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Deep Learning Electromagnetic Inversion Solver Based on a Two-Step
Framework for High-Contrast and Heterogeneous Scatterers

He Ming Yao™, Michael Ng, and Lijun Jiang

Abstract— This communication proposes a novel electromagnetic (EM)
inversion solver based on a two-step deep learning (DL) frame-
work. The framework consists of the deep convolutional asymmetric
encoder—decoder structure (DCAEDS) followed by the deep residual con-
volutional neural network (DRCNN). In the first step, DCAEDS utilizes
EM scattered field data from a single-frequency one-time measurement to
coarsely retrieve the initial contrasts (permittivities) of target scatterers.
In the second step, DRCNN employs a mixed input scheme, comprising
the initially reconstructed permittivities from the first step and the
original EM scattered field data, to significantly improve the retrieved
contrasts (permittivities) and refine the reconstruction of targets.
Consequently, the proposed EM inversion solver achieves excellent
accuracy and efficiency, even for high-contrast targets. The proposed
solver is flexible as it is required only for a single-frequency one-time
measurement on the EM scattered field. Moreover, the proposed two-step
DL-based solver overcomes the limitations of conventional methods, such
as high computational costs and ill-posedness. Numerical benchmarks
based on various dielectric objects demonstrate the feasibility of the
proposed EM inversion solver, highlighting its potential as a candidate
for real-time quantitative EM inversion for high-contrast targets.

Index Terms— Convolutional neural network, electromagnetic (EM)
inverse scattering, high contrast, residual learning, two-step process.

I. INTRODUCTION

Real-time electromagnetic (EM) inversion [1], [2], [3] has been a
significant challenge in research fields such as subsurface sensing [4],
microwave remote sensing [5], and biomedical imaging [6]. Over
the past few decades, various important methods have been reported
to solve the EM inverse scattering (EMIS) problem, including
contrast source inversion methods [7], [8], Born iterative method [9],
contrast-source extended Born [10], Gauss—Newton methods [2], and
subspace optimization method [11]. However, these conventional
methods typically require iterative computation to optimize the
objective function and need to compute complex Green’s functions,
leading to longer computational time and higher memory costs.
Moreover, conventional methods usually require tedious measurement
operations and a considerable amount of measurement data to achieve
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better reconstruction performance [1], [2], [3], [4], [5], [6], [12].
Normally, obtaining better reconstruction results for the unknown
scatterers requires many incident waves, which imposes heavy
burdens on measurement and raises the reconstruction computation
complexity [1], [2], [3], [12]. Because of these difficulties, the con-
ventional methods for EMIS hardly realize teal-time EM inversion.

The rapid development of artificial intelligence (AI) techniques,
including machine learning (ML) [13] and deep learning (DL) [14],
has significantly contributed to computational EMs (CEM) research,
including EM computation [15], [16], [17], hybrid field-circuit simu-
lations [18], [19], and remote sensing [20], [21]. Indeed, DL strategies
have been employed to enhance traditional methodologies in this field
and provide promising performances for solving EMIS problems,
as presented in [22], [23], [24], and [25]. The current DL-based meth-
ods for realizing EM inversion can be summarized into two major
categories: 1) the “black-box”-based methods [22], [23], [24], [25],
[26], where the EM fields or initially reconstructed contrasts are the
input and the contrasts of targeted scatterers are selected as the output;
2) physically inspired methods [27], [28], where physics-based prior
information can be integrated into the model during the training
process. Under normal circumstances, these DL-based methods can
reduce computation costs and add more prior information for real-
izing EM inversion. However, nearly all these DL-inspired methods
rely on multi-incident waves and multiple measurements (multiple
incident angles and even multiple frequencies [22], [23], [24], [25],
[26], [27], [28]) to conduct the measurement/simulation for both
training and testing, resulting in large quantities of measurement data.
The tedious use of multiple measurements undoubtedly increases the
complexity of preparing training data for DL models [22], [23], [24],
[25], [26], as well as the size of input for DL models, leading to
unnecessary computation costs during their application [22], [23],
[24], [25], [26]. Moreover, these DL-based methods only utilize
single-step DL models, most of which cannot operate independently
of conventional methods. Typically, they either substitute segments
of the process in conventional methods or necessitate initial inputs
derived from conventional methods, such as the backpropagation (BP)
method [24]. Although some so-called physically inspired methods,
including supervised descent method (SDM) [27], [28], attempt to
avoid using DL models, they still need to create training data based
on large quantities of measurements.

