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Deep-Learning-Based Source Reconstruction

Method Using Deep Convolutional Conditional

Generative Adversarial Network
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Abstract— This article proposes a novel deep-learning (DL)-
based source reconstruction method (SRM). The proposed
DL-based SRM employs the deep convolutional conditional
generative adversarial network (DCCGAN), which only demands
one-transmitter single-frequency far-field measurement on elec-
tromagnetic (EM) scattered field as its input and further
predicts the equivalent source on target scatterers. The proposed
DCCGAN includes the generator (G) with an EM forward
simulator and the corresponding discriminator (D), both con-
sisting of the complex-valued deep convolutional neural networks
(DConvNets). During the offline training, the generator learns the
distribution between the measured scattered field data and
the corresponding equivalent source on target scatterers, while
the discriminator determines whether the presented equivalent
sources are real or fake. Therefore, the proposed DCCGAN can
generate the unknown equivalent source from measured scattered
field data, by learning the distribution between the known
equivalent sources and their corresponding field. Furthermore,
the proposed DL-based SRM can overcome the limitation of
conventional methods, involving high computational cost and
strong ill-conditions. Consequently, the proposed DL-based SRM
can realize the reconstruction of the equivalent source with higher
accuracy and lower computation complexity. Numerical examples
have demonstrated the feasibility of the proposed DL-based
SRM, which opens the new path for DL-based EM computation
approaches.

Index Terms— Convolutional neural network (ConvNet), deep
learning (DL), real time, source reconstruction method (SRM).
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I. INTRODUCTION

S
OURCE reconstruction methods (SRMs) are pivotal

in electromagnetic (EM) field transformation applica-

tions [1], [2], [3], [4]. The fundamental aim is to deduce

the equivalent current sources within objects of interest by

analyzing measured EM data [1], [2]. Such tasks are embodied

in SRM, emblematic of inverse problems in the EM domain,

which necessitates the unraveling of integral equation sets that

correlate with the radiative EM fields [3], [4]. By interpreting

the EM fields scattering from these targets, it becomes pos-

sible to estimate the spatial distribution of these internal EM

sources [1], [2], [3], [4]. Armed with this information about

the equivalent sources, one can adeptly tackle a variety of EM

challenges, involving testing for source discrepancies, convert-

ing between far-field (FF) and near-field (NF) measurements,

and pinpointing areas of intense EM activity [3], [4], [5].

SRMs typically entail the determination of an equivalent

source by resolving a series of integral equations. Over recent

years, a plethora of strategies for deducing these equiva-

lent sources has emerged, involving the genetic algorithm

(GA) [6], the Bayesian inference approach [7], along with

various deterministic techniques [8], [9]. Nonetheless, tradi-

tional approaches are frequently plagued by challenges of

ill-posedness, a consequence of factors such as sparse EM

field data pertaining to the targets under study, data perturbed

by noise, and inherent smoothness of forward problem induced

by integral transformations. In addition, iterative optimization

techniques often require substantial computational resources

to achieve an equivalent source reconstruction of acceptable

precision [10], [11], [12]. As a result, the practicality of

many traditional SRMs in meeting the demands of real-time

applications is questionable. In scenarios that demand extreme

computation, the process could involve handling millions of

variables, leading to significant memory usage and extended

CPU processing intervals [1], [2], [3], [4], [5], [6], [7], [8],

[9], [10], [11], [12]. Furthermore, most conventional meth-

ods require multiple measurements at multiple frequencies,

increasing the data collection workload and computational

burden [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12].

Most conventional SRMs also rely on NF EM data measure-

ments, which pose stricter and more challenging requirements

compared to FF measurements. Therefore, achieving high

efficiency and accuracy in equivalent source reconstruction,

particularly for real-time application scenarios, remains a

significant challenge.
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Recent advancements in computational methodologies have

seen an upsurge in the application of machine learning (ML)

algorithms to enhance traditional EM approaches [13], [14].

Notably, there has been a surge in the utilization of deep

learning (DL) strategies [15]. This trend is evidenced by a

growing corpus of impactful use cases spanning diverse areas

such as computational science [16], [17], [18], [19], [20],

integrated field-circuit simulation [21], [22], and microwave

imaging [23], [24], [25], [60], [61], [62], [63], [64]. Indeed,

ML strategies have been employed to realize equivalent source

reconstruction [4], [26], [27], [28]. Within these DL frame-

works, the algorithms “learn” from EM data derived from

traditional methodologies and do further prediction for the new

application scenarios with a large number of unknowns. In [4],

the convolutional neural networks (ConvNets) have been

harnessed to approximate the equivalent sources of specific

objects. For the ConvNets model to function accurately, the

characteristics of the target and its response to certain known

incident EM waves must be predefined. This preconditioning

implies that the ConvNets model is specialized for predicting

the equivalent sources for the same object domain when

subjected to novel incident angles. Moreover, Yao et al. [26]

introduced a ConvNet-based framework to facilitate equivalent

source reconstruction. Nevertheless, the deployment of this

DL model is limited to previously characterized scatterers,

rendering the model a sophisticated numerical interpolator for

EM datasets. In [27], equivalent sources were deduced for EM

emissions emanating from printed circuit boards (PCBs), uti-

lizing data derived from close-proximity field measurements.

Conversely, Yao et al. [28] outline a DL-driven approach for

forward EM modeling, aimed at calculating the comprehen-

sive EM field to infer the equivalent sources. The training

of such models, however, relies heavily on data collected

from extensive measurements conducted at various instances

and potentially across multiple frequencies. This require-

ment amplifies the complexity and labor-intensiveness of data

collection, thus posing practical challenges for real-world

application scenarios. In fact, compared with multifrequency

measurements, the single-frequency measurements have many

advantages: 1) the acquisition process for multifrequency mea-

surements is more labor-intensive and complex, which might

not be practical in certain scenarios and 2) the computational

complexity increases significantly when incorporating multi-

frequency data into the DL-based model, making it challenging

to achieve real-time performance. All in all, compared with

conventional methods, the introductions of DL techniques have

greatly speeded up the solving process of equivalent source

and have greatly improved its flexibility in modeling different

application scenarios.

