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Communication
Antenna Array Diagnosis Using a Deep Learning Approach

He Ming Yao , Min Li, Lijun Jiang , Kwan Lawrence Yeung, and Michael Ng

Abstract— In this communication, we propose to use a deep learn-

ing (DL) approach to detect unit failure in array antennas. Due to

natural machine life cycle and/or unexpected accidents, antenna units

unavoidably suffer from the risk of failure, leading to the deterioration

of array performance. To realize the detection of unit failure, the far-field

radiation patterns are used as the input of the deep convolutional neural

network (DConvNet) for antenna array diagnosis learning. The proposed

DConvNet consists of continuous functional groups of convolution, batch

normalization, and activation layers, followed by a fully connected layer

to realize recognition, i.e., the fault diagnosis of antenna array. Different

from conventional diagnosis techniques, the main advantage of the

proposed DL approach does not require intensive computations based on

Green’s function. The training data are collected by the electromagnetic

(EM) simulation tool. Additionally, the Gaussian noise is added to the

training data to imitate the interference in real application scenarios. The

proposed DConvNet for array diagnosis is verified by three numerical

benchmarks and demonstrates that it can diagnose antenna array in a

complex environment with generality.

Index Terms— Antenna arrays, convolutional neural network, deep

learning (DL), fault diagnosis.

I. INTRODUCTION

Antenna arrays are widely utilized in electromagnetic (EM) radi-

ation scenarios, including radar detection, far-field imaging, and

remote sensing [1], [2], [3], [4]. Keeping a proper and stable working

state of antenna units is of great importance [1], [2], [3], [4]. However,

either used in open space or packaged in enclosed devices, antennas

units unavoidably suffer from the risk of failure (e.g., machine aging,

sudden accidents, or atmospheric conditions, including snow, ice, and

dirt) [4], [5], [6], [7]. The failure of one (or more) unit(s) could

tremendously harm the system performances [5], [6], [7], such as

increasing the mismatching loss, lowering the radiation efficiency,

and deteriorating the radiation pattern. Thus, the detect of unit failure

in array antennas have been attracting extensive attention [7].

Several techniques have been proposed for array diagnosis. The

optimization methods, including genetic algorithms [8] and exhaus-

tive search [9], were widely used to identify the locations of the

faulty antenna units. However, it requires the comparison between

the radiation pattern of the array under test (AUT) and that of the

reference array, leading to complicated measurement and compu-

tation [8], [9]. To simplify the measurement and computation in
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optimization methods, the diagnostic techniques based on compressed

sensing (CS) were reported in [10] and [11]. However, the required

long diagnosis time in CS-based techniques [10], [11] could limit its

wide applications. Hence, besides the conventional techniques, the

development of fault diagnosis techniques for antenna arrays with

higher efficiency and accuracy is still in great request.

Machine learning (ML) techniques have been introduced to every

corner of traditional EM research [12], [13], particularly the deep

learning (DL) technique [14]. Recently, there are many significant

applications, such as scientific computing [15], [16], [17], [18],

microwave engineering [19], [20], and field-circuit cosimulation [21],

[22]. For instance, [18] proposed a DL-based method to realize EM

forward process. In [16] and [17], a solver employing DL technique

was described for addressing Poisson’s equations, which facilitated

the computation of potential distributions across both 2-D and 3-D

settings. Some DL-based methods were reported to help solve prob-

lems related to finite-difference time-domain (FDTD) method [23],

[24], [25]. A large number of DL methods have been proposed

to solve EM inverse problems and demonstrate better performance.

