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Abstract—Time-resolved electromagnetic near-field scanning
plays a pivotal role in antenna measurement and unraveling com-
plex electromagnetic interference and compatibility issues. How-
ever, the rapid acquisition of high-resolution spatio–temporal data
remains challenging due to physical constraints, such as moving
the probe position and allowing sufficient time for sampling. This
article presents a novel hybrid approach combining Kriging for
sparse spatial measurement, compressed sensing (CS) for sparse
temporal sampling, and dynamic mode decomposition (DMD) for
comprehensive analysis of the dual-sparse sampling electromag-
netic near-field data. We leverage CS to optimize sparse sampling in
the time domain and Latin hypercube sampling to guide the probe
position and realize sparse measurement in the space domain. By
leveraging the inherent sparsity within electromagnetic radiated
signals, CS reliably represents time-domain signals while reducing
the required time samples. Then, DMD is used to extract mean-
ingful insights from the resulting sparse spatio–temporal data,
resulting in the sparse dynamic modes and temporal evolution
information. Next, the Kriging is employed to infer missing spatial
measurements for each sparse dynamic mode. Finally, the entire
spatio–temporal signals are reconstructed based on interpolated
dynamic modes and temporal evolution information. An example
using crossed dipole antennas as the device under test is provided
to validate the proposed method. It is found that the proposed
Kriging-CS-DMD framework effectively reconstructs electromag-
netic fields with precision while simultaneously reducing the mea-
surement workload in both the time and space domains. This
methodology could be further employed for various applications,
such as space–time-modulated electronic devices.

Index Terms—Compressed sensing (CS), dynamic mode
decomposition (DMD), electromagnetic near-field scanning,
Kriging, time-resolved measurement.
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I. INTRODUCTION

E
LECTROMAGNETIC (EM) near-field scanning, as a crit-

ical tool, provides invaluable support for antenna mea-

surement [1], [2], [3] and the comprehensive investigation of

complex EM interference and EM compatibility phenomena [2],

[4], [5]. However, obtaining radiation distribution in EM near-

field scanning is still a challenging task because it consumes a

significant amount of time during the process of data acquisi-

tion [6]. In particular, it is customary to move sensing probes

to different positions to capture EM field data in the target

area during the near-field scanning [7]. This process entails

the physical displacement of the probes, a task that can be

notably time-consuming when collecting data from numerous

pixels [8], [9], [10]. Accordingly, this drawback becomes par-

ticularly pronounced when striving for high resolution, making

it imperative to develop a method for quickly acquiring EM

near-field scanning data [11], [12].

Several methods have been developed to accelerate data ac-

quisition in the context of near-field scanning. These meth-

ods, including sequential sampling [6], compressed sensing

(CS) [13], equilateral-triangular-spaced samples [14], Kriging

method [9], and wide-mesh scanning [15], are primarily cen-

tered around spatially sparse sampling in the frequency domain.

Subsequently, the data acquired through these sparse sampling

techniques reconstruct the corresponding global spatial distribu-

tions at each frequency. Recently, to enhance the measurement

and analysis of transient EM phenomena, the time-domain dis-

tribution measurements in EM near-field scanning have been

introduced, as discussed in previous works [16], [17], [18],

[19]. In contrast to the traditional frequency-domain measure-

ments carried out using spectrum analyzers or vector network

analyzers, the time-domain near-field scanning approach in-

volves acquiring electrical signals through high-speed oscillo-

scopes. Subsequently, time-varying field signals are deduced

through basic computational process [20], [21]. Effectively

capturing time-varying near-field distributions necessitates si-

multaneously sampling both temporal and spatial dimensions.

This requirement introduces fresh complexities when conduct-

ing high-speed near-field scanning. It is imperative to consider

the synchronization and coordination of temporal and spatial

sampling methodologies to accurately characterize transient EM

phenomena.

In this article, we propose a hybrid method, Kriging-

CS-DMD, that combines Kriging, CS, and dynamic mode
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decomposition (DMD) to address the challenges posed by tem-

poral and spatial sampling in near-field scanning. Specifically,

CS is utilized to achieve temporal sparsity in data acquisition,

whereas Latin hypercube sampling facilitates spatial sparse sam-

pling. Subsequently, the resulting spatio–temporal dual-sparse

data are subjected to DMD analysis, allowing us to extract

sparse dynamic modes and corresponding frequency informa-

tion. Then, the Kriging method is used to recover the full

dynamic modes from the sparse dynamic modes. Finally, the

proposed hybrid approach reconstructs original spatio–temporal

field distributions based on the full dynamic modes and the

corresponding frequency information. Our work is motivated by

the demand for more efficient near-field EM field measurements.

