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Abstract—This letter proposes a novel deep learning (DL)-based
fast full-wave broad-band solver to realize electromagnetic for-
ward (EMF) modeling for 2-D dielectric target. This DL-based
EMF solver is based on the complex-valued deep residual convolu-
tional neural network (DRCNN), which employs the residual block
and deep convolutional operation to improve its generality and
performance. While the input of DRCNN combines the incident
electromagnetic (EM) field at the arbitrary frequency within the
extremely-broad frequency band with the contrasts distribution of
the region-of-interest (ROI), the corresponding output is the total
EM field illuminated by the input incident EM field. The training
data are created based on only the simple synthetic dataset, while
the incident EM fields are produced by the sources surrounding
ROI. Compared with traditional approaches, EMF modeling has
been realized with high accuracy and the greatly reduced com-
putation time. Unlike most of reported DL-based methods, the
proposed method can work on the extremely-broad frequency
band. Numerical examples based on class-specific 2-D dielectric
objects demonstrate the validity of this broad-band EMF solver,
which acts as the potential candidate for modeling EMF process in
real time.

Index Terms—Convolutional neural network, deep learning
(DL), deep residual convolutional neural network (DRCNN),
electromagnetic forward (EMF) process, real time.

Manuscript received 30 April 2023; revised 6 June 2023; accepted 7 June
2023. Date of publication 4 March 2024; date of current version 4 June 2024.
This work was supported in part by the Research Grants Council of Hong Kong
under Grant GRF 17207114 and Grant GRF 17210815; in part by the AOARD
under Grant FA2386-17-1-0010; in part by NSFC under Grant 61271158, in part
by the Hong Kong UGC under Grant AoE/P-04/08; in part by the Hong Kong
Research Grant Council under Grant GRF 12300218, Grant 12300519, Grant
17201020, Grant 17300021, Grant C1013-21GF, and Grant C7004-21GF; in part
by Joint NSFC and RGC N-HKU769/21; and in part by the Fellowship award
from the Research Grants Council of the Hong Kong Special Administrative
Region, China, under Grant HKU PDFS2122-7S05. (Corresponding author:

Michael Ng.)

He Ming Yao is with the Department of Materials, Imperial College London,
London, U.K. (e-mail: yaohmhk@connect.hku.hk).

Huan Huan Zhang is with the School of Electronic Engineering, Xidian
University, Xi’an 710071, China (e-mail: hhzhang@xidian.edu.cn).

Lijun Jiang is with the Department of Electronic Engineering, The Chinese
University of Hong Kong, Hong Kong (e-mail: ljjiang@ee.cuhk.edu.hk).

Michael Ng is with the Department of Mathematics, Hong Kong Baptist
University, Hong Kong (e-mail: michael-ng@hkbu.edu.hk).

Digital Object Identifier 10.1109/LAWP.2024.3372437

I. INTRODUCTION

M
ODELING the electromagnetic forward (EMF) process
has been referred to an extremely important task for

computational electromagnetics (CEM) research [1], [2], [3],
[4], [5], [6]. The EMF process have had a wide variety of appli-
cations, such as various electromagnetic (EM) inverse problems,
antenna design and remote sensing [1], [2], [3]. As a typical
CEM-based problem, the key mission of EMF modeling is to
solve Maxwell’s equations [2], [3], [4], which are discretized and
converted into matrix equations. These induced matrix equations
usually have the big number of unknowns and will occupy lots of
computing resources to solve. Various typical EM computational
algorithms, involving finite difference time domain and method
of moments (MoM), were proposed for realizing EMF modeling
for various practical cases [4], [5], which have usually been
transformed into various differential and integral formats [4],
[5], [6]. Evidently, traditional techniques for EMF modeling fall
short in addressing the demands of real-time application scenar-
ios [4], [5], [6]. Particularly, when faced with intricate situations,
EMF-related challenges are characterized by the presence of an
enormous number of variables, often reaching into the millions,
which unavoidably brings huge computation cost [4], [5], [6].
Therefore, computational efficiency has been a long-standing
challenge in EMF modeling [4], [5], [6], [7], [8].

