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Antenna Array Diagnosis Using a Deep Learning Approach

He Ming Yao™, Min Li, Lijun Jiang ~, Kwan Lawrence Yeung, and Michael Ng

Abstract—In this communication, we propose to use a deep learn-
ing (DL) approach to detect unit failure in array antennas. Due to
natural machine life cycle and/or unexpected accidents, antenna units
unavoidably suffer from the risk of failure, leading to the deterioration
of array performance. To realize the detection of unit failure, the far-field
radiation patterns are used as the input of the deep convolutional neural
network (DConvNet) for antenna array diagnosis learning. The proposed
DConvNet consists of continuous functional groups of convolution, batch
normalization, and activation layers, followed by a fully connected layer
to realize recognition, i.e., the fault diagnosis of antenna array. Different
from conventional diagnosis techniques, the main advantage of the
proposed DL approach does not require intensive computations based on
Green’s function. The training data are collected by the electromagnetic
(EM) simulation tool. Additionally, the Gaussian noise is added to the
training data to imitate the interference in real application scenarios. The
proposed DConvNet for array diagnosis is verified by three numerical
benchmarks and demonstrates that it can diagnose antenna array in a
complex environment with generality.

Index Terms— Antenna arrays, convolutional neural network, deep
learning (DL), fault diagnosis.

I. INTRODUCTION

Antenna arrays are widely utilized in electromagnetic (EM) radi-
ation scenarios, including radar detection, far-field imaging, and
remote sensing [1], [2], [3], [4]. Keeping a proper and stable working
state of antenna units is of great importance [1], [2], [3], [4]. However,
either used in open space or packaged in enclosed devices, antennas
units unavoidably suffer from the risk of failure (e.g., machine aging,
sudden accidents, or atmospheric conditions, including snow, ice, and
dirt) [4], [5], [6], [7]. The failure of one (or more) unit(s) could
tremendously harm the system performances [5], [6], [7], such as
increasing the mismatching loss, lowering the radiation efficiency,
and deteriorating the radiation pattern. Thus, the detect of unit failure
in array antennas have been attracting extensive attention [7].

Several techniques have been proposed for array diagnosis. The
optimization methods, including genetic algorithms [8] and exhaus-
tive search [9], were widely used to identify the locations of the
faulty antenna units. However, it requires the comparison between
the radiation pattern of the array under test (AUT) and that of the
reference array, leading to complicated measurement and compu-
tation [8], [9]. To simplify the measurement and computation in
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optimization methods, the diagnostic techniques based on compressed
sensing (CS) were reported in [10] and [11]. However, the required
long diagnosis time in CS-based techniques [10], [11] could limit its
wide applications. Hence, besides the conventional techniques, the
development of fault diagnosis techniques for antenna arrays with
higher efficiency and accuracy is still in great request.

Machine learning (ML) techniques have been introduced to every
corner of traditional EM research [12], [13], particularly the deep
learning (DL) technique [14]. Recently, there are many significant
applications, such as scientific computing [15], [16], [17], [18],
microwave engineering [19], [20], and field-circuit cosimulation [21],
[22]. For instance, [18] proposed a DL-based method to realize EM
forward process. In [16] and [17], a solver employing DL technique
was described for addressing Poisson’s equations, which facilitated
the computation of potential distributions across both 2-D and 3-D
settings. Some DL-based methods were reported to help solve prob-
lems related to finite-difference time-domain (FDTD) method [23],
[24], [25]. A large number of DL methods have been proposed
to solve EM inverse problems and demonstrate better performance.
The learning-assisted multimodality is proposed to recover human
brain dielectric images with single-frequency and multifrequency
microwave measurements [52]. Plus, the physics-assisted learning
methods, where domain knowledge is incorporated either in DL
model [53], [54], have been successfully applied to microwave
imaging and biomedical imaging. Moreover, [55] attempt to embed
DL in inverse scattering problems, where a DL-based framework
to solve EMIS problems and demonstrate the ability to recover
high permittivity objects. The ML approaches have also been used
in antenna areas, such as antenna design [26], radiation computa-
tion [27], [28], and subwavelength imaging [32]. Compared with
conventional methods, the ML approach could solve some EM
problems more efficiently. For the application of ML techniques
to antenna diagnosis, some machine-learning-based methods have
to make use of training data collected from complicated derivation
and computation based on mathematical formula to do diagno-
sis [56], [57], [58], which suffer from complexity and increase
computation cost. On the contrary, other reported works have to
make use of complex measurement system, including complex near-
field measurement, to collect data and do further prediction [59],
which also increase extra cost and computation complexity for
the diagnosis. Besides, the work about cascading two deep neural
networks to realize antenna array diagnosis is also reported [60], but
its structure will increase computation cost both in training and in
computation.

