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Communication
Deep Learning Electromagnetic Inversion Solver Based on a Two-Step

Framework for High-Contrast and Heterogeneous Scatterers

He Ming Yao , Michael Ng, and Lijun Jiang

Abstract— This communication proposes a novel electromagnetic (EM)

inversion solver based on a two-step deep learning (DL) frame-

work. The framework consists of the deep convolutional asymmetric

encoder–decoder structure (DCAEDS) followed by the deep residual con-

volutional neural network (DRCNN). In the first step, DCAEDS utilizes

EM scattered field data from a single-frequency one-time measurement to

coarsely retrieve the initial contrasts (permittivities) of target scatterers.

In the second step, DRCNN employs a mixed input scheme, comprising
the initially reconstructed permittivities from the first step and the

original EM scattered field data, to significantly improve the retrieved

contrasts (permittivities) and refine the reconstruction of targets.

Consequently, the proposed EM inversion solver achieves excellent

accuracy and efficiency, even for high-contrast targets. The proposed

solver is flexible as it is required only for a single-frequency one-time

measurement on the EM scattered field. Moreover, the proposed two-step

DL-based solver overcomes the limitations of conventional methods, such

as high computational costs and ill-posedness. Numerical benchmarks

based on various dielectric objects demonstrate the feasibility of the

proposed EM inversion solver, highlighting its potential as a candidate

for real-time quantitative EM inversion for high-contrast targets.

Index Terms— Convolutional neural network, electromagnetic (EM)

inverse scattering, high contrast, residual learning, two-step process.

I. INTRODUCTION

Real-time electromagnetic (EM) inversion [1], [2], [3] has been a

significant challenge in research fields such as subsurface sensing [4],

microwave remote sensing [5], and biomedical imaging [6]. Over

the past few decades, various important methods have been reported

to solve the EM inverse scattering (EMIS) problem, including

contrast source inversion methods [7], [8], Born iterative method [9],

contrast-source extended Born [10], Gauss–Newton methods [2], and

subspace optimization method [11]. However, these conventional

methods typically require iterative computation to optimize the

objective function and need to compute complex Green’s functions,

leading to longer computational time and higher memory costs.

Moreover, conventional methods usually require tedious measurement

operations and a considerable amount of measurement data to achieve

Manuscript received 14 August 2022; revised 7 August 2023; accepted
11 September 2023. Date of publication 12 March 2024; date of current
version 7 June 2024. This work was supported in part by Hong Kong Research
Grant Council General Research Fund (GRF) under Grant 12300218, Grant
12300519, Grant 17201020, Grant 17300021, Grant C1013-21GF, and Grant
C7004-21GF; in part by the Joint Natural Science Foundation of China—
Research Grants Council (NSFC-RGC) under Grant N-HKU76921; and in
part by the Research Grants Council of Hong Kong Special Administrative
Region, China, under Grant HKU PDFS2122-7S05. (Corresponding author:

Michael Ng.)

He Ming Yao is with the Department of Materials, Imperial College London,
SW7 2BX London, U.K. (e-mail: yaohmhk@connect.hku.hk).

Michael Ng is with the Department of Mathematics, Hong Kong Baptist
University, Hong Kong, China (e-mail: michael-ng@hkbu.edu.hk).

Lijun Jiang is with the Department of Electrical and Electronic Engineering,
The University of Hong Kong, Hong Kong, China (e-mail: jianglj@hku.hk).

Color versions of one or more figures in this communication are available
at https://doi.org/10.1109/TAP.2024.3372772.

Digital Object Identifier 10.1109/TAP.2024.3372772

better reconstruction performance [1], [2], [3], [4], [5], [6], [12].

Normally, obtaining better reconstruction results for the unknown

scatterers requires many incident waves, which imposes heavy

burdens on measurement and raises the reconstruction computation

complexity [1], [2], [3], [12]. Because of these difficulties, the con-

ventional methods for EMIS hardly realize teal-time EM inversion.

