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Time-Resolved Electromagnetic Near-Field
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Yanming Zhang ", Member, IEEE, Peifeng Ma

and Steven Gao

Abstract—Time-resolved electromagnetic near-field scanning
plays a pivotal role in antenna measurement and unraveling com-
plex electromagnetic interference and compatibility issues. How-
ever, the rapid acquisition of high-resolution spatio—temporal data
remains challenging due to physical constraints, such as moving
the probe position and allowing sufficient time for sampling. This
article presents a novel hybrid approach combining Kriging for
sparse spatial measurement, compressed sensing (CS) for sparse
temporal sampling, and dynamic mode decomposition (DMD) for
comprehensive analysis of the dual-sparse sampling electromag-
netic near-field data. We leverage CS to optimize sparse sampling in
the time domain and Latin hypercube sampling to guide the probe
position and realize sparse measurement in the space domain. By
leveraging the inherent sparsity within electromagnetic radiated
signals, CS reliably represents time-domain signals while reducing
the required time samples. Then, DMD is used to extract mean-
ingful insights from the resulting sparse spatio—-temporal data,
resulting in the sparse dynamic modes and temporal evolution
information. Next, the Kriging is employed to infer missing spatial
measurements for each sparse dynamic mode. Finally, the entire
spatio—temporal signals are reconstructed based on interpolated
dynamic modes and temporal evolution information. An example
using crossed dipole antennas as the device under test is provided
to validate the proposed method. It is found that the proposed
Kriging-CS-DMD framework effectively reconstructs electromag-
netic fields with precision while simultaneously reducing the mea-
surement workload in both the time and space domains. This
methodology could be further employed for various applications,
such as space—time-modulated electronic devices.

Index Terms—Compressed sensing (CS), dynamic mode
decomposition (DMD), electromagnetic near-field scanning,
Kriging, time-resolved measurement.
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I. INTRODUCTION

LECTROMAGNETIC (EM) near-field scanning, as a crit-
E ical tool, provides invaluable support for antenna mea-
surement [1], [2], [3] and the comprehensive investigation of
complex EM interference and EM compatibility phenomena [2],
[4], [5]. However, obtaining radiation distribution in EM near-
field scanning is still a challenging task because it consumes a
significant amount of time during the process of data acquisi-
tion [6]. In particular, it is customary to move sensing probes
to different positions to capture EM field data in the target
area during the near-field scanning [7]. This process entails
the physical displacement of the probes, a task that can be
notably time-consuming when collecting data from numerous
pixels [8], [9], [10]. Accordingly, this drawback becomes par-
ticularly pronounced when striving for high resolution, making
it imperative to develop a method for quickly acquiring EM
near-field scanning data [11], [12].

Several methods have been developed to accelerate data ac-
quisition in the context of near-field scanning. These meth-
ods, including sequential sampling [6], compressed sensing
(CS) [13], equilateral-triangular-spaced samples [14], Kriging
method [9], and wide-mesh scanning [15], are primarily cen-
tered around spatially sparse sampling in the frequency domain.
Subsequently, the data acquired through these sparse sampling
techniques reconstruct the corresponding global spatial distribu-
tions at each frequency. Recently, to enhance the measurement
and analysis of transient EM phenomena, the time-domain dis-
tribution measurements in EM near-field scanning have been
introduced, as discussed in previous works [16], [17], [18],
[19]. In contrast to the traditional frequency-domain measure-
ments carried out using spectrum analyzers or vector network
analyzers, the time-domain near-field scanning approach in-
volves acquiring electrical signals through high-speed oscillo-
scopes. Subsequently, time-varying field signals are deduced
through basic computational process [20], [21]. Effectively
capturing time-varying near-field distributions necessitates si-
multaneously sampling both temporal and spatial dimensions.
This requirement introduces fresh complexities when conduct-
ing high-speed near-field scanning. It is imperative to consider
the synchronization and coordination of temporal and spatial
sampling methodologies to accurately characterize transient EM
phenomena.

In this article, we propose a hybrid method, Kriging-
CS-DMD, that combines Kriging, CS, and dynamic mode
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decomposition (DMD) to address the challenges posed by tem-
poral and spatial sampling in near-field scanning. Specifically,
CS is utilized to achieve temporal sparsity in data acquisition,
whereas Latin hypercube sampling facilitates spatial sparse sam-
pling. Subsequently, the resulting spatio—temporal dual-sparse
data are subjected to DMD analysis, allowing us to extract
sparse dynamic modes and corresponding frequency informa-
tion. Then, the Kriging method is used to recover the full
dynamic modes from the sparse dynamic modes. Finally, the
proposed hybrid approach reconstructs original spatio—temporal
field distributions based on the full dynamic modes and the
corresponding frequency information. Our work is motivated by
the demand for more efficient near-field EM field measurements.
We introduce a sparse sampling technique that optimally reduces
measurement time while maintaining data quality, ideal for
applications with limited time and resources. To summarize,
the main highlights of this work are as follows.

