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Highlights
Many studies challenge the view that
gene expression is primarily controlled
by rapidly evolving, highly specific, and
independently acting enhancers.

Functional conservation of cis-regulatory
elements, and the frequency of their co-
option, may be underestimated because
cis-regulatory elements can diverge con-
siderably in sequence while binding the
Our understanding of how cis-regulatory elements work has advanced rapidly,
outpacing our evolutionary models. In this review, we consider the implications
of new mechanistic findings for evolutionary developmental biology. We focus
on three different debates: whether evolutionary innovation occurs more often
via the modification of old cis-regulatory elements or the emergence of new
ones; the extent to which individual elements are specific and autonomous or
multifunctional and interdependent; and how the robustness of cis-regulatory ar-
chitectures influences the rate of trait evolution. These discussions lead us to
propose new questions for the evo-devo of cis-regulation.
same transcription factors and perform-
ing the same developmental roles across
species.

cis-Regulatory elements are often in-
volved in regulating gene expression in
the development of multiple traits and
can be highly interdependent upon
each other.

Some cis-regulatory elements are more
robust to mutation compared with
others, and the fragility of the cis-
regulatory architecture of a trait could
predict its rate of evolution.

New molecular insights prompt us to
propose new questions for evolutionary
developmental biology.
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cis-Regulatory evolution: new models, new questions
One of the aims of evolutionary developmental biology is to understand the genetic mechanisms
that underlie the origin and evolution of traits [1]. Change in gene regulation is known to be an im-
portant driver of trait diversification. The evolution of enhancers (see Glossary) in particular has
been proposed as a primary mechanism of trait evolution [1,2] because individual elements are
thought to have highly compartmentalized, trait-specific functions [3–7]. In this review, we con-
sider recent advances in our understanding of cis-regulatory element structure and function
to expand and add nuance to models of regulatory evolution [8–10].

Modification versus de novo evolution of cis-regulatory elements
There is a relatively limited repertoire of genes in eukaryotes that evolution continuously modifies
and redeploys through co-option to generate the diverse forms we see in nature. In contrast to
these gene sequences, most noncoding DNA is highly diverged across species [11,12]. Known
or predicted cis-regulatory elements are more dissimilar in sequence when compared with genes
[13–16] (Box 1), and genomic sites where transcription factors bind are often not shared
across species* [19–22]. These observations indicate that cis-regulatory elements evolve more
rapidly than genes and are rapidly gained and lost over time. At first glance, the regulatory ge-
nome appears to be constantly rewritten by evolution. Based on these data alone, then, we
would expect that de novo evolution of regulatory elements contributes more to trait evolution
than does modification of ancestral elements (Table 1). New data challenge this assumption,
however.

Recent comparative studies show that many elements are more conserved across taxa than pre-
viously appreciated [45–47]. Some deeply conserved sequences are even shared between ver-
tebrates and invertebrates, including humans and acorn worms [45], and others have been
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* Several studies of closely related Drosophila species find higher conservation of binding sites and that binding diverges with evolu-
tionary time [17,18]. The degree of conservation of binding sites could also be influenced by the developmental stage or tissue compared
and/or the analytical approach chosen to estimate conservation.
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Glossary
Chromatin: complex of DNA and
proteins that condense it in the
eukaryotic cell. Chromatin accessibility
refers to whether transcription factors
and polymerases are able to access a
region of DNA to regulate transcription,
or whether the DNA is compacted and
inaccessible.
cis-Regulatory element: unit of
noncoding DNA that regulates gene
expression.
Co-option: evolutionary repurposing of
an existing part of an organism, such as
a cis-regulatory element, gene, or
morphological structure, for a new
function.
Covert homolog: cis-regulatory
element that retains its ancestral function
without conservation of sequence.
These homologs are often identified by
conservation of transcription factor-
binding sites, genomic location, and
function.
Enhancer: regulatory sequence that
increases gene transcription.
Insulator: regulatory sequence that
blocks enhancing and/or silencing
effects from nearby DNA.
Interdependence: condition that the
proper function of an element requires
the presence of, or interaction with, at
least one other element.
Modularity: ability of a cis-regulatory
element to independently control a
specific domain of gene expression.
Necessity: condition that a unit of DNA
is required for the normal development
of a trait.
Pleiotropy: condition of a single unit of
DNA affecting multiple distinct traits.
Promoter: regulatory sequence where
gene transcription begins.
Robustness: ability of phenotypes to
be unaffected by environmental and/or
genetic perturbations.
Silencer: regulatory sequence that
reduces gene transcription.
Sufficiency: condition that a unit of
DNA can induce a phenotype
independent of other elements.
Transcription factor: protein that
regulates gene expression by binding to
DNA. Transcription factors can both
activate and repress transcription of
DNA into RNA.
Transposable element: unit of DNA
found across all flowering plants [48]. Do these deeply conserved elements contribute to ongoing
evolution, or are they too functionally constrained? A few case studies suggest that some evolu-
tionary novelties do, in fact, appear to be products of mutations in deeply conserved elements
[49–51]. For example, the evolution of a spot on the wing of the fly Drosophila biarmipes has
been linked to changes in a conserved enhancer for the gene yellow [49]. This study is compelling
because it suggests that trait evolution can be linked to functional evolution of ancestral regulatory
elements. However, we still ultimately lack a critical mass of case studies† to be able to under-
stand how modification of ancestral elements drives variation and adaptation of traits, and we
see this as an important area of future research.

