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Deep-Learning-Based Source Reconstruction
Method Using Deep Convolutional Conditional
Generative Adversarial Network

He Ming Yao™, Member, IEEE, Lijun Jiang ™, Fellow, IEEE, and Michael Ng, Senior Member, IEEE

Abstract— This article proposes a novel deep-learning (DL)-
based source reconstruction method (SRM). The proposed
DL-based SRM employs the deep convolutional conditional
generative adversarial network (DCCGAN), which only demands
one-transmitter single-frequency far-field measurement on elec-
tromagnetic (EM) scattered field as its input and further
predicts the equivalent source on target scatterers. The proposed
DCCGAN includes the generator (G) with an EM forward
simulator and the corresponding discriminator (D), both con-
sisting of the complex-valued deep convolutional neural networks
(DConvNets). During the offline training, the generator learns the
distribution between the measured scattered field data and
the corresponding equivalent source on target scatterers, while
the discriminator determines whether the presented equivalent
sources are real or fake. Therefore, the proposed DCCGAN can
generate the unknown equivalent source from measured scattered
field data, by learning the distribution between the known
equivalent sources and their corresponding field. Furthermore,
the proposed DL-based SRM can overcome the limitation of
conventional methods, involving high computational cost and
strong ill-conditions. Consequently, the proposed DL-based SRM
can realize the reconstruction of the equivalent source with higher
accuracy and lower computation complexity. Numerical examples
have demonstrated the feasibility of the proposed DL-based
SRM, which opens the new path for DL-based EM computation
approaches.

Index Terms— Convolutional neural network (ConvNet), deep
learning (DL), real time, source reconstruction method (SRM).
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I. INTRODUCTION

OURCE reconstruction methods (SRMs) are pivotal
Sin electromagnetic (EM) field transformation applica-
tions [1], [2], [3], [4]. The fundamental aim is to deduce
the equivalent current sources within objects of interest by
analyzing measured EM data [1], [2]. Such tasks are embodied
in SRM, emblematic of inverse problems in the EM domain,
which necessitates the unraveling of integral equation sets that
correlate with the radiative EM fields [3], [4]. By interpreting
the EM fields scattering from these targets, it becomes pos-
sible to estimate the spatial distribution of these internal EM
sources [1], [2], [3], [4]. Armed with this information about
the equivalent sources, one can adeptly tackle a variety of EM
challenges, involving testing for source discrepancies, convert-
ing between far-field (FF) and near-field (NF) measurements,
and pinpointing areas of intense EM activity [3], [4], [5].

SRMs typically entail the determination of an equivalent
source by resolving a series of integral equations. Over recent
years, a plethora of strategies for deducing these equiva-
lent sources has emerged, involving the genetic algorithm
(GA) [6], the Bayesian inference approach [7], along with
various deterministic techniques [8], [9]. Nonetheless, tradi-
tional approaches are frequently plagued by challenges of
ill-posedness, a consequence of factors such as sparse EM
field data pertaining to the targets under study, data perturbed
by noise, and inherent smoothness of forward problem induced
by integral transformations. In addition, iterative optimization
techniques often require substantial computational resources
to achieve an equivalent source reconstruction of acceptable
precision [10], [11], [12]. As a result, the practicality of
many traditional SRMs in meeting the demands of real-time
applications is questionable. In scenarios that demand extreme
computation, the process could involve handling millions of
variables, leading to significant memory usage and extended
CPU processing intervals [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12]. Furthermore, most conventional meth-
ods require multiple measurements at multiple frequencies,
increasing the data collection workload and computational
burden [11, [2], [3], [4], [5], [6], [71, [8], [9], [10], [11], [12].
Most conventional SRMs also rely on NF EM data measure-
ments, which pose stricter and more challenging requirements
compared to FF measurements. Therefore, achieving high
efficiency and accuracy in equivalent source reconstruction,
particularly for real-time application scenarios, remains a
significant challenge.
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Recent advancements in computational methodologies have
seen an upsurge in the application of machine learning (ML)
algorithms to enhance traditional EM approaches [13], [14].
Notably, there has been a surge in the utilization of deep
learning (DL) strategies [15]. This trend is evidenced by a
growing corpus of impactful use cases spanning diverse areas
such as computational science [16], [17], [18], [19], [20],
integrated field-circuit simulation [21], [22], and microwave
imaging [23], [24], [25], [60], [61], [62], [63], [64]. Indeed,
ML strategies have been employed to realize equivalent source
reconstruction [4], [26], [27], [28]. Within these DL frame-
works, the algorithms “learn” from EM data derived from
traditional methodologies and do further prediction for the new
application scenarios with a large number of unknowns. In [4],
the convolutional neural networks (ConvNets) have been
harnessed to approximate the equivalent sources of specific
objects. For the ConvNets model to function accurately, the
characteristics of the target and its response to certain known
incident EM waves must be predefined. This preconditioning
implies that the ConvNets model is specialized for predicting
the equivalent sources for the same object domain when
subjected to novel incident angles. Moreover, Yao et al. [26]
introduced a ConvNet-based framework to facilitate equivalent
source reconstruction. Nevertheless, the deployment of this
DL model is limited to previously characterized scatterers,
rendering the model a sophisticated numerical interpolator for
EM datasets. In [27], equivalent sources were deduced for EM
emissions emanating from printed circuit boards (PCBs), uti-
lizing data derived from close-proximity field measurements.
Conversely, Yao et al. [28] outline a DL-driven approach for
forward EM modeling, aimed at calculating the comprehen-
sive EM field to infer the equivalent sources. The training
of such models, however, relies heavily on data collected
from extensive measurements conducted at various instances
and potentially across multiple frequencies. This require-
ment amplifies the complexity and labor-intensiveness of data
collection, thus posing practical challenges for real-world
application scenarios. In fact, compared with multifrequency
measurements, the single-frequency measurements have many
advantages: 1) the acquisition process for multifrequency mea-
surements is more labor-intensive and complex, which might
not be practical in certain scenarios and 2) the computational
complexity increases significantly when incorporating multi-
frequency data into the DL-based model, making it challenging
to achieve real-time performance. All in all, compared with
conventional methods, the introductions of DL techniques have
greatly speeded up the solving process of equivalent source
and have greatly improved its flexibility in modeling different
application scenarios.