We introduce a sparse sampling technique that optimally reduces

measurement time while maintaining data quality, ideal for

applications with limited time and resources. To summarize,

the main highlights of this work are as follows.

1) In the time domain, we employ CS to optimize tempo-

ral sampling. By exploiting the inherent sparsity in EM

signals, CS significantly reduces the number of required

time samples, making time-domain data acquisition more

efficient and cost effective.

2) We leverage Kriging, a spatial interpolation technique,

to enhance spatial measurement efficiency by inferring

missing spatial data points. This reduces the need for

exhaustive spatial sampling, making space-domain data

acquisition more resource efficient and faster.

3) To extract meaningful insights from the resulting sparse

spatio–temporal data, we utilize DMD, a powerful tech-

nique for identifying sparse dynamic modes, capturing

temporal evolution, and providing reconstruction of entire

spatio–temporal field distributions. It is worth noting that

DMD, as a spatio–temporally correlated decomposition

algorithm, enables the Kriging method to be applied to

a few sparse dominant modes rather than sparse field

distributions at every time step, thereby expediting the

recovery of complete spatio–temporal data.

The rest of this article is organized as follows. Section II offers

a detailed exposition of the Kriging-CS-DMD methodology.

In Section III, we present a numerical case study to evaluate

the efficacy of our proposed approach. Section IV presents

discussion. Finally, Section V concludes this article.

II. METHODOLOGY

This section commences by introducing the application of

CS to analyze temporally sparse sampling, the Kriging method

for spatially sparse sampling analysis, and the DMD ap-

proach for analyzing spatio–temporal data. Subsequently, a

comprehensive exposition is provided on the Kriging-CS-DMD

methodology.

A. CS and Temporally Sparse Sampling

Without loss of generality, consider the scenario where a time-

domain signal, denoted by pt ∈ R
m, is acquired through near-

field scanning by a probe positioned at a fixed location. This

signal can be related to another vector, s, which is K-sparse in a

specific basis B ∈ R
m×m. This relationship is mathematically

expressed as follows:

pt = Bs (1)

where s is a vector with exactly K nonzero elements, and K �
m. Whenpt exhibits thisK-sparsity within the basisB, it opens

the possibility to acquire a subset of measurements instead of

directly measuring pt in time-resolved near-field scanning.

Subsequently, we collect a subset of time-domain measure-

ments denoted as qt ∈ R
n, where K < n � m. These mea-

surements are represented by

qt = Cpt. (2)

Herein, the matrix C ∈ R
n×m corresponds to n linear mea-

surements performed on the state vector pt. Assuming that we

have knowledge of the sparse vector s, it becomes feasible to

reconstruct the complete state vector pt using (1). Thus, we can

solve the following system of equations to determine s, given

the measurements qt and having information about the sparse

basis B and the measurement matrix C:

qt = CBs. (3)

This sparse sampling system allows us to recover the original

state vector pt by utilizing the measured data qt in conjunction

with the sparse basisB and the measurement matrixC. Thus, the

objective of this reconstruction is to identify the sparsest solution

ŝ that satisfies the optimization problem defined as follows:

ŝ = argmin
s

‖s‖0, subject to qt = CBs. (4)

Herein, ‖s‖0 represents the count of nonzero elements in s. No-

tably, the effectiveness of this approach relies on two key condi-

tions. 1) The measurement matrix C should exhibit incoherence

with respect to the basis B, indicating that the rows of C are

uncorrelated with the columns of B, and 2) a sufficient number

of measurements, on the order of O(K log(m/K)), must be

collected. The specific constant factor depends on the level of

incoherence betweenC andB [22]. These conditions ensure that

the matrix product CΨ satisfies the restricted isometry property

(RIP) for K-sparse vectors s, given as follows [23]:

(1− δK) ‖s‖22 ≤ ‖CBs‖22 ≤ (1 + δK) ‖s‖22 (5)

where δK denotes the restricted isometry constant. The RIP

property implies thatCB acts as a nearly unitary transformation

on K-sparse vectors, preserving relative distances.

To satisfy the RIP for reliable signal reconstruction from the

solution of (4), we adopt the Gaussian random measurement

matrices for the sampling matrices C and Fourier basis for B.

The choice to utilize Gaussian random measurement matrices is

primarily grounded in its practicality [24]. Specifically, sampling

at random point locations offers a high degree of convenience,

providing an effective means of signal acquisition in the context

of near-field scanning. Furthermore, the Fourier basis of B is

a generic basis. A noteworthy benefit is the inherent incoher-

ence exhibited by single-point measurements in relation to this

basis [25]. It is worth noting that to ensure sufficient degrees

of freedom for estimating s when the dynamics of the source
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are unknown, it is advised to select B based on its efficiency

in representing a broad range of signals using the Fourier. The

choice of C as a Gaussian random matrix promotes incoherence

with B, essential for CS effectiveness. Increasing measurement

numbers relative to the sparsity of s further aids in achieving

stable and accurate signal reconstruction.