Al techniques offer the potential to break down complex tasks
into several independent modules, each with its own objective (e.g.,
image recognition [29]). These modules can then be combined to
effectively complete the complex tasks [13], [14]. While most existing
DL techniques for solving EMIS problems rely on a single DL model
to reconstruct contrast (permittivity), EMIS problems can potentially
be divided into several subtasks. In fact, conventional optimization
methods for solving EMIS problems can also be viewed as iteratively
optimizing a series of subtasks [13], [14]. In this work, we propose
a novel EM inversion solver based on a two-step DL framework,
which differs from the structures presented in [22], [23], [24],
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Fig. 1. Schematic of TM, wave scattering from Dpy.

and [26]. Our approach consists of a deep convolutional asymmetric
encoder—decoder structure (DCAEDS) followed by a deep residual
convolutional neural network (DRCNN). In the first step, DCAEDS
uses EM scattered field data from a single measurement to roughly
retrieve initial contrasts of target scatterers. In the second step,
DRCNN employs a mixed input scheme, which includes the initially
reconstructed contrasts from the first step and the original EM
scattered field data, ultimately improving the target reconstruction
as the final output.

Compared with existing conventional methods and DL-based meth-
ods [3], [26], [27], the proposed two-step DL framework provides
several advantages for a fast EM inversion solver as follows.

1) Simplicity: The application of our DL solver requires only a
single far-field simulation/measurement at a single frequency,
which significantly reduces the size of input data and sim-
plifies the measurement operation. This enables real-time EM
inversion. In addition, training for both the proposed models
can utilize identical dataset, created using a simple synthetic
dataset, thus avoiding extra costs for creating training data.

2) Effectiveness: Compared to conventional methods, our DL EM
inversion solver can effectively handle heterogeneous scatterers
with extremely high contrasts.

3) Flexibility: We can incorporate a broader scope of prior
knowledge in a more adaptable way. This is achievable by con-
structing the training dataset, including acquired prior during
the offline phase.

4) Accuracy: The methodology we introduce surpasses traditional
techniques in accuracy when addressing EMIS challenges,
especially in scenarios involving scatterers with high-contrast
and heterogeneous properties.

II. PROBLEM AND FORMULATION
A. Problem Formulation

Fig. 1 illustrates a typical use case for EMIS issue, showcasing
a 2-D transverse magnetic (TM) wave, denoted as E in, impinging
upon the objective domain Dgp;. Surrounding Dopj, M receivers
are uniformly positioned to record the scattered wave E°. Dgp; is
methodically divided into a grid of N x N uniform segments. The
EMIS phenomenon is encapsulated by two principal, (1) and (2),
commonly referred to as the Lippmann-Schwinger equations [1],
[2], [3], [4], [5], [6], [30]. These equations encapsulate the intricate
interplay between the scattered field E¥, the incident field E n and
the cumulative EM field E’. Specifically, (1) captures the dynamic
interactions occurring within the scatterer elements constituting Dop;

E'(r)=E" () + k(z)/

G (r, r’) X (r’) E! (r’) ar’ (1)
Dohj

where G(r, r') is the Green’s function. For the TM,, wave, it can be
denoted as G(r, r') = —(j/HH? (kolr — ¥']). HY® is the Hankel
function of the zeroth order of the second kind, while kg is the
wavenumbers in the free space. r = (x,y) and r' = (x/,y’) are,
respectively, the field and source points in Dop;. The contrast function
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is defined as x (r') = (") — 1. The following equation describes
the relationship between E* and E':