The rapid development of artificial intelligence (AI) techniques,

including machine learning (ML) [13] and deep learning (DL) [14],

has significantly contributed to computational EMs (CEM) research,

including EM computation [15], [16], [17], hybrid field-circuit simu-

lations [18], [19], and remote sensing [20], [21]. Indeed, DL strategies

have been employed to enhance traditional methodologies in this field

and provide promising performances for solving EMIS problems,

as presented in [22], [23], [24], and [25]. The current DL-based meth-

ods for realizing EM inversion can be summarized into two major

categories: 1) the “black-box”-based methods [22], [23], [24], [25],

[26], where the EM fields or initially reconstructed contrasts are the

input and the contrasts of targeted scatterers are selected as the output;

2) physically inspired methods [27], [28], where physics-based prior

information can be integrated into the model during the training

process. Under normal circumstances, these DL-based methods can

reduce computation costs and add more prior information for real-

izing EM inversion. However, nearly all these DL-inspired methods

rely on multi-incident waves and multiple measurements (multiple

incident angles and even multiple frequencies [22], [23], [24], [25],

[26], [27], [28]) to conduct the measurement/simulation for both

training and testing, resulting in large quantities of measurement data.

The tedious use of multiple measurements undoubtedly increases the

complexity of preparing training data for DL models [22], [23], [24],

[25], [26], as well as the size of input for DL models, leading to

unnecessary computation costs during their application [22], [23],

[24], [25], [26]. Moreover, these DL-based methods only utilize

single-step DL models, most of which cannot operate independently

of conventional methods. Typically, they either substitute segments

of the process in conventional methods or necessitate initial inputs

derived from conventional methods, such as the backpropagation (BP)

method [24]. Although some so-called physically inspired methods,

including supervised descent method (SDM) [27], [28], attempt to

avoid using DL models, they still need to create training data based

on large quantities of measurements.

AI techniques offer the potential to break down complex tasks

into several independent modules, each with its own objective (e.g.,

image recognition [29]). These modules can then be combined to

effectively complete the complex tasks [13], [14]. While most existing

DL techniques for solving EMIS problems rely on a single DL model

to reconstruct contrast (permittivity), EMIS problems can potentially

be divided into several subtasks. In fact, conventional optimization

methods for solving EMIS problems can also be viewed as iteratively

optimizing a series of subtasks [13], [14]. In this work, we propose

a novel EM inversion solver based on a two-step DL framework,

which differs from the structures presented in [22], [23], [24],
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Fig. 1. Schematic of TMz wave scattering from Dobj.

and [26]. Our approach consists of a deep convolutional asymmetric

encoder–decoder structure (DCAEDS) followed by a deep residual

convolutional neural network (DRCNN). In the first step, DCAEDS

uses EM scattered field data from a single measurement to roughly

retrieve initial contrasts of target scatterers. In the second step,

DRCNN employs a mixed input scheme, which includes the initially

reconstructed contrasts from the first step and the original EM

scattered field data, ultimately improving the target reconstruction

as the final output.

Compared with existing conventional methods and DL-based meth-

ods [3], [26], [27], the proposed two-step DL framework provides

several advantages for a fast EM inversion solver as follows.

1) Simplicity: The application of our DL solver requires only a

single far-field simulation/measurement at a single frequency,

which significantly reduces the size of input data and sim-

plifies the measurement operation. This enables real-time EM

inversion. In addition, training for both the proposed models

can utilize identical dataset, created using a simple synthetic

dataset, thus avoiding extra costs for creating training data.

2) Effectiveness: Compared to conventional methods, our DL EM

inversion solver can effectively handle heterogeneous scatterers

with extremely high contrasts.

3) Flexibility: We can incorporate a broader scope of prior

knowledge in a more adaptable way. This is achievable by con-

structing the training dataset, including acquired prior during

the offline phase.

4) Accuracy: The methodology we introduce surpasses traditional

techniques in accuracy when addressing EMIS challenges,

especially in scenarios involving scatterers with high-contrast

and heterogeneous properties.