In this work, a novel DL-based SRM is proposed based
on the deep convolutional conditional generative adversarial
network (DCCGAN). This proposed DCCGAN makes use of
the generator (G) with an EM scattering simulator and the
corresponding discriminator (D). While both the generator and
the discriminator consist of the deep convolutional neural net-
works (DConvNets), they only utilize EM scattered field data,
which is gathered using a single-transmitter, multireceiver
setup at a solitary frequency in the FF region, to achieve the
reconstruction of equivalent source on the intended scatterers.
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The general working mechanism for this DL-based SRM is as
follows.

1) Off-Line Training: The generator generates the equiv-
alent source “images” of target scatterers from
single-frequency one-transmitter-measured EM scattered
data in the FF, while the discriminator discriminates
whether the generated “images” are real or fake. The
EM scattering simulator computes the EM scattered field
induced by an equivalent source “generated” from the
generator, so that the performance of the generator can
be further improved.

2) Online Application: The trained generator can work as
the inversion solver to obtain the equivalent source of
unknown scatterer by utilizing its FF single-frequency
one-transmitter-measured EM scattered data. Therefore,
the proposed DL-based SRM is adept at forecasting
the equivalent source utilizing only a select array of
FF EM scattering measurements. This method stands
in contrast to traditional SRMs, as it obviates the need
for NF data acquisition and foregoes the necessity of
possessing detailed contrast information about the tar-
get. In addition, the proposed DL-based model can be
potentially combined with multiresolution techniques,
including the iterative multiscaling approach (IMSA)
[55], [56], [57], [58], [59], to alleviate both nonlinearity
and ill-posedness and improve the performance.

Thanks to the power of the trained DCCGAN, the benefits

of the newly developed DL-driven SRM include the following.

1) Efficiency: This novel approach surpasses traditional
methodologies by achieving equivalent source recon-
struction with significantly reduced computational com-
plexity and expedited processing times since using
DConvNet greatly improves the efficiency of solving
EM-based inversion problem and avoids calculating
complicated Green’s functions. Thus, it can potentially
realize the real-time application.

2) Accuracy: The innovative DCCGAN model, despite uti-
lizing a sparse array of received EM scattered fields, can
infer targets’ equivalent sources with notable precision.
This is a considerable advancement over traditional
techniques. Furthermore, DCCGAN’s training leverages
an EM scattering simulator, incorporating abundant
prior knowledge. This integration allows for the impact
of equivalent source on EM scattered fields to be
assessed, thereby refining DCCGAN’s training process.
Consequently, the optimized DCCGAN is capable of
reconstructing the equivalent source with impressive
fidelity.

3) Simplicity: Our approach requires only the data from EM
scattered fields obtained through a solitary transmitter at
a single frequency from afar. The training phase for the
DCCGAN is predicated on a straightforward synthetic
dataset, yet it accounts for incident EM waves from a
spectrum of random angles. Once trained, the DCCGAN
is adept at reconstructing the equivalent source when
subjected to EM waves from arbitrary directions during
the operational phase.

4) Flexibility: The proposed DL-based SRM is designed to
be inherently adaptable, with the capacity to assimilate
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Fig. 1. Schematic of the scattering of TM wave from a dielectric region Dop;.
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a wide range of prior information into its framework.
Because the training data in the off-line step can be
created according to prior information, the proposed
process itself does not need much change to handle it
universally. This certainly provides the most flexibility
in using the proposed DL-based SRM.

5) Extensibility: In practical applications, it is common for
new, real-time measurements of unknown EM sources
to be collected. The proposed DL method allows for
the seamless integration of these new data points into
the training dataset, effectively expanding the dataset
required for training the DL algorithm. This extensibility
ensures that our model remains up-to-date and adaptable,
as it can continuously learn from new measurements
and improve its accuracy and performance over time.
This advantage makes our method a valuable tool for
EM source reconstruction in dynamic and evolving
scenarios.

II. THEORY AND FORMULATION
A. Problem Formulation

Fig. 1 illustrates the schematic setup for the equivalent
source reconstruction process. Here, a target region is sur-
rounded by M receivers. A single TM-polarized wave, denoted
as E™™, originating from a unique direction (with the incident
wave count N; set to 1), illuminates the specified target
area (Dop;). Surrounding this target area, the M receivers are
strategically positioned to capture the EM scattering wave
emanations. In fact, for each set of equivalent source on
scatterer, there is only one incident wave illuminating them,
i.e., N; = 1. Dy is segmented into a grid of N x N cells,
allowing for the reconstruction of the equivalent source at each
discrete cell using the captured EM field data. Typically, the
grid resolution—reflected by the number of cells—exceeds
the quantity of receivers encircling the region. This depiction
utilizes a 2-D framework to elucidate the workings of our
proposed technique; however, it is important to underscore that
the methodology is equally applicable to 3-D configurations.
As a typical EM inversion problem, this work employs the
received EM field to realize source reconstruction [1], [2],
[31, [4], [5].

In detailing the comprehensive methodology for equivalent
source reconstruction, the foundational principles are encap-
sulated within equations designated as (1) and (2). These are
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referred to as the Lippmann—Schwinger equations, cited in [1],
[2], [3], [4], and [5]. Specifically, the following equation serves
as the state equation, delineating the interplay between the
fields scattered within the domain Dp;:

E™r)=E'(r) — k(z)/ G(r, ') x(r)E"(r)dr’ (1)

Dy

where Green’s function is G(r, r’) = —(j/4)H(§2) (kolr —r')),
while Héz) represents the Hankel function of the second kind
and zeroth order, and kq denotes the wavenumber in a vacuum.
The locations r’ = (x’, y') and r = (x, y) correspond to the
source and observation points within Dy, respectively. The
total EM field is symbolized by E’, and the contrast function
is defined as x (r’) = &, (r') — 1 [23], [24], [25].