The learning-assisted multimodality is proposed to recover human

brain dielectric images with single-frequency and multifrequency

microwave measurements [52]. Plus, the physics-assisted learning

methods, where domain knowledge is incorporated either in DL

model [53], [54], have been successfully applied to microwave

imaging and biomedical imaging. Moreover, [55] attempt to embed

DL in inverse scattering problems, where a DL-based framework

to solve EMIS problems and demonstrate the ability to recover

high permittivity objects. The ML approaches have also been used

in antenna areas, such as antenna design [26], radiation computa-

tion [27], [28], and subwavelength imaging [32]. Compared with

conventional methods, the ML approach could solve some EM

problems more efficiently. For the application of ML techniques

to antenna diagnosis, some machine-learning-based methods have

to make use of training data collected from complicated derivation

and computation based on mathematical formula to do diagno-

sis [56], [57], [58], which suffer from complexity and increase

computation cost. On the contrary, other reported works have to

make use of complex measurement system, including complex near-

field measurement, to collect data and do further prediction [59],

which also increase extra cost and computation complexity for

the diagnosis. Besides, the work about cascading two deep neural

networks to realize antenna array diagnosis is also reported [60], but

its structure will increase computation cost both in training and in

computation.

This communication proposes to utilize the deep convolutional

neural network (DConvNet) to realize the fault diagnosis in array

antennas with high accuracy and efficiency. The proposed DConvNet

consists of continuous functional groups of convolution, batch nor-

malization, and activation layers, followed by a fully connected layer

to realize the recognition, i.e., the fault diagnosis of antenna array.

The radiation patterns in the far-field collected from EM simulation

tool are utilized as the input (training data) of the DConvNet. The

merits of this DL approach can be encapsulated as follows.

1) Anti-interference: This approach is of strong resistance

to interference with high precision, despite large
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Fig. 1. Two-dimensional planar antenna array.

Fig. 2. Three-dimensional radiation patterns of a 3 × 3 patch array.
(a) Without unit failure. (b) With the failure of the first unit (1,1).

interference (noise) integrated to the radiation of antenna

system.

2) Simplicity: During the diagnosing process, the antenna mutual

coupling is automatically included and the Green’s function is

not needed, avoiding complicated computation.

3) Generality: The proposed DConvNet can be trained in free

space, and directly used in a complex environment, instead of

requiring retraining.

4) Effectiveness: The proposed approach only requires one-time

far-field simulation or measurement.

II. THEORY AND FORMULATION

A. Problem Setup

A 2-D planar antenna array is considered in Fig. 1, where Nx ×

Ny units are equally spaced along the x-axis and y-axis, respectively.

Each antenna unit is indexed by (Nx , Ny). The ideal far-field

radiation pattern of this antenna array without considering antenna

coupling in the direction (θ, ϕ) [21] is described as

E (θ, φ) =

Ny−1
∑

n=0

Nx −1
∑

m=0

ωn,m ∗ exp

(

jm
2πdx

λ
sinθcosφ

)

× exp

(

jn
2πdy

λ
sinθsinφ

)

(1)

where dx and dy are the antenna spacing, respectively, along the

x-axis and y-axis, λ is the wavelength, and ωn,m is the (n, m)th

complex antenna weight. Notably, the proposed approach can also

be applied to arbitrary antenna types and configurations.

Fig. 2 shows the simulated 3-D radiation patterns of a 3 × 3 planar

patch array, as demonstrated in Fig. 1, where Nx = 3, Ny = 3, dx =

9 mm, dy = 18.6 mm, L = 58 mm, and W = 31.4 mm. Antennas are

optimized to operate at 2.4 GHz with a mutual coupling of around

−15 dB between adjacent elements. The comparison of Fig. 2(a)

and (b) demonstrates that the failure of the first unit (1,1) leads to

the reduction of the realized gain and the deflection of the radiation

pattern of the antenna array. Hence, the far-field radiation data can

be used to realize fault diagnosis in array.

B. Proposed ConvNet Architecture

In our approach, the far-field radiation pattern is input into the

DConvNet model to predict the unit fault of the antenna array.