II. PROBLEM AND FORMULATION

A. Problem Formulation

Fig. 1 illustrates a typical use case for EMIS issue, showcasing

a 2-D transverse magnetic (TM) wave, denoted as E in , impinging

upon the objective domain Dobj. Surrounding Dobj, M receivers

are uniformly positioned to record the scattered wave Es . Dobj is

methodically divided into a grid of N × N uniform segments. The

EMIS phenomenon is encapsulated by two principal, (1) and (2),

commonly referred to as the Lippmann–Schwinger equations [1],

[2], [3], [4], [5], [6], [30]. These equations encapsulate the intricate

interplay between the scattered field Es , the incident field E in , and

the cumulative EM field E t . Specifically, (1) captures the dynamic

interactions occurring within the scatterer elements constituting Dobj

E t (r) = E in (r) + k2
0

∫

Dobj

G
(

r, r
′
)

χ
(

r
′
)

E t
(

r
′
)

d r
′ (1)

where G(r, r
′) is the Green’s function. For the TMz wave, it can be

denoted as G(r, r
′) = −( j/4)H

(2)
0

(k0|r − r′|). H
(2)
0

is the Hankel

function of the zeroth order of the second kind, while k0 is the

wavenumbers in the free space. r = (x, y) and r
′ = (x ′, y′) are,

respectively, the field and source points in Dobj. The contrast function

is defined as χ(r′) = εr (r
′) − 1. The following equation describes

the relationship between Es and E t :

Es (r) = k2
0

∫

Dobj

G
(

r, r
′
)

χ
(

r′
)

E t
(

r′
)

d r
′ (2)

where r = (xR, yR) denotes the receiver locations and r
′ = (x ′, y′)

represents the coordinates for segments within Dobj. The target of

EM inversion is to reconstruct χ of scatterers by Es . Traditional

approaches are typically characterized by an optimization routine,

as formulated in (3), which seeks to deduce unknown parameters by

reducing discrepancy between empirical data and predictions of the

refined model. Within this framework, f (χ) is defined to facilitate

the optimization endeavor. Regrettably, the extraction of χ based

on (3) often manifests as nonlinear operation, especially in scenarios

involving high contrast [1], [2], [3]

min : f (χ) =
∑

i=1

Ni
∥Es

i − Es
i (χ)′ ∥ + αL (χ) (3)

where the received Es
i

induced by Ni different incident field E in

is approached by the optimized scattered fields Es
i
(χ)′ by iterative

calculation in (3). In this context, α represents the fixed coefficient

for regularization, with L denoting the regularization term itself [1].

B. Two-Step DL Framework

To address the challenges posed by conventional methods in

achieving EM inversion, we propose a two-step DL framework that

enables high-precision EM inversion even for high-contrast scatterers.

In this novel framework, the EM scattered field, obtained from a

single-frequency measurement using one transmitter, is first trans-

formed into an initial rough reconstruction. Building upon this rough

reconstruction, the second step further refines the reconstruction

quality and provides the final prediction of this EM inversion solver.

Given that the requirement for many training samples is difficult to

meet through real-world experiments, we employ simulation data

for training and testing the proposed DL-based solver [22], [23],

[24], [25]. The newly developed DL framework for EM inversion

can be summarized in the following two steps.

Step 1 (DCAEDS for Retrieving the Initial Contrast): The first

step converts the measured EM scattered field to a preliminary

contrast prediction of target scatterers. It can be concluded as a

process that transforms the received EM scattered field into the output

initially retrieved results of targets. In contrast to traditional iterative

approaches for addressing EMIS problem [1], [2], [3], [4], [5], [6],

[7], [8], [9], [10], [11], [12], the proposed first step can be seen

as the initial value selection process, where the initial contrast χ0

is calculated for the subsequent iterative optimization process in (3).

In fact, it is a challenge for the conventional methods to provide valid

initial contrast χ0 for the iterative optimization process, particularly

in high-contrast scatterer cases. Generally, the reconstruction from

the conventional methods [1], [2], [3] hardly provide meaningful

information if only employing one-time measurement on the target.