With the development of various high-performance computa-
tion platforms, artificial intelligence and machine learning (ML)
techniques [9], [10] have been revolutionizing computational
science [11], [12], [13], [14]. Meanwhile, the deep learning
(DL) technique [15] is being applied into solving different
EM problems [16], [17], [18], [19], [20], [21], [22]. In fact,
numerous studies have explored the integration of ML strategies
to enhance EMF modeling [16], [17], [23], [24], [25], [26], [27].
For instance, Yao et al. [16] explored the innovative integration
of artificial neural networks within MoM framework. Plus, by
using DL technique, the fast solver to solve Poisson’s equations
has been introduced for computing the distribution of potential
2-D scenarios by convolutional neural network [17]. In addition,
a toy DL-based EMF solver has been proposed, although its ap-
plication is limited only to several certain EM incident directions
and in the specific frequency [26]. Although the application of
ML-based models provides the higher efficiency to realize EMF
modeling than the conventional methods, most of the reported
DL solvers to solve EMF problem can only work on one chosen
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Fig. 1. Modeling setup for ROI: 2-D TMz wave scenario.

frequency [17], [26]. This challenge greatly narrows the range
of application for these DL-based EMF solvers.

This work introduces the DL solver for realizing EMF mod-
eling within broad frequency band. This proposed EMF solver
has been designed by employing deep residual convolutional
neural network (DRCNN). Based on this proposed DRCNN, the
total EM field in region-of-interest (ROI) has been successfully
computed with low computational cost and high accuracy, which
also indicates its potential for being applied to imaging of 3-D
metallic targets [27]. Due to its excellent capability, this pro-
posed EMF solver indicates the satisfactory frequency tolerance,
so that it can work on the extreme broad frequency band (i.e.,
200 MHz–2 GHz).

Thanks to the power of the proposed DRCNN, the merits of
the introduced DL method can be encapsulated as follows.

1) Computation efficiency: This DL-based solver has the
potential to address EMF issues in a fraction of the time
required by traditional methods, which indicates the pos-
sibility of its real-time application;

2) Computation accuracy: Due to the application of DL
operations, this DL approach can predict total EM field
(i.e., realize EMF modeling) with much high accuracy;

3) Frequency tolerance: Unlike other reported DL-based
methods, the proposed DRCNN can work on the extremely
wide frequency band, so that it can deal with various EM
incident waves with different frequencies;

4) Model flexibility: The offline training can integrate more
prior information by creating training data, which brings
more flexibility to this DL method.

II. THEORY AND FORMULATION

A. Problem Formulation

Fig. 1 depicts the underlying framework for EMF modeling, in
which ROI is surrounded by M transmitters. While transmitters
could provide EM waves at the arbitrary frequency within a
broad frequency band for illuminating EM field of ROI. ROI
with target scatterers is divided as uniform N ×N cells. The
transverse magnetic (TM)z incident fieldEin from transmitters at
the arbitrary frequency illuminates ROI. Generally, the incident
field wave Ein have different frequencies, corresponding to
different application scenarios. In the conceptualization of EMF
process, the framework is established through the utilization of
Lippmann–Schwinger equations [1], [2], [3], where (1) serves
as the principal directive [1], [2], [3], [28], characterizing the
interplay of fields within the cells located in ROI

Ein (r) = Et (r)− k20

∫

Dobj

G (r, r′)χ (r′)Et (r′) dr′ (1)

where G(r, r′) is the Green’s function within the equa-
tion for TMz wave in 2-D space, defined by the expression

− j

4H
(2)
0 (k0|r − r

′|), where H
(2)
0 denotes the Hankel function

of the second kind and zeroth order. The wave number in vacuum
is given by k0. The coordinates r

′ = (x′, y′) andr = (x, y)
correspond to the locations of the source and observation points,
respectively, within ROI. While χ (r′) = εr (r′)− 1 is the
contrast function, Et stands for total EM field.