In this work, a novel DL-based SRM is proposed based

on the deep convolutional conditional generative adversarial

network (DCCGAN). This proposed DCCGAN makes use of

the generator (G) with an EM scattering simulator and the

corresponding discriminator (D). While both the generator and

the discriminator consist of the deep convolutional neural net-

works (DConvNets), they only utilize EM scattered field data,

which is gathered using a single-transmitter, multireceiver

setup at a solitary frequency in the FF region, to achieve the

reconstruction of equivalent source on the intended scatterers.

The general working mechanism for this DL-based SRM is as

follows.

1) Off-Line Training: The generator generates the equiv-

alent source “images” of target scatterers from

single-frequency one-transmitter-measured EM scattered

data in the FF, while the discriminator discriminates

whether the generated “images” are real or fake. The

EM scattering simulator computes the EM scattered field

induced by an equivalent source “generated” from the

generator, so that the performance of the generator can

be further improved.

2) Online Application: The trained generator can work as

the inversion solver to obtain the equivalent source of

unknown scatterer by utilizing its FF single-frequency

one-transmitter-measured EM scattered data. Therefore,

the proposed DL-based SRM is adept at forecasting

the equivalent source utilizing only a select array of

FF EM scattering measurements. This method stands

in contrast to traditional SRMs, as it obviates the need

for NF data acquisition and foregoes the necessity of

possessing detailed contrast information about the tar-

get. In addition, the proposed DL-based model can be

potentially combined with multiresolution techniques,

including the iterative multiscaling approach (IMSA)

[55], [56], [57], [58], [59], to alleviate both nonlinearity

and ill-posedness and improve the performance.

Thanks to the power of the trained DCCGAN, the benefits

of the newly developed DL-driven SRM include the following.

1) Efficiency: This novel approach surpasses traditional

methodologies by achieving equivalent source recon-

struction with significantly reduced computational com-

plexity and expedited processing times since using

DConvNet greatly improves the efficiency of solving

EM-based inversion problem and avoids calculating

complicated Green’s functions. Thus, it can potentially

realize the real-time application.

2) Accuracy: The innovative DCCGAN model, despite uti-

lizing a sparse array of received EM scattered fields, can

infer targets’ equivalent sources with notable precision.

This is a considerable advancement over traditional

techniques. Furthermore, DCCGAN’s training leverages

an EM scattering simulator, incorporating abundant

prior knowledge. This integration allows for the impact

of equivalent source on EM scattered fields to be

assessed, thereby refining DCCGAN’s training process.

Consequently, the optimized DCCGAN is capable of

reconstructing the equivalent source with impressive

fidelity.

3) Simplicity: Our approach requires only the data from EM

scattered fields obtained through a solitary transmitter at

a single frequency from afar. The training phase for the

DCCGAN is predicated on a straightforward synthetic

dataset, yet it accounts for incident EM waves from a

spectrum of random angles. Once trained, the DCCGAN

is adept at reconstructing the equivalent source when

subjected to EM waves from arbitrary directions during

the operational phase.

4) Flexibility: The proposed DL-based SRM is designed to

be inherently adaptable, with the capacity to assimilate
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on January 16,2025 at 18:24:03 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 1. Schematic of the scattering of TM wave from a dielectric region Dobj.

a wide range of prior information into its framework.

Because the training data in the off-line step can be

created according to prior information, the proposed

process itself does not need much change to handle it

universally. This certainly provides the most flexibility

in using the proposed DL-based SRM.

5) Extensibility: In practical applications, it is common for

new, real-time measurements of unknown EM sources

to be collected. The proposed DL method allows for

the seamless integration of these new data points into

the training dataset, effectively expanding the dataset

required for training the DL algorithm. This extensibility

ensures that our model remains up-to-date and adaptable,

as it can continuously learn from new measurements

and improve its accuracy and performance over time.

This advantage makes our method a valuable tool for

EM source reconstruction in dynamic and evolving

scenarios.

II. THEORY AND FORMULATION

A. Problem Formulation

Fig. 1 illustrates the schematic setup for the equivalent

source reconstruction process. Here, a target region is sur-

rounded by M receivers. A single TM-polarized wave, denoted

as E in, originating from a unique direction (with the incident

wave count Ni set to 1), illuminates the specified target

area (Dobj). Surrounding this target area, the M receivers are

strategically positioned to capture the EM scattering wave

emanations. In fact, for each set of equivalent source on

scatterer, there is only one incident wave illuminating them,

i.e., Ni = 1. Dobj is segmented into a grid of N × N cells,

allowing for the reconstruction of the equivalent source at each

discrete cell using the captured EM field data. Typically, the

grid resolution—reflected by the number of cells—exceeds

the quantity of receivers encircling the region. This depiction

utilizes a 2-D framework to elucidate the workings of our

proposed technique; however, it is important to underscore that

the methodology is equally applicable to 3-D configurations.

As a typical EM inversion problem, this work employs the

received EM field to realize source reconstruction [1], [2],

[3], [4], [5].

In detailing the comprehensive methodology for equivalent

source reconstruction, the foundational principles are encap-

sulated within equations designated as (1) and (2). These are

referred to as the Lippmann–Schwinger equations, cited in [1],

[2], [3], [4], and [5]. Specifically, the following equation serves

as the state equation, delineating the interplay between the

fields scattered within the domain Dobj:

E in(r) = E t (r) − k2
0

∫

Dobj

G
(

r, r
′
)

χ
(

r
′
)

E t
(

r
′
)

dr
′ (1)

where Green’s function is G(r, r
′) = −( j/4)H

(2)

0 (k0|r − r
′|),

while H
(2)

0 represents the Hankel function of the second kind

and zeroth order, and k0 denotes the wavenumber in a vacuum.

The locations r
′ = (x ′, y′) and r = (x, y) correspond to the

source and observation points within Dobj, respectively. The

total EM field is symbolized by E t , and the contrast function

is defined as χ(r
′) = εr (r

′) − 1 [23], [24], [25].