1) In the time domain, we employ CS to optimize tempo-
ral sampling. By exploiting the inherent sparsity in EM
signals, CS significantly reduces the number of required
time samples, making time-domain data acquisition more
efficient and cost effective.

2) We leverage Kriging, a spatial interpolation technique,
to enhance spatial measurement efficiency by inferring
missing spatial data points. This reduces the need for
exhaustive spatial sampling, making space-domain data
acquisition more resource efficient and faster.

3) To extract meaningful insights from the resulting sparse
spatio—temporal data, we utilize DMD, a powerful tech-
nique for identifying sparse dynamic modes, capturing
temporal evolution, and providing reconstruction of entire
spatio—temporal field distributions. It is worth noting that
DMD, as a spatio—temporally correlated decomposition
algorithm, enables the Kriging method to be applied to
a few sparse dominant modes rather than sparse field
distributions at every time step, thereby expediting the
recovery of complete spatio—temporal data.

The rest of this article is organized as follows. Section II offers

a detailed exposition of the Kriging-CS-DMD methodology.
In Section III, we present a numerical case study to evaluate
the efficacy of our proposed approach. Section IV presents
discussion. Finally, Section V concludes this article.

II. METHODOLOGY

This section commences by introducing the application of
CS to analyze temporally sparse sampling, the Kriging method
for spatially sparse sampling analysis, and the DMD ap-
proach for analyzing spatio—temporal data. Subsequently, a
comprehensive exposition is provided on the Kriging-CS-DMD
methodology.

A. CS and Temporally Sparse Sampling

Without loss of generality, consider the scenario where a time-
domain signal, denoted by p* € R™, is acquired through near-
field scanning by a probe positioned at a fixed location. This
signal can be related to another vector, s, which is K -sparse in a

specific basis B € R™*"™. This relationship is mathematically
expressed as follows:

p' = Bs ey

where s is a vector with exactly K nonzero elements, and K <
m. When p! exhibits this K -sparsity within the basis B, it opens
the possibility to acquire a subset of measurements instead of
directly measuring p? in time-resolved near-field scanning.

Subsequently, we collect a subset of time-domain measure-
ments denoted as q' € R™, where K < n < m. These mea-
surements are represented by

q' = Cp". ()

Herein, the matrix C € R™™ corresponds to n linear mea-
surements performed on the state vector pt. Assuming that we
have knowledge of the sparse vector s, it becomes feasible to
reconstruct the complete state vector p? using (1). Thus, we can
solve the following system of equations to determine s, given
the measurements q* and having information about the sparse
basis B and the measurement matrix C:

q' = CBs. A3)

This sparse sampling system allows us to recover the original
state vector p’ by utilizing the measured data q' in conjunction
with the sparse basis B and the measurement matrix C. Thus, the
objective of this reconstruction is to identify the sparsest solution
S that satisfies the optimization problem defined as follows:

0. subject to q° = CBs. “4)

§ = argmin||s|
S

Herein, ||s||o represents the count of nonzero elements in s. No-
tably, the effectiveness of this approach relies on two key condi-
tions. 1) The measurement matrix C should exhibit incoherence
with respect to the basis B, indicating that the rows of C are
uncorrelated with the columns of B, and 2) a sufficient number
of measurements, on the order of O(K log(m/K)), must be
collected. The specific constant factor depends on the level of
incoherence between C and B [22]. These conditions ensure that
the matrix product CW satisfies the restricted isometry property
(RIP) for K -sparse vectors s, given as follows [23]:

(1= 0x) lIsll3 < ICBs|3 < (1 +dx) [Is]13 )

where 0 denotes the restricted isometry constant. The RIP
property implies that CB acts as a nearly unitary transformation
on K -sparse vectors, preserving relative distances.

To satisfy the RIP for reliable signal reconstruction from the
solution of (4), we adopt the Gaussian random measurement
matrices for the sampling matrices C and Fourier basis for B.
The choice to utilize Gaussian random measurement matrices is
primarily grounded in its practicality [24]. Specifically, sampling
at random point locations offers a high degree of convenience,
providing an effective means of signal acquisition in the context
of near-field scanning. Furthermore, the Fourier basis of B is
a generic basis. A noteworthy benefit is the inherent incoher-
ence exhibited by single-point measurements in relation to this
basis [25]. It is worth noting that to ensure sufficient degrees
of freedom for estimating s when the dynamics of the source



930 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 66, NO. 3, JUNE 2024

are unknown, it is advised to select B based on its efficiency
in representing a broad range of signals using the Fourier. The
choice of C as a Gaussian random matrix promotes incoherence
with B, essential for CS effectiveness. Increasing measurement
numbers relative to the sparsity of s further aids in achieving
stable and accurate signal reconstruction.