Once the matrices C and B have been determined, we could

be ready to proceed with the solution of (4). Regrettably, the

optimization problem presented in (4) is nonconvex and can

only be tackled via a brute-force search. The computational

complexity of this search is combinatorial in terms of m and

K, rendering it a nonpolynomial time problem. Consequently,

solving (4) becomes infeasible, even for moderately large values

of m and K. It is fortunate that the greedy algorithms can be

used to determine the sparse solution of (4). Herein, the CS

matching pursuit is employed for its easy-to-implement and

computationally efficient [26].

B. Kriging Method and Spatially Sparse Sampling

The Kriging method, also recognized as Gaussian process

regression, embodies nonparametric probabilistic models reliant

on kernels [9], [27]. Initially conceived within the domain of

geology and mining [27], this statistical modeling approach

has seen diverse applications, encompassing reconstruction of

EM fields [9], [16], [28], [29]. In our approach, the Kriging

method plays a central role in spatially sparse sampling by

informing the probe’s movement during near-field scanning.

This geostatistical technique enables us to predict unknown field

values from a limited number of measurements, thus optimizing

the spatial distribution of sampling points. Specifically, when

addressing the challenge of 2-D planar near-field scanning, we

consider the global field, denoted by ps ∈ R
r1×r2 , to exist

within a spatial dimension of r1 × r2. However, due to the

inherent limitations in measurement resources and time, we

collect data from only Z spatial sampling points, where Z �
(r1 × r2), significantly less than the total number of points in the

spatial grid.

It is assumed that Z sampling points are selected by the

Latin hypercube sampling theory. Then, Kriging formulates

the following expression based on the coordinates of these Z
sampling points and the collected field values:

pKri
s (r) =

I∑

i=1

βihi(r) +

Z∑

z=1

αzφ (θ, rz, r) (6)

where the coefficients βi and αz are obtained via a generalized

least-squares procedure. The initial segment of (6) can be viewed

as a linear regression with respect to the basis functions hi(r).
Typically, these basis functions are chosen to be low-order

polynomials or constants [16]. The latter part of (6) signifies a lo-

calized deviation from the regression component, represented as

a summation of Z-shifted instances of the correlation function,

each centered on an individual data sample [16]. Considering

the characteristics of near-field patterns, the adoption of a Gaus-

sian correlation function emerges as an appropriate choice, as

outlined below:

φ (θ, rz, r) =

J∏

j=1

e
−θj

∣

∣

∣
r
(j)
z −r

(j)
∣

∣

∣

2

. (7)

Herein, the index j is employed to iterate over all coordinates of

the probe, which are stored in the vector r. Maximum likelihood

estimation is used here to estimate the parameters θj [30], [31].

C. Dynamic Mode Decomposition

DMD originated from fluid dynamics [32] and has subse-

quently been widely applied in other fields, such as chaotic

signal processing [33], [34], orbital angular momentum wave

detection [35], [36], [37], source localization techniques [38],

[39], [40], and so on. In the following, we will discuss how to

perform DMD analysis based on global spatio–temporal data in

this section, while the next section will cover DMD analysis and

reconstruction based on spatio–temporal doubly sparse data.

To commence the DMD analysis, we initially focus on the

entire spatio–temporal data acquired from time-resolved near-

field scanning, denoted as P ∈ R
R×m. Herein, the variable R

represents the total number of pixels comprising the entire field,

whereR is the product of r1 and r2. In addition, the parameterm
corresponds to the total number of sampled points in the tempo-

ral domain. These are consistent with the previous symbols. In

preparation for the application of DMD, the collected data have

been partitioned into two distinct data matrices, as delineated

below:

P1
R = [p1

R,p
2
R, . . . ,p

k
R, . . . ,p

m−1
R ] (8)

P2
R = [p2

R,p
3
R, . . . ,p

k
R, . . . ,p

m
R ] (9)

where pk
R means the field distribution at time k. The subscript

R indicates the number of spatial sampling points, the super-

script represents the number of temporal sampling points, and k
denotes the index for the temporal sampling.

Subsequently, it is posited that a linear mapping connection

exists between successive states, formulated as pk+1
R = F(pk

R).
The correspondence between the two sets of temporally shifted

snapshots, as illustrated in (8) and (9), can be effectively char-

acterized by employing the mapping matrix denoted as M. This

characterization can be succinctly expressed as follows:

P2
R = MRP

1
R. (10)

In this context, the mapping matrix MR encapsulates the in-

tricate dynamic patterns exhibited by the radiated EM field.