(r) 0 b

where r = (xg, yg) denotes the receiver locations and r’ = (x/, ")
represents the coordinates for segments within Dyp;. The target of
EM inversion is to reconstruct x of scatterers by E¥. Traditional
approaches are typically characterized by an optimization routine,
as formulated in (3), which seeks to deduce unknown parameters by
reducing discrepancy between empirical data and predictions of the
refined model. Within this framework, f(x) is defined to facilitate
the optimization endeavor. Regrettably, the extraction of x based
on (3) often manifests as nonlinear operation, especially in scenarios
involving high contrast [1], [2], [3]

G (r, r') X (r/) E! (r/) dr’ 2)

obj

N;j .
min : f(X):Z |E} — E} GO I+ oL (x) 3)

i=1

where the received E;?' induced by N; different incident field Ein
is approached by the optimized scattered fields Ef( x) by iterative
calculation in (3). In this context, o represents the fixed coefficient
for regularization, with L denoting the regularization term itself [1].

B. Two-Step DL Framework

To address the challenges posed by conventional methods in
achieving EM inversion, we propose a two-step DL framework that
enables high-precision EM inversion even for high-contrast scatterers.
In this novel framework, the EM scattered field, obtained from a
single-frequency measurement using one transmitter, is first trans-
formed into an initial rough reconstruction. Building upon this rough
reconstruction, the second step further refines the reconstruction
quality and provides the final prediction of this EM inversion solver.
Given that the requirement for many training samples is difficult to
meet through real-world experiments, we employ simulation data
for training and testing the proposed DL-based solver [22], [23],
[24], [25]. The newly developed DL framework for EM inversion
can be summarized in the following two steps.

Step 1 (DCAEDS for Retrieving the Initial Contrast): The first
step converts the measured EM scattered field to a preliminary
contrast prediction of target scatterers. It can be concluded as a
process that transforms the received EM scattered field into the output
initially retrieved results of targets. In contrast to traditional iterative
approaches for addressing EMIS problem [1], [2], [3], [4], [5], [6],
[71, [8], [9], [10], [11], [12], the proposed first step can be seen
as the initial value selection process, where the initial contrast xg
is calculated for the subsequent iterative optimization process in (3).
In fact, it is a challenge for the conventional methods to provide valid
initial contrast o for the iterative optimization process, particularly
in high-contrast scatterer cases. Generally, the reconstruction from
the conventional methods [1], [2], [3] hardly provide meaningful
information if only employing one-time measurement on the target.

In the proposed first step, we employ DCAEDS, which uses
the ground-truthed contrast y of the scatterer as the output, while
the original scattered fields E are selected as its input. Due to the
complexity of this physics-based problem, the size of the measured
data often differs from that of the target [1], [2], [3]. In some
extreme cases, researchers can only obtain limited measured data
with a completely different size from the target [4], [5], [6]. Most
existing DL models for EM inversion usually select an input size that
is larger or approximated to the output size, in order to enrich the
information utilized by the models. This approach, however, leads
to tedious measurements to acquire large amounts of EM scattered
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Fig. 2. Architecture of DCAEDS for the first step. The complete spellings
of the abbreviations are: Conv.: convolution, BN: batch normalization, ReL.U:
rectified linear unit, and Up-conv.: up-convolution.

field data and increases the complexity of the DL model [22], [23].
Unlike these models, the application of DCAEDS allows for a smaller
input size compared to the output size, providing more flexibility in
terms of input and output dimensions. This greatly simplifies the
measurement process and reduces the complexity of the model.