The subsequent equation, pivotal to the EM scattering
paradigm, is identified as the data equation. This equation
delineates the relationship between the scattered electric
field E* and the total electric field E’, as expressed in the
following equation:

E‘(r) = k(z)/D G(r, r')x (r")E'(r")dr’ )

where r = (xg, yg) denotes the receiver locations, and r’ =
(x", y") represents the coordinates for segments within Dyy;.
In the exposition of source reconstruction concepts,
we introduce the term “equivalent current,” alternatively
known as the “contrast current,” which is complex-valued and
has real and imaginary parts. We represent it as J(r') =
x(FHE'(r") [1], [2], [3], [4], [5]; thus, (2) is rewritten to be

ES(r) =k§/ G(r,r')J(r")dr'. (3)
obj

The final target of reconstructing the equivalent source is
to compute the equivalent source in the objective domain Dy,
under one incident field from M transmitters around the Dp;.
However, solving (2) directly to compute the equivalent source
is very hard [1], [2], [3], [4], [S], [6], [7], [8], [9], [10], [11],
[12]. In the traditional approaches, (3) is first written into
the following discretized equation [1], [2], [3], [4], [5], [6],
[71, [8], [91, [10], [11], [12] as matrix form, in which Dgy; is
uniformly discretized into pieces. Meanwhile, the equivalent
source in an individual piece can be seen as the piecewise
constant

. E?

Il

3

S
<~ X

4

where the matrices G p have the size of N2 x N2 and Gp =
kgS,,/G(rn,rn/), where S, denotes the area of each source
cell. Here, n = 1,...,N? and n’ = 1, ..., N%. In addition,
the discrete representations are denoted as follows: E° for the
scattered field, E' for the total field that corresponds, x for
the contrast, and J symbolizes the equivalent source.
Unfortunately, N2 is usually much larger than M (for
source reconstruction task, the case is more extreme because
there is only one incident wave corresponding to a set of
received scattered EM field, i.e., N; = 1). Addressing (4) with
conventional techniques presents difficulties due to the scarcity
of received EM field data [1], [2], [3] and also usually suffers
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from the relatively high computation complexity [1], [2], [3],
(41, [5], [6], [7], [8], [9], [10], [11], [12].

B. DCCGAN for Source Reconstruction

The CGAN is the typical generative model and has been
widely used in various fields [28], [29], [30], of which the
training can be seen as a two-player minimax game, i.e., the
Nash equilibrium [29], [30], [31], [32], [33], [34]. In general,
CGAN includes both the generator and the discriminator. The
generator learns mapping a vector sampled from a latent space
to the space of ground-truth samples [29], [30], [31], [32],
[33], [34], while the discriminator learns mapping a sample to
a probability that predicts if the presented “image” is real or
fake. CGAN also develops the method to control the mapping
from input to output by conditioning some “extra information”
(e.g., the difference between the “generated” images and the
ground-truthed images). Thanks to the flexibly-added “extra
information,” the CGAN framework presents the superiority
in image-based tasks, particularly in the cases with limited
input information [29], [30], [31], [32], [33], [34].

In this article, thanks to the power of CGAN, equivalent
source reconstruction can be realized by using only one-
transmitter single-frequency FF measurement, which greatly
simplifies the measurement/simulation and decreases the
computation cost. This proposed DCCGAN for source recon-
struction is based on the discriminator and its corresponding
generator with the EM scattering simulator for the EM scat-
tering process. In addition, training samples for DL models
are generated based on numerical simulation. The proposed
DCCGAN is designed to learn the nonlinear mapping between
the data distribution of scattered EM fields and the data dis-
tribution of the corresponding equivalent source on the target
scatterers, based on which it can realize source reconstruction
for the unknown scatterers with high accuracy in real time.
The proposed DCCGAN estimates the difference and the
similarity between “generated” equivalent source images and
their ground truth, and also involves the difference between
the EM scattered field resulted from “generated” equivalent
source images and the input EM scattered field. Although
the scattered field resulted from “generated” equivalent source
images only originated from one single incident EM wave
in a single frequency, the proposed DCCGAN can make use
of this limited scattered field information to realize excellent
reconstruction results.

The specific structure of the proposed DCCGAN is
illustrated in Fig. 2, which includes two modules: the dis-
criminator (D) and the generator (G) with an EM scattering
simulator. The generator generates the equivalent source
“images” on target scatterers from measured scattered data,
while the discriminator discriminates whether the generated
“images” are real or fake. The loss function of the proposed
DCCGAN evaluates the difference and the similarity between
the created “images” and the ground-truthed “images.” Mean-
while, to make the DL structures “understand” the effect of
created scatterers on the EM scattered field, its loss function
also involves the misfit between the input EM scattered field
E* of the generator and that computed from EM scattering
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simulator, as shown in (5). This DCCGAN succeeds in recon-
structing equivalent source “images” utilizing input with a
smaller size, which is much challengeable for the conventional
methods [6], [7], [8], [9], [10], [11], [12].

1) Discriminator: The structure of the discriminator is
presented in Fig. 3. The discriminator is designed by using
the complex-valued DConvNet [28], [29], [30]. Its input is
the “generated” equivalent source “images” from the generator
or the ground-truthed equivalent source ‘“images,” both of
which are N x N x 2 complex matrix constituted by the
real and imaginary parts of the equivalent source. Mean-
while, together with the ground-truthed or generated equivalent
source “images,” the received EM scattered field is used as
the label condition for the discriminator, which has the size of
M x 1 x 2 (M is the number of receivers, while N; = 1
is the total number of the incident field). To concatenate
the input EM scattered field and the equivalent source,
the deep convolutional asymmetric encoder—decoder archi-
tecture (DCAEDA) has been used, which has demonstrated
the excellent performance for the scientific computation
field [35], [36]. Based on this DCAEDA, the input EM
scattered field is concatenated with equivalent source “images”
to capture features for the following deep convolutional
structure. Based on the final classification layer, the final
output discriminates the realness of the “images.” In detail,
the discriminator applies convolution (Conv.), Up-convolution
(Up-conv.), rectified linear unit (ReLU), leaky rectified linear
unit (LeReLU), and batch normalization (BN) repeatedly.
In addition, the 0.2 dropout operation is used as a regulariza-
tion operation to enhance prediction accuracy and to decline
overfitting [37].