cis-Regulatory ancestry: the problem of covert homology
While a subset of cis-regulatory elements are deeply conserved in sequence, many more may be
functionally conserved even though their sequences have significantly diverged. Several recent stud-
ies suggest that cis-regulatory elements that are so divergent as to be unalignable between species
are nonetheless orthologous [10,55–57]. cis-Regulatory elements can be functionally conservedwith-
out preserving exact DNA sequence or organization. These so-called ‘covert homologs’ occur in
the same genomic locations, bind the same transcription factors, and regulate target genes in the
same manner across species [10,56–58], but their sequences are unalignable. Covert homology
could be common, but the scale of the phenomenon remains unclear, and there is still no test to con-
vincingly rule out convergent evolution as an explanation for some of the similarity between elements
[59]. In any case, covert homology presents the possibility that the extent of de novo cis-regulatory
element evolution has been overestimated, perhaps significantly.

How do new expression domains originate?
New expression patterns can evolve via modification to existing elements or, alternatively, new el-
ements can emerge to drive new domains via spontaneous mutation, duplication of existing ele-
ments, or transposable element insertion (Table 1). On the one hand, existing elements already
have transcription factor binding sites that can be co-opted to drive new expression domains,
and some researchers have argued that modification of existing elements is the primary mecha-
nism of novel expression pattern evolution [6,49,52]. On the other hand, cis-regulatory element
duplication and transposable element insertion could also generate new expression domains
via reuse of existing transcription factor binding sites. By copying these binding sites into new el-
ements, these mechanisms avoid the potential deleterious effects of modifying existing elements
[60–62]. The origins of novel traits and adaptive radiations have been linked to duplications of
genes and gene clusters, and there are a few studies linking phenotypic novelties specifically to
the duplication of cis-regulatory elements [61,63,64]. For example, in the domestic chickenGallus
domesticus, tandem duplication of a noncoding region is associated with evolutionary changes in
comb morphology and novel expression of a nearby gene in comb tissue [64]. There are also
case studies implicating transposable element-derived regulatory sequences in the origins of
novel and adaptive traits [27,65,66]. Transposable elements and cis-regulatory element duplica-
tion could both be productive sources of potentially adaptive cis-regulatory variation.

There is, however, experimental evidence suggesting that the appearance of de novo regulatory
elements could play an even greater role in the emergence of new gene functions. Several recent
mutational screens suggest that novel regulatory elements are more likely to contribute to novel
spatial domains of gene expression than are mutations of ancestral elements. For example,
† While we lack a critical mass to say anything conclusively, a few case studies provide a good foundation for our understanding of cis
regulatory element modification and trait origin [52,53]. However, there are not many studies that conclusively demonstrate co-option o
conserved elements and rule out the possibility of variation in upstream regulatory proteins as the sole explanation for differences in en
hancer function across species. Please see [54] for an explanation of cis versus trans evolution and how to distinguish between them.
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Box 1. What are cis-regulatory elements and how are they identified?

cis-Regulatory elements are noncoding units of DNA that regulate gene transcription. They are often categorized into four different classes: promoters, enhancers, si-
lencers, and insulators. Promoters and enhancers activate transcription, while silencers repress it. Insulators regulate genome organization, both promoting and
inhibiting gene transcription by restricting the activity of enhancers and silencers to specific genomic regions. cis-Regulatory elements are often classified as only one
of these types, but there is growing evidence that many of them can fit multiple categories: an enhancer can act as a silencer for the same gene in different developmental
contexts [123–125]; the promoter of one gene can act as an enhancer for another gene [126,127]; and a promoter for one gene can block nearby enhancers from ac-
tivating neighboring genes, acting as a type of insulator [128–130].