The proposed DCAEDS is revised based on SegNet [31], which is
extensively applied in the image segmentation field. Fig. 2 presents
the internal structure of the proposed DCAEDS for the first step,
which can be divided into two modules in general: encoder and
decoder. Different from the conventional SegNet, DCAEDS narrows
down its encoder and makes its encoder and decoder not sym-
metric anymore, which brings much convenience to the application
[32], [33]. Sequential layers within the encoder module process
the 1-D EM scattered field, denoted as ES, compressing it into
information-rich segments. The inputs have the size of M x 1 x 2,
where the row M represents M receivers, one column stands for
only one incident EM testing wave, and two tubes are the real and
imaginary parts of E®. Within the decoder module, the previously
isolated informational segments are reconstructed to formulate the
scatterer’s contrast xg. Its outputs are the N X N x 2 matrix composed
of the real and imaginary parts of the contrast (permittivities) of
targets. In detail, the encoder module repeatedly conducts convolution
(Conv), rectified linear unit (ReLLU), and batch normalization (BN).
The decoding module utilizes a series of up-convolution (Upconv)
processes, BN, and ReLU activations in sequence. Within the encod-
ing module, various layers are designed to extract and encode salient
features from the input. Specific details concerning the number
of convolutional layers, and the quantity and dimensions of filters
(kernels) are delineated in Fig. 2. Concluding the decoding sequence,
the architecture incorporates a 1 x 1 convolution layer followed by a
regression layer, culminating in the predicted contrast profile, denoted
as xo. Here, we need to emphasize that the size of input (i.e., M x 1)
from one-time measurement is much smaller than that of the output
(i.e., N x N), because of the application of DCAEDS. The mean
square error (mse) is the loss function [22], [23], [24], [25], [26].

Step 2 (DRCNN for Refining the Initial Contrast): The second
step is actually the process to enhance the originally reconstructed
contrast from the first step to the accurate final result. Thus, this
step perfectly replaces the iterative optimization process utilized
for the conventional methods for EMIS problems [2], [7], [8], [9],
[10], [11], [12]. In the second step, DRCNN utilizes the mixed
input scheme as the input, consisting of the initially reconstructed
permittivities (contrasts) from the first step and the originally mea-
sured EM scattered field data. Based on this mixed input, DRCNN
finally realizes the reconstruction refinement and provides the final
prediction of the target scatterers. Thus, the input of DRCNN with
the size of N x N x 4 is the coarsely reconstructed contrast xg
from the previous step and the EM scattered field data E*, while
its corresponding ground-truthed contrast x is chosen as the output
with the size of N x N x 2. To keep the size uniformity for four
tubes of the input, the real part of ES with the size as M x 1 is
interpolated to the dimension as N x N, where the M x 1 vector is
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first interpolated into N x 1 vector, and then, the interpolated N x 1
vector is copied N times to form the N x N “scattering image” for
the real part of E¥. The same operation has also been done to the
imaginary part of E® to obtain the “scattering image” with the size
of N x N for its imaginary part. In this way, we could easily and
efficiently provide input to DRCNN.

The proposed DRCNN is based on the so-called U-Net struc-
ture [34], consisting of three parts: encoding, bridging, and decoding.
The encoding part encodes the input contrast images into com-
pact representations, while the corresponding decoding part recovers
the representations. The middle bridging part acts as the bridge
connecting the other two mentioned paths. In addition, unlike the
conventional U-net, only the skip connection is exerted for residual
learning between the other two mentioned parts. The encoding
architecture is designed with multiple iterations of Conv, BN, and
ReLU in sequential applications. On the counterpart, the decoding
part is equipped with the repetitive applications of Upconv, BN, and
ReLU operation, shown in Fig. 3.

Therefore, the second step functions as the iterative refining process
in conventional iterative optimization approaches [2], [7], which
refine the contrast by optimization process in (3). For the second
process, the relationship between E°, the coarsely reconstructed
contrast xg, and the final refined contrast x can be described as (4),
where F represents the nonlinear operation in DRCNN

x =F ([x0. E*])- 4

Several special issues about the proposed two models for EM
inversion should be emphasized.