The objective of EMF modeling can be ascertaining the
cumulative EM field within ROI as a response to an external
EM field. However, directly deriving the comprehensive EM
field from (1) is typically an arduous task [1], [2], [3], [4], [5].
Traditional approaches circumvent this by converting (1) into
a discretized matrix representation, as indicated by (2) [1], [2],
[3], [4], [5]. Based on (2), ROI is divided into uniform cells,
of which each has the piece-wise-constant contrast and total
EM field. Regrettably, the inherent nonlinearity of (2) presents
significant obstacles when tackled with conventional methods
[1], [3]. Furthermore, these conventional methods typically de-
mand substantial computational resources due to their inherent
complexity [1], [2], [3], [4], [5]. Recently, there are several works
attempting to solve (2) by neural-network-based methods [26],
[32]. But, these reported DL-based methods can only work on
single frequency point rather than the wide frequency band

Ēt = Ēin + ¯̄GD · diag
(

Ēt
)

· χ̄ (2)

where the matrix ¯̄GD is armed with the size of N2 ×N2.

B. DRCNN for Broadband EMF Modeling

For realizing broadband EMF modeling, a new DL approach is
introduced by employing DRCNN. The training data created for
this DL model relies on the simulation to decline the difficulties
of collecting the huge amounts of data based on real experi-
ments. The proposed DRCNN is modified on the basis of the
so-called U-Net structure [29], which has been widely applied
for image segmentation [30]. The specific internal structure of
the proposed DRCNN can be described in Fig. 2. The input
of DRCNN consists of EM incident field Ein and contrast χ
distribution in ROI. Thus, its input has the size as N × N × 4 in
matrix format, where is N×N the number of cells for ROI and
the four tubes are the real and imaginary parts of EM incident
wave and contrasts of ROI, respectively. Meanwhile, its output
is the predicted EM total field Et in ROI. Thus, its output has
the size as N × N × 2, where N×N stands for total number of
cells for ROI and the two tubes are the real and imaginary parts
of EM total field of ROI.

As presented in Fig. 2, the proposed DRCNN for EMF mod-
eling consists of three paths: encoding, bridging, and decoding.
The encoding path encodes the input into information fragments
layer by layer, while its corresponding decoding path recovers
the final “image” for the expected total EM field. Meanwhile,
these two paths are connected by the middle bridging path,
where the skip connection are utilized for residual learning
between the encoding and decoding paths. The encoding path
is equipped with repeated applications of convolution (Conv),
batch normalization (BN), and rectified linear unit (ReLU).
Here, the encoding path in the proposed DRCNN directly em-
ploys convolution rather than max-pooling in conventional U-net
to compress “images.” Meanwhile, the architecture of the decod-
ing pathway incorporates multiple instances of up-convolution
(Upconv), BN, and ReLU activation function. This sequence
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Fig. 2. DRCNN architecture. Conv. is convolution, BN is batch normalization, ReLU is rectified linear unit, Up-conv. is up-convolution, while f represents the
randomly selected frequency in the mentioned wideband.

Fig. 3. Comparisons between DRCNN and other methods. (a) Different scatterers with inhomogeneous contrast. (b) MoM result: the computed magnitude of the
total EM field E

t in ROI. (c) MCNN result: the computed magnitude of the total EM field E
t in ROI. (d) DCED result: the computed magnitude of the total EM

field E
t in ROI. (e) DRCNN result: the computed magnitude of the total EM field E

t in ROI. The randomly selected frequencies for three samples are: 1.601 GHz
for the first sample, 359.6 MHz for the second sample, and 769.5 MHz for the third sample.

culminates with a 1 × 1 convolution layer that finalizes this
segment of the network.