This communication proposes to utilize the deep convolutional
neural network (DConvNet) to realize the fault diagnosis in array
antennas with high accuracy and efficiency. The proposed DConvNet
consists of continuous functional groups of convolution, batch nor-
malization, and activation layers, followed by a fully connected layer
to realize the recognition, i.e., the fault diagnosis of antenna array.
The radiation patterns in the far-field collected from EM simulation
tool are utilized as the input (training data) of the DConvNet. The
merits of this DL approach can be encapsulated as follows.

1) Anti-interference:
to interference

This approach is of strong resistance
with  high precision, despite large
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Fig. 1.

Two-dimensional planar antenna array.

Fig. 2. Three-dimensional radiation patterns of a 3 x 3 patch array.
(a) Without unit failure. (b) With the failure of the first unit (1,1).

interference (noise) integrated to the radiation of antenna
system.

2) Simplicity: During the diagnosing process, the antenna mutual
coupling is automatically included and the Green’s function is
not needed, avoiding complicated computation.

3) Generality: The proposed DConvNet can be trained in free
space, and directly used in a complex environment, instead of
requiring retraining.

4) Effectiveness: The proposed approach only requires one-time
far-field simulation or measurement.

II. THEORY AND FORMULATION
A. Problem Setup
A 2-D planar antenna array is considered in Fig. 1, where Ny X
Ny units are equally spaced along the x-axis and y-axis, respectively.
Each antenna unit is indexed by (Nx, Ny). The ideal far-field
radiation pattern of this antenna array without considering antenna
coupling in the direction (@, ¢) [21] is described as

Ny—1N,—1

2md
E©,¢) = Z Z Wn,m * EXP (jm n}\xsinecoscp)

n=0 m=0

2rdy

X exp (jn sin@sinzf)) D
where dy and dy are the antenna spacing, respectively, along the
x-axis and y-axis, A is the wavelength, and @y ;; is the (n, m)th
complex antenna weight. Notably, the proposed approach can also
be applied to arbitrary antenna types and configurations.

Fig. 2 shows the simulated 3-D radiation patterns of a 3 x 3 planar
patch array, as demonstrated in Fig. 1, where Ny = 3, Ny = 3, dy =
9 mm, dy = 18.6 mm, L = 58 mm, and W = 31.4 mm. Antennas are
optimized to operate at 2.4 GHz with a mutual coupling of around
—15 dB between adjacent elements. The comparison of Fig. 2(a)
and (b) demonstrates that the failure of the first unit (1,1) leads to
the reduction of the realized gain and the deflection of the radiation
pattern of the antenna array. Hence, the far-field radiation data can
be used to realize fault diagnosis in array.