Within the framework of DMD, the determination of principal

eigenvalues and their corresponding eigenvectors within M can

be computed using a singular value decomposition (SVD)-based

approach [41], [42]. To be specific, the first step entails employ-

ing the SVD to represent the matrix P1
R as follows:

P1
R = URSRV

∗
R (11)

where ∗ signifies the conjugate transpose operation. By sub-

stituting the pseudoinverse of (11) into (10) through a right-

multiplication operation, we obtain

MR = P2
RVRS

−1
R U∗

R. (12)
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Fig. 1. Schematic of the proposed Kriging-CS-DMD for near-field scanning with dual sparse sampling in both time and space domains.

Then, the original states in (10) are projected into a low-rank

system by using the matrix UR, namely, P̂1
R = U∗

RP
1
R, P̂2

R =

U∗
RP

2
R, and M̂R = U∗

RMRUR. Herein, the notation (̂·) is

utilized to denote all the representations within the newly estab-

lished low-rank system. Subsequently, the eigendecomposition

of M̂R is computed to capture the main dynamic characteristics,

which is given as follows:

M̂RAR = ARΓ (13)

where the columns of matrix AR represent the eigenvectors,

while the diagonal elements of the matrix Γ, denoted as γl
with l = 1, 2, . . . , L, signify the eigenvalues. Consequently, the

construction of the dynamic mode in the original state proceeds

as follows:

Y = P2
RVRS

−1
R AR. (14)

Finally, the DMD approach furnishes a comprehensive model

for the observed entire radiated EM field within near-field scan-

ning, which is given as follows:

pR(t) =

L∑

l=1

yl exp(ωlt)βl =

L∑

l=1

yl exp(ω
real
l t+ jωimag

l t)βl.

(15)

Straightforwardly, the original signal representation pR(t) is

expressed as a linear combination of dynamic modes yl, char-

acterized by their respective damping factor and frequency

information, denoted as ωl = ωreal
l + jωimag

l = ln(γl)
δt

, and am-

plitude coefficients βl. Notably, the DMD method formulates

this governing equation for the radiated field solely based on the

available observed entire data. Subsequently, we will elucidate

how DMD can be applied to analyze sparse data and model the

entire field based on dual spatio–temporal sparse sampling.

D. Kriging-Compressed Sensing-Dynamic Mode

Decomposition

Fig. 1 illustrates the steps of the proposed Kriging-CS-DMD

method for the EM near-field scanning, particularly in situations

where both spatial sampling and temporal sampling are sparse.

This method aims to provide a comprehensive representation of

the EM field by leveraging a multistep process.

Step 1) Dual sparse sampling: The initial step involves a

sparse sampling process that yields a limited number of spatial

data points (Z) and discrete time samples (n). The spatial points

are carefully selected based on the Latin hypercube sampling

strategy, and the temporal samples are obtained randomly at

these locations. Thus, the obtained spatio–temporal data are

denoted as Qn
Z ∈ R

Z×n. The selection of n must satisfy (5) in

the context of CS, and the choice of Z should be at least greater

than the square root of the desired resolution. In addition, this is

related to the spatial correlation of the field.

Step 2) Temporal signal expansion: To enhance the temporal

resolution of the sparse data, the CS matching pursuit [26] is

used. Based on (4), this technique increases the number of time

samples (n) by generating and obtaining m contiguous time

samples at each of theZ spatial points. The result is a denser and

more informative temporal dataset, which is denoted as Qm
Z ∈

R
Z×m.

Step 3) Dynamic mode decomposition: The dataset Qm
Z with

Z ×m data points is subjected to DMD analysis. DMD extracts

sparse dynamic modes from this data, revealing the underlying

patterns and behaviors in both the spatial and temporal dimen-

sions. Based on (15), DMD can model Qm
Z as follows:

qZ(t) =

L∑

l=1

xl exp(ηlt)αl =

L∑

l=1

xl exp(η
real
l t+ jηimag

l t)αl

(16)
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where qZ(t) means the time-varying state in the sparse spatial

domain. xl means the sparse dynamic modes, which capture

the key sparse spatial features of the EM radiated fields. ηreal
l

and ηimag

l , respectively, means the damping factor and frequency

information. αl means the corresponding amplitude weights. In

a comparative analysis between (15) and (16), it can be seen

that (15) involves DMD analysis applied to the entire spatio–

temporal signal, whereas (16) employs DMD on a spatially

sparse signal. Importantly, the spatial dimension of the sparse

dynamic modes in (16) is noticeably smaller than that of the

entire signal, namely, Z � R. Since the temporal dimension in-

formation has been reconstructed through CS, it is theoretically

expected to be correlated between αl and βl. This correlation is

contingent upon the effectiveness of the CS recovery process. In

other words, the better the results obtained from the CS recovery,

the more consistent the outcomes in the temporal dimension

processing.