The subsequent equation, pivotal to the EM scattering

paradigm, is identified as the data equation. This equation

delineates the relationship between the scattered electric

field E s and the total electric field E t , as expressed in the

following equation:

E s(r) = k2
0

∫

Dobj

G
(

r, r
′
)

χ
(

r
′
)

E t
(

r
′
)

dr
′ (2)

where r = (xR, yR) denotes the receiver locations, and r
′ =

(x ′, y′) represents the coordinates for segments within Dobj.

In the exposition of source reconstruction concepts,

we introduce the term “equivalent current,” alternatively

known as the “contrast current,” which is complex-valued and

has real and imaginary parts. We represent it as J (r
′) =

χ(r
′)E t (r

′) [1], [2], [3], [4], [5]; thus, (2) is rewritten to be

E s(r) = k2
0

∫

Dobj

G
(

r, r
′
)

J
(

r
′
)

dr
′. (3)

The final target of reconstructing the equivalent source is

to compute the equivalent source in the objective domain Dobj

under one incident field from M transmitters around the Dobj.

However, solving (2) directly to compute the equivalent source

is very hard [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],

[12]. In the traditional approaches, (3) is first written into

the following discretized equation [1], [2], [3], [4], [5], [6],

[7], [8], [9], [10], [11], [12] as matrix form, in which Dobj is

uniformly discretized into pieces. Meanwhile, the equivalent

source in an individual piece can be seen as the piecewise

constant

E s = G D · χ · E t

= G D · J (4)

where the matrices G D have the size of N 2 × N 2 and G D =

k2
0 Sn′ G(rn, rn′), where Sn′ denotes the area of each source

cell. Here, n = 1, . . . , N 2 and n′ = 1, . . . , N 2. In addition,

the discrete representations are denoted as follows: Ē s for the

scattered field, Ē t for the total field that corresponds, χ̄ for

the contrast, and J̄ symbolizes the equivalent source.

Unfortunately, N 2 is usually much larger than M (for

source reconstruction task, the case is more extreme because

there is only one incident wave corresponding to a set of

received scattered EM field, i.e., Ni = 1). Addressing (4) with

conventional techniques presents difficulties due to the scarcity

of received EM field data [1], [2], [3] and also usually suffers
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on January 16,2025 at 18:24:03 UTC from IEEE Xplore.  Restrictions apply. 
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from the relatively high computation complexity [1], [2], [3],

[4], [5], [6], [7], [8], [9], [10], [11], [12].

B. DCCGAN for Source Reconstruction

The CGAN is the typical generative model and has been

widely used in various fields [28], [29], [30], of which the

training can be seen as a two-player minimax game, i.e., the

Nash equilibrium [29], [30], [31], [32], [33], [34]. In general,

CGAN includes both the generator and the discriminator. The

generator learns mapping a vector sampled from a latent space

to the space of ground-truth samples [29], [30], [31], [32],

[33], [34], while the discriminator learns mapping a sample to

a probability that predicts if the presented “image” is real or

fake. CGAN also develops the method to control the mapping

from input to output by conditioning some “extra information”

(e.g., the difference between the “generated” images and the

ground-truthed images). Thanks to the flexibly-added “extra

information,” the CGAN framework presents the superiority

in image-based tasks, particularly in the cases with limited

input information [29], [30], [31], [32], [33], [34].

In this article, thanks to the power of CGAN, equivalent

source reconstruction can be realized by using only one-

transmitter single-frequency FF measurement, which greatly

simplifies the measurement/simulation and decreases the

computation cost. This proposed DCCGAN for source recon-

struction is based on the discriminator and its corresponding

generator with the EM scattering simulator for the EM scat-

tering process. In addition, training samples for DL models

are generated based on numerical simulation. The proposed

DCCGAN is designed to learn the nonlinear mapping between

the data distribution of scattered EM fields and the data dis-

tribution of the corresponding equivalent source on the target

scatterers, based on which it can realize source reconstruction

for the unknown scatterers with high accuracy in real time.

The proposed DCCGAN estimates the difference and the

similarity between “generated” equivalent source images and

their ground truth, and also involves the difference between

the EM scattered field resulted from “generated” equivalent

source images and the input EM scattered field. Although

the scattered field resulted from “generated” equivalent source

images only originated from one single incident EM wave

in a single frequency, the proposed DCCGAN can make use

of this limited scattered field information to realize excellent

reconstruction results.

The specific structure of the proposed DCCGAN is

illustrated in Fig. 2, which includes two modules: the dis-

criminator (D) and the generator (G) with an EM scattering

simulator. The generator generates the equivalent source

“images” on target scatterers from measured scattered data,

while the discriminator discriminates whether the generated

“images” are real or fake. The loss function of the proposed

DCCGAN evaluates the difference and the similarity between

the created “images” and the ground-truthed “images.” Mean-

while, to make the DL structures “understand” the effect of

created scatterers on the EM scattered field, its loss function

also involves the misfit between the input EM scattered field

E s of the generator and that computed from EM scattering

Fig. 2. Scheme of the proposed DCCGAN.

simulator, as shown in (5). This DCCGAN succeeds in recon-

structing equivalent source “images” utilizing input with a

smaller size, which is much challengeable for the conventional

methods [6], [7], [8], [9], [10], [11], [12].

1) Discriminator: The structure of the discriminator is

presented in Fig. 3. The discriminator is designed by using

the complex-valued DConvNet [28], [29], [30]. Its input is

the “generated” equivalent source “images” from the generator

or the ground-truthed equivalent source “images,” both of

which are N × N × 2 complex matrix constituted by the

real and imaginary parts of the equivalent source. Mean-

while, together with the ground-truthed or generated equivalent

source “images,” the received EM scattered field is used as

the label condition for the discriminator, which has the size of

M × 1 × 2 (M is the number of receivers, while Ni = 1

is the total number of the incident field). To concatenate

the input EM scattered field and the equivalent source,

the deep convolutional asymmetric encoder–decoder archi-

tecture (DCAEDA) has been used, which has demonstrated

the excellent performance for the scientific computation

field [35], [36]. Based on this DCAEDA, the input EM

scattered field is concatenated with equivalent source “images”

to capture features for the following deep convolutional

structure. Based on the final classification layer, the final

output discriminates the realness of the “images.” In detail,

the discriminator applies convolution (Conv.), Up-convolution

(Up-conv.), rectified linear unit (ReLU), leaky rectified linear

unit (LeReLU), and batch normalization (BN) repeatedly.