In the proposed first step, we employ DCAEDS, which uses

the ground-truthed contrast χ of the scatterer as the output, while

the original scattered fields Es are selected as its input. Due to the

complexity of this physics-based problem, the size of the measured

data often differs from that of the target [1], [2], [3]. In some

extreme cases, researchers can only obtain limited measured data

with a completely different size from the target [4], [5], [6]. Most

existing DL models for EM inversion usually select an input size that

is larger or approximated to the output size, in order to enrich the

information utilized by the models. This approach, however, leads

to tedious measurements to acquire large amounts of EM scattered
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Fig. 2. Architecture of DCAEDS for the first step. The complete spellings
of the abbreviations are: Conv.: convolution, BN: batch normalization, ReLU:
rectified linear unit, and Up-conv.: up-convolution.

field data and increases the complexity of the DL model [22], [23].

Unlike these models, the application of DCAEDS allows for a smaller

input size compared to the output size, providing more flexibility in

terms of input and output dimensions. This greatly simplifies the

measurement process and reduces the complexity of the model.

The proposed DCAEDS is revised based on SegNet [31], which is

extensively applied in the image segmentation field. Fig. 2 presents

the internal structure of the proposed DCAEDS for the first step,

which can be divided into two modules in general: encoder and

decoder. Different from the conventional SegNet, DCAEDS narrows

down its encoder and makes its encoder and decoder not sym-

metric anymore, which brings much convenience to the application

[32], [33]. Sequential layers within the encoder module process

the 1-D EM scattered field, denoted as Es , compressing it into

information-rich segments. The inputs have the size of M × 1 × 2,

where the row M represents M receivers, one column stands for

only one incident EM testing wave, and two tubes are the real and

imaginary parts of Es . Within the decoder module, the previously

isolated informational segments are reconstructed to formulate the

scatterer’s contrast χ0. Its outputs are the N × N × 2 matrix composed

of the real and imaginary parts of the contrast (permittivities) of

targets. In detail, the encoder module repeatedly conducts convolution

(Conv), rectified linear unit (ReLU), and batch normalization (BN).

The decoding module utilizes a series of up-convolution (Upconv)

processes, BN, and ReLU activations in sequence. Within the encod-

ing module, various layers are designed to extract and encode salient

features from the input. Specific details concerning the number

of convolutional layers, and the quantity and dimensions of filters

(kernels) are delineated in Fig. 2. Concluding the decoding sequence,

the architecture incorporates a 1 × 1 convolution layer followed by a

regression layer, culminating in the predicted contrast profile, denoted

as χ0. Here, we need to emphasize that the size of input (i.e., M × 1)

from one-time measurement is much smaller than that of the output

(i.e., N × N ), because of the application of DCAEDS. The mean

square error (mse) is the loss function [22], [23], [24], [25], [26].

Step 2 (DRCNN for Refining the Initial Contrast): The second

step is actually the process to enhance the originally reconstructed

contrast from the first step to the accurate final result. Thus, this

step perfectly replaces the iterative optimization process utilized

for the conventional methods for EMIS problems [2], [7], [8], [9],

[10], [11], [12]. In the second step, DRCNN utilizes the mixed

input scheme as the input, consisting of the initially reconstructed

permittivities (contrasts) from the first step and the originally mea-

sured EM scattered field data. Based on this mixed input, DRCNN

finally realizes the reconstruction refinement and provides the final

prediction of the target scatterers. Thus, the input of DRCNN with

the size of N × N × 4 is the coarsely reconstructed contrast χ0

from the previous step and the EM scattered field data Es , while

its corresponding ground-truthed contrast χ is chosen as the output

with the size of N × N × 2. To keep the size uniformity for four

tubes of the input, the real part of Es with the size as M × 1 is

interpolated to the dimension as N × N , where the M × 1 vector is

first interpolated into N × 1 vector, and then, the interpolated N × 1

vector is copied N times to form the N × N “scattering image” for

the real part of Es . The same operation has also been done to the

imaginary part of Es to obtain the “scattering image” with the size

of N × N for its imaginary part. In this way, we could easily and

efficiently provide input to DRCNN.

The proposed DRCNN is based on the so-called U-Net struc-

ture [34], consisting of three parts: encoding, bridging, and decoding.