A number of important points should be highlighted as fol-
lows.

1) Input and output of the revised DRCNN: EMF modeling
is a typical complex-valued problem. Thus, it is crucial
to channel the real and imaginary components of contrast
and EM field separately, which enhances the versatility
and adaptability of DRCNN, rendering it more suitable
for practical application.

2) Computational complexity: For this proposed DRCNN, its
input has the size as N × N × 4, while its final output, i.e.,
the total EM field of ROI, has been armed with the size
of N × N × 2. As shown in Fig. 3, the basic operations in
the proposed DRCNN are Conv, BN, ReLU, and Upconv
[30], [35], [36]. Despite the compact size of the filter
kernels, it is the convolutional operations that predomi-
nantly determine the computational workload. Thus, for
the N × N × 4 input and the N × N × 2 output, R filters
with the size as Kl × Kl in each layer and f layers, the
computational complexity of DRCNN is O(N2K2

l R
2f)

[30], [39]. Moreover, its memory requirements are largely
governed by the dimensions of the filters and the biases.
Therefore, the storage of the DRCNN is O(K2

l R
2f)

[30], [39].

III. NUMERICAL EXAMPLES

A. Numerical Setup and Offline Training

A widely-used dataset, i.e., MNIST, is chosen as the training
samples [31], [32], [33], [34], [35], [36]. Based on MNIST,
we create training dataset. All selected samples from MNIST
have the size as 1 m × 1 m and are evenly divided as 24 × 24
cells (i.e., N= 24). Meanwhile, transmitters have been randomly
located around ROI with the distance to the center of ROI equal
to 2 m. Therefore, TMz incident waves at the arbitrary frequency
(within 200 MHz to 2 GHz) pass from random directions around
ROI, which illuminate EM field of ROI from different incident
angles. In this letter, the full-wave EM simulations [40] has been
utilized to do computation on samples to collect the dataset
for training and testing. Selected from the mentioned dataset,
the digit-shaped scatterers have the nonhomogeneous contrasts,
i.e., χ, ranging from 0 to 2. Fig. 3(a) demonstrates a number
of examples of samples. Because of the illumination of random
transmitters, 10 000 samples from MNIST are randomly chosen
to be scatterers to create training data, while the frequency is ran-
domly selected for each Ein within the range 200 MHz to 2GHz
(i.e., 10 000 groups of χ, Ein and Et at the arbitrary frequency).
The computation of total EM field Et is based on traditional
MoM [4], [5]. For the purpose of making the appearance of total
EM field in ROI more clear, the magnitude of Et, named to
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Fig. 4. Statistical histograms of results from DRCNN and fitting of its normal
density function and the corresponding MoM results are used as the reference
field. (a) NMSE from DRCNN. (b) SSIM from DRCNN.

be “field image,” is used to better demonstrate the performance
of DRCNN in the next section. To assess the performance of
DRCNN, we have selected two metrics: the structural similarity
index (SSIM) and the normalized mean-square error (NMSE)
[31], [32], [33], [34], [35], [36]. This DRCNN model has been
implemented into MATLAB 2021b with the DL Toolbox [37].
Adaptive moment estimation optimizer is utilized to optimize
the loss function with the learning rate as 0.001 [38]. During the
training, the batch size is set to 250, while the number of epoch
is set as 50.

B. Performance on Different Types of Scatterers

For Section III-B, the performance of DRCNN for EMF mod-
eling has been evaluated based on new unknown samples from
MNIST. Several samples from MNIST for testing have been
presented in Fig. 3(a). Shown in Fig. 3(b), conventional MoM
is utilized to compute the verified total EM field within ROI.
Meanwhile, Fig. 3(c) illustrates the corresponding magnitude
of Et predicted from the DRCNN. In total,1000 new unknown
scatterers from MNIST are used to test this trained DRCNN. To
indicate the power of our DRCNN, white noise (SNR = 40 dB)
has been embedded into Ein. Shown at Fig. 1, ROI with the
new unknown sample is illuminated by the incident field Ein at
the randomly-selected frequency in the wideband (200 MHz–
2 GHz) in unknown incident angles for one single test.