In addition, the 0.2 dropout operation is used as a regulariza-

tion operation to enhance prediction accuracy and to decline

overfitting [37].

While the generator is trained in order to fool the discrim-

inator, the discriminator network is trained to distinguish the

reconstructed image from the true one. The specific computa-

tion process can be described as follows:

min
G

max
D

V (D, G)

= Eχ∼pdata(χ)

[

logD
(

E s, J
)]

+ E(E s ,Z)∼p(Es ,Z)

[

1 − logD
(

E s, G
(

E s, Z
))]

(5)

where D() represents the probability computed from the train-

ing dataset, and D(E s, G(E s, Z)) represents the probability of

the generated EM sources, which are created by G(E s, Z).

In addition, while Z is denoted as the noise input to the
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Fig. 3. Discriminator of the proposed DCCGAN. Conv. is the convolution, BN is the batch normalization, ReLU is the rectified linear unit, LeReLU is the
leaky rectified linear unit, Conca. is the concatenation, and Up-conv. represents the up-convolution.

generator, (E s, Z) is combined as the condition data input to

the generator. According to this value function, the weights

of the generator and discriminator should be trained and

updated simultaneously to maximize the probability of accu-

racy in discriminating both the training dataset and samples

from the generator, while training the generator to minimize

logD(E s, G(E s, Z)).

Based on (5), the specific loss function of discriminator in

the training process can be defined as follows:

L D = −
1

n

n
∑

j=1

[

log
(

D
(

E s, j , G
(

E s, j , Z j
)))]

−
1

n

n
∑

j=1

[

log
(

1 − D
(

E s, j , J j
))]

(6)

where n stands for the batch size, while j indicates the

j th data in the batch. During the training process, the target

of the discriminator is to make the score of ground truth close

to 1 and that of fake inputs close to 0.

To further demonstrate the computational details of the

discriminator, we divide the discriminator into two parts

(as shown in Fig. 3). The first part is DCAEDA [shown in

the top-left part in Fig. 3 and in (7)], where the input is the

received scattered field E s and the output X is combined

with the EM source for the next part. The second part is

the deep convolutional structure [shown in the bottom-right

part in Fig. 3 and in (8)], where the input is the combination

between X and the EM source and the output is the finally-

discriminated score. The nonlinear relation is denoted as (7)

and (8)

X =σNC

(

wNC
∗σNC −1

(

. . .
(

w2∗σ1

(

w1∗E s+d1

)

+d2

)

. . .
)

+dNC

)

(7)

where wk is the parameters of the Conv. kernel (filter weights)

for the convolutional layers and of BN layers at level j (k =

1, . . . , NC , and NC = 8 for DCAEDA in Fig. 3), while dk are

bias terms. The functions σk comprises ReLU [44], [45]

S =ωNP
∗θNP −1(. . . (ω2∗θ1(ω1 ∗ [X, Dr(J )]+β1)+β2) . . .)+βNP

(8)

where ω j is the parameters of the Conv. kernel (filter weights)

for the convolutional layers and of BN layers at level k

( j = 1, . . . , NP , and NP = 4 for the deep convolutional

structure in Fig. 3), while β j are bias terms, while Dr()

stands for the operation of dropout. The functions θ j comprises

LeReLU [29], [30], [31], [44], [45].

2) Generator: The generator of DCCGAN is implemented

by adopting a new DCAEDA, which has been widely utilized

in engineering computation research [35], [36]. The operation

of the generator can be regarded as a transformation process,

where the measured scattered field is transferred into the

equivalent source on target scatterers. Fig. 4 shows the specific

internal structure of the generator. Its input is a matrix with

the size of the M × 1 × 2 (M is the number of receivers.

Ni = 1 is the total number of the incident field), which stores

the scattered field E s . Thus, it is referred to as “field data.” The

real and imaginary parts of E s stand for its two tubes, which

is presented in Fig. 4. Its output is the real and imaginary

parts of the targeted equivalent source, which is a N × N ×

2 matrix.

In Fig. 4, the designed generator mainly contains three parts:

the encoder, the decoder, and the projector. E s undergoes

sequential processing within the encoding framework, where

it is segmented into discrete informational units. These units,

once distilled, are systematically reconstructed within the

decoding stages. This iterative reassembly progresses through

each layer, culminating in the formation of J ′. The middle

projector reshapes the noise input Z into the structure to

upscale the noise Z using a fully connected operation and

reshapes the output to the specified size. As shown in Fig. 4,

Conv., ReLU, and BN are applied repeatedly in the encoder,

while Up-Conv., BN, and ReLU operations constitute the
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Fig. 4. Generator of the proposed DCCGAN. Conv. is the convolution, BN is the batch normalization, ReLU is the rectified linear unit, Conca. is the
concatenation, and Up-conv. represents the up-convolution.

corresponding decoder. A final Conv. layer and a hyperbolic

tangent layer are set at the end of the decoder

J ′ = G
(

E s, Z
)

. (9)

The entire process in generator can be described as a trans-

formation process in (9), which maps the received scattered

field to the equivalent source on the target scatterers. In this

process, E s is utilized as the input of the complex-valued

DCAEDA, while J is chosen to be the output. In addition,

the whole process of constructing the model does not need

to calculate Green’s function and reduce the ill-posedness of

the conventional methods [6], [7], [8], [9], [10], [11], [12].

Because of prior information integrated by training, the

proposed DCCGAN can alleviate the nonuniqueness [42],

by offering a “better” prediction (i.e., the most possible

solution). Moreover, the proposed generator can complete the

reconstruction operation by only one model, which is simpler

than the two-step approach [38].