cis-Regulatory elements are identified using a combination of sequencing and functional experiments (Figure I). First, different types of sequencing, such as assay for
transposase-accessible chromatin sequencing (ATAC-seq) and chromatin immunoprecipitation sequencing (ChIP-seq), can identify potential cis-regulatory elements
(Figure IA). While cis-regulatory elements are sometimes defined as much larger regions encompassing multiple distinct accessible regions (e.g., ‘promoter’ is some-
times used to refer to the whole upstream region of a gene), here we define a cis-regulatory element as a distinct region of accessible DNA delimited by changes in chro-
matin accessibility or by histonemarks. Deleting candidate elements tests for the necessity of those elements in trait development (Figure IB). Assays for changes in gene
expression using in situ hybridization (Figure IB) or changes in phenotype can confirm regulatory activity and phenotypic effects, respectively. In addition, reporter con-
struct experiments determine the sufficiency of individual elements to affect gene expression by placing them upstream of a visually detectable reporter protein
(Figure IC). For more detailed reviews of these methods and their many variations, see [131–133].

Sequencing of DNA based on chromatin accessibility, histone 
modifications, and/or transcription factor binding sites 
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Figure I. Methods of characterizing cis-regulatory elements. Abbreviations: ATAC-seq, assay for transposase-accessible chromatin sequencing, ChIP-seq,
chromatin immunoprecipitation sequencing.
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Galupa et al. found that most point mutations of four well-characterized embryonic enhancers in
Drosophila melanogaster did not change which spatial domain or developmental stage the gene
was expressed in [67]. This constraint has also been described in promoters: mutations in pro-
moter sequence more often alter the level of transcription than the spatial pattern of gene expres-
sion [68]. By contrast, Galupa et al. found that most synthetic random sequences were able to
Trends in Ecology & Evolution, November 2024, Vol. 39, No. 11 1037
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Table 1. Mechanisms of cis-regulatory element de novo emergence and modificationa

Mechanisms of cis-regulatory element emergence

Spontaneous mutations [23,24]

cis-Regulatory element duplication [25,26]

Transposable element insertion [27–29]

Mechanisms of cis-regulatory element modification

Changes to transcription factor binding sites of an
element

Gain [30,31]

Loss [30,32,33]

Affinity [9,34,35]

Arrangement (spacing, order, orientation) [36–38]

Changes to neighboring sequences Positional effects [39,40]

Direct and indirect interactions with other
elements

[41,42]

Changes to TAD boundaries [43,44]

aReferences include studies of the mechanism affecting gene expression and evolutionary case studies. Only a few key
studies are included due to citation limits.
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drive expression of a reporter gene across multiple stages of development and across many dif-
ferent tissues [67]. These results are consistent with other studies that show a significant propor-
tion of random sequences can be sufficient to drive reporter gene expression, and that many
more are only one mutation away from driving expression [69–72].

The results described in the preceding text suggest that the potential for novel variation scales in-
versely with the age of an enhancer. We do not know, however, how generalizable this is across
cis-regulatory elements. For instance, we might also hypothesize that less developmentally es-
sential enhancers could have more latitude to generate variation than highly essential enhancers.
Indeed, there are observational data to suggest that some cis-regulatory elements are more
constrained than others: enhancers that are deeply conserved in sequence are often involved
in embryonic development [73]. More studies of different types of elements that regulate different
types of genes in different systems can help determine whether there are predictable patterns un-
derlying the genesis of novel variation.

Expansion of cis-regulatory material can expand opportunities for evolution
Quite a bit of correlative evidence suggests that the birth and expansion of cis-regulatory ele-
ments plays a large role in phenotypic evolution. The more noncoding DNA surrounds a gene,
the more developmental roles it has [74]. The longer an enhancer is, the more cell types it is active
in [75]. The more noncoding DNA around the neuronal genes of a taxon, the more complex its
nervous system [76,77]. This all suggests that old genes gain new roles by adding either new
cis-regulatory elements or new binding sites to ancestral elements.

Despite these general patterns, we still expect co-option of ancestral elements to be involved in
phenotypic innovation, even when those innovations are associated with the addition of novel
cis-regulatory elements. This is because new and old elements for the same gene cannot be as-
sumed to be acting independently of each other. cis-Regulatory elements interact in different
combinations to form transient, dynamic ‘hubs’ of elements that facilitate transcription [78,79].
As we discuss in the next section, this interdependence among elements is likely more com-
mon than previously thought. Artificially placing enhancers from different genes next to each
1038 Trends in Ecology & Evolution, November 2024, Vol. 39, No. 11



Trends in Ecology & Evolution
other can generate novel expression domains that neither enhancer could individually produce
[80]. In a similar way, new elements could interact with old elements to expand the repertoire of
expression domains of a gene, co-opting both the gene and its ancestral cis-regulatory elements.