Considering the difficulties of collecting training data in a large-scale

TABLE I

DCONVNET ARCHITECTURE

by real experimental measurements, the simulated data are utilized

as training data for our DConvNet. As the representative DL model,

DConvNets can harness spatially oriented imagery as their data foun-

dation [29], [30]. DConvNets are adept at leveraging intricate patterns

within microwave field data, to facilitate accurate forecasting and

identification in novel application contexts [20], [32]. Furthermore,

despite the huge noise in a complex environment, DConvNets can still

succeed in realizing prediction and recognition in the far-field [20],

[32]. Therefore, during the training, we utilize simulated original data

of radiation patterns (far-field radiation gains) as input to the proposed

DConvNet and use the index of faulted antenna unit(s) on the array

as the output. Thanks to the strong power of ConvNet, this method

makes use of radiation patterns with strong interference to predict the

faulted antenna unit in the antenna array. Thus, the proposed DCon-

vNet can realize the diagnosis with high accuracy and efficiency.

The internal structure of our proposed model can be specifically

presented at Fig. 3. Its input is a M × 3 matrix with radiation pattern

information, named as “radiation data,” in which the three-column

values stand for the received far-field radiation patterns (realized

gains) (G) in xy, xz, and yz planes. For a straightforward depiction

of the issue, the xy plane is referred to as the horizontal plane

(H-plane), the xz plane as the first vertical plane (V1-plane), and

the yz plane as the second vertical plane (V2-plane). Across each

plane, M receivers are evenly distributed over the radiative angles

(θ or ϕ), ranging from [0◦, 180◦].

For our proposed DConvNet, the features from the input are

extracted by DConvNet layer by layer, followed by the final fully

connected layer to predict the faulted unit of the antenna array. The

specific parameters can be seen in Table I. The 1-D kernel is chosen

for convolution operation. It has been widely employed in text natural

language processing and stock prediction [33], [34]. The loss function

of DConvNet is the half-mean-squared error [31].

The proposed approach is implemented in MATLAB 2020a with

DL Toolbox [35]. The adaptive moment estimation (Adam) optimizer

is applied to optimize the loss function. The Adam optimizer typically

traverses the loss landscape more effectively [36]. Additionally, the

batch normalization technique integrated within our DConvNet acts

as a regularizing agent, enhancing the accuracy of predictions and

mitigating the risk of overfitting [37], [38], [39].

The whole process could be summarized as the transformation pro-

cess where the received far-field radiation pattern is transformed into

the prediction of the faulted unit of the antenna array. In this process,

the DConvNet directly takes “radiation data” G as its input, with the

output being the index of the faulted antenna unit(s). Therefore, this

DConvNet completely replaces traditional, computationally intensive

methods, streamlining the entire operation [8], [9], [10], [11]. It is

important that this DConvNet is entirely independent of calculating

Green’s function. Furthermore, the flexibility of this DL model is

enhanced due to its data-driven nature, allowing it to incorporate

additional prior knowledge through the training phase [40], [41].

Additionally, it is worth mentioning that our DConvNet architecture

is designed to diagnose antenna arrays with a singular, unified model,
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Fig. 3. DConvNet architecture for antenna array diagnosis with the repeated application of convolution, BN and ReLu layer.

offering a more streamlined solution compared to the multistep DL

strategies for EM-based problems [42]. Plus, different from [39],

[42], [43], this DConvNet realizes the transformation from far-field

radiation into the prediction of faulted antenna unit and never

requires the complicated computation for information compression

or optimization in conventional diagnosis techniques.

Some issues need to be highlighted about the proposed model.
1) Filtering in multichannel: Filters exerted on the multichannel

act as an important approach for ConvNet to amplify the power

of the structure [38], [39], [42], [43], based on which several

feature maps at each layer are created. Multichannel filtering in

the proposed DConvNet can be referred to as a more efficient

operation than conventional methods [38], [39], [42], [43].