Once the matrices C and B have been determined, we could
be ready to proceed with the solution of (4). Regrettably, the
optimization problem presented in (4) is nonconvex and can
only be tackled via a brute-force search. The computational
complexity of this search is combinatorial in terms of m and
K, rendering it a nonpolynomial time problem. Consequently,
solving (4) becomes infeasible, even for moderately large values
of m and K. It is fortunate that the greedy algorithms can be
used to determine the sparse solution of (4). Herein, the CS
matching pursuit is employed for its easy-to-implement and
computationally efficient [26].

B. Kriging Method and Spatially Sparse Sampling

The Kriging method, also recognized as Gaussian process
regression, embodies nonparametric probabilistic models reliant
on kernels [9], [27]. Initially conceived within the domain of
geology and mining [27], this statistical modeling approach
has seen diverse applications, encompassing reconstruction of
EM fields [9], [16], [28], [29]. In our approach, the Kriging
method plays a central role in spatially sparse sampling by
informing the probe’s movement during near-field scanning.
This geostatistical technique enables us to predict unknown field
values from a limited number of measurements, thus optimizing
the spatial distribution of sampling points. Specifically, when
addressing the challenge of 2-D planar near-field scanning, we
consider the global field, denoted by ps, € R™*™2, to exist
within a spatial dimension of 7; X ro. However, due to the
inherent limitations in measurement resources and time, we
collect data from only Z spatial sampling points, where Z <
(r1 X rg), significantly less than the total number of points in the
spatial grid.

It is assumed that Z sampling points are selected by the
Latin hypercube sampling theory. Then, Kriging formulates
the following expression based on the coordinates of these Z
sampling points and the collected field values:

I zZ
pXi(r) = Z Bihi(r) + Z a,d(0,r,, 1) (6)
i=1 z=1

where the coefficients 3; and o, are obtained via a generalized
least-squares procedure. The initial segment of (6) can be viewed
as a linear regression with respect to the basis functions h;(r).
Typically, these basis functions are chosen to be low-order
polynomials or constants [16]. The latter part of (6) signifies a lo-
calized deviation from the regression component, represented as
a summation of Z-shifted instances of the correlation function,
each centered on an individual data sample [16]. Considering
the characteristics of near-field patterns, the adoption of a Gaus-
sian correlation function emerges as an appropriate choice, as

outlined below:

J . 2
—0,|r9) _r®
¢(0,rz,1)=[]e ™ . (7)
j=1
Herein, the index j is employed to iterate over all coordinates of
the probe, which are stored in the vector r. Maximum likelihood
estimation is used here to estimate the parameters ¢; [30], [31].

C. Dynamic Mode Decomposition

DMD originated from fluid dynamics [32] and has subse-
quently been widely applied in other fields, such as chaotic
signal processing [33], [34], orbital angular momentum wave
detection [35], [36], [37], source localization techniques [38],
[39], [40], and so on. In the following, we will discuss how to
perform DMD analysis based on global spatio—temporal data in
this section, while the next section will cover DMD analysis and
reconstruction based on spatio—temporal doubly sparse data.

To commence the DMD analysis, we initially focus on the
entire spatio—temporal data acquired from time-resolved near-
field scanning, denoted as P € RI>™ Herein, the variable R
represents the total number of pixels comprising the entire field,
where R is the product of 71 and r5. In addition, the parameter m
corresponds to the total number of sampled points in the tempo-
ral domain. These are consistent with the previous symbols. In
preparation for the application of DMD, the collected data have
been partitioned into two distinct data matrices, as delineated
below:

P}% = [P}Q»P% N 7p]}€%7' N 7p$_1} (8)
P% = [Pk, Pk PRy -, PE] ©)

where p% means the field distribution at time k. The subscript
R indicates the number of spatial sampling points, the super-
script represents the number of temporal sampling points, and k
denotes the index for the temporal sampling.