The encoding part encodes the input contrast images into com-

pact representations, while the corresponding decoding part recovers

the representations. The middle bridging part acts as the bridge

connecting the other two mentioned paths. In addition, unlike the

conventional U-net, only the skip connection is exerted for residual

learning between the other two mentioned parts. The encoding

architecture is designed with multiple iterations of Conv, BN, and

ReLU in sequential applications. On the counterpart, the decoding

part is equipped with the repetitive applications of Upconv, BN, and

ReLU operation, shown in Fig. 3.

Therefore, the second step functions as the iterative refining process

in conventional iterative optimization approaches [2], [7], which

refine the contrast by optimization process in (3). For the second

process, the relationship between Es , the coarsely reconstructed

contrast χ0, and the final refined contrast χ can be described as (4),

where F represents the nonlinear operation in DRCNN

χ = F
([

χ0, Es
])

. (4)

Several special issues about the proposed two models for EM

inversion should be emphasized.

1) Mixed Input Scheme for DRCNN: The input of the proposed

DRCNN is mixed by two kinds of data: the first part is the initial

reconstruction computed from DCAEDS and the second part is based

on the received EM scattered field data. In this way, both the initial

estimation from DCAEDS and the “raw” EM scattered field data can

be involved together to be utilized as the input by DCAEDS. Due to

the application of DCAEDS, only one-transmitter-measured EM scat-

tered field data (much smaller than the size of expected reconstruction

image) is required for both DCAEDS and DRCNN. In addition,

EM inversion challenges are inherently complex-valued issues, where

the real and imaginary parts can be adjusted independently across

different channels. This distinction enhances the versatility and adapt-

ability of two DL models for practical application requirements.

2) Computational Complexity: Within DCAEDS and DRCNN,

the computational burden is primarily governed by convolutional

processes, BN, and the ReLU [22], [23], [24], [25]. Owing to the

minimal size of the filter operations, the predominant computational

expense is attributed to convolutional activities [35], [37]. The input

dimension for DRCNN is established at N × N × 4, and it outputs

a dimension of N × N × 2. Each layer employs R convolutional

filters, each with dimensions K × K , and the total count of layers is

denoted by f . Thus, the computational complexity for the DRCNN

can be expressed as O(N 2 K 2 R2 f ) [35], [37]. On the counterpart,

the input and the output sizes of DCAEDS are M × 1× 2 and

N × N × 2 respectively. For the decoder in DCAEDS, the architecture

of each layer incorporates R convolutional filters, each measuring

K × K , with the entire network comprising f layers in total. As a

result, the decoder’s computational complexity can be quantified

as O(N 2 K 2 R2 f ) [35], [37]. Because the size of the required

EM scattered field data is much smaller than that of the expected

reconstruction (i.e., M j N 2), the computational complexity of

DCAEDS can be approximated as O(N 2 K 2 R2 f ). Moreover, the

configuration of two DL models, namely, the DCAEDS and DRCNN,

is characterized by similar parameters. Consequently, the computa-

tional complexity of both models is approximately equivalent. Thus,

the computation complexity of the entire two-step framework can be
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on January 16,2025 at 18:22:54 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. Architecture of DRCNN for the second step. The complete spellings of the abbreviations are: Conv.: convolution, BN: batch normalization, ReLU:
rectified linear unit, and Up-conv.: up-convolution.

Fig. 4. Comparison of reconstruction of number-shaped targets (the maximum of randomly selected permittivities is: 3 for first row, 6 for second row,
and 8 for third row). (a) Ground truths. (b) Reconstruction from Gauss–Newton method. (c) Reconstruction from MCNN. (d) Reconstruction from SDM.
(e) Reconstruction from DCAEDS in the first step. (f) Reconstruction from DRCNN in the second step.

O(N 2 K 2 R2 f ). In addition, the demand for memory complexity in

both DL models is represented as O(N 2 K 2 R2 f ) because it primarily

influenced by the dimensions of the filters and biases [37].