B. Proposed ConvNet Architecture

In our approach, the far-field radiation pattern is input into the
DConvNet model to predict the unit fault of the antenna array.
Considering the difficulties of collecting training data in a large-scale
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TABLE I
DCONVNET ARCHITECTURE
Filter Filter . . .
Type Number Size Stride Input Size Output Size
Convolution 30 3x1 [2,1] 180x3x1 90x3x30
ReLu 90x3x30 90x3x30
Convolution 60 3x1 [3,1] 90x3x30 30x3x60
ReLu 30x3%60 30x3x%60
Convolution 180 3x1 [3,1] 30x3%60 10x3x180
ReLu 10x3x180 10x3x180
Fully-connected 10x3x180 5400x1
Softmax 5400x1 45

Loss function

by real experimental measurements, the simulated data are utilized
as training data for our DConvNet. As the representative DL model,
DConvNets can harness spatially oriented imagery as their data foun-
dation [29], [30]. DConvNets are adept at leveraging intricate patterns
within microwave field data, to facilitate accurate forecasting and
identification in novel application contexts [20], [32]. Furthermore,
despite the huge noise in a complex environment, DConvNets can still
succeed in realizing prediction and recognition in the far-field [20],
[32]. Therefore, during the training, we utilize simulated original data
of radiation patterns (far-field radiation gains) as input to the proposed
DConvNet and use the index of faulted antenna unit(s) on the array
as the output. Thanks to the strong power of ConvNet, this method
makes use of radiation patterns with strong interference to predict the
faulted antenna unit in the antenna array. Thus, the proposed DCon-
vNet can realize the diagnosis with high accuracy and efficiency.

The internal structure of our proposed model can be specifically
presented at Fig. 3. Its input is a M x 3 matrix with radiation pattern
information, named as “radiation data,” in which the three-column
values stand for the received far-field radiation patterns (realized
gains) (G) in xy, xz, and yz planes. For a straightforward depiction
of the issue, the xy plane is referred to as the horizontal plane
(H-plane), the xz plane as the first vertical plane (V1-plane), and
the yz plane as the second vertical plane (V2-plane). Across each
plane, M receivers are evenly distributed over the radiative angles
(6 or @), ranging from [0°, 180°].

For our proposed DConvNet, the features from the input are
extracted by DConvNet layer by layer, followed by the final fully
connected layer to predict the faulted unit of the antenna array. The
specific parameters can be seen in Table I. The 1-D kernel is chosen
for convolution operation. It has been widely employed in text natural
language processing and stock prediction [33], [34]. The loss function
of DConvNet is the half-mean-squared error [31].

The proposed approach is implemented in MATLAB 2020a with
DL Toolbox [35]. The adaptive moment estimation (Adam) optimizer
is applied to optimize the loss function. The Adam optimizer typically
traverses the loss landscape more effectively [36]. Additionally, the
batch normalization technique integrated within our DConvNet acts
as a regularizing agent, enhancing the accuracy of predictions and
mitigating the risk of overfitting [37], [38], [39].

The whole process could be summarized as the transformation pro-
cess where the received far-field radiation pattern is transformed into
the prediction of the faulted unit of the antenna array. In this process,
the DConvNet directly takes “radiation data” G as its input, with the
output being the index of the faulted antenna unit(s). Therefore, this
DConvNet completely replaces traditional, computationally intensive
methods, streamlining the entire operation [8], [9], [10], [11]. It is
important that this DConvNet is entirely independent of calculating
Green’s function. Furthermore, the flexibility of this DL model is
enhanced due to its data-driven nature, allowing it to incorporate
additional prior knowledge through the training phase [40], [41].
Additionally, it is worth mentioning that our DConvNet architecture
is designed to diagnose antenna arrays with a singular, unified model,
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offering a more streamlined solution compared to the multistep DL
strategies for EM-based problems [42]. Plus, different from [39],
[42], [43], this DConvNet realizes the transformation from far-field
radiation into the prediction of faulted antenna unit and never
requires the complicated computation for information compression
or optimization in conventional diagnosis techniques.

Some issues need to be highlighted about the proposed model.
1) Filtering in multichannel: Filters exerted on the multichannel

act as an important approach for ConvNet to amplify the power
of the structure [38], [39], [42], [43], based on which several
feature maps at each layer are created. Multichannel filtering in
the proposed DConvNet can be referred to as a more efficient
operation than conventional methods [38], [39], [42], [43].