Subsequently, it is posited that a linear mapping connection
exists between successive states, formulated as p]f;l = F(pk).
The correspondence between the two sets of temporally shifted
snapshots, as illustrated in (8) and (9), can be effectively char-
acterized by employing the mapping matrix denoted as M. This
characterization can be succinctly expressed as follows:

P% = MyPkL. (10)

In this context, the mapping matrix Mz encapsulates the in-
tricate dynamic patterns exhibited by the radiated EM field.
Within the framework of DMD, the determination of principal
eigenvalues and their corresponding eigenvectors within M can
be computed using a singular value decomposition (SVD)-based
approach [41], [42]. To be specific, the first step entails employ-
ing the SVD to represent the matrix P}, as follows:

Pl = UrSpVj (11)

where * signifies the conjugate transpose operation. By sub-
stituting the pseudoinverse of (11) into (10) through a right-
multiplication operation, we obtain

Mp = P4 VRS, Uy, (12)
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Then, the original states in (10) are prOJected into a low-rank
system by using the matrix U z, namely, PlL = UyPL, P% =
U3 P%, and Mp = UirMRzUpg. Herein, the notation () is
utilized to denote all the representations within the newly estab-
lished low-rank system. Subsequently, the eigendecomposition
of M, is computed to capture the main dynamic characteristics,
which is given as follows:

MpAp = ART (13)
where the columns of matrix A p represent the eigenvectors,
while the diagonal elements of the matrix I', denoted as v,
withl =1,2,..., L, signify the eigenvalues. Consequently, the
construction of the dynamic mode in the original state proceeds
as follows:

Y = P3,VeS;'Ag. (14)

Finally, the DMD approach furnishes a comprehensive model
for the observed entire radiated EM field within near-field scan-
ning, which is given as follows:

Z yiexp(wit)f = ZYl exp(Wit + jw™Et) 6.

(15)
Straightforwardly, the original signal representation pr(t) is
expressed as a linear combination of dynamic modes y;, char-
acterized by their respective damping factor and frequency
information, denoted as w; = Wi + jw lmag = lng't”), and am-
plitude coefficients ;. Notably, the DMD method formulates
this governing equation for the radiated field solely based on the
available observed entire data. Subsequently, we will elucidate
how DMD can be applied to analyze sparse data and model the
entire field based on dual spatio—temporal sparse sampling.

Kriging for
mode recover

Reconstruction

=

Iﬁ

\
@

Schematic of the proposed Kriging-CS-DMD for near-field scanning with dual sparse sampling in both time and space domains.

D. Kriging-Compressed Sensing-Dynamic Mode
Decomposition

Fig. 1 illustrates the steps of the proposed Kriging-CS-DMD
method for the EM near-field scanning, particularly in situations
where both spatial sampling and temporal sampling are sparse.
This method aims to provide a comprehensive representation of
the EM field by leveraging a multistep process.

Step 1) Dual sparse sampling: The initial step involves a
sparse sampling process that yields a limited number of spatial
data points (Z) and discrete time samples (n). The spatial points
are carefully selected based on the Latin hypercube sampling
strategy, and the temporal samples are obtained randomly at
these locations. Thus, the obtained spatio—temporal data are
denoted as Q7 € RZ*™_ The selection of n must satisfy (5) in
the context of CS, and the choice of Z should be at least greater
than the square root of the desired resolution. In addition, this is
related to the spatial correlation of the field.

Step 2) Temporal signal expansion: To enhance the temporal
resolution of the sparse data, the CS matching pursuit [26] is
used. Based on (4), this technique increases the number of time
samples (n) by generating and obtaining m contiguous time
samples at each of the Z spatial points. The result is a denser and
more informative temporal dataset, which is denoted as Q7 €
RZ xm

Step 3) Dynamic mode decomposition: The dataset Q7' with
Z x m data points is subjected to DMD analysis. DMD extracts
sparse dynamic modes from this data, revealing the underlying
patterns and behaviors in both the spatial and temporal dimen-
sions. Based on (15), DMD can model Q7' as follows:

L L
az Z x; exp(mt)ay = Z Xy exp(nflt + jn "¢t oy

=1 =1
(16)
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where q(t) means the time-varying state in the sparse spatial
domain. x; means the sparse dynamic modes, which capture
the key sparse spatial features of the EM radiated fields. 7!
and 1", respectively, means the damping factor and frequency
information. oy; means the corresponding amplitude weights. In
a comparative analysis between (15) and (16), it can be seen
that (15) involves DMD analysis applied to the entire spatio—
temporal signal, whereas (16) employs DMD on a spatially
sparse signal. Importantly, the spatial dimension of the sparse
dynamic modes in (16) is noticeably smaller than that of the
entire signal, namely, Z < R. Since the temporal dimension in-
formation has been reconstructed through CS, it is theoretically
expected to be correlated between «; and ;. This correlation is
contingent upon the effectiveness of the CS recovery process. In
other words, the better the results obtained from the CS recovery,
the more consistent the outcomes in the temporal dimension
processing.