Step 4) Modes recover via the Kriging method: Subsequently,

the Kriging method is applied to recover the complete global

dynamic modes from the sparse dynamic modes. Based on (7),

the Kriging process increases the representation from the sparse

Z spatial dimensions, i.e., xl ∈ R
Z , to the complete R spatial

dimensions, i.e., xKri
l ∈ R

R. It is worth noting that each sparse

dynamic mode is individually recovered, and thus, their respec-

tive associations with frequencies remain unchanged. In other

words, the recovered distributions,xKri
l , can be considered as the

spatial profiles corresponding to each frequency component.

Step 5) Reconstruction: Then, xKri
l is used to replace the xl in

(16). The entire spatio–temporal radiated fields can be modeled

as follows:

qR(t) =

L∑

l=1

xKri
l exp(ηlt)αl

=

L∑

l=1

xKri
l exp(ηreal

l t+ jηimag

l t)αl. (17)

Clearly, the notable advantage of the Kriging-CS-DMD ap-

proach is its ability to construct a data-driven model for time-

resolved near-field scanning only based on the doubly sparse

data. This enables the reconstruction of entire distributions,

the identification of frequency components, and the determi-

nation of their corresponding spatial distributions. The method

serves as a valuable tool for gaining comprehensive insights

into time-varying EM field behavior, particularly in scenarios

characterized by limited and sparse sampling in both spatial and

temporal dimensions.

III. RESULTS

A. Utilizing Crossed Dipole Antennas as the Device Under

Test (DUT)

To verify the proposed Kriging-CS-DMD methodology, we

conduct a simulation experiment utilizing the crossed dipole

antennas [43] as the DUT, whose configuration is shown, as il-

lustrated in Fig. 2. This setup consists of a 5-GHz dipole antenna

oriented along the x-axis and a 2.4-GHz dipole antenna oriented

Fig. 2. Crossed dipole antenna with two different exciting signals.

along the y-axis. The selection of these specific frequencies

is made to align with the operational frequencies of WiFi 5

and WiFi 6 [44], ensuring the relevance of our investigation to

contemporary wireless communication standards. Herein, both

antennas are configured as half-wave dipole antennas. Antenna

#1 operates at the 2.4-GHz frequency band (λ1 = 0.125 m),

whereas Antenna #2 is designed for the 5-GHz frequency

band (λ2 = 0.06 m). Sinusoidal waves, denoted as v1(t) and

v2(t), are used to excite Antenna #1 and #2, respectively,

operating at 2.4 and 5 GHz, respectively. The scanning plane

is accurately positioned at a fixed distance of 0.3 m above the

crossed dipole antenna. This positioning strategy is chosen to

effectively capture the near-field region characteristics of the

DUT’s radiative behavior. The time-resolved near-field scanning

results were obtained using the 4NEC2 [45], [46] software.

Fig. 3 illustrates the magnitude of the electric field in the

z-direction, represented as Ez , at three specific time points:

namely, 2, 4, and 5 ns. These results demonstrate that the electric

field varies over time, emphasizing the time-varying nature

of the radiation emission process. In practical measurements,

obtaining the data depicted in the figure involves the sampling

of 256× 256 spatial points and 1000 points in the 10 ns time

dimension. This results in a substantial amount of data that need

to be collected, amounting to 256× 256× 1000 points in total.

Such data acquisition is time-consuming, particularly when it

involves physically moving probes and waiting for an adequate

number of samples in the time dimension.

To address the issue of extended sampling times in the

time-resolved near-field scanning system, we have implemented

a sparsity-based sampling approach in both the spatial and

temporal domains. The specific temporal and spatial sparsity

strategies are detailed in Sections III-B and III-C, respectively.

Subsequently, we employ the DMD algorithm to analyze and

reconstruct the data collected through dual sparse sampling.

This allows us to obtain comprehensive information about the

entire time-varying radiation, as well as the spatial distribution

corresponding to each frequency. A detailed explanation of this

process can be found in Section III-D.
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Fig. 3. Simulated time-resolved near-field scanning results for the crossed dipole antenna: the spatial distribution of electric field Ez at (a) 2, (b) 4, and (c) 5 ns.

Fig. 4. Time-domain sparsity sampling and reconstruction results: original
time-domain data (1000 points, black solid line), sparse sampled points (128
points, red dots), and reconstructed time signal obtained via CS.