2) Computational complexity: The primary operations governing
the computational effort in our model are the repeated
executions of convolution, BN, and ReLU. The computational
demand 1is principally influenced by the convolutions
employing compact filters [39], [43], [44]. Within the
computation framework, the model processes inputs of size
N x 3 x 1, utilizes R filters each of size K x 1 for every
layer, and spans f layers in depth. Consequently, the overall
computational complexity of DConvNet is estimated to be in
the order of O(NK R? f) [43], [44]. Additionally, the memory
requirements for DConvNet are chiefly determined by the
dimensions of the filters and biases, leading to a storage
complexity estimated as O(Ksz) [43], [44].

C. Applying ConvNet to Antenna Array Diagnosis

By setting the receivers in the far-field around the tested antenna
array, the radiation pattern of the antenna array can be noted for
its nondamaged and various cases with the faulted unit(s). Then,
the radiation data containing information of faulted antenna unit
with high interference could get handled by our DConvNet, i.e.,
realizing the antenna array fault diagnosis. The designed procedures
of the proposed approach for antenna array diagnosis are specifically
described as three stages.

Step 1: Collecting far-field radiation data: The antenna array works
in various faulted cases. In this process, the radiation gain G from
the antenna array with faulted unit(s) is noted by far-field receivers.

Step 2: DConvNet model training and testing: To considerably
enhance the noise tolerance and fault prediction accuracy of our
proposed DL approach, the received radiation contaminated with
noise has been utilized as input for our DConvNet for training and
testing, which imitates the complicated environment in reality, includ-
ing fabrication tolerance and the measurement tolerance. [45], [46].
Besides, as a typical numerical validation operation, the proposed DL
approach is verified with 5% training data during the training, and
the same validation operation is also done in the Section III-A-III-C.
Meanwhile, the training output is the index of the corresponding
faulted unit(s) on the antenna array. While we repeat the training
and testing for several times to avoid the uncertainty of the proposed
approach, Dropout operation during the testing is exerted during the
testing step to make the model trustful [61], [62].

ReLu

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 72, NO. 6, JUNE 2024

[T1T11T

FEITEEET

ReLu  Fully-connected  gypu¢
Linear/Softmax

Convolution BN
180@3x1

DConvNet architecture for antenna array diagnosis with the repeated application of convolution, BN and ReLu layer.

Step 3: Far-field antenna array diagnosis: Based on this trained
DConvNet, the faulted unit on the antenna array can be recognized
by using new received radiation even under huge interference.

III. NUMERICAL EXAMPLES
A. Diagnosis for Antenna Array Using Three-Plane Radiation Gain

In Section III, a 3 x 3 planar antenna array is used, as demonstrated
in Fig. 1, where Ny = 3, Ny = 3, dy = 9 mm, dy = 18.6 mm,
L = 58 mm, and W = 31.4 mm. Following the designed diagnosis
methodology in Section II, the specific process is as follows.

Step 1: Collecting far-field radiation data: The unit of the antenna
array is faulted in various cases and the corresponding far-field
realized radiation gains (G) at H, V1, and V2 planes are acquired
by utilizing CST Microwave Studio [47]. In real cases, the far-field
radiation gains (G) could be collected by receivers by using vector
network analyzer (VNA).

Step 2: DConvNet model training and testing: During its training
process, the input can be presented as a “image” matrix with the size
of M x 3 (M = 180). They [Fig. 4(d)—(f)] are formed by adding
Gaussian noise to the ideally received radiation pattern information
[Fig. 4(a)—(c)]. Here, considering interference in real scenario, we set
its noise level to signal-to-noise ratio (SRN) up to 5 dB, which
is generally much larger and rougher than the experimental-based
cases [45], [46]. In Fig. 4, only the data resulted from the array
with first, second, and fifth unit faulted are illustrated. In Fig. 4,
it is evident that the ideally received radiation patterns are much
different from the final “radiation data.” We should highlight that the
conventional approaches hardly realize the fault diagnosis for antenna
array [48], due to this extremely small SNR. 45000 “radiation
data” with Gaussian noise are utilized to be input to train and test
the proposed DConvNet, while their corresponding faulted unit of
antenna array are selected as the outputs.