While the generator is trained in order to fool the discrim-
inator, the discriminator network is trained to distinguish the
reconstructed image from the true one. The specific computa-
tion process can be described as follows:

Fig. 2. Scheme of the proposed DCCGAN.

minmax V (D, G)
G D

= EX’\’Pduta(X)[logD (Ess J)]
+ E(E.v'Z)NP(ES'Z)[l — IOgD(E‘Y, G(E‘Y, Z))] 5)

where D() represents the probability computed from the train-
ing dataset, and D(E*, G(E*, Z)) represents the probability of
the generated EM sources, which are created by G(E*, Z).
In addition, while Z is denoted as the noise input to the
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Discriminator of the proposed DCCGAN. Conv. is the convolution, BN is the batch normalization, ReLU is the rectified linear unit, LeReLU is the

leaky rectified linear unit, Conca. is the concatenation, and Up-conv. represents the up-convolution.

generator, (E®, Z) is combined as the condition data input to
the generator. According to this value function, the weights
of the generator and discriminator should be trained and
updated simultaneously to maximize the probability of accu-
racy in discriminating both the training dataset and samples
from the generator, while training the generator to minimize
logD(E*, G(E*, Z)).

Based on (5), the specific loss function of discriminator in
the training process can be defined as follows:

Lo =1 S a0 (8, 657, 21))

_ % i[]og(l —D(E™,J7)] (6

where n stands for the batch size, while j indicates the
jth data in the batch. During the training process, the target
of the discriminator is to make the score of ground truth close
to 1 and that of fake inputs close to O.

To further demonstrate the computational details of the
discriminator, we divide the discriminator into two parts
(as shown in Fig. 3). The first part is DCAEDA [shown in
the top-left part in Fig. 3 and in (7)], where the input is the
received scattered field E° and the output X is combined
with the EM source for the next part. The second part is
the deep convolutional structure [shown in the bottom-right
part in Fig. 3 and in (8)], where the input is the combination
between X and the EM source and the output is the finally-
discriminated score. The nonlinear relation is denoted as (7)
and (8)

X=oyp, (wNC *GNC—I(- .. (wg*ol (wl*E“+d1)+d2) .. .)+dNC)
(7

where wy is the parameters of the Conv. kernel (filter weights)
for the convolutional layers and of BN layers at level j (k =
1,..., N¢, and N¢ = 8 for DCAEDA in Fig. 3), while d; are

bias terms. The functions o; comprises ReLU [44], [45]

S=wn, *¥0n,-1(. .. (w2%01 (w1 * [X, Dr(J)HB1)+B2) .. HBnw,
(®

where w; is the parameters of the Conv. kernel (filter weights)
for the convolutional layers and of BN layers at level k
(j =1,...,Np, and Np = 4 for the deep convolutional
structure in Fig. 3), while B; are bias terms, while Dr()
stands for the operation of dropout. The functions 6; comprises
LeReLU [29], [30], [31], [44], [45].

2) Generator: The generator of DCCGAN is implemented
by adopting a new DCAEDA, which has been widely utilized
in engineering computation research [35], [36]. The operation
of the generator can be regarded as a transformation process,
where the measured scattered field is transferred into the
equivalent source on target scatterers. Fig. 4 shows the specific
internal structure of the generator. Its input is a matrix with
the size of the M x 1 x 2 (M is the number of receivers.
N; = 1 is the total number of the incident field), which stores
the scattered field E*. Thus, it is referred to as “field data.” The
real and imaginary parts of E* stand for its two tubes, which
is presented in Fig. 4. Its output is the real and imaginary
parts of the targeted equivalent source, which is a N x N x
2 matrix.

In Fig. 4, the designed generator mainly contains three parts:
the encoder, the decoder, and the projector. E® undergoes
sequential processing within the encoding framework, where
it is segmented into discrete informational units. These units,
once distilled, are systematically reconstructed within the
decoding stages. This iterative reassembly progresses through
each layer, culminating in the formation of J’. The middle
projector reshapes the noise input Z into the structure to
upscale the noise Z using a fully connected operation and
reshapes the output to the specified size. As shown in Fig. 4,
Conv., ReLLU, and BN are applied repeatedly in the encoder,
while Up-Conv., BN, and ReLU operations constitute the
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Fig. 4.
concatenation, and Up-conv. represents the up-convolution.

corresponding decoder. A final Conv. layer and a hyperbolic
tangent layer are set at the end of the decoder

J'=G(E’ Z). )

The entire process in generator can be described as a trans-
formation process in (9), which maps the received scattered
field to the equivalent source on the target scatterers. In this
process, E° is utilized as the input of the complex-valued
DCAEDA, while J is chosen to be the output. In addition,
the whole process of constructing the model does not need
to calculate Green’s function and reduce the ill-posedness of
the conventional methods [6], [7], [8], [9], [10], [11], [12].
Because of prior information integrated by training, the
proposed DCCGAN can alleviate the nonuniqueness [42],
by offering a “better” prediction (i.e., the most possible
solution). Moreover, the proposed generator can complete the
reconstruction operation by only one model, which is simpler
than the two-step approach [38].