B. Sparse Sampling in Time Domain

To validate the sparse sampling in the time domain, we began

by selecting an arbitrary spatial pixel as an example. With a

sampling rate of 0.01 ns within a 10 ns window, we acquired

a total of 1000 time samples. For sparse sampling, 128 points

were chosen among these samples. Herein, we apply the CS

technique to perform sparse sampling and subsequent signal

recovery in the time domain. In Fig. 4, the original time-domain

data, represented by a black solid line consisting of 1000 data

points, are shown alongside the sparsely sampled points depicted

as red dots, amounting to 128 data points. Then, the CS process

reconstructs the original signal based on the 128 data points.

Fig. 4 presents the corresponding results of reconstruction. It can

be seen that 1000 data points have been successfully recovered

and exhibit consistency with the original signal.

To further compare, we compute the power spectrum of both

the original and reconstructed signals. Fig. 5(a) and (b) illustrates

the power spectrum of the original and rebuilt signals, respec-

tively. The original and rebuilt signals exhibit a high degree of

consistency, with both the 2.4 and 5 GHz frequencies clearly

extracted. This means that the reconstructed signal effectively

recovers the frequency characteristics present in the original

signal, demonstrating its reliability in preserving the signal’s

frequency features. Hence, the CS technique effectively rebuilds

the full-time signal with high reliability from the sparse samples,

Fig. 5. Power spectrum of (a) original time-domain data and (b) reconstructed
signal.

demonstrating the power of CS in efficiently acquiring and

reconstructing data while significantly reducing the required

sampling effort.

C. Sparse Sampling in Space Domain

We employ Kriging to carefully select spatial sampling points

with sparsity, resulting in reduced sample requirements and more

efficient measurements. Initially, we adopt Latin hypercube

sampling [47], [48] during positioning spatial sampling points in

the near-field scanning. This approach enables us to select mea-

surement points across the spatial area of interest judiciously.

Unlike random sampling, Latin hypercube sampling guarantees

a more uniform distribution of sampling points. This characteris-

tic proves especially beneficial for characterizing EM fields [48].

Fig. 6(a)–(c) depicts the selection of sparse points using Latin

hypercube sampling, with corresponding sample counts of 300,

500, and 800 points, respectively. Subsequently, we utilize the

Kriging model for reconstruction. Fig. 6(d)–(f) represents the

corresponding reconstruction results. As the number of sampling

points increases, the reconstruction quality improves, aligning

with the intuition. We use peak signal-to-noise ratio (PSNR)

as a measure for these reconstructions. The PSNR values for

reconstructions with 300, 500, and 800 sampling points are

3.4778, 3.5019, and 3.5049 dB, respectively. These results in-

dicate that the reconstruction error decreases as the number
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Fig. 6. Spatial sparsity sampling diagram: data sample distribution for (a) 300, (b) 500, and (c) 800 samples, and their respective reconstruction results in (d)–(f).

of sampling points increases, leading to better reconstruction

outcomes. It is worth noting that its applicability may vary across

different types of field sources, depending on their inherent

spatial correlations. The choice of sample points follows the

Latin hypercube sampling principle, necessitating a minimum

of one sample per dimension for the desired image resolution.

This approach is flexible, varying according to the field charac-

teristics, measurement surface, and frequency, with the optimal

number of samples tailored to the resolution and specific spatial

correlations. Next, we integrate sparse sampling in both time

and space domains and introduce the Kriging-CS-DMD method

to analyze and reconstruct data acquired through dual sparse

sampling. Detailed information regarding this is elaborated in

the following section.

D. Dual Sparse Sampling and Analysis Via Kriging–CS–DMD

As illustrated in Fig. 4, sparse sampling in the time domain

is depicted, wherein the initial number of sampled data points

is 1000. Utilizing CS, this quantity is effectively reduced to

128 data points. Consequently, the temporal sparse sampling

factor equates to approximately 7.8 times. Furthermore, Fig. 6

portrays the scenario of sparse sampling in the spatial domain. In

this context, the original pixel count for sampling corresponds

to 256× 256. Employing the Kriging method, 500 pixels are

chosen for reconstruction, resulting in a spatial sparse sampling

factor of approximately 131, demonstrating the efficiency of

our sampling strategy for a 256× 256 resolution space. It is

evident that the synergy of temporal and spatial sparse sampling

is instrumental in the overall reduction of data dimensionality

and contributes to the efficiency of the data acquisition process.

Next, we conduct an analysis of data acquired through

dual sparse sampling using the Kriging-CS-DMD framework.

Through the Kriging-CS-DMD analysis of dual sparse sampled

data, we obtain the DMD spectrum, depicted in Fig. 7(b). For

comparison, we also calculate the DMD spectrum obtained via

the raw data analysis, shown in Fig. 7(a). The value indicated by

the black dotted line corresponds to the measurement along the

horizontal axis. Clearly, the DMD and Kriging-CS-DMD anal-

yses successfully extract two distinct frequency components,

2.4 and 5.0 GHz, which align closely with the actual scenario.