Step 4) Modes recover via the Kriging method: Subsequently,
the Kriging method is applied to recover the complete global
dynamic modes from the sparse dynamic modes. Based on (7),
the Kriging process increases the representation from the sparse
Z spatial dimensions, i.e., x; € RZ, to the complete R spatial
dimensions, i.e., xfﬂ € R It is worth noting that each sparse
dynamic mode is individually recovered, and thus, their respec-
tive associations with frequencies remain unchanged. In other
words, the recovered distributions, xf“, can be considered as the
spatial profiles corresponding to each frequency component.

Step 5) Reconstruction: Then, Xf‘i is used to replace the x; in
(16). The entire spatio—temporal radiated fields can be modeled
as follows:

x}(ﬁ exp(nit)ay

M=

qr(t) =

N
Il
N

XK exp (et + jn;magt)al. (17)

I
M=

N
Il
—

Clearly, the notable advantage of the Kriging-CS-DMD ap-
proach is its ability to construct a data-driven model for time-
resolved near-field scanning only based on the doubly sparse
data. This enables the reconstruction of entire distributions,
the identification of frequency components, and the determi-
nation of their corresponding spatial distributions. The method
serves as a valuable tool for gaining comprehensive insights
into time-varying EM field behavior, particularly in scenarios
characterized by limited and sparse sampling in both spatial and
temporal dimensions.

III. RESULTS

A. Utilizing Crossed Dipole Antennas as the Device Under
Test (DUT)

To verify the proposed Kriging-CS-DMD methodology, we
conduct a simulation experiment utilizing the crossed dipole
antennas [43] as the DUT, whose configuration is shown, as il-
lustrated in Fig. 2. This setup consists of a 5-GHz dipole antenna
oriented along the z-axis and a 2.4-GHz dipole antenna oriented

Fig. 2.

Crossed dipole antenna with two different exciting signals.

along the y-axis. The selection of these specific frequencies
is made to align with the operational frequencies of WiFi 5
and WiFi 6 [44], ensuring the relevance of our investigation to
contemporary wireless communication standards. Herein, both
antennas are configured as half-wave dipole antennas. Antenna
#1 operates at the 2.4-GHz frequency band (A; = 0.125 m),
whereas Antenna #2 is designed for the 5-GHz frequency
band (Ao = 0.06 m). Sinusoidal waves, denoted as v;(t) and
vo(t), are used to excite Antenna #1 and #2, respectively,
operating at 2.4 and 5 GHz, respectively. The scanning plane
is accurately positioned at a fixed distance of 0.3 m above the
crossed dipole antenna. This positioning strategy is chosen to
effectively capture the near-field region characteristics of the
DUT’s radiative behavior. The time-resolved near-field scanning
results were obtained using the 4NEC2 [45], [46] software.

Fig. 3 illustrates the magnitude of the electric field in the
z-direction, represented as F,, at three specific time points:
namely, 2, 4, and 5 ns. These results demonstrate that the electric
field varies over time, emphasizing the time-varying nature
of the radiation emission process. In practical measurements,
obtaining the data depicted in the figure involves the sampling
of 256 x 256 spatial points and 1000 points in the 10 ns time
dimension. This results in a substantial amount of data that need
to be collected, amounting to 256 x 256 x 1000 points in total.
Such data acquisition is time-consuming, particularly when it
involves physically moving probes and waiting for an adequate
number of samples in the time dimension.

To address the issue of extended sampling times in the
time-resolved near-field scanning system, we have implemented
a sparsity-based sampling approach in both the spatial and
temporal domains. The specific temporal and spatial sparsity
strategies are detailed in Sections III-B and III-C, respectively.
Subsequently, we employ the DMD algorithm to analyze and
reconstruct the data collected through dual sparse sampling.
This allows us to obtain comprehensive information about the
entire time-varying radiation, as well as the spatial distribution
corresponding to each frequency. A detailed explanation of this
process can be found in Section III-D.
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B. Sparse Sampling in Time Domain

To validate the sparse sampling in the time domain, we began
by selecting an arbitrary spatial pixel as an example. With a
sampling rate of 0.01 ns within a 10 ns window, we acquired
a total of 1000 time samples. For sparse sampling, 128 points
were chosen among these samples. Herein, we apply the CS
technique to perform sparse sampling and subsequent signal
recovery in the time domain. In Fig. 4, the original time-domain
data, represented by a black solid line consisting of 1000 data
points, are shown alongside the sparsely sampled points depicted
as red dots, amounting to 128 data points. Then, the CS process
reconstructs the original signal based on the 128 data points.
Fig. 4 presents the corresponding results of reconstruction. It can
be seen that 1000 data points have been successfully recovered
and exhibit consistency with the original signal.