To further demonstrate the computational details of the

generator, we divide the generator into two parts (as shown

in Fig. 4). The first part is the encoder of DCAEDA [shown

in the left part in Fig. 4 and in (10)], where the input is the

received scattered field E s and the output Y is combined with

the projected noise Z for the next part. The second part is the

decoder of the DCAEDA [shown in the right part in Fig. 4

and in (11)], where the input is the combination between Y

and projected noise Z and the output is the reconstructed EM

source. The nonlinear relation is denoted as (10) and (11)

Y =σNM

(

wNM
∗σNM −1

(

. . .
(

w2∗σ1

(

w1∗E s+d1

)

+d2

)

. . .
)

+dNM

)

(10)

where wk is the parameters of the Conv. kernel (filter weights)

for the convolutional layers and of BN layers at level k (k =

1, . . ., NM , and NM = 5 for the encoder in Fig. 4), while dk

are bias terms. The functions σk comprise ReLU [44], [45]

J ′ =ωNT
∗ θNT −1(. . . (ω2 ∗ θ1(ω1 ∗ [Y, Z ]+β1)+β2) . . .)+βNT

(11)

where ω j is the parameters of the Conv. kernel (filter weights)

for the convolutional layers and of BN layers at level j

(j= 1, . . . , NT , and NT = 4 for the decoder in Fig. 4), while

β j are bias terms. The functions θ j comprise ReLU [44], [45].

While the loss function of the generator directly defines the

physical meaning and the objective of source reconstruction,

the difference between prediction and true label together with

the “physical” effect of the prediction on the EM scattering

process has to be taken into consideration, so that the source

reconstruction problems can be solved successfully. The loss

function of the conventional CGAN merely consists of two

terms LC and L p, as shown in (12) and (13). They repre-

sent the adversarial loss function used for the conventional

CGAN [29], [30], but they unfortunately cannot involve the

physical meaning of EM scattering. To follow the physical

meaning of the source reconstruction process, we revise its

conventional loss function by adding L E and L S , as shown

in (14) and (15). While L S estimates the similarity between the

generated contrast and the ground-truthed contrast, the error

between E s and E s ′

(i.e., L E ) computed from the simulator

is also added to the loss function to estimate the effect of the

“image” error on the EM scattering. In other words, the quality

of the predicted equivalent source “image” and its effect on

EM scattering can both be evaluated in the loss function.

Therefore, the full loss function LG of the generator can be

written as (16)

LC = −
1

n

n
∑

j=1

[

log
(

1 − D
(

E s, j , G
(

E s, j , Z j
)))]

(12)

L p =
1

n

∥

∥J − J ′
∥

∥

2
(13)

L E =
1

n

∥

∥E s − E s′
∥

∥

2
(14)

L S =
1

n

(

1 − SSIM
(

J − J ′
))

(15)

LG = LC + λ1L p + λ2L E + λ3L S (16)

where LC denotes the adversarial loss derived from (5).

While L p indicates the mean square error (MSE) between

χ and the generated χ ′, SSIM is denoted as the structural

similarity [38], [39], [40], [41], [42], [43] index between χ

and the generated χ ′. Moreover, L E estimates the difference
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between E s and E s ′

, as shown in (14), while λ1, λ2, and λ3

(λ1 = 5, λ2 = 5, and λ3 = 10) are the weighing parameters,

which represent the proportion of L p, L E , and L S contributing

to LG .

Several issues of the above-proposed generator model are

summarized as follows.

1) Complex-Valued Input With Small Size: As shown in

Fig. 4, the size of the input of the generator is smaller

than the existing DL structures [38], [39], [40], [41],

[42], [43] because the proposed generator only needs

one-transmitter single-frequency incident EM wave.

Here, considering that the size of the input is reduced

to M × 1 × 2 (Ni = 1), the size of the input will

not be the same as that of the output. However, the

smaller input size can help decrease the computation

cost of the generator, compared with other DL-based

methods [38], [39], [40], [41], [42], [43]. Moreover,

the source reconstruction problem is a typical complex-

valued problem. Both received EM fields and equivalent

source on targets are complex values.

2) The Attached EM Scattering Simulator: During the

generator’s training phase, an integrated EM scattering

simulator has been adopted to help assess the fidelity

of the reconstructed equivalent sources. This simulator,

designed to replicate the EM scattering process, calcu-

lates EM scattered fields originated by the predicted

equivalent sources. Its primary function is to ensure

the precision of EM scattered fields obtained from

the predicted equivalent source “images” throughout the

entire training regimen. In accordance with (4), the

simulator leverages the forecast equivalent sources to

perform the computations essential for the EM scatter-

ing procedure. The inclusion of this simulator enables

the DCCGAN framework to account for discrepancies

among scattered fields emanating by “generated” equiv-

alent sources and those observed input fields. These

discrepancies contribute to the composite loss function,

which is articulated in (12) and (13).

3) Computational Complexity: The computational overhead

of the suggested generative model is primarily gov-

erned by convolutional processes, BN, and the ReLU

activation function [38], [39], [40], [41]. Given that

the employed filters are of minimal size, the bulk of

the computational effort is attributable to the convolu-

tions [38], [39], [40], [41], [44]. The input dimension

for the encoder stage is set at M × 1 × 2, where

Ni equals 1. For each convolutional layer, R filters of

size K × K are utilized, with the entire architecture

comprising f layers in total. Thus, the encoder has

the computation complexity as O(M Ni K 2 R2 f ) [44],

[45]. The decoder part has the same kind of operations

with the encoder part but from the opposite direction.

The decoder part has similar hyperparameters like filter

number and size with the encoder part. Only the size

of output is changed to N × N × 2. Thus, the decoder

part has the computational complexity as O(N 2 K 2 R2 f ).

Considering N k Ni (i.e., Ni = 1). The computational

complexity of the entire network is dominated by the

Fig. 5. Numerical setup. (a) Contrast distribution of one sample in MNIST.
(b) Real part of the equivalent source J in Dobj. (c) Imaginary part of the
equivalent source J in Dobj. (d) Magnitude of the equivalent source J in Dobj.

encoder part and is approximated to be O(N 2 K 2 R2 f )

[38], [39], [40], [41], [44], [45]. In addition, the memory

requirements mainly depend on the size of the filters and

biases, which scales as O(K 2 R2 f ) [38], [39], [40], [41],

[44], [45].

