms
of the prediction time, there is a certain increase due to the

MAPE = (35)
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TABLE III
TRAINING AND PREDICT TIME FOR EXAMPLE I

Adam (s) L-BFGS (s) Training (s)  Prediction (ms)
PINN 0.086 1.785 2043 0.21
XPINN 0.075 1.503 1728 0.18
HCD-PINN 0.091 1.724 1997 0.97
10° T T T
10T EN —— HCD-PINN|
“ i ——XPINN
m —— PINN
=¥
<
=107
10-3 L 1 " 1 I 1
0 1000 2000 3000 4000
Training Epoch
Fig. 3. Trajectories of relative error of 7 in Example I as a function of

training epoch for PINN, XPINN, and HCD-PINN.
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Fig. 4. Temperature distribution (unit: K) at r = 10 s by (a) COMSOL and
(b) HCD-PINN. Error distribution (unit: K) with respect to COMSOL results
at + = 10 s by (c) HCD-PINN and (d) PINN.

necessity of combining outputs from multiple neural networks
into the HCD-PINN.

To validate that all the methods are able to converge during
the training, the variations in MAPE with respect to T are
presented in Fig. 3. Notably, the proposed method achieves
the minimum relative error, which is further emphasized
in Fig. 4. In Fig. 4, the temperature distributions solved by
COMSOL and the proposed method at t+ = 10 s are plotted.
In addition, the absolute differences between our proposed
method, the PINN method, and the COMSOL are also given
in Fig. 4. It can be seen that the maximum temperature error
for DHC-PINN is 0.244 K, while the maximum error for the
PINN method is 1.909 K.
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Aluminum
Silicon
Fig. 5. Profile of the structure for Example II.
TABLE IV
THERMAL PARAMETERS OF THE CHIP

Silicon  Aluminum

Thermal Conductivity (W /[m - K]) 131 238

Density (kg/m?) 2,329 2,700
Heat Capacity (J/[kg - K]) 700 900

B. Three-Dimensional IC Chip Package

In the second example, a 3-D IC chip package with four
pins mounted on a printed circuit board (PCB) is studied.
The structure of IC chip package is shown in Fig. 5. The
dimensions of the bottom chip, the top chip, and pin are
50 mm x 49 mm x 5 mm, 50 mm x 49 mm x 5 mm,
and 50 mm x 4 mm x 40 mm, respectively. The chip is
composed of two different materials, whose property details
are given in Table IV.

The power distribution of chip is a Gaussian pulse [13]
defined by Q = 107 exp[—2/100] W/m?3. All the surfaces of
the chip are enforced by the convective boundary conditions
with an ambient temperature of 7, = 300 K and convection
coefficient of 7 = 200 W/[m? - K]. The time scale of the
example is ¢ € [0, 250] s. To balance the loss terms, the loss
weights are set as (wg, wge, wg) = (1, 10°, 10%).

In this example, the performances of four representative
methods are compared. Namely, PINN, XPINN, PINN-IC, and
the HCD-PINN. As shown in Fig. 5, the structure is composed
of six regular rectangular solids. When using methods related
to DDM such as XPINN and the HCD-PINN, we teared the
solution domain into two small regions based on different
materials. However, for the purpose of achieving a uniform
distribution of the sampling points, in each rectangular region
the number of sampling points is set to be equal. In this
example, Ny = 1536, N, = 768, and N; = 512. In addition,
Ninier = 512 sampling points are chosen on the interface
between two neighboring subdomains. The details of the
comparative experiments are shown as follows.

1) PINN: Original PINN Method In this method, the struc-
ture of NN is [4] + [60] x 5 + [1].

2) XPINN: Original XPINN Method The solution domain is
divided into two subdomains. In this method, the struc-
ture of NN in each subdomain is [4] + [40] x 5 + [1].