To further compare, we compute the power spectrum of both
the original and reconstructed signals. Fig. 5(a) and (b) illustrates
the power spectrum of the original and rebuilt signals, respec-
tively. The original and rebuilt signals exhibit a high degree of
consistency, with both the 2.4 and 5 GHz frequencies clearly
extracted. This means that the reconstructed signal effectively
recovers the frequency characteristics present in the original
signal, demonstrating its reliability in preserving the signal’s
frequency features. Hence, the CS technique effectively rebuilds
the full-time signal with high reliability from the sparse samples,

demonstrating the power of CS in efficiently acquiring and
reconstructing data while significantly reducing the required
sampling effort.

C. Sparse Sampling in Space Domain

We employ Kriging to carefully select spatial sampling points
with sparsity, resulting in reduced sample requirements and more
efficient measurements. Initially, we adopt Latin hypercube
sampling [47], [48] during positioning spatial sampling points in
the near-field scanning. This approach enables us to select mea-
surement points across the spatial area of interest judiciously.
Unlike random sampling, Latin hypercube sampling guarantees
amore uniform distribution of sampling points. This characteris-
tic proves especially beneficial for characterizing EM fields [48].
Fig. 6(a)—(c) depicts the selection of sparse points using Latin
hypercube sampling, with corresponding sample counts of 300,
500, and 800 points, respectively. Subsequently, we utilize the
Kriging model for reconstruction. Fig. 6(d)—(f) represents the
corresponding reconstruction results. As the number of sampling
points increases, the reconstruction quality improves, aligning
with the intuition. We use peak signal-to-noise ratio (PSNR)
as a measure for these reconstructions. The PSNR values for
reconstructions with 300, 500, and 800 sampling points are
3.4778, 3.5019, and 3.5049 dB, respectively. These results in-
dicate that the reconstruction error decreases as the number
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of sampling points increases, leading to better reconstruction
outcomes. It is worth noting that its applicability may vary across
different types of field sources, depending on their inherent
spatial correlations. The choice of sample points follows the
Latin hypercube sampling principle, necessitating a minimum
of one sample per dimension for the desired image resolution.
This approach is flexible, varying according to the field charac-
teristics, measurement surface, and frequency, with the optimal
number of samples tailored to the resolution and specific spatial
correlations. Next, we integrate sparse sampling in both time
and space domains and introduce the Kriging-CS-DMD method
to analyze and reconstruct data acquired through dual sparse
sampling. Detailed information regarding this is elaborated in
the following section.

D. Dual Sparse Sampling and Analysis Via Kriging—CS—-DMD

As illustrated in Fig. 4, sparse sampling in the time domain
is depicted, wherein the initial number of sampled data points
is 1000. Utilizing CS, this quantity is effectively reduced to
128 data points. Consequently, the temporal sparse sampling
factor equates to approximately 7.8 times. Furthermore, Fig. 6
portrays the scenario of sparse sampling in the spatial domain. In
this context, the original pixel count for sampling corresponds
to 256 x 256. Employing the Kriging method, 500 pixels are
chosen for reconstruction, resulting in a spatial sparse sampling
factor of approximately 131, demonstrating the efficiency of
our sampling strategy for a 256 x 256 resolution space. It is
evident that the synergy of temporal and spatial sparse sampling

X (cm)

X (cm)

© ®

Spatial sparsity sampling diagram: data sample distribution for (a) 300, (b) 500, and (c) 800 samples, and their respective reconstruction results in (d)—(f).

is instrumental in the overall reduction of data dimensionality
and contributes to the efficiency of the data acquisition process.

Next, we conduct an analysis of data acquired through
dual sparse sampling using the Kriging-CS-DMD framework.
Through the Kriging-CS-DMD analysis of dual sparse sampled
data, we obtain the DMD spectrum, depicted in Fig. 7(b). For
comparison, we also calculate the DMD spectrum obtained via
the raw data analysis, shown in Fig. 7(a). The value indicated by
the black dotted line corresponds to the measurement along the
horizontal axis. Clearly, the DMD and Kriging-CS-DMD anal-
yses successfully extract two distinct frequency components,
2.4 and 5.0 GHz, which align closely with the actual scenario.
Hence, this high degree of concordance between these two sets
of results shows that Kriging-CS-DMD can extract frequency
information of the radiation field using temporally and spatially
doubly sparse sampled data.