1) Mixed Input Scheme for DRCNN: The input of the proposed
DRCNN is mixed by two kinds of data: the first part is the initial
reconstruction computed from DCAEDS and the second part is based
on the received EM scattered field data. In this way, both the initial
estimation from DCAEDS and the “raw” EM scattered field data can
be involved together to be utilized as the input by DCAEDS. Due to
the application of DCAEDS, only one-transmitter-measured EM scat-
tered field data (much smaller than the size of expected reconstruction
image) is required for both DCAEDS and DRCNN. In addition,
EM inversion challenges are inherently complex-valued issues, where
the real and imaginary parts can be adjusted independently across
different channels. This distinction enhances the versatility and adapt-
ability of two DL models for practical application requirements.

2) Computational Complexity: Within DCAEDS and DRCNN,
the computational burden is primarily governed by convolutional
processes, BN, and the ReLU [22], [23], [24], [25]. Owing to the
minimal size of the filter operations, the predominant computational
expense is attributed to convolutional activities [35], [37]. The input
dimension for DRCNN is established at N x N x 4, and it outputs
a dimension of N x N x 2. Each layer employs R convolutional
filters, each with dimensions K x K, and the total count of layers is
denoted by f. Thus, the computational complexity for the DRCNN
can be expressed as 0(N2K2R2f) [35], [37]. On the counterpart,
the input and the output sizes of DCAEDS are M x 1x 2 and
N x N x 2 respectively. For the decoder in DCAEDS, the architecture
of each layer incorporates R convolutional filters, each measuring
K x K, with the entire network comprising f layers in total. As a
result, the decoder’s computational complexity can be quantified
as 0(N2K2R2f) [35], [37]. Because the size of the required
EM scattered field data is much smaller than that of the expected
reconstruction (i.e., M < N2), the computational complexity of
DCAEDS can be approximated as O(N2K2R2f). Moreover, the
configuration of two DL models, namely, the DCAEDS and DRCNN,
is characterized by similar parameters. Consequently, the computa-
tional complexity of both models is approximately equivalent. Thus,
the computation complexity of the entire two-step framework can be
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Fig. 3. Architecture of DRCNN for the second step. The complete spellings of the abbreviations are: Conv.: convolution, BN: batch normalization, ReLU:
rectified linear unit, and Up-conv.: up-convolution.
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Fig. 4. Comparison of reconstruction of number-shaped targets (the maximum of randomly selected permittivities is: 3 for first row, 6 for second row,
and 8 for third row). (a) Ground truths. (b) Reconstruction from Gauss—Newton method. (c) Reconstruction from MCNN. (d) Reconstruction from SDM.
(e) Reconstruction from DCAEDS in the first step. (f) Reconstruction from DRCNN in the second step.

O(N2K2R2f). In addition, the demand for memory complexity in
both DL models is represented as O (N 2K2R? f) because it primarily
influenced by the dimensions of the filters and biases [37].

ITII. NUMERICAL RESULTS
A. Numerical Setup and Off-Line Training

The training data for the proposed DCAEDS and DRCNN are
created based on only one group of simple synthetic dataset, i.e.,
MNIST [22], [23], [24], [25], [26], [27], [28], [29]. As shown in
Fig. 1, the size of each sample from MNIST is set to A x A (the
wavelength A = 1 m in free space) with the nonhomogeneous relative
permittivity &,. Each sample is meshed into 24 x 24 uniform pieces
(i.e., N = 24). The number of receivers uniformly set around Dp;
is M = 24, of which the distance is 301. Only one TM; incident
plane wave illuminates Dgpj with the incident angle equal to 0°
(i.e., N; = 1). In this section, both training and testing datasets are
created by full-wave EM simulations [38]. Unlike the scatterers with
homogeneous contrast [22], the relative permittivity &, of the used
samples is heterogeneous rather than being homogeneous (constant).
These heterogeneous digit-shaped scatterers from MNIST have the
relative permittivity ¢, ranging from 1 to 8, which is very challenging
for the conventional methods [2], [4], [5], [6], [7], [8], [9], [10],
[11], [12]. Based on MNIST, 5000 samples are randomly chosen to
create the training data. Two quantitative indicators, i.e., normalized