3) PINN-IC: PINN Method with HC for initial condition,
the details can be seen in Section III-A. In this method,
the structure of NN is [4] + [60] x 5 + [1].
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TABLE V
COMPARATIVE EXPERIMENTAL RESULT FOR EXAMPLE II

Mean Absolute Percentage Error (MAPE) of T

Param
t=0s t=50s t=100s t=150s t=200s t=250s  Average
PINN 1.667% 2.600% 2.016% 1.144% 0.497% 1.012% 1.495% 15.0K
XPINN 12.453%  36.314% 17.230% 11.583% 8.940% 3.767% 18.758%  13.6K
PINN-IC 0.008 % 3.374% 2911% 0.915% 0.202% 2.841% 1.875% 15.0K
HCD-PINN  0.008 % 0.704 % 1.004 % 0.816% 0.381% 1.191% 0.778 % 11.0K
T(K) T(K) 360 T T T T
360 360 350 L o CcomsoL | ]
=——HCD-PINN
Q 340 |- = XPINN i
355 355 =4 PINN
3330 —— PINN-IC
I
350 350 320
=
& 310
345 345
300 BTV NO00008
(a) (b) 290
0 50 100 150 200 250
Time(s)
Fig. 7. Transient temperature at » = (0, 0, 50) mm solved by COMSOL,

(d)

()

Fig. 6. Temperature distribution (unit: K) at # = 50 s by (a) COMSOL and
(b) HCD-PINN. Error distribution (unit: K) with respect to COMSOL results
at + = 50 s by (c) HCD-PINN and (d) PINN.

4) HCD-PINN: Proposed HCD-PINN The solution domain
is divided into two subdomains. In this method, the
structure of NN in this method is NS:[4] + [30] x
5 + [4], and NI:[4] + [30] x 4 + [2].

In this example, all the models are trained using 2000 iter-
ations for Adam optimization and 1000 iterations for
L-BFGS optimization. As for the COMSOL simulation,
N, = 169447 points and 931874 tetrahedron meshes with
second-order Lagrange elements are selected, serving as the
reference solution to compare the performance of each model.
The computation time of COMSOL is about 386 s. The
MAPE at each sampling time, the average MAPE over
the entire time, and the sizes of each model are presented
in Table V. It can be observed that the proposed method
exhibits the highest accuracy in both the almost time and in
average. Table VI gives the training and predict time for each
method.

In Fig. 6(a) and (b), we compare the temperature dis-
tributions solved by COMSOL and the proposed method
at + = 50 s. In addition, the differences between our proposed
method, the PINN method, and the COMSOL simulation are
also provided. As can be seen, the maximum temperature

HCD-PINN, xPINN, PINN, and PINN-IC.

10° T T
= 10"
G
S
m
~
<
=107

PINN-IC
—— HCD-PINN
10*3 1 1
0 1000 2000 3000
Training Epoch
Fig. 8. Trajectories of relative error of T in Example II as a function of

training epoch for PINN, XPINN, PINN-IC, and HCD-PINN.

TABLE VI
TRAINING AND PREDICT TIME FOR EXAMPLE 11

Adam (s) L-BFGS (s) Training (s)  Prediction (ms)
PINN 0.144 3.110 3398 0.20
XPINN 0.143 2.829 3115 0.17
PINN-IC 0.140 2.509 2789 0.22
HCD-PINN 0.181 3.649 4011 1.02

error for the proposed method is 1.760 K, while that of
PINN is 3.929 K, which shows that our method is more
accurate.

To further verify the accuracy of the proposed method,
in Fig. 7, the transient temperature at » = (0, 0, 50) mm is
studied and compared with COMSOL and the other methods.
It is evident that the proposed method aligns most closely with
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TABLE VII
MAPE OF T ON DIFFERENT ACTIVATION FUNCTIONS FOR EXAMPLE I

tanh sigmoid  softplus swish
PINN 1912% 1.705%  1.670%  1.670%
HCD-PINN  0.260%  6.766%  0.379%  0.392%
TABLE VIII

MAPE OF T ON DIFFERENT ACTIVATION FUNCTIONS FOR EXAMPLE II

tanh sigmoid  softplus swish
PINN 1.495%  4.091%  1.542%  1.440%
HCD-PINN  0.778%  1.732%  0.746%  0.782%
TABLE IX

MAPE OF T ON DIFFERENT LOSS WEIGHTS FOR EXAMPLE |

wg =0.01  wyg=0.1 wg =1 wg =10  wy = 100
wp, = 0.01 0.508% 0.492% 0.501% 0.592% 0.960%
wp = 0.1 1.149% 0.383% 0.378% 0.407% 0.473%
wp =1 1.770% 0.770% 0.260 % 0.373% 0.385%
wy = 10 6.942% 1.021% 0.490% 0.446% 0.488%
wp = 100 8.414% 75.665%  32.153% 0.502% 0.507%
TABLE X