Furthermore, we have visualized the corresponding dynamic
modes in Fig. 8, alongside the representation of the original
modes for the sake of comparison. We take the 2.4 GHz dy-
namic mode as an example, which is plotted in Fig. 8(b).
Herein, the black circles represent sampling points, and based
on these 500 sampling points, we reconstruct the entire field
data. For comparison, we also show the actual radiation mode
in Fig. 8(a). It is clear that they are consistent with each other.
The same finding can be obtained in 5.0 GHz, and the results
are shown in Fig. 8(c) and (d). Hence, we can conclude that the
Kriging-CS-DMD method can also derive the spatial radiation
pattern of each frequency based on the temporally and spatially
doubly sparse sampled data. These collective results underscore
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Fig. 7.
Kriging-CS-DMD for the analysis of spatio-temporal dual sparse data.
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Fig. 8.
(b) 5.0 GHz mode extracted by Kriging-CS-DMD method.

the efficacy of the Kriging-CS-DMD framework in extracting
essential frequency information and elucidating the associated
spatial distribution.

Fig. 9 shows the raw spatial distribution of the electric field
FE ., and the reconstruction result of the electric field F, at three
different times, i.e., 2, 4, and 5 ns. Herein, we employ 2 ns as
an example for explanation. Fig. 9(a) shows the actual radiated
field with a resolution of 256 x 256 pixels. Fig. 9(b) plots the
CS reconstruction with temporal sparse sampling (128 points).
Notably, it can be observed that the CS reconstruction effectively
recovers the temporal variations, utilizing data obtained through
temporal sparse sampling, albeit with some distortion. Fig. 9(c)
illustrates the Kriging reconstruction with spatial sparse sam-
pling (500 pixels), demonstrating this method’s effectiveness
in recovering data based on spatial sparse sampling. Fig. 9(d)
and (e) shows the Kriging-CS-DMD reconstruction using tem-
porally and spatially doubly sparse sampled data. In Fig. 9(d),
128 temporal sampling points and 500 spatial sampling pix-
els are employed, while in Fig. 9(e), 128 temporal sampling
points and 1000 spatial sampling pixels are used. It is evident
that, based on temporally and spatially doubly sparse data,
the Kriging-CS-DMD method efficiently restores the global
distribution. Furthermore, the noise introduced during the CS
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(a) Raw radiated filed distribution at 2.4 GHz. (b) 2.4 GHz mode extracted by Kriging-CS-DMD method. (a) Raw radiated filed distribution at 5.0 GHz.

TABLE 1
COMPARISON OF PSNR OF THE RECONSTRUCTION RESULT WITH DIFFERENT
SNRsS AT ¢t = 2 NS SHOWN IN FIG. 9

SNR PSNR
Noise free  24.9294 dB
40 dB 22.4729 dB
30 dB 19.0053 dB
20 dB 15.8350 dB
10 dB 9.4455 dB

reconstruction is mitigated due to the rank-reduction computa-
tion within DMD. Comparing Fig. 9(d) and (e), itis apparent that
with an increased number of spatial sampling points, the recon-
structed field closely approximates the real distribution, aligning
with intuitive expectations. This observation holds true across
different time points. Hence, we conclude that Kriging-CS-
DMD is capable of extracting both the frequency components
and their corresponding spatial distributions from doubly sparse
fields, resulting in the reconstruction of the global distribution.

Table I presents a comparison of PSNR values corresponding
to the quality of EM field reconstruction results at different
signal-to-noise ratios (SNRs) at a specific time point (t = 2).
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Fig. 9. Raw spatial distribution of electric field £, and reconstruction results at different time points. (a) Raw radiated field (256 x 256 pixels) at 2 ns. (b) CS

reconstruction with temporal sparse sampling (128 points) at 2 ns. (¢) Kriging reconstruction with spatial sparse sampling (500 pixels) at 2 ns. (d) Kriging-CS-DMD
reconstruction with temporally and spatially doubly sparse sampled data (128 temporal points and 500 spatial pixels) at 2 ns. (¢) Kriging-CS-DMD reconstruction
with temporally and spatially doubly sparse sampled data (128 temporal points and 1000 spatial pixels) at 2 ns. (f) Raw radiated field (256 x 256 pixels) at
4 ns. (g) CS reconstruction with temporal sparse sampling (128 points) at 4 ns. (h) Kriging reconstruction with spatial sparse sampling (500 pixels) at 4 ns.
(1) Kriging-CS-DMD Reconstruction with temporally and spatially doubly sparse sampled data (128 temporal points and 500 spatial pixels) at 4 ns. (j) Kriging-
CS-DMD reconstruction with temporally and spatially doubly sparse sampled data (128 temporal points and 1000 spatial pixels) at 4 ns. (k) Raw radiated field
(256 x 256 pixels) at 5 ns. (1) CS reconstruction with temporal sparse sampling (128 points) at 5 ns. (m) Kriging reconstruction with spatial sparse sampling
(500 pixels) at 5 ns. (n) Kriging-CS-DMD reconstruction with temporally and spatially doubly sparse sampled data (128 temporal points and 500 spatial pixels) at

5 ns. (0) Kriging-CS-DMD reconstruction with temporally and spatially doubly sparse sampled data (128 temporal points and 1000 spatial pixels) at 5 ns.