To further demonstrate the computational details of the
generator, we divide the generator into two parts (as shown
in Fig. 4). The first part is the encoder of DCAEDA [shown
in the left part in Fig. 4 and in (10)], where the input is the
received scattered field E° and the output Y is combined with
the projected noise Z for the next part. The second part is the
decoder of the DCAEDA [shown in the right part in Fig. 4
and in (11)], where the input is the combination between Y
and projected noise Z and the output is the reconstructed EM
source. The nonlinear relation is denoted as (10) and (11)

Y:O‘NM(wNM*O'NM_l ( .. (wZ*O'1 (wl*ES+d1)+d2) .. ~)+dNM)
(10)
where wy is the parameters of the Conv. kernel (filter weights)
for the convolutional layers and of BN layers at level k (k =
1, ..., Ny, and Ny, = 5 for the encoder in Fig. 4), while d;
are bias terms. The functions o; comprise ReLU [44], [45]
J =y, % On,—1 (... (02 % 01 (w1 % [Y, Z1+B1)+B2) .. .)+Bn,
(1)

where w; is the parameters of the Conv. kernel (filter weights)
for the convolutional layers and of BN layers at level j
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Output
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Generator of the proposed DCCGAN. Conv. is the convolution, BN is the batch normalization, ReLU is the rectified linear unit, Conca. is the

(=1, ..., Ny, and Ny = 4 for the decoder in Fig. 4), while
B; are bias terms. The functions 6; comprise ReLU [44], [45].

While the loss function of the generator directly defines the
physical meaning and the objective of source reconstruction,
the difference between prediction and true label together with
the “physical” effect of the prediction on the EM scattering
process has to be taken into consideration, so that the source
reconstruction problems can be solved successfully. The loss
function of the conventional CGAN merely consists of two
terms L¢c and L,, as shown in (12) and (13). They repre-
sent the adversarial loss function used for the conventional
CGAN [29], [30], but they unfortunately cannot involve the
physical meaning of EM scattering. To follow the physical
meaning of the source reconstruction process, we revise its
conventional loss function by adding Lg and Lg, as shown
in (14) and (15). While L estimates the similarity between the
generated contrast and the ground-truthed contrast, the error
between E* and E* (ie., Lg) computed from the simulator
is also added to the loss function to estimate the effect of the
“image” error on the EM scattering. In other words, the quality
of the predicted equivalent source “image” and its effect on
EM scattering can both be evaluated in the loss function.
Therefore, the full loss function Ls of the generator can be
written as (16)

1 n . . .
b=y Slhelt D G2 2] 02

1

L=ty a3)
1

Lp=-|E —E |? (14)

Ls= (1 —sSIM(J — 1)) (15)
n

Le=Lc+ML,+ M Lg+23Lg (16)

where L denotes the adversarial loss derived from (5).
While L, indicates the mean square error (MSE) between
x and the generated x’, SSIM is denoted as the structural
similarity [38], [39], [40], [41], [42], [43] index between yx
and the generated x’. Moreover, L estimates the difference
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between E® and E*', as shown in (14), while A;, A5, and A3
(M =5, 42 =5, and A3 = 10) are the weighing parameters,
which represent the proportion of L, L, and L contributing
to Lg.

Several issues of the above-proposed generator model are
summarized as follows.

1) Complex-Valued Input With Small Size: As shown in
Fig. 4, the size of the input of the generator is smaller
than the existing DL structures [38], [39], [40], [41],
[42], [43] because the proposed generator only needs
one-transmitter single-frequency incident EM wave.
Here, considering that the size of the input is reduced
to M x 1 x 2 (N; = 1), the size of the input will
not be the same as that of the output. However, the
smaller input size can help decrease the computation
cost of the generator, compared with other DL-based
methods [38], [39], [40], [41], [42], [43]. Moreover,
the source reconstruction problem is a typical complex-
valued problem. Both received EM fields and equivalent
source on targets are complex values.

2) The Attached EM Scattering Simulator: During the
generator’s training phase, an integrated EM scattering
simulator has been adopted to help assess the fidelity
of the reconstructed equivalent sources. This simulator,
designed to replicate the EM scattering process, calcu-
lates EM scattered fields originated by the predicted
equivalent sources. Its primary function is to ensure
the precision of EM scattered fields obtained from
the predicted equivalent source “images” throughout the
entire training regimen. In accordance with (4), the
simulator leverages the forecast equivalent sources to
perform the computations essential for the EM scatter-
ing procedure. The inclusion of this simulator enables
the DCCGAN framework to account for discrepancies
among scattered fields emanating by “generated” equiv-
alent sources and those observed input fields. These
discrepancies contribute to the composite loss function,
which is articulated in (12) and (13).

3) Computational Complexity: The computational overhead
of the suggested generative model is primarily gov-
erned by convolutional processes, BN, and the ReLU
activation function [38], [39], [40], [41]. Given that
the employed filters are of minimal size, the bulk of
the computational effort is attributable to the convolu-
tions [38], [39], [40], [41], [44]. The input dimension
for the encoder stage is set at M x 1 x 2, where
N; equals 1. For each convolutional layer, R filters of
size K x K are utilized, with the entire architecture
comprising f layers in total. Thus, the encoder has
the computation complexity as O(MN;K ZR? f) [44],
[45]. The decoder part has the same kind of operations
with the encoder part but from the opposite direction.
The decoder part has similar hyperparameters like filter
number and size with the encoder part. Only the size
of output is changed to N x N x 2. Thus, the decoder
part has the computational complexity as O (N2K?R? f).
Considering N > N; (i.e., N; = 1). The computational
complexity of the entire network is dominated by the
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(b) ©

Fig. 5. Numerical setup. (a) Contrast distribution of one sample in MNIST.
(b) Real part of the equivalent source J in Dgp;. (c) Imaginary part of the
equivalent source J in Dop;. (d) Magnitude of the equivalent source J in Dop;.

encoder part and is approximated to be O(N?K?R?f)
[38], [39], [40], [41], [44], [45]. In addition, the memory
requirements mainly depend on the size of the filters and
biases, which scales as 0(K2R2f) [38], [39], [40], [41],
[44], [45].