III. NUMERICAL EXAMPLES

A. Numerical Setup and Off-Line Training

To ascertain the efficacy of the DL-based SRM, the widely

recognized MNIST dataset is employed to generate a train-

ing dataset, serving as the target samples [38], [39], [40],

[41], [42], [43]. In fact, MNIST has been considered as one

of the most common dataset for training ML algorithms.

It contains a large library of handwritten digits leading to

near-human results. In this work, each sample in the MNIST

dataset has the size of about 2λ × 2λ (the wavelength

λ = 1 m for free space) and is uniformly discretized into

24 × 24 pieces (i.e., N = 24). In the setup depicted in Fig. 1,

TMz waves with a random incidence angle impinge on the

domain Dobj, situated 30λ away from the target area. Around

Dobj, in the FF region, 96 receivers are evenly spaced at a

distance of 30λ , which implies that M is set to 96. For the

creation of both training and testing data, we utilize full-

wave EM simulations [46]. We employ the MNIST dataset

to designate inhomogeneous contrast values (χ) for numeral-

shaped targets, varying from 0 to 1. A subset of 1000 random

MNIST samples are used as scattering elements to generate

the training data, comprising the scattered fields E s and the

equivalent currents J . The ground truth for J is determined

using the conventional method of moments (MoM) [1], [2],

[3], [4], [5]. Fig. 5(a) displays a sample from the training

dataset. Fig. 5(b) and (c) depicts the real and imaginary

components of J , respectively. For clarity, the magnitude of J

is termed an “equivalent source image,” which is illustrated in

Fig. 5(d). Sections III-B–III-D will employ this terminology

when showcasing the DCCGAN’s efficacy. It is noteworthy

that the DCCGAN’s offline training regimen accommodates

incident waves from random directions, and its robustness

against such waves will also be evaluated, with detailed results

presented in Sections III-B–III-D.

Throughout the model’s refinement phase, the DCCGAN

framework undergoes training through the minimization of

the loss function detailed in (6). This process includes

assessing the discrepancies between the predicted and actual

equivalent sources, as well as comparing the EM scattering

fields generated by the predicted equivalent sources with the

observed input EM scattering fields. The procedural steps of

this training are outlined in Fig. 2. Upon completion of the
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Fig. 6. Performance of the proposed DCCGAN on MNIST. (a) Contrast distribution of different number-shaped scatterers. (b) MoM result as ground truth:
the computed magnitude of the equivalent source J in Dobj. (c) MCNN result: the computed magnitude of the equivalent source J in Dobj. (d) SDM result as
ground truth: the computed magnitude of the equivalent source J in Dobj. (e) Result from the conventional CGAN without additional loss terms: the computed
magnitude of the equivalent source J in Dobj. (f) Result from the proposed DCCGAN: the computed magnitude of the equivalent source J in Dobj.

offline training, the developed DL-based SRM is capable of

accurately reconstructing equivalent sources for novel, unseen

scenarios. The efficacy of this model in testing is shown in

Sections III-B–III-D, with an array of diverse testing datasets

applied for thorough evaluation. Both the offline training phase

and the online prediction tasks of this SRM are executed using

MATLAB 2021a, complemented by its DL Toolbox [47].

The optimization of the loss function is carried out with the

adaptive moment estimation (Adam) optimizer. Unlike other

optimizers, such as stochastic gradient descent (SGD), Adam

can generally navigate through the loss surface more favor-

ably [48]. In the assessment of “equivalent source images”

discussed in Sections III-B and III-C, this study utilizes two

quantifiable metrics to gauge the efficacy of the proposed DL

method. These metrics are the SSIM index and the normalized

mean-square error (NMSE), which are formulated in (17)

and (18). These indices are widely recognized and selected as

standard performance measures for evaluating DL models [38],

[39], [40], [41], [42], [43], [65]

NMSE =

∑J
j=1

∑K
k=1

(

x jk − y jk

)2

∑J
j=1

∑K
k=1

(

x jk

)2
(17)

where the image y is the reconstructed result of the image x .

Both images have the size of K × J

SSIM =

(

2µxµy + C1

)(

2σxy + C2

)

(

µ2
x + µ2

y + C1

)(

σ 2
x + σ 2

y + C2

) (18)

where regularization constants C1 and C2 are utilized to

prevent instability in locations where the local mean or stan-

dard deviation is near zero. µx , µy , σx , σy , and σxy are the

local means, standard deviations, and cross-covariance for the

images x and y.

Usually, the performance of the trained DL models can

be generally improved with the scale of the training dataset

increasing. However, the performance improvement unavoid-

ably slows down if the number of samples sustainedly

increases. Meanwhile, with the increase in the sample number,

there is surely the unavoidable computation cost resulting

from the computation of samples. Thus, selecting the training

dataset scale has to consider both the model performance and

the computation cost. According to our trail, the chosen scale

of the training dataset can better work for the training model.

Additionally, the working frequency for the proposed DCC-

GAN is roughly decided by the size of Dobj [1], [2], [3],

[4], [5]. The smaller size requires a relatively high frequency.

Normally, if the resolution is larger, the number of training

samples should be relatively larger to ensure the better perfor-

mance. In other words, requiring a high resolution of target

means adding more training data to ensure high performance.

Thus, selecting the resolution should also take the training

dataset scale into consideration.

B. Performance on Number-Shaped Objects

In this section, the application performance of the trained

DCCGAN for the source reconstruction is evaluated by

MNIST database. The new unknown samples in MNIST are

utilized as the testing samples, as presented in Fig. 6(a).