The PSNR is a measure of the reconstruction’s fidelity, higher
values indicate a closer approximation to the original, noise-free
signal. In noise-free conditions, the reconstruction achieves the
highest PSNR of approximately 24.93 dB, indicating a high-
quality reconstruction. As the SNR decreases from 40 to 10 dB,
there is a corresponding decrease in PSNR values, indicating
that the presence of noise adversely affects the quality of the
reconstruction. At an SNR of 40 dB, the PSNR remains high at
around 22.47 dB, suggesting that the method is still robust at this
level of noise. However, as the noise level increases, the PSNR
drops to around 19.01 dB at 30 dB SNR, 15.84 dB at 20 dB SNR,
and to a lower value of 9.45 dB at 10 dB SNR, highlighting
a significant degradation in reconstruction quality in higher
noise environments. While the DMD algorithm employs SVD to
differentiate the signal from noise under low-noise conditions,
its effectiveness diminishes as noise intensifies, resulting in
decomposition inaccuracies and adversely affecting the EM field
reconstruction indicated by the mapping matrix M in (10). The
effectiveness of noise reduction through truncated SVD might
not suffice, particularly in cases with high noise levels.

IV. DISCUSSION

By distinguishing between the sampling methods applied
across the time and space domains, namely, random sampling for
temporal measurements and Latin hypercube sampling (LHS)

for spatial measurements, we leverage the strengths of both
strategies. Random sampling in the time domain captures the
dynamic nature of EM fields with fewer samples, whereas LHS
in the spatial domain ensures comprehensive and efficient cover-
age of the scanning area, thereby optimizing the overall measure-
ment process. This approach, combining spatial measurements
guided by LHS and temporal measurements facilitated by a high-
speed oscilloscope, effectively satisfies the dual requirements for
sparse sampling in both domains. It allows us to reconstruct the
EM field with high fidelity, capitalizing on the sparsity inherent
in the field’s spatial and temporal characteristics. Besides, by
employing LHS for spatial points and random sampling for the
temporal domain, our method allows synchronization of sample
capture at these spatial points over time. This negates the need
for multiple oscilloscopes and resource-heavy setups, ensuring
efficient and accurate EM field reconstruction.

Table II depicts the comparison between the proposed
method and several existing near-field scanning methods, in-
cluding sequential sampling-based method [5], [49], CS-based
method [13], [50], and conjugate gradient method [51]. The
proposed method for near-field scanning represents a significant
advancement over existing techniques by offering comprehen-
sive sparse sampling in both the time domain and space domain.
This dual-domain sparse sampling is crucial for efficient data
acquisition in complex EM field environments, where the sheer
volume of data can be overwhelming and the fine details are
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TABLE II
COMPARISON BETWEEN THE PROPOSED METHOD AND SEVERAL EXISTING NEAR-FIELD SCANNING METHODS

Feature Sequential sampling [5], [49]

CS [13], [50]

Conjugate gradient method [51]  Proposed method

Time-domain scanning
Frequency-domain scanning
Sparse spatial sampling
Temporal spatial sampling
Spatial temporal correlation

X X NN X

SENENENEN

X X NN X
LAAX S

critical for accurate analysis. Also, the unique capability of the
proposed method to analyze spatial-temporal correlation sets
it apart from other methods listed in the table. This feature
underlines the method’s sophisticated analytical power, offering
insights into the dynamic interplay between spatial and temporal
variations in the EM field.

V. CONCLUSION

In this section, we introduced the Kriging-CS-DMD approach
for addressing the challenges associated with dual temporal and
spatial sampling in near-field scanning. We have optimized data
acquisition by leveraging Kriging for spatial sparse sampling
and compressed sensing for achieving temporal sparsity while
maintaining data fidelity. Applying DMD to the resulting spatio—
temporal dual-sparse data has allowed us to extract valuable
insights, including frequency information and global spatial
distributions for each frequency. Our numerical case study has
demonstrated the proposed method’s efficiency and accuracy in
reconstructing EM fields while reducing measurement overhead.
This methodology could be adopted in various applications, par-
ticularly in space—time-modulated electronic device scenarios.
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