Moreover, to showcase the versatility of this DRCNN, we
have curated a novel dataset, termed “Letter,” which consists
of heterogeneous scatterers, shaped like alphabetic characters,
presumed to be distributed randomly within ROI. The attributes
for each instance in “Letter” are consistent with those found
in MNIST. Furthermore, to display the capability of our DR-
CNN, other popular DL-based methods for EMF modeling (i.e.,
multiply-layer convolutional neural network (MCNN) [14] and
deep convolutional encoder–decoder (DCED) structure [26])
have also been adopted as comparison. Shown in Fig. 3, both
MCNN and DCED provide bad reconstruction results and suffer
from heavy distortion and blurring “texture,” which indicates
their weak capability of realizing EMF modelling in the wide
frequency band.

Fig. 4(a) and (b) indicates an analysis for both NMSE and
SSIM based on the predicted magnitude calculated from DR-
CNN and the ground-truthed magnitudes of Et, where the
working frequencies are randomly selected with the mentioned
wide frequency band. The NMSE average based on predictions
from DRCNN can be only around 0.0004, while the average
of SSIM even surprisingly overcomes 0.95. Therefore, the pro-
posed DL solver is able to realize EMF modeling with excellent
performance. In addition, while conventional MoM averagely

TABLE I
PERFORMANCE COMPARISON OF DRCNN AND OTHER METHODS

Fig. 5. Comparisons between DRCNN and the conventional method on ex-
perimental data. (a) Target scatterers. (b) MoM result: the computed magnitude
of the total EM field E

t. (c) DRCNN result: the computed magnitude of the
total EM field E

t.

uses over 0.75 s to realize EMF modeling for one sample, our
DRCNN only uses much less time (about 0.02 s) to complete
prediction computation for the same case. Besides, MCNN
and DCED utilize about 0.012 and 0.018 s, respectively, to
complete computation for one sample. These results indicate the
possibility of our DRCNN for its real-time applications at the
wide frequency band. The specific comparison can be found in
Table I. Moreover, the impact of noise on the trained DRCNN
is also be evaluated by adding the noise level of input under
different noise levels (SNR). As a result, the NMSE increase
from 0.0004 to 0.001 and further to 0.009 for the noise level
40, 30, and 20 dB, respectively, while SSIM decreases from
0.95 to 0.91 and further to 0.63, which indicates the strong
capability of this DRCNN. Plus, to remedy degradation caused
by the noise, some techniques can be considered, such as data
augmentation in training process, the application of dropout and
L1/L2 regularization [17].

To further illustrate the capability of our DRCNN, the widely-
used experimental data measured at Institute Fresnel are em-
ployed [31], [34]. In this experiment (i.e., “FoamDielExt” and
“FoamDielInt”), the scatterers consist of two cylinders with the
relative permittivity as 1.45 (±0.15) and 3 (±0.3). We emphasize
that only MNIST is still utilized to create new simulation-based
training data for the proposed DL method. The retrained DR-
CNN has demonstrated the excellent performance of predicting
the total EM field in Fig. 5.

IV. CONCLUSION

A DL-based broad-band EMF modeling approach has been
introduced by employing DRCNN. Although the training of DR-
CNN merely relies on the simple synthetic dataset, the proposed
DRCNN can realize EMF modeling with excellent accuracy and
highly reduced computation cost. Numerical benchmarks based
on class-specific 2-D dielectric objects have been utilized to
demonstrate the validity of DRCNN. This DL-based EMF mod-
eling approach can meet the requirement of real-time application
within the broad frequency band.
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