While the reference “equivalent source image” computed from

MoM is shown in Fig. 6(b) as the ground truth, the corre-

sponding “equivalent source image” of the output J is shown

in Fig. 6(c). The trained DCCGAN is tested on 1000 new

scatterers in the MNIST dataset. To demonstrate the capability

of the proposed method, Gaussian noise (signal-to-noise ratio

(SNR) = 20 dB) is added into the EM scattered field, i.e.,

E s . For each test, the incident field E in with random inci-

dent direction illuminates Dobj with a new unknown scatterer

sample, as shown in Fig. 1. For the comparison, the

reconstructed equivalent source calculated from the trained

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on January 16,2025 at 18:24:03 UTC from IEEE Xplore.  Restrictions apply. 



YAO et al.: DL-BASED SRM USING DEEP CONVOLUTIONAL CONDITIONAL GENERATIVE ADVERSARIAL NETWORK 2957

TABLE I

PERFORMANCE COMPARISON BETWEEN

DCCGAN AND OTHER METHODS

DCCGAN is shown in Fig. 6(f), which is much approximated

to its ground truth and indicates the accuracy and validity

of the proposed method for source reconstruction. As for the

direction of the incident wave, incident EM fields for different

directions bring different equivalent sources on the scatterers

and thus different scattered fields. According to our trail, the

prediction from the proposed DCCGAN can realize source

reconstruction in an arbitrary incident direction, which results

from the training data relying on the incident EM waves in

random directions.

The comparison between the ground truth and the recon-

struction from DCCGAN in Fig. 6 can prove the fact that

although the new test samples have totally new shapes, the

results from DCCGAN excellently agree with the ground truth.

Furthermore, to increase the significance and fairness and to

demonstrate the capability of the proposed DCCGAN, other

popular DL-based inversion methods (i.e., the multiply-layer

convolutional neural network (MCNN) [26] and the supervised

descent method (SDM) [42], [43]) have also been adopted

as a comparison. As presented in Fig. 6(c) and (d), MCNN

can provide bad reconstruction results with little “meaning-

ful” information, while SDM can generally provide some

“meaningful” prediction and roughly describe the shape of the

scatterers. Compared with the excellent reconstruction from

the proposed DCCGAN, they suffer from heavy distortion and

blurring outline of reconstruction. In addition, to demonstrate

the effect of the designed loss function of the proposed

DCCGAN, we also train the CGAN with only loss term LC

and L p as the loss function (i.e., the loss function for the con-

ventional CGAN [29], [30], [31]), of which the performance

is illustrated in Fig. 6(e). Although the conventional CGAN

can provide the approximated reconstruction, its performance

still cannot be as good as that obtained from the proposed

DCCGAN with the designed loss function.

Moreover, DCCGAN can save much time for completing

computation than MoM and SDM, as presented in Table I.

The conventional MoM uses around 0.65 s on one sample

to compute an equivalent source, as illustrated in Fig. 6.

In addition, MCNN and SDM utilize about 0.01 and 0.3 s,

respectively, to complete reconstruction for one sample. On the

contrary, the proposed DCCGAN utilizes about 0.02 s to

successfully complete the reconstruction computation of one

sample. Considering the bad reconstruction performance of

MCNN and SDM, the proposed DCCGAN is much suitable

for the real-time application.

Fig. 7(a) and (b) illustrates the comparative analysis,

utilizing NMSE and SSIM, to evaluate the accuracy of

the DCCGAN’s predictions against the verified “equivalent

source images” J . The DCCGAN’s average NMSE hov-

Fig. 7. Statistical histograms of the “equivalent source image” quality for
the results from the DCCGAN on MNIST and fitting of its normal density
function and the corresponding MoM results are used as the reference field.
(a) NMSE from DCCGAN. (b) SSIM from DCCGAN.

Fig. 8. One example for the sensitivity of the proposed DCCGAN on noise.
(a) MoM result as ground truth: the computed magnitude of the equivalent
source J in Dobj. DCCGAN results with different Gauss noise levels:
(b) SNR = 40 dB; (c) SNR = 30 dB; (d) SNR = 20 dB; (e) SNR = 15 dB;
and (f) SNR = 10 dB.

ers around 0.19, while it achieves an average SSIM of

approximately 0.89, indicating the model’s proficiency in

reconstructing equivalent sources with high fidelity. A detailed

juxtaposition of the DCCGAN’s performance with alterna-

tive methodologies is tabulated in Table I. These findings

underscore the viability of the DCCGAN for deployment in

real-time scenarios [1], [2], [3], [4], [5].

Furthermore, we also analyze the noise sensitivity of our

proposed GAN-based model. We set the Gaussian noise to the

input scattered field for the proposed DCCGAN with different

SNRs: 40, 30, 20, 15, and 10 dB. As shown in Fig. 8, our

proposed DCCGAN can demonstrate excellent noise tolerance.

When the level of Gaussian noise achieves 15 dB, the proposed

DCCGAN can still provide meaningful reconstruction result,

while the reconstruction result can be much approximated to

the ground truth with the noise level below 15 dB. Moreover,

according to our statistical computation on the reconstruction

results, the NMSE increases from 0.18 and 0.19 to 0.22 and

further to 0.47 for the noise level 40, 20, 15, and 10 dB,

respectively, while SSIM decreases from 0.9 and 0.89 to

0.85 and further to 0.45, which indicates the strong capability

of the proposed DCCGAN.

C. Performance on Letter-Shaped Objects

Within the subsequent computational scenario, we assess the

trained DCCGAN’s efficacy through its application to novel
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Fig. 9. Performance of the proposed DCCGAN on “Letter.” (a) Contrast
distribution of different scatterers in “Letter.” (b) MoM result as ground truth:
the computed magnitude of the equivalent source J in Dobj. (c) DCCGAN
result: the computed magnitude of the equivalent source J in Dobj.

synthetic data compilations, referred to as the “Letter” dataset.

This particular dataset comprises a series of inhomogeneous

scatterers, each mimicking the geometry of alphabetic char-

acters, arbitrarily positioned within the domain Dobj. These

letter-shaped entities each span an area measuring 2λ in

both width and height. Additionally, their internal contrast

values, denoted by χ , are assigned varying magnitudes within

a range extending from 0 up to 1. As in Section III-B,

1000 samples in these datasets are utilized to test the trained

DCCGAN. In the described experiment, a single incident

electric field, E in, originating from a stochastic direction,

irradiates the test sample. To this incident field, Gaussian noise

(SNR = 20 dB) is introduced, affecting the resultant scattered

field, E s . For the assessment of reconstructed equivalent

source “images,” metrics, i.e., NMSE and SSIM, have been

employed. It is important to note that DCCGAN’s training

regimen was confined to the MNIST dataset and did not

incorporate the “Letter” dataset.