III. NUMERICAL RESULTS

A. Numerical Setup and Off-Line Training

The training data for the proposed DCAEDS and DRCNN are

created based on only one group of simple synthetic dataset, i.e.,

MNIST [22], [23], [24], [25], [26], [27], [28], [29]. As shown in

Fig. 1, the size of each sample from MNIST is set to λ × λ (the

wavelength λ = 1 m in free space) with the nonhomogeneous relative

permittivity εr . Each sample is meshed into 24 × 24 uniform pieces

(i.e., N = 24). The number of receivers uniformly set around Dobj

is M = 24, of which the distance is 30λ. Only one TMz incident

plane wave illuminates Dobj with the incident angle equal to 0◦

(i.e., Ni = 1). In this section, both training and testing datasets are

created by full-wave EM simulations [38]. Unlike the scatterers with

homogeneous contrast [22], the relative permittivity εr of the used

samples is heterogeneous rather than being homogeneous (constant).

These heterogeneous digit-shaped scatterers from MNIST have the

relative permittivity εr ranging from 1 to 8, which is very challenging

for the conventional methods [2], [4], [5], [6], [7], [8], [9], [10],

[11], [12]. Based on MNIST, 5000 samples are randomly chosen to

create the training data. Two quantitative indicators, i.e., normalized

mean-square error (NMSE) and structural similarity index (SSIM),

are employed to evaluate the reconstructions [22], [23], [24], [25],

[26], [27], [28], [29]. In addition, for comparative purposes, the

Gauss–Newton method [1], [2], [3], [4] has been applied to identical

test samples illustrated in Sections III-B and C. The innovative

two-step DL framework integrates DRCNN with DCAEDS, effec-

tively achieving EM inversion through two distinct yet cohesive

modules. The proposed DL models are implemented into DL Toolbox

in MATLAB 2021a [39], while adaptive moment estimation (Adam)

optimizer is used to optimize the mentioned loss functions [40].

B. Performance on Number-Shaped Scatterers

Thousand new samples in the MNIST dataset are randomly chosen

in this section to test the trained two-step DL framework, while 5%

white noise is added into the produced EM scattered field. Fig. 4

displays a comparative analysis showcasing the actual ground truth,

the reconstruction outcomes achieved through Gauss–Newton, and

the reconstruction using our two-step solver, where the maximum of

nonhomogeneous permittivities for the samples is randomly selected

as 3, 6, and 8. While the initial reconstruction from DCAEDS can

provide meaningful information about target, the results from the

following DRCNN agree very well with the ground truth. However,

the Gauss–Newton method fails to realize reconstruction of the

mentioned scatterers, which is led by its dysfunction on high-contrast
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on January 16,2025 at 18:22:54 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE I

PERFORMANCE COMPARISON OF TWO-STEP FRAMEWORK

AND OTHER METHODS

Fig. 5. NMSE and SSIM statistical histograms of the reconstruction quality.
(a) NMSE obtained from DCAEDS. (b) NMSE obtained from DRCNN.
(c) SSIM obtained from DCAEDS. (d) SSIM obtained from DRCNN.

targets and by the limited measured data (i.e., one-time-measured

single-frequency scattered field). Unlike the results from DCAEDS,

these wrong predictions from Gauss–Newton cannot provide any

meaningful information for reconstruction. Furthermore, other popu-

lar DL-based inversion methods (i.e., the multiple-layer convolutional

neural network (MCNN) [16] and the SDM [27], [28]) have also

been adopted as a comparison for demonstrating the capability of

our two-step DL framework. As presented in Fig. 4, MCNN can

provide bad reconstruction results with little “meaningful” informa-

tion, while SDM can generally provide some “meaningful” prediction

and roughly describe the shape of the scatterers. Compared with

the excellent reconstruction from DRCNN, they suffer from heavy

distortion and blurring outline of reconstruction. Moreover, our devel-

oped DL approach, described as this two-step solver, significantly

accelerates the reconstruction process compared to the traditional

Gauss–Newton, as evidenced in Table I, which typically requires

approximately 2.3 s to perform ten iterative optimization calculations

for a single scatterer’s reconstruction, while its final reconstruction

nearly cannot provide any meaningful information, as illustrated

in Fig. 4(b). Besides, MCNN and SDM utilize about 0.006 and

0.13 s, respectively, to complete reconstruction for one sample. On the

contrary, the proposed two-step solver utilizes less than 0.022 s

(0.01 s for DCAEDS and 0.012 s for DRCNN) to successfully

complete the reconstruction computation of one scatterer, which

makes it much more suitable for the real-time application.