mean-square error (NMSE) and structural similarity index (SSIM),
are employed to evaluate the reconstructions [22], [23], [24], [25],
[26], [27], [28], [29]. In addition, for comparative purposes, the
Gauss—Newton method [1], [2], [3], [4] has been applied to identical
test samples illustrated in Sections III-B and C. The innovative
two-step DL framework integrates DRCNN with DCAEDS, effec-
tively achieving EM inversion through two distinct yet cohesive
modules. The proposed DL models are implemented into DL Toolbox
in MATLAB 2021a [39], while adaptive moment estimation (Adam)
optimizer is used to optimize the mentioned loss functions [40].

B. Performance on Number-Shaped Scatterers

Thousand new samples in the MNIST dataset are randomly chosen
in this section to test the trained two-step DL framework, while 5%
white noise is added into the produced EM scattered field. Fig. 4
displays a comparative analysis showcasing the actual ground truth,
the reconstruction outcomes achieved through Gauss—Newton, and
the reconstruction using our two-step solver, where the maximum of
nonhomogeneous permittivities for the samples is randomly selected
as 3, 6, and 8. While the initial reconstruction from DCAEDS can
provide meaningful information about target, the results from the
following DRCNN agree very well with the ground truth. However,
the Gauss—Newton method fails to realize reconstruction of the
mentioned scatterers, which is led by its dysfunction on high-contrast
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TABLE I

PERFORMANCE COMPARISON OF TWO-STEP FRAMEWORK
AND OTHER METHODS

Reconstruction MNIST Letter Fresnel
DCAEDS 0.01033s 0.01015s 0.01022s
DRCNN 0.01237s 0.01276s 0.01235s

SDM 0.1325s 0.1307s 0.1342s
MCNN 0.005823s 0.005744s 0.005936s
Gauss-Newton (10times - )75, 2.3058s 2.2982s
iteration)
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Fig. 5. NMSE and SSIM statistical histograms of the reconstruction quality.
(a) NMSE obtained from DCAEDS. (b) NMSE obtained from DRCNN.
(c) SSIM obtained from DCAEDS. (d) SSIM obtained from DRCNN.

targets and by the limited measured data (i.e., one-time-measured
single-frequency scattered field). Unlike the results from DCAEDS,
these wrong predictions from Gauss—Newton cannot provide any
meaningful information for reconstruction. Furthermore, other popu-
lar DL-based inversion methods (i.e., the multiple-layer convolutional
neural network (MCNN) [16] and the SDM [27], [28]) have also
been adopted as a comparison for demonstrating the capability of
our two-step DL framework. As presented in Fig. 4, MCNN can
provide bad reconstruction results with little “meaningful” informa-
tion, while SDM can generally provide some “meaningful” prediction
and roughly describe the shape of the scatterers. Compared with
the excellent reconstruction from DRCNN, they suffer from heavy
distortion and blurring outline of reconstruction. Moreover, our devel-
oped DL approach, described as this two-step solver, significantly
accelerates the reconstruction process compared to the traditional
Gauss—Newton, as evidenced in Table I, which typically requires
approximately 2.3 s to perform ten iterative optimization calculations
for a single scatterer’s reconstruction, while its final reconstruction
nearly cannot provide any meaningful information, as illustrated
in Fig. 4(b). Besides, MCNN and SDM utilize about 0.006 and
0.13 s, respectively, to complete reconstruction for one sample. On the
contrary, the proposed two-step solver utilizes less than 0.022 s
(0.01 s for DCAEDS and 0.012 s for DRCNN) to successfully
complete the reconstruction computation of one scatterer, which
makes it much more suitable for the real-time application.