MAPE OF T ON DIFFERENT LOSS WEIGHTS FOR EXAMPLE II

wg =01 wg=1 wg=5 wyg=10
wp, = 10° 1L.113% 7.362%  10.899%  15.460%
wp, = 10° 2.332% 0.778%  1.052% 0.968%
wp =5 x 108 6.381% 1.686%  2.712% 3.512%
wp, = 107 10.7711%  2.183%  4.385% 4.443%

COMSOL simulation results. We plot the variation in MAPE
of T during the training epoch in Fig. 8. It can be seen that
HCD-PINN has converged to the lowest relative error among
different methods.

C. Study of Activation Functions and Loss Weights

In this section, we study the impact of different activation
functions and loss weights on the experimental results.

First, we compared the performances of four commonly
used activation functions (tanh, sigmoid, softplus, and swish)
via two canonical examples. In Tables VII and VIII, the
MAPEs of the time-domain temperature 7 for the two
examples with different activation functions are presented.
It can be seen that except sigmoid in Example I, HCD-
PINN achieves higher accuracy than PINN. Comparing various
activation functions, we found that tanh, softplus, and swish
yielded similarly excellent results. The poorer accuracy
associated with sigmoid stems from its lack of negative
output.

Second, to study the influence of unbalance loss terms,
we changed the loss weights to take some ablation studies.
In each example, we repeated the experiment with fixed w,
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but varied w,, wj. Tables IX and X give the MAPE of time
domain T with different loss weights. In general, different loss
weights result in varying accuracies. When loss weights are
significantly different in proportion, errors tend to increase.
In comparison to Example I, the accuracy in Example II is
more affected by loss weights, which is attributed to more
complex geometric structure. For Example I, changes in loss
weights by around ten times have almost no impact on the
error.

V. CONCLUSION

In this article, an HC and DDM enhanced PINN frame-
work is introduced for solving transient thermal problems
in complex structures. The application of DDM enhances
the representative capability of PINN, allowing the use of
multiple neural networks to compute solutions for com-
plex regions. Meanwhile, the HC method ensures continuity
between solutions in different subdomains, reducing the num-
ber of loss terms that the neural networks need to learn
during training. This, in turn, alleviates the computational
burden and improves approximation accuracy. Therefore, com-
pared with the traditional PINN and DDM-based XPINN,
the proposed method demonstrates higher accuracy in solv-
ing transient heat problems involving complex regions with
different material compositions. The introduced computational
framework empowers PINN to handle complex problem sce-
narios, paving the way for applications of scientific machine
learning.

APPENDIX A

In this Appendix, a general solution for the HC matrix
is studied. We take the parameter «; as the contrast of the
coefficients o (x)

Ky =K (x) /K (x). (36)

The interface condition can be expressed as
TH(x) =T (x) 37)
kit ptx) =" - p~(x). (38)

If dimension of the problem js did = 3), the HC
matrix B'(x) can be defined as B'(x) € Rt! x R2Zx(d+D,
And B' can be represented using four separate matrices

B (x) = [1 (39)

N(x) O r(x):|

- 1
B~ (x) = |: 0O N(x) fqr(x):|' (40)
The first part is 1 in the first column, which is served
for (37), and O is the null matrix with dimension d x d.
The vacant positions in the matrices are filled with zeros.
The next part is the basis of the null space for the following
equation, in the meanwhile ensuring the degrees of freedom
of the NN outputs:

n(x) - p(x) =0. 41
The matrix N(x) € R x R? is given by
N(x) = [Bi(x); B2(x)i .5 Ba ()] (42)
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Here, Bi(x) is the Gram—Schmidt orthogonalization [34] of
normal vector 7(x), which is performed as

Be(x) = ex — (ex - i (x))ia(x),

where e; is the kth row of the identity matrix I,. The matrix
N (x) can be expressed as

k=1,...,d (43)

N@x) =1, —i(x) hx) (44)
which satisfies that
i(x) - Nx)R =q(x)- (I, — a(x)"7ax)R
= (A(x) — Ax)Ax)A(x))R
=0 (45)

where R € R? is an arbitrary column vector.
The last part is a column vector r(x), whose dimension is d

r(x) = [mx), na(x), ..., ng(x)]". (46)

The proof of the proposed HC matrix is expressed as
follows. The unknowns (u™(x), p*t(x)) and (u™(x), p~(x))
in the interface are transformed as

" (x), p*(x)) = BT (x)NI (x)
(™ (x), p~(x)) = B~ (x)NI (x).