2) Computational complexity: The primary operations governing

the computational effort in our model are the repeated

executions of convolution, BN, and ReLU. The computational

demand is principally influenced by the convolutions

employing compact filters [39], [43], [44]. Within the

computation framework, the model processes inputs of size

N × 3 × 1, utilizes R filters each of size K × 1 for every

layer, and spans f layers in depth. Consequently, the overall

computational complexity of DConvNet is estimated to be in

the order of O(N K R2 f ) [43], [44]. Additionally, the memory

requirements for DConvNet are chiefly determined by the

dimensions of the filters and biases, leading to a storage

complexity estimated as O(K R2 f ) [43], [44].

C. Applying ConvNet to Antenna Array Diagnosis

By setting the receivers in the far-field around the tested antenna

array, the radiation pattern of the antenna array can be noted for

its nondamaged and various cases with the faulted unit(s). Then,

the radiation data containing information of faulted antenna unit

with high interference could get handled by our DConvNet, i.e.,

realizing the antenna array fault diagnosis. The designed procedures

of the proposed approach for antenna array diagnosis are specifically

described as three stages.

Step 1: Collecting far-field radiation data: The antenna array works

in various faulted cases. In this process, the radiation gain G from

the antenna array with faulted unit(s) is noted by far-field receivers.

Step 2: DConvNet model training and testing: To considerably

enhance the noise tolerance and fault prediction accuracy of our

proposed DL approach, the received radiation contaminated with

noise has been utilized as input for our DConvNet for training and

testing, which imitates the complicated environment in reality, includ-

ing fabrication tolerance and the measurement tolerance. [45], [46].

Besides, as a typical numerical validation operation, the proposed DL

approach is verified with 5% training data during the training, and

the same validation operation is also done in the Section III-A–III-C.

Meanwhile, the training output is the index of the corresponding

faulted unit(s) on the antenna array. While we repeat the training

and testing for several times to avoid the uncertainty of the proposed

approach, Dropout operation during the testing is exerted during the

testing step to make the model trustful [61], [62].

Step 3: Far-field antenna array diagnosis: Based on this trained

DConvNet, the faulted unit on the antenna array can be recognized

by using new received radiation even under huge interference.

III. NUMERICAL EXAMPLES

A. Diagnosis for Antenna Array Using Three-Plane Radiation Gain

In Section III, a 3 × 3 planar antenna array is used, as demonstrated

in Fig. 1, where Nx = 3, Ny = 3, dx = 9 mm, dy = 18.6 mm,

L = 58 mm, and W = 31.4 mm. Following the designed diagnosis

methodology in Section II, the specific process is as follows.

Step 1: Collecting far-field radiation data: The unit of the antenna

array is faulted in various cases and the corresponding far-field

realized radiation gains (G) at H, V1, and V2 planes are acquired

by utilizing CST Microwave Studio [47]. In real cases, the far-field

radiation gains (G) could be collected by receivers by using vector

network analyzer (VNA).

Step 2: DConvNet model training and testing: During its training

process, the input can be presented as a “image” matrix with the size

of M × 3 (M = 180). They [Fig. 4(d)–(f)] are formed by adding

Gaussian noise to the ideally received radiation pattern information

[Fig. 4(a)–(c)]. Here, considering interference in real scenario, we set

its noise level to signal-to-noise ratio (SRN) up to 5 dB, which

is generally much larger and rougher than the experimental-based

cases [45], [46]. In Fig. 4, only the data resulted from the array

with first, second, and fifth unit faulted are illustrated. In Fig. 4,

it is evident that the ideally received radiation patterns are much

different from the final “radiation data.” We should highlight that the

conventional approaches hardly realize the fault diagnosis for antenna

array [48], due to this extremely small SNR. 45 000 “radiation

data” with Gaussian noise are utilized to be input to train and test

the proposed DConvNet, while their corresponding faulted unit of

antenna array are selected as the outputs.