III. NUMERICAL EXAMPLES
A. Numerical Setup and Off-Line Training

To ascertain the efficacy of the DL-based SRM, the widely
recognized MNIST dataset is employed to generate a train-
ing dataset, serving as the target samples [38], [39], [40],
[41], [42], [43]. In fact, MNIST has been considered as one
of the most common dataset for training ML algorithms.
It contains a large library of handwritten digits leading to
near-human results. In this work, each sample in the MNIST
dataset has the size of about 2A x 2A (the wavelength
A = 1 m for free space) and is uniformly discretized into
24 x 24 pieces (i.e., N = 24). In the setup depicted in Fig. 1,
TM, waves with a random incidence angle impinge on the
domain Dqy;, situated 304 away from the target area. Around
Dy, in the FF region, 96 receivers are evenly spaced at a
distance of 30A, which implies that M is set to 96. For the
creation of both training and testing data, we utilize full-
wave EM simulations [46]. We employ the MNIST dataset
to designate inhomogeneous contrast values (x) for numeral-
shaped targets, varying from O to 1. A subset of 1000 random
MNIST samples are used as scattering elements to generate
the training data, comprising the scattered fields E* and the
equivalent currents J. The ground truth for J is determined
using the conventional method of moments (MoM) [1], [2],
[3], [4], [5]. Fig. 5(a) displays a sample from the training
dataset. Fig. 5(b) and (c) depicts the real and imaginary
components of J, respectively. For clarity, the magnitude of J
is termed an “equivalent source image,” which is illustrated in
Fig. 5(d). Sections III-B-III-D will employ this terminology
when showcasing the DCCGAN’s efficacy. It is noteworthy
that the DCCGAN’s offline training regimen accommodates
incident waves from random directions, and its robustness
against such waves will also be evaluated, with detailed results
presented in Sections III-B—III-D.

Throughout the model’s refinement phase, the DCCGAN
framework undergoes training through the minimization of
the loss function detailed in (6). This process includes
assessing the discrepancies between the predicted and actual
equivalent sources, as well as comparing the EM scattering
fields generated by the predicted equivalent sources with the
observed input EM scattering fields. The procedural steps of
this training are outlined in Fig. 2. Upon completion of the
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Fig. 6. Performance of the proposed DCCGAN on MNIST. (a) Contrast distribution of different number-shaped scatterers. (b) MoM result as ground truth:
the computed magnitude of the equivalent source J in Dopj. (¢) MCNN result: the computed magnitude of the equivalent source J in Dqp;. (d) SDM result as
ground truth: the computed magnitude of the equivalent source J in Dop;. (¢) Result from the conventional CGAN without additional loss terms: the computed
magnitude of the equivalent source J in Dop;. (f) Result from the proposed DCCGAN: the computed magnitude of the equivalent source J in Dop;.

offline training, the developed DL-based SRM is capable of
accurately reconstructing equivalent sources for novel, unseen
scenarios. The efficacy of this model in testing is shown in
Sections III-B-III-D, with an array of diverse testing datasets
applied for thorough evaluation. Both the offline training phase
and the online prediction tasks of this SRM are executed using
MATLAB 2021a, complemented by its DL Toolbox [47].
The optimization of the loss function is carried out with the
adaptive moment estimation (Adam) optimizer. Unlike other
optimizers, such as stochastic gradient descent (SGD), Adam
can generally navigate through the loss surface more favor-
ably [48]. In the assessment of “equivalent source images”
discussed in Sections III-B and III-C, this study utilizes two
quantifiable metrics to gauge the efficacy of the proposed DL
method. These metrics are the SSIM index and the normalized
mean-square error (NMSE), which are formulated in (17)
and (18). These indices are widely recognized and selected as
standard performance measures for evaluating DL models [38],
[39], [40], [41], [42], [43], [65]

S e —vi)
S ()

where the image y is the reconstructed result of the image x.
Both images have the size of K x J

(211 ey + C1) (204, + C2)
(12 4+ +C) (o2 + 02+ C)

where regularization constants C; and C, are utilized to
prevent instability in locations where the local mean or stan-
dard deviation is near zero. [y, [y, Oy, Oy, and oy, are the
local means, standard deviations, and cross-covariance for the
images x and y.

Usually, the performance of the trained DL models can
be generally improved with the scale of the training dataset

NMSE =

a7)

SSIM =

(18)

increasing. However, the performance improvement unavoid-
ably slows down if the number of samples sustainedly
increases. Meanwhile, with the increase in the sample number,
there is surely the unavoidable computation cost resulting
from the computation of samples. Thus, selecting the training
dataset scale has to consider both the model performance and
the computation cost. According to our trail, the chosen scale
of the training dataset can better work for the training model.

Additionally, the working frequency for the proposed DCC-
GAN is roughly decided by the size of Doy [11, [2], [3],
[4], [5]. The smaller size requires a relatively high frequency.
Normally, if the resolution is larger, the number of training
samples should be relatively larger to ensure the better perfor-
mance. In other words, requiring a high resolution of target
means adding more training data to ensure high performance.
Thus, selecting the resolution should also take the training
dataset scale into consideration.