(47)
(48)
After decomposing the HC matrices, we obtain the follow-

ing expressions:

ut(x) =NV @)[1] = u (x) (49)

where NI/ (x)[1] means the first column of output of NI (x),
and (37) is satisfied.
By incorporating (45) and (46) into (47) and (48), we get
at(x) - ptx) =) NNV (x)[2:d+ 1]
+ i - r(x)NV(x)[2d + 2]
=i - r(x)NU(x)[2d + 2]
A~ (x)-p (x) =ax) NNV (x)[d+2:2d+ 1]
+ kit - r(x)NT (x)[2d + 2]
= kit - r(x)NV (x)[2d + 2].

(50)

(S

From (50) and (51), the interface condition (38) is satisfied
automatically. And the proposed HC matrix (39) and (40)
satisfies the interface condition. In addition, p~(x) and p™(x)
are composed of different parts of NI/ (x). Therefore, they are
linearly independent, ensuring the degrees of freedom of the
outputs.

To validate the proposed HC matrix, a 3-D normal vector
example is studied. Similar to Section II, the solution domain
is composed of two geometries. One is a cube with size of
1.5 x 1.5 x 1.5 labeled as Region I, and the other is a
sphere with a radius of 1 labeled as Region II. The material
property details of the region are shown in Table I. Other
parameters of the problem are set as follows: @ = 50 W/m?,
h =1W/[m? K], time scale t € [0,4] s, T = 300 K,
T, = 300 K, NNpain:[4] + [40] x 5 + [4], and NNigeer:[4] +
[30] x 4 + [8]. The framework is trained with 3000 itera-
tions of Adam optimization and 1000 iterations of L-BFGS
optimization.
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Fig. 9.  Temperature distribution (unit: K) at r = 4 s by (a) COMSOL.
Error distribution (unit: K) with respect to the exact solution at t = 4 s by
(b) HCD-PINN.

TABLE XI
COMPARATIVE EXPERIMENTAL RESULT FOR DISTANCE FUNCTIONS

Average MAE of T

Example I ~ Example II
HCD-PINN 0.260 % 0.778%
HC-Net 0.484% 2.146%
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Fig. 10. Variation in relative error compared with HC-Net and HCD-PINN
for (a) Example I and (b) Example II.

The temperature distribution by COMSOL and error dis-
tribution comparing the proposed method and COMSOL is
shown in Fig. 9. The maximum temperature error compared
with COMSOL is 0.7529 K. The mean relative error in total
time is 0.405%. The experimental result shows the efficiency
of the proposed HC matrix.
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APPENDIX B

In this appendix, we compare the proposed distance function
with that shown in [34]. HC-net is a unified framework for
geometrically complex PDEs by introducing HC for BCs
and ICs. In HC-net, the two types of distance functions are
[9(-) and exp[—pBl?(-)], corresponding to D;(-) and D,(-)
in this article, respectively. B; € R is a hyperparameter of
the “hardness” in the spatial domain. The inputs of distance
functions are the normalized distance between the points x
and interfaces.

To validate that the proposed distance functions,
Di(+) and D,(-) are more suitable for the interface problems.
We take comparison experiments presented in Section IV with
two kinds of distance functions. In the above experiments,
all the network structures and domain decomposition results
are identical. The hyperparameter 8 in (28) and (29) is set
to 0.01, and B, in HC-Net is set to 5.

The average MAE results of both the methods are shown
in Table XI. The variations in relative errors during training are
studied in Fig. 10. From the experimental results, it is evident
that compared with the distance function proposed by HC-Net,
the distance function used in our proposed method achieves
higher accuracy. Moreover, during the training process, our
method exhibits faster convergence and is more straightfor-
ward to train.
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