Step 3:Far-field antenna array diagnosis: To verify the validity
of our DConvNet, another 4500 groups of “radiation data” are
selected as inputs with Gaussian noise (SNR = 5 dB), while their
corresponding faulted unit of the antenna array are utilized as outputs.
As a consequence, the prediction of the faulted unit of the antenna
array could be done in spite of such huge interference.

Fig. 5 shows the performances of this proposed DConvNet, where
our proposed DConvNet can realize the antenna array diagnosis under
large interference, with even zero error. In addition, more application
of our approach demonstrate that our DConvNet trained by datasets
(in any noise levels as SNR = 5 dB or SNR > 5 dB) all realize the
antenna array diagnosis, with the same accuracy (zero error).

B. Diagnosis for Antenna Array Using One-Plane Radiation Gain

To increase practicality of this DL approach, we make two
improvements about input data are as follows.
1) Instead of three planes, the inputs of our DConvNet only makes
use of the far-field radiation gains (G) in H-plane.
2) In Step 3, the radiation angles of the received far-field radiation
gains (G) are selected as ¢ = 0°, 3°,...,180°.
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Fig. 5. Performance of the proposed approach for antenna array diagnosis.

While the green percentage represents the success rate, the red percentage
represents the failure rate for using three-plane far-field radiation gain and
only using far-field radiation gains (G) in the H-plane.

As a consequence, the input of the DConvNet will be the M/3
vector, of which the size is smaller than the input matrix with the
size of M x 3, shown in the Section III-A. The detailed process can
be described as follows.

Step 1: Collecting far-field radiation data: The unit of the antenna
array is faulted in various cases and the corresponding far-field
radiation gains (G) only in H-plane can be collected based on CST
Microwave Studio.

(b) second unit, and (c) fifth unit. “Radiation data” in H-plane with noise for
faulted unit (d) first unit, (e) second unit, and (f) fifth unit.

Step 2: DConvNet model training and testing: During its training
process, the input is a “image” matrix with the size of M x 1 (M =
180). Because the application scenario remains the same, Table I with
the specific ConvNet parameters (stride size and kernel number) can
still be made use of in this step. We set SRN up to 15 dB to form
training data for the input, which is generally rougher than most of
reported works [45], [46], shown in Fig. 6(a)—(c). 45000 “radiation
data” with Gaussian noise are utilized as the inputs to train and test
the proposed DConvNet, while their corresponding faulted unit of the
antenna array are selected to be the outputs.

Step 3:Far-field antenna array diagnosis: To verify the validity
of our DConvNet, another 4500 groups of “radiation data” are
selected as inputs with Gaussian noise (SNR = 10 dB), while the
corresponding faulted unit of the antenna array are utilized as outputs.
As described above, far-field radiation gain (G) is reduced to vector
with the size of M/3. Thus, we utilize the linear interpolation method
to make up for the received field data, based on which the input size
can still be kept as M x 1, presented in Fig. 6(d)—(f). Consequently,
the prediction for the faulted units of the array can be done despite
huge interference.

Fig. 5 shows the performances of this proposed DConvNet, where
our proposed DConvNet can realize the antenna array diagnosis under
huge interference.

C. Diagnosis for Antenna Array Using One-Plane Radiation Gain
in Complex Environment

In Section C, this DL approach is applied to a more challenging
scenario, shown in Fig. 7(a), where the arrangement positions the
antenna array encircled by a concrete wall. The particular attributes
of the concrete wall are characterized as follows: the material density
is 2400 kg/m3, the heat capacity is 0.8 kJ/K-kg, and the thermal
conductivity is 1.7 W/K-m. The pattern of “radiation data” and the
trained DConvNet in Section III-B is directly made use of here. The
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Fig. 7. (a) Top view of the faulted antenna array surrounded concrete walls.