B. Performance on Number-Shaped Objects

In this section, the application performance of the trained
DCCGAN for the source reconstruction is evaluated by
MNIST database. The new unknown samples in MNIST are
utilized as the testing samples, as presented in Fig. 6(a).
While the reference “equivalent source image” computed from
MoM is shown in Fig. 6(b) as the ground truth, the corre-
sponding “equivalent source image” of the output J is shown
in Fig. 6(c). The trained DCCGAN is tested on 1000 new
scatterers in the MNIST dataset. To demonstrate the capability
of the proposed method, Gaussian noise (signal-to-noise ratio
(SNR) = 20 dB) is added into the EM scattered field, i.e.,
E*. For each test, the incident field E™ with random inci-
dent direction illuminates D, with a new unknown scatterer
sample, as shown in Fig. 1. For the comparison, the
reconstructed equivalent source calculated from the trained
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TABLE I

PERFORMANCE COMPARISON BETWEEN
DCCGAN AND OTHER METHODS

Reconstruction MNIST Letter Fresnel
DCCGAN 0.02061s 0.02012s 0.02126s
SDM 0.2834s 0.2861s 0.2819s
MCNN 0.01308s 0.01279s 0.01292s
MoM 0.6493s 0.6515s 0.6526s

DCCGAN is shown in Fig. 6(f), which is much approximated
to its ground truth and indicates the accuracy and validity
of the proposed method for source reconstruction. As for the
direction of the incident wave, incident EM fields for different
directions bring different equivalent sources on the scatterers
and thus different scattered fields. According to our trail, the
prediction from the proposed DCCGAN can realize source
reconstruction in an arbitrary incident direction, which results
from the training data relying on the incident EM waves in
random directions.

The comparison between the ground truth and the recon-
struction from DCCGAN in Fig. 6 can prove the fact that
although the new test samples have totally new shapes, the
results from DCCGAN excellently agree with the ground truth.
Furthermore, to increase the significance and fairness and to
demonstrate the capability of the proposed DCCGAN, other
popular DL-based inversion methods (i.e., the multiply-layer
convolutional neural network (MCNN) [26] and the supervised
descent method (SDM) [42], [43]) have also been adopted
as a comparison. As presented in Fig. 6(c) and (d), MCNN
can provide bad reconstruction results with little “meaning-
ful” information, while SDM can generally provide some
“meaningful” prediction and roughly describe the shape of the
scatterers. Compared with the excellent reconstruction from
the proposed DCCGAN, they suffer from heavy distortion and
blurring outline of reconstruction. In addition, to demonstrate
the effect of the designed loss function of the proposed
DCCGAN, we also train the CGAN with only loss term L¢
and L, as the loss function (i.e., the loss function for the con-
ventional CGAN [29], [30], [31]), of which the performance
is illustrated in Fig. 6(e). Although the conventional CGAN
can provide the approximated reconstruction, its performance
still cannot be as good as that obtained from the proposed
DCCGAN with the designed loss function.

Moreover, DCCGAN can save much time for completing
computation than MoM and SDM, as presented in Table I.
The conventional MoM uses around 0.65 s on one sample
to compute an equivalent source, as illustrated in Fig. 6.
In addition, MCNN and SDM utilize about 0.01 and 0.3 s,
respectively, to complete reconstruction for one sample. On the
contrary, the proposed DCCGAN utilizes about 0.02 s to
successfully complete the reconstruction computation of one
sample. Considering the bad reconstruction performance of
MCNN and SDM, the proposed DCCGAN is much suitable
for the real-time application.

Fig. 7(a) and (b) illustrates the comparative analysis,
utilizing NMSE and SSIM, to evaluate the accuracy of
the DCCGAN’s predictions against the verified “equivalent
source images” J. The DCCGAN’s average NMSE hov-
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Fig. 7. Statistical histograms of the “equivalent source image” quality for
the results from the DCCGAN on MNIST and fitting of its normal density
function and the corresponding MoM results are used as the reference field.
(a) NMSE from DCCGAN. (b) SSIM from DCCGAN.

®

Fig. 8. One example for the sensitivity of the proposed DCCGAN on noise.
(a) MoM result as ground truth: the computed magnitude of the equivalent
source J in Dopj. DCCGAN results with different Gauss noise levels:
(b) SNR = 40 dB; (c) SNR = 30 dB; (d) SNR = 20 dB; (e) SNR = 15 dB;
and (f) SNR = 10 dB.

ers around (.19, while it achieves an average SSIM of
approximately 0.89, indicating the model’s proficiency in
reconstructing equivalent sources with high fidelity. A detailed
juxtaposition of the DCCGAN’s performance with alterna-
tive methodologies is tabulated in Table I. These findings
underscore the viability of the DCCGAN for deployment in
real-time scenarios [1], [2], [3], [4], [5].

Furthermore, we also analyze the noise sensitivity of our
proposed GAN-based model. We set the Gaussian noise to the
input scattered field for the proposed DCCGAN with different
SNRs: 40, 30, 20, 15, and 10 dB. As shown in Fig. 8, our
proposed DCCGAN can demonstrate excellent noise tolerance.
When the level of Gaussian noise achieves 15 dB, the proposed
DCCGAN can still provide meaningful reconstruction result,
while the reconstruction result can be much approximated to
the ground truth with the noise level below 15 dB. Moreover,
according to our statistical computation on the reconstruction
results, the NMSE increases from 0.18 and 0.19 to 0.22 and
further to 0.47 for the noise level 40, 20, 15, and 10 dB,
respectively, while SSIM decreases from 0.9 and 0.89 to
0.85 and further to 0.45, which indicates the strong capability
of the proposed DCCGAN.

C. Performance on Letter-Shaped Objects

Within the subsequent computational scenario, we assess the
trained DCCGAN’s efficacy through its application to novel
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Fig. 9. Performance of the proposed DCCGAN on “Letter.” (a) Contrast
distribution of different scatterers in “Letter.” (b) MoM result as ground truth:
the computed magnitude of the equivalent source J in Dopj. (¢) DCCGAN
result: the computed magnitude of the equivalent source J in Dop;.

synthetic data compilations, referred to as the “Letter” dataset.
This particular dataset comprises a series of inhomogeneous
scatterers, each mimicking the geometry of alphabetic char-
acters, arbitrarily positioned within the domain Dgy;. These
letter-shaped entities each span an area measuring 2A in
both width and height. Additionally, their internal contrast
values, denoted by y, are assigned varying magnitudes within
a range extending from O up to 1. As in Section III-B,
1000 samples in these datasets are utilized to test the trained
DCCGAN. In the described experiment, a single incident
electric field, E™, originating from a stochastic direction,
irradiates the test sample. To this incident field, Gaussian noise
(SNR = 20 dB) is introduced, affecting the resultant scattered
field, E°. For the assessment of reconstructed equivalent
source ‘“images,” metrics, i.e., NMSE and SSIM, have been
employed. It is important to note that DCCGAN’s training
regimen was confined to the MNIST dataset and did not
incorporate the “Letter” dataset.