For our two-step DL solver, Fig. 5(a)–(d) illustrates the statistical

analyses for the testing results: 1) NMSE: the average of NMSE

is about 0.2 for DCAEDS, while the average improved to 0.1 by

DRCNN, and 2) SSIM: the SSIM average is around 0.55 for the

reconstruction of DCAEDS, while this average can be larger than

Fig. 6. Comparison of reconstruction of letter-shaped targets. (a) Ground
truths. (b) Gauss–Newton method. (c) DCAEDS in the first step. (d) DRCNN
in the second step.

Fig. 7. Comparison of reconstruction for FoamDielExt. (a) Ground truths.
(b) Gauss–Newton method. (c) DCAEDS in the first step. (d) DRCNN in the
second step.

0.9 by DRCNN. Therefore, the proposed approach can realize EM

inversion with excellent performances.

C. Study on Performance of Two-Step DL Framework

In this section, various numerical examples are utilized to challenge

the boundary and limitation of the proposed two-step DL framework.

1) Performance on Letter-Shaped Scatterers: A new synthetic

dataset is first employed, called “Letter,” where the heterogeneous

letter-shaped scatterers are assumed to be randomly located in Dobj.

The size of each sample in “Letter” is set to λ × λ, while their

relative permittivities εr are randomly set into the range (1, 8].

Thousand new scatterers from “Letter” are randomly selected to test

the trained DL solver for EM inversion, while 5% white noise is

added to the received scattered field data for input. Fig. 6 illustrates

the comparison between the ground truth, the reconstruction from

the Gauss–Newton method, and the reconstruction from DCAEDS

and DRCNN. Obviously, while the reconstruction from DCAEDS

has demonstrated much meaningful information, the final recon-

struction from DRCNN in the second step agrees well with the

ground truth. The traditional approach (Gauss–Newton method) falls

short in yielding acceptable outcomes. In contrast, our designed DL

solver demonstrates a markedly more efficient reconstruction process,

completing the task in approximately 0.022 s (0.01 s for DCAEDS

and 0.012 s for DRCNN) for a single sample. This is a significant

reduction in time compared to the Gauss–Newton method, which

takes about 2.3 s, as shown in Table I. Taking into account that our

DL model is exclusively trained on MNIST dataset, the resulting

reconstructions yield gratifying outcomes to solve the EM inversion

problem.

2) Performance on Experimental Data: To further illustrate the

capability of our two-step DL method, the widely used experi-

mental data measured at Institute Fresnel are employed [23], [24],

[27], [28]. In this experiment (i.e., “FoamDielExt”), the scatterers

consist of two cylinders: while the bigger one has a diameter of

0.08 m with the relative permittivity 1.45(±0.15), the smaller one

has a diameter of 0.031 m with the relative permittivity 3 (±0.3).

To adapt the experimental data from Fresnel into the proposed DL

method, we select received scattered field only from 24 receivers

(only about 1.2% experimental measurement data) resulting from

one transmitter. In response to the constraints of the experiment,
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we retrain DL models. We emphasize that only the MNIST dataset

is still used to recreate simulation-based training data for our DL

method. The performance of two retrained models has been presented

in Fig. 7. The Gauss–Newton method cannot provide satisfactory

reconstruction again. However, our DL method provides an accept-

able reconstruction on the experimental data.

IV. CONCLUSION

This communication presents a novel two-step DL solver for

realizing EM inversion, which offers significant advantages over

existing methods. Only one-time measurement is needed to provide

the input for the DCAEDS in the first step. While the first step realizes

the coarse reconstruction on the target, the second step utilizes

DRCNN to further refine the reconstruction to the final prediction

by adopting the mixed input scheme. As a result, EM inversion can

be successfully realized with much higher accuracy and efficiency

even for high-contrast targets. Numerical examples demonstrate the

capability and feasibility of the proposed two-step DL solver with

the clear accuracy and efficiency improvement.
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