Step 3:Far-field antenna array diagnosis: To verify the validity

of our DConvNet, another 4500 groups of “radiation data” are

selected as inputs with Gaussian noise (SNR = 5 dB), while their

corresponding faulted unit of the antenna array are utilized as outputs.

As a consequence, the prediction of the faulted unit of the antenna

array could be done in spite of such huge interference.

Fig. 5 shows the performances of this proposed DConvNet, where

our proposed DConvNet can realize the antenna array diagnosis under

large interference, with even zero error. In addition, more application

of our approach demonstrate that our DConvNet trained by datasets

(in any noise levels as SNR = 5 dB or SNR > 5 dB) all realize the

antenna array diagnosis, with the same accuracy (zero error).

B. Diagnosis for Antenna Array Using One-Plane Radiation Gain

To increase practicality of this DL approach, we make two

improvements about input data are as follows.

1) Instead of three planes, the inputs of our DConvNet only makes

use of the far-field radiation gains (G) in H-plane.

2) In Step 3, the radiation angles of the received far-field radiation

gains (G) are selected as φ = 0◦, 3◦,. . . ,180◦.
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Fig. 4. Accurate “radiation data” for faulted unit (a) first unit, (b) second
unit, and (c) fifth unit. “Radiation data” with noise for faulted unit (d) first
unit, (e) second unit, and (f) fifth unit.

Fig. 5. Performance of the proposed approach for antenna array diagnosis.
While the green percentage represents the success rate, the red percentage
represents the failure rate for using three-plane far-field radiation gain and
only using far-field radiation gains (G) in the H-plane.

As a consequence, the input of the DConvNet will be the M /3

vector, of which the size is smaller than the input matrix with the

size of M × 3, shown in the Section III-A. The detailed process can

be described as follows.

Step 1: Collecting far-field radiation data: The unit of the antenna

array is faulted in various cases and the corresponding far-field

radiation gains (G) only in H-plane can be collected based on CST

Microwave Studio.

Fig. 6. Accurate “radiation data” in H-plane for faulted unit (a) first unit,
(b) second unit, and (c) fifth unit. “Radiation data” in H-plane with noise for
faulted unit (d) first unit, (e) second unit, and (f) fifth unit.

Step 2: DConvNet model training and testing: During its training

process, the input is a “image” matrix with the size of M × 1 (M =

180). Because the application scenario remains the same, Table I with

the specific ConvNet parameters (stride size and kernel number) can

still be made use of in this step. We set SRN up to 15 dB to form

training data for the input, which is generally rougher than most of

reported works [45], [46], shown in Fig. 6(a)–(c). 45 000 “radiation

data” with Gaussian noise are utilized as the inputs to train and test

the proposed DConvNet, while their corresponding faulted unit of the

antenna array are selected to be the outputs.

Step 3:Far-field antenna array diagnosis: To verify the validity

of our DConvNet, another 4500 groups of “radiation data” are

selected as inputs with Gaussian noise (SNR = 10 dB), while the

corresponding faulted unit of the antenna array are utilized as outputs.

As described above, far-field radiation gain (G) is reduced to vector

with the size of M /3. Thus, we utilize the linear interpolation method

to make up for the received field data, based on which the input size

can still be kept as M × 1, presented in Fig. 6(d)–(f). Consequently,

the prediction for the faulted units of the array can be done despite

huge interference.

Fig. 5 shows the performances of this proposed DConvNet, where

our proposed DConvNet can realize the antenna array diagnosis under

huge interference.

C. Diagnosis for Antenna Array Using One-Plane Radiation Gain

in Complex Environment

In Section C, this DL approach is applied to a more challenging

scenario, shown in Fig. 7(a), where the arrangement positions the

antenna array encircled by a concrete wall. The particular attributes

of the concrete wall are characterized as follows: the material density

is 2400 kg/m3, the heat capacity is 0.8 kJ/K·kg, and the thermal

conductivity is 1.7 W/K·m. The pattern of “radiation data” and the

trained DConvNet in Section III-B is directly made use of here. The
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Fig. 7. (a) Top view of the faulted antenna array surrounded concrete walls.
(b) Accurate “radiation data” in H-plane for the case with first unit faulted.
(c) Interpolated “field data” in H-plane with noise for the case with first unit
faulted.