Fig. 9(a) shows selected samples from the test set, whereas
Fig. 9(b) displays the corresponding “equivalent source
images” derived via MoM. The outcomes generated by this
DL-SRM are depicted in Fig. 9(c). Despite the DL model’s
training being exclusively on the MNIST dataset, it was eval-
vated using an entirely distinct dataset. The visual comparison
in Fig. 9(c) reveals a striking similarity between the DL-SRM
outputs and the MoM-derived ground truth in Fig. 9(b), under-
scoring the model’s generalization capabilities. Taking into
consideration that the training of DCCGAN is based only on
the MNIST dataset, the proposed method provides satisfactory
results for reconstructing the equivalent source. The result
also indicates the strong generality of the proposed DL-based
method. Thus, despite the training of this DL method being
contingent on a singular dataset, the trained DCCGAN is
capable of facilitating the reconstruction of equivalent sources
across disparate datasets.

Fig. 10(a) and (b) illustrates the statistical analyses for the
test: the average NMSE yielded by DCCGAN is approxi-
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Fig. 10. Statistical histograms of the “equivalent source image” quality for
the results from the DCCGAN on “Letter,” and fitting of its normal density
function and the corresponding MoM results are used as the reference field.
(a) NMSE from DCCGAN. (b) SSIM from DCCGAN.

mately 0.4. Concurrently, the mean SSIM associated with
the outcomes is estimated to be around 0.72, which demon-
strates that the proposed approach can successfully reconstruct
the equivalent source. Furthermore, DCCGAN demonstrates
a swift reconstruction capability, completing the equivalent
source construction for a singular scatterer in just 0.02 s.
In contrast, the traditional MoM requires approximately 0.65 s
to achieve a reconstruction for an identical scenario. As shown
in Table I, the performance indicates the potential of the
proposed DCCGAN for the real-time application.

D. Performance of Experimental Data

To further illustrate the capability of DCCGAN, we chal-
lenge DCCGAN by the widely-used experimental data
measured at Institut Fresnel, Marseille, France [40], [41],
[42], [43]. For the setting of this experiment, wideband-
ridged horn antennas are employed for both transmitting
and receiving antennas. While the distance between the
source-object center and object-receiver is 1.67 m, eight trans-
mitters and 241 receivers are installed. In this experiment (i.e.,
“FoamDielExt”), the scatterers consist of two cylinders: while
the bigger one has a diameter of 0.08 m with the relative
permittivity of 1.45(+£0.15), the smaller one has a diameter of
0.031 m with the relative permittivity of 3(£0.3).

To adapt the experimental data from Fresnel into the pro-
posed DCCGAN, we select received scattered EM field only
from 96 receivers (only about 5% experimental measurement
data) resulting from only one transmitter. Thus, E® is the input
of the proposed DCCGAN with M = 96, while the equivalent
source J is the prediction. Then, we further test the retrained
DCCGAN for the experimental data. We emphasize that only
MNIST dataset is still utilized to recreate the simulation-
based training data fitting this experimental setting, so that
the proposed DCCGAN can be retrained for the experimental
data (the process is the same as that in Section III-A). The
performance of the retrained DL framework is presented in
Fig. 11. DCCGAN provides the acceptable reconstruction of
the experimental data. Considering the fact that only about 5%
of measurement data are utilized and the training of DCC-
GAN relies only on a totally different synthetic dataset, i.e.,
MNIST, the proposed DCCGAN demonstrates its excellent
performance on realizing source reconstruction.

E. Future Works

Based on the excellent performance of the proposed DCC-
GAN, it has demonstrated the potential to be applied in
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(a) (b) ' © ’

Fig. 11. Comparisons of source reconstruction for FoamDielExt. (a) Contrast
distribution of FoamDielExt. (b) MoM result as ground truth: the computed
magnitude of the equivalent source J in Dgpj. (¢) DCCGAN result: the
computed magnitude of the equivalent source J in Dop;.

different fields related to EM source reconstruction. One of
the exciting potential applications of the proposed DL-based
method for EM source reconstruction is in target detection by
airborne radars [49]. Our method has demonstrated promising
results in overcoming the high failure rate of deterministic
methods in inverse scattering, which has been a significant
challenge in the field, as discussed in [49]. In the context of
airborne radars, our method could be employed to improve
the accuracy and reliability of target detection and tracking,
especially in complex and cluttered environments. The DL
model can adaptively learn the relationships between the
scattered EM fields and the underlying target properties,
providing a more robust and efficient solution compared to tra-
ditional deterministic approaches. Additionally, our proposed
DL method can be adapted to other related areas, such as
ground-based or maritime radar systems [50], [51], and can
potentially be integrated with advanced radar signal processing
techniques [52], to achieve even better performance in target
detection and tracking.

IV. CONCLUSION

A novel SRM is proposed based on the DCCGAN. The
conventional SRM unavoidably encounters various complexity
and speed challenges, which makes them usually not suitable
for the real-time application. The proposed DCCGAN only
demands one-transmitter single-frequency FF measurement on
EM scattered field and further predicts the equivalent source on
target scatterers. The proposed DCCGAN employs the genera-
tor with an EM scattering simulator and the discriminator, both
consisting of DConvNets. The training process of the proposed
DCCGAN can be summarized as: 1) the generator learns the
distribution between the measured scattered field data and
the corresponding equivalent source on target scatterers and
2) the discriminator determines whether the presented equiv-
alent sources are real or fake. Consequently, the equivalent
source can be reconstructed with satisfactory accuracy and
much less computational cost. Numerical examples are
employed to illustrate the validity and the generality of the
proposed DL-based SRM. It provides a new perspective to
realize the quantitative SRM in real time.
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