Hence, this high degree of concordance between these two sets

of results shows that Kriging-CS-DMD can extract frequency

information of the radiation field using temporally and spatially

doubly sparse sampled data.

Furthermore, we have visualized the corresponding dynamic

modes in Fig. 8, alongside the representation of the original

modes for the sake of comparison. We take the 2.4 GHz dy-

namic mode as an example, which is plotted in Fig. 8(b).

Herein, the black circles represent sampling points, and based

on these 500 sampling points, we reconstruct the entire field

data. For comparison, we also show the actual radiation mode

in Fig. 8(a). It is clear that they are consistent with each other.

The same finding can be obtained in 5.0 GHz, and the results

are shown in Fig. 8(c) and (d). Hence, we can conclude that the

Kriging-CS-DMD method can also derive the spatial radiation

pattern of each frequency based on the temporally and spatially

doubly sparse sampled data. These collective results underscore
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Fig. 7. (a) DMD spectrum acquired through the utilization of DMD for the analysis of the original dataset. (b) DMD spectrum obtained by employing the
Kriging-CS-DMD for the analysis of spatio–temporal dual sparse data.

Fig. 8. (a) Raw radiated filed distribution at 2.4 GHz. (b) 2.4 GHz mode extracted by Kriging-CS-DMD method. (a) Raw radiated filed distribution at 5.0 GHz.
(b) 5.0 GHz mode extracted by Kriging-CS-DMD method.

the efficacy of the Kriging-CS-DMD framework in extracting

essential frequency information and elucidating the associated

spatial distribution.

Fig. 9 shows the raw spatial distribution of the electric field

Ez and the reconstruction result of the electric field Ez at three

different times, i.e., 2, 4, and 5 ns. Herein, we employ 2 ns as

an example for explanation. Fig. 9(a) shows the actual radiated

field with a resolution of 256× 256 pixels. Fig. 9(b) plots the

CS reconstruction with temporal sparse sampling (128 points).

Notably, it can be observed that the CS reconstruction effectively

recovers the temporal variations, utilizing data obtained through

temporal sparse sampling, albeit with some distortion. Fig. 9(c)

illustrates the Kriging reconstruction with spatial sparse sam-

pling (500 pixels), demonstrating this method’s effectiveness

in recovering data based on spatial sparse sampling. Fig. 9(d)

and (e) shows the Kriging-CS-DMD reconstruction using tem-

porally and spatially doubly sparse sampled data. In Fig. 9(d),

128 temporal sampling points and 500 spatial sampling pix-

els are employed, while in Fig. 9(e), 128 temporal sampling

points and 1000 spatial sampling pixels are used. It is evident

that, based on temporally and spatially doubly sparse data,

the Kriging-CS-DMD method efficiently restores the global

distribution. Furthermore, the noise introduced during the CS

TABLE I
COMPARISON OF PSNR OF THE RECONSTRUCTION RESULT WITH DIFFERENT

SNRS AT t = 2 NS SHOWN IN FIG. 9

reconstruction is mitigated due to the rank-reduction computa-

tion within DMD. Comparing Fig. 9(d) and (e), it is apparent that

with an increased number of spatial sampling points, the recon-

structed field closely approximates the real distribution, aligning

with intuitive expectations. This observation holds true across

different time points. Hence, we conclude that Kriging-CS-

DMD is capable of extracting both the frequency components

and their corresponding spatial distributions from doubly sparse

fields, resulting in the reconstruction of the global distribution.

Table I presents a comparison of PSNR values corresponding

to the quality of EM field reconstruction results at different

signal-to-noise ratios (SNRs) at a specific time point (t = 2).
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Fig. 9. Raw spatial distribution of electric field Ez and reconstruction results at different time points. (a) Raw radiated field (256× 256 pixels) at 2 ns. (b) CS
reconstruction with temporal sparse sampling (128 points) at 2 ns. (c) Kriging reconstruction with spatial sparse sampling (500 pixels) at 2 ns. (d) Kriging-CS-DMD
reconstruction with temporally and spatially doubly sparse sampled data (128 temporal points and 500 spatial pixels) at 2 ns. (e) Kriging-CS-DMD reconstruction
with temporally and spatially doubly sparse sampled data (128 temporal points and 1000 spatial pixels) at 2 ns. (f) Raw radiated field (256× 256 pixels) at
4 ns. (g) CS reconstruction with temporal sparse sampling (128 points) at 4 ns. (h) Kriging reconstruction with spatial sparse sampling (500 pixels) at 4 ns.
(i) Kriging-CS-DMD Reconstruction with temporally and spatially doubly sparse sampled data (128 temporal points and 500 spatial pixels) at 4 ns. (j) Kriging-
CS-DMD reconstruction with temporally and spatially doubly sparse sampled data (128 temporal points and 1000 spatial pixels) at 4 ns. (k) Raw radiated field
(256× 256 pixels) at 5 ns. (l) CS reconstruction with temporal sparse sampling (128 points) at 5 ns. (m) Kriging reconstruction with spatial sparse sampling
(500 pixels) at 5 ns. (n) Kriging-CS-DMD reconstruction with temporally and spatially doubly sparse sampled data (128 temporal points and 500 spatial pixels) at
5 ns. (o) Kriging-CS-DMD reconstruction with temporally and spatially doubly sparse sampled data (128 temporal points and 1000 spatial pixels) at 5 ns.