TABLE II

DIAGNOSIS IN COMPLEX ENVIRONMENT

precise “radiation data” in H-plane for unit fault diagnosis of the

antenna array is presented in Fig. 7(b), while Fig. 7(c) illustrates the

“field data” in H-plane with noise obtained from the interpolation

method. Shown in Table II, we attempted two cases: 1) First unit on

the antenna array is faulted; 2) both second and fifth are faulted

on the antenna array. Compared with “field data” in H-plane in

Section III-B, we can find the “field data” in this complex envi-

ronment is much distinguished from the “field data” with Gaussian

noise (i.e., seen as the totally new noise pattern). Furthermore, the

proposed DConvNet can successfully recognize the faulted units on

the antenna array, i.e., realize the antenna array diagnosis. We here

need to emphasize that we train our DConvNet in free space but test

it in a different complex environment to demonstrate its generality.

D. Discussion

From the numerical benchmarks above, we can see that the

trainable DConvNet is capable of successfully recognizing the faulted

units of antenna array even with large interference. Because of its

strong feature-extracted capability for recognition [49], [51], the

inevitable interference in reality will not affect the performance of

recognition. Additionally, by using DConvNet, the environmental

susceptibility and the complexity of Green’s function computation

for conventional methods can be avoided. Hence, this novel method

demonstrates its possibility of being applied to the extremely harsh

environment, including complex outer space with huge background

radiation or highly packaged complex circuit. Plus, while the DCon-

vNet is trained by data in free space, it can be directly used in a

complex environment to diagnose antenna array, which demonstrates

its generality. Three numerical examples above demonstrate the

proposed approach can effectively realize antenna array diagnosis

under big interference.

In addition, the proposed approach can successfully realize diag-

nosis for the array with the number of faulted unit larger than two.

Following the designed diagnosis methodology in Section II, we have

integrated together the cases with one, two, and three units faulted in

training and testing. The proposed DL-based approach can still realize

array diagnosis with 100% accuracy. While most of the diagnosis

works focus on cases with total faulted units less than 20% [63],

[64], our DL approach shows strong capability again.

Furthermore, though the training of our model is done on the

small antenna arrays, the application of our approach can potentially

be extended to the relative larger arrays, because the relative larger

arrays can be discretized into several 3×3 antenna array (i.e., N × N

arrays with N > 3 could be seen as the combination of a number

of 3 × 3 arrays). During the diagnosis process, we can only exert

operation on the individual 3 × 3 array and then move to another.

For the relative larger arrays, we only need to simply do about (N/3)

× (N/3), i.e., approximated to (N × N )/10, times computation

to accurately find the faulted unit on the relative larger arrays.

In fact, our approach can make use of simple model and convenient

measurement operation to realize antenna array diagnosis with high

accuracy. The proposed method successfully avoids complicated

theoretical computation and realizes antenna array diagnosis (even

for large arrays) by simple measurement with high accuracy.

IV. CONCLUSION

In this communication, a DL approach for solving the problem of

detecting unit failures in an array antenna is proposed. To realize the

detection of unit failures in the phased array antenna, the received

far-field radiation pattern is used to be the inputs of the proposed

DConvNet, while the faulted unit(s) is utilized as its outputs. The

probable strong interference in the real scenarios can be added to

the training data. Various numerical benchmarks have illustrated the

validity and generality of the proposed DConvNet for antenna array

diagnosis. The computation of Green’s function is never required in

this DL approach. The proposed approach opens a new path for the

real-time antenna array diagnosis in complex environments.
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