For our two-step DL solver, Fig. 5(a)—(d) illustrates the statistical
analyses for the testing results: 1) NMSE: the average of NMSE
is about 0.2 for DCAEDS, while the average improved to 0.1 by
DRCNN, and 2) SSIM: the SSIM average is around 0.55 for the
reconstruction of DCAEDS, while this average can be larger than
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() (@
Fig. 6. Comparison of reconstruction of letter-shaped targets. (a) Ground
truths. (b) Gauss—Newton method. (c) DCAEDS in the first step. (d) DRCNN
in the second step.

@) ' (b)

Fig. 7. Comparison of reconstruction for FoamDielExt. (a) Ground truths.
(b) Gauss—Newton method. (c) DCAEDS in the first step. (d) DRCNN in the
second step.

(d)

0.9 by DRCNN. Therefore, the proposed approach can realize EM
inversion with excellent performances.

C. Study on Performance of Two-Step DL Framework

In this section, various numerical examples are utilized to challenge
the boundary and limitation of the proposed two-step DL framework.

1) Performance on Letter-Shaped Scatterers: A new synthetic
dataset is first employed, called “Letter,” where the heterogeneous
letter-shaped scatterers are assumed to be randomly located in Dgp;.
The size of each sample in “Letter” is set to A x A, while their
relative permittivities ¢ are randomly set into the range (1, 8].
Thousand new scatterers from “Letter” are randomly selected to test
the trained DL solver for EM inversion, while 5% white noise is
added to the received scattered field data for input. Fig. 6 illustrates
the comparison between the ground truth, the reconstruction from
the Gauss—Newton method, and the reconstruction from DCAEDS
and DRCNN. Obviously, while the reconstruction from DCAEDS
has demonstrated much meaningful information, the final recon-
struction from DRCNN in the second step agrees well with the
ground truth. The traditional approach (Gauss—Newton method) falls
short in yielding acceptable outcomes. In contrast, our designed DL
solver demonstrates a markedly more efficient reconstruction process,
completing the task in approximately 0.022 s (0.01 s for DCAEDS
and 0.012 s for DRCNN) for a single sample. This is a significant
reduction in time compared to the Gauss—Newton method, which
takes about 2.3 s, as shown in Table I. Taking into account that our
DL model is exclusively trained on MNIST dataset, the resulting
reconstructions yield gratifying outcomes to solve the EM inversion
problem.

2) Performance on Experimental Data: To further illustrate the
capability of our two-step DL method, the widely used experi-
mental data measured at Institute Fresnel are employed [23], [24],
[27], [28]. In this experiment (i.e., “FoamDielExt”), the scatterers
consist of two cylinders: while the bigger one has a diameter of
0.08 m with the relative permittivity 1.45(%0.15), the smaller one
has a diameter of 0.031 m with the relative permittivity 3 (£0.3).
To adapt the experimental data from Fresnel into the proposed DL
method, we select received scattered field only from 24 receivers
(only about 1.2% experimental measurement data) resulting from
one transmitter. In response to the constraints of the experiment,
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we retrain DL models. We emphasize that only the MNIST dataset
is still used to recreate simulation-based training data for our DL
method. The performance of two retrained models has been presented
in Fig. 7. The Gauss—Newton method cannot provide satisfactory
reconstruction again. However, our DL method provides an accept-
able reconstruction on the experimental data.

IV. CONCLUSION

This communication presents a novel two-step DL solver for
realizing EM inversion, which offers significant advantages over
existing methods. Only one-time measurement is needed to provide
the input for the DCAEDS in the first step. While the first step realizes
the coarse reconstruction on the target, the second step utilizes
DRCNN to further refine the reconstruction to the final prediction
by adopting the mixed input scheme. As a result, EM inversion can
be successfully realized with much higher accuracy and efficiency
even for high-contrast targets. Numerical examples demonstrate the
capability and feasibility of the proposed two-step DL solver with
the clear accuracy and efficiency improvement.
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