The PSNR is a measure of the reconstruction’s fidelity, higher

values indicate a closer approximation to the original, noise-free

signal. In noise-free conditions, the reconstruction achieves the

highest PSNR of approximately 24.93 dB, indicating a high-

quality reconstruction. As the SNR decreases from 40 to 10 dB,

there is a corresponding decrease in PSNR values, indicating

that the presence of noise adversely affects the quality of the

reconstruction. At an SNR of 40 dB, the PSNR remains high at

around 22.47 dB, suggesting that the method is still robust at this

level of noise. However, as the noise level increases, the PSNR

drops to around 19.01 dB at 30 dB SNR, 15.84 dB at 20 dB SNR,

and to a lower value of 9.45 dB at 10 dB SNR, highlighting

a significant degradation in reconstruction quality in higher

noise environments. While the DMD algorithm employs SVD to

differentiate the signal from noise under low-noise conditions,

its effectiveness diminishes as noise intensifies, resulting in

decomposition inaccuracies and adversely affecting the EM field

reconstruction indicated by the mapping matrixMR in (10). The

effectiveness of noise reduction through truncated SVD might

not suffice, particularly in cases with high noise levels.

IV. DISCUSSION

By distinguishing between the sampling methods applied

across the time and space domains, namely, random sampling for

temporal measurements and Latin hypercube sampling (LHS)

for spatial measurements, we leverage the strengths of both

strategies. Random sampling in the time domain captures the

dynamic nature of EM fields with fewer samples, whereas LHS

in the spatial domain ensures comprehensive and efficient cover-

age of the scanning area, thereby optimizing the overall measure-

ment process. This approach, combining spatial measurements

guided by LHS and temporal measurements facilitated by a high-

speed oscilloscope, effectively satisfies the dual requirements for

sparse sampling in both domains. It allows us to reconstruct the

EM field with high fidelity, capitalizing on the sparsity inherent

in the field’s spatial and temporal characteristics. Besides, by

employing LHS for spatial points and random sampling for the

temporal domain, our method allows synchronization of sample

capture at these spatial points over time. This negates the need

for multiple oscilloscopes and resource-heavy setups, ensuring

efficient and accurate EM field reconstruction.

Table II depicts the comparison between the proposed

method and several existing near-field scanning methods, in-

cluding sequential sampling-based method [5], [49], CS-based

method [13], [50], and conjugate gradient method [51]. The

proposed method for near-field scanning represents a significant

advancement over existing techniques by offering comprehen-

sive sparse sampling in both the time domain and space domain.

This dual-domain sparse sampling is crucial for efficient data

acquisition in complex EM field environments, where the sheer

volume of data can be overwhelming and the fine details are
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TABLE II
COMPARISON BETWEEN THE PROPOSED METHOD AND SEVERAL EXISTING NEAR-FIELD SCANNING METHODS

critical for accurate analysis. Also, the unique capability of the

proposed method to analyze spatial–temporal correlation sets

it apart from other methods listed in the table. This feature

underlines the method’s sophisticated analytical power, offering

insights into the dynamic interplay between spatial and temporal

variations in the EM field.

V. CONCLUSION

In this section, we introduced the Kriging-CS-DMD approach

for addressing the challenges associated with dual temporal and

spatial sampling in near-field scanning. We have optimized data

acquisition by leveraging Kriging for spatial sparse sampling

and compressed sensing for achieving temporal sparsity while

maintaining data fidelity. Applying DMD to the resulting spatio–

temporal dual-sparse data has allowed us to extract valuable

insights, including frequency information and global spatial

distributions for each frequency. Our numerical case study has

demonstrated the proposed method’s efficiency and accuracy in

reconstructing EM fields while reducing measurement overhead.

This methodology could be adopted in various applications, par-

ticularly in space–time-modulated electronic device scenarios.
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