(b) Accurate “radiation data” in H-plane for the case with first unit faulted.
(c) Interpolated “field data” in H-plane with noise for the case with first unit
faulted.

TABLE II
DIAGNOSIS IN COMPLEX ENVIRONMENT
Faulted unit(s) Sgccess f’f Con;ldermg Comp’utanon‘of Cons@ermg
diagnosis coupling effect ~ Green’s function noise
1* unit Yes No No Yes
2" and 5™ units Yes No No Yes

precise ‘“radiation data” in H-plane for unit fault diagnosis of the
antenna array is presented in Fig. 7(b), while Fig. 7(c) illustrates the
“field data” in H-plane with noise obtained from the interpolation
method. Shown in Table II, we attempted two cases: 1) First unit on
the antenna array is faulted; 2) both second and fifth are faulted
on the antenna array. Compared with “field data” in H-plane in
Section III-B, we can find the “field data” in this complex envi-
ronment is much distinguished from the “field data” with Gaussian
noise (i.e., seen as the totally new noise pattern). Furthermore, the
proposed DConvNet can successfully recognize the faulted units on
the antenna array, i.e., realize the antenna array diagnosis. We here
need to emphasize that we train our DConvNet in free space but test
it in a different complex environment to demonstrate its generality.

D. Discussion

From the numerical benchmarks above, we can see that the
trainable DConvNet is capable of successfully recognizing the faulted
units of antenna array even with large interference. Because of its
strong feature-extracted capability for recognition [49], [51], the
inevitable interference in reality will not affect the performance of
recognition. Additionally, by using DConvNet, the environmental
susceptibility and the complexity of Green’s function computation
for conventional methods can be avoided. Hence, this novel method
demonstrates its possibility of being applied to the extremely harsh
environment, including complex outer space with huge background
radiation or highly packaged complex circuit. Plus, while the DCon-
vNet is trained by data in free space, it can be directly used in a
complex environment to diagnose antenna array, which demonstrates
its generality. Three numerical examples above demonstrate the
proposed approach can effectively realize antenna array diagnosis
under big interference.

In addition, the proposed approach can successfully realize diag-
nosis for the array with the number of faulted unit larger than two.
Following the designed diagnosis methodology in Section II, we have
integrated together the cases with one, two, and three units faulted in
training and testing. The proposed DL-based approach can still realize
array diagnosis with 100% accuracy. While most of the diagnosis
works focus on cases with total faulted units less than 20% [63],
[64], our DL approach shows strong capability again.

Furthermore, though the training of our model is done on the
small antenna arrays, the application of our approach can potentially
be extended to the relative larger arrays, because the relative larger
arrays can be discretized into several 3 x 3 antenna array (i.e., N x N

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 72, NO. 6, JUNE 2024

arrays with N > 3 could be seen as the combination of a number
of 3 x 3 arrays). During the diagnosis process, we can only exert
operation on the individual 3 x 3 array and then move to another.
For the relative larger arrays, we only need to simply do about (N/3)
x (N/3), i.e., approximated to (N x N)/10, times computation
to accurately find the faulted unit on the relative larger arrays.
In fact, our approach can make use of simple model and convenient
measurement operation to realize antenna array diagnosis with high
accuracy. The proposed method successfully avoids complicated
theoretical computation and realizes antenna array diagnosis (even
for large arrays) by simple measurement with high accuracy.

IV. CONCLUSION

In this communication, a DL approach for solving the problem of
detecting unit failures in an array antenna is proposed. To realize the
detection of unit failures in the phased array antenna, the received
far-field radiation pattern is used to be the inputs of the proposed
DConvNet, while the faulted unit(s) is utilized as its outputs. The
probable strong interference in the real scenarios can be added to
the training data. Various numerical benchmarks have illustrated the
validity and generality of the proposed DConvNet for antenna array
diagnosis. The computation of Green’s function is never required in
this DL approach. The proposed approach opens a new path for the
real-time antenna array diagnosis in complex environments.
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