Fig. 9(a) shows selected samples from the test set, whereas

Fig. 9(b) displays the corresponding “equivalent source

images” derived via MoM. The outcomes generated by this

DL-SRM are depicted in Fig. 9(c). Despite the DL model’s

training being exclusively on the MNIST dataset, it was eval-

uated using an entirely distinct dataset. The visual comparison

in Fig. 9(c) reveals a striking similarity between the DL-SRM

outputs and the MoM-derived ground truth in Fig. 9(b), under-

scoring the model’s generalization capabilities. Taking into

consideration that the training of DCCGAN is based only on

the MNIST dataset, the proposed method provides satisfactory

results for reconstructing the equivalent source. The result

also indicates the strong generality of the proposed DL-based

method. Thus, despite the training of this DL method being

contingent on a singular dataset, the trained DCCGAN is

capable of facilitating the reconstruction of equivalent sources

across disparate datasets.

Fig. 10(a) and (b) illustrates the statistical analyses for the

test: the average NMSE yielded by DCCGAN is approxi-

Fig. 10. Statistical histograms of the “equivalent source image” quality for
the results from the DCCGAN on “Letter,” and fitting of its normal density
function and the corresponding MoM results are used as the reference field.
(a) NMSE from DCCGAN. (b) SSIM from DCCGAN.

mately 0.4. Concurrently, the mean SSIM associated with

the outcomes is estimated to be around 0.72, which demon-

strates that the proposed approach can successfully reconstruct

the equivalent source. Furthermore, DCCGAN demonstrates

a swift reconstruction capability, completing the equivalent

source construction for a singular scatterer in just 0.02 s.

In contrast, the traditional MoM requires approximately 0.65 s

to achieve a reconstruction for an identical scenario. As shown

in Table I, the performance indicates the potential of the

proposed DCCGAN for the real-time application.

D. Performance of Experimental Data

To further illustrate the capability of DCCGAN, we chal-

lenge DCCGAN by the widely-used experimental data

measured at Institut Fresnel, Marseille, France [40], [41],

[42], [43]. For the setting of this experiment, wideband-

ridged horn antennas are employed for both transmitting

and receiving antennas. While the distance between the

source-object center and object-receiver is 1.67 m, eight trans-

mitters and 241 receivers are installed. In this experiment (i.e.,

“FoamDielExt”), the scatterers consist of two cylinders: while

the bigger one has a diameter of 0.08 m with the relative

permittivity of 1.45(±0.15), the smaller one has a diameter of

0.031 m with the relative permittivity of 3(±0.3).

To adapt the experimental data from Fresnel into the pro-

posed DCCGAN, we select received scattered EM field only

from 96 receivers (only about 5% experimental measurement

data) resulting from only one transmitter. Thus, E s is the input

of the proposed DCCGAN with M = 96, while the equivalent

source J is the prediction. Then, we further test the retrained

DCCGAN for the experimental data. We emphasize that only

MNIST dataset is still utilized to recreate the simulation-

based training data fitting this experimental setting, so that

the proposed DCCGAN can be retrained for the experimental

data (the process is the same as that in Section III-A). The

performance of the retrained DL framework is presented in

Fig. 11. DCCGAN provides the acceptable reconstruction of

the experimental data. Considering the fact that only about 5%

of measurement data are utilized and the training of DCC-

GAN relies only on a totally different synthetic dataset, i.e.,

MNIST, the proposed DCCGAN demonstrates its excellent

performance on realizing source reconstruction.

E. Future Works

Based on the excellent performance of the proposed DCC-

GAN, it has demonstrated the potential to be applied in
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Fig. 11. Comparisons of source reconstruction for FoamDielExt. (a) Contrast
distribution of FoamDielExt. (b) MoM result as ground truth: the computed
magnitude of the equivalent source J in Dobj. (c) DCCGAN result: the
computed magnitude of the equivalent source J in Dobj.

different fields related to EM source reconstruction. One of

the exciting potential applications of the proposed DL-based

method for EM source reconstruction is in target detection by

airborne radars [49]. Our method has demonstrated promising

results in overcoming the high failure rate of deterministic

methods in inverse scattering, which has been a significant

challenge in the field, as discussed in [49]. In the context of

airborne radars, our method could be employed to improve

the accuracy and reliability of target detection and tracking,

especially in complex and cluttered environments. The DL

model can adaptively learn the relationships between the

scattered EM fields and the underlying target properties,

providing a more robust and efficient solution compared to tra-

ditional deterministic approaches. Additionally, our proposed

DL method can be adapted to other related areas, such as

ground-based or maritime radar systems [50], [51], and can

potentially be integrated with advanced radar signal processing

techniques [52], to achieve even better performance in target

detection and tracking.

IV. CONCLUSION

A novel SRM is proposed based on the DCCGAN. The

conventional SRM unavoidably encounters various complexity

and speed challenges, which makes them usually not suitable

for the real-time application. The proposed DCCGAN only

demands one-transmitter single-frequency FF measurement on

EM scattered field and further predicts the equivalent source on

target scatterers. The proposed DCCGAN employs the genera-

tor with an EM scattering simulator and the discriminator, both

consisting of DConvNets. The training process of the proposed

DCCGAN can be summarized as: 1) the generator learns the

distribution between the measured scattered field data and

the corresponding equivalent source on target scatterers and

2) the discriminator determines whether the presented equiv-

alent sources are real or fake. Consequently, the equivalent

source can be reconstructed with satisfactory accuracy and

much less computational cost. Numerical examples are

employed to illustrate the validity and the generality of the

proposed DL-based SRM. It provides a new perspective to

realize the quantitative SRM in real time.
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