Evolution and modularity: when do we expect autonomy versus interdependence
of cis-regulatory elements?
Modularity of cis-regulatory elements, specifically enhancers, has long been a defining paradigm
in evolutionary developmental biology [1]. While ‘modularity’ hasmany definitions, here we refer to
the common definition that describes individual enhancers as being independently responsible
for highly specific expression domains [1,81–83] (Box 2). Mutation in one modular enhancer
should only affect one modular trait. Enhancer modularity has been suggested to explain why
morphological evolution occurs more often in cis than in trans, and that systems composed of
modular enhancers could be more evolvable due to the reduction in pleiotropy [84].

The modularity paradigm emerged from reporter construct studies
The modularity paradigm derived from, and is supported by, a long history of reporter construct
experiments, which demonstrate that many enhancers are individually sufficient to drive gene ex-
pression in specific domains [85–88] (Box 1). By contrast, enhancer deletion experiments have
thus far largely failed to show correspondingly specific effects on development [89] –many dele-
tions affect multiple traits [50,90,91]. These deletion studies remain limited in number, but they
suggest that both interdependence and pleiotropy are both common attributes of cis-
regulatory architectures (Box 2). How do we reconcile these apparently conflicting observations
of cis-regulatory element specificity? Some possibilities include:

(i) Secondary effects of deletions on interactions between elements: individual elements might
encode tissue-specific information and yet be functionally pleiotropic due to physical interac-
tions with other elements or by acting as necessary spacers between elements [79,92,93].
For example, deletion of one element may affect the proper function of other elements by
disrupting the 3D structure of interacting elements that controls gene expression;

(ii) Initiation versus maintenance of gene expression: deletion experiments could be targeting
maintenance elements, which are elements that cause an expression state (i.e., activated
or repressed) to persist, such as by binding Trithorax group and Polycomb group proteins
[94–96]. Deletion of these elements would disrupt normal expression across multiple devel-
opmental contexts. Meanwhile, elements that initiate the expression state might still do so
in a context-specific and autonomous manner [97];

(iii) Ascertainment bias: experimental approaches coupled with peculiarities of particular model
systems may have caused us to favor one model over the other. For example, the modularity
model relies primarily on reporter construct data, which are problematic because (1) they only
test for sufficiency not necessity (i.e., they demonstrate only the individual potential of a cis-
Box 2. How do we characterize cis-regulatory element modularity?

Modular enhancers are often defined by functional autonomy, where they are individually sufficient to drive expression in only one specific spatial domain. Both indepen-
dence from other elements and context specificity can be plotted on spectra as in Figure I, such that individual elements have different degrees of modularity in both
structure (dependence on interactions with other elements) and function (number of different expression domains regulated during development). In this way, cis-
regulatory elements can vary in their degree of modularity with respect to both their specificity to individual contexts and their autonomy to drive expression without
interacting with other elements. These need not vary together: some elements could be highly autonomous but nonspecific, whereas others could be specific to only
one context but not sufficient to drive that expression domain without other elements (Figure I).

To understand how the degree of modularity varies across different cis-regulatory elements and how this influences evolution, both high-throughput screens, such as
massively parallel reporter assays and mutation libraries, and detailed case studies of the cis-regulatory architectures of individual genes are necessary.
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Figure I. The modularity of a cis-regulatory element is measured by its autonomy and specificity.
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regulatory element to regulate gene expression, not its necessity for organismal development)
(Box 1); (2) they cannot easily detect negative effects on gene regulation (i.e., silencer ele-
ments); and (3) investigators rarely look at multiple time points or tissues when they are fo-
cused on specific traits, thus pleiotropic effects may go undetected (Box 2); and

(iv) Inconsistent granularity: There has been inconsistent granularity in cis-regulatory assays
across case studies, whereby many reporter and deletion experiments focus on long regions
that may contain multiple distinct cis-regulatory elements. In the context of reporters, interac-
tion between multiple adjacent enhancers and/or silencers in a long construct could produce
refined, modular-appearing expression patterns. Conversely, induced deletions spanning
multiple elements could produce more pleiotropic phenotypes, where multiple traits are af-
fected [63].

We do not know enough to say how important any of the aforementioned effects are in terms of
informing generalities; nevertheless, we cannot rule out enhancer pleiotropy. There are cases of
single transcription factor binding sites, and even single nucleotides, affecting the development
of multiple traits, so not all pleiotropic enhancers can be easily divided into modular subelements
[98,99], and highly granular, systematic studies in Drosophila have shown that enhancer pleiot-
ropy is prevalent [8,9,100,101].

Evolutionary consequences of cis-regulatory element pleiotropy
If most enhancers are not as rigidly trait-specific or autonomous as previously thought, we must
then consider the evolutionary consequences of cis-regulatory pleiotropy. We illustrate the cis-
regulatory architecture of a gene using two related spectra of modularity: the level of interdepen-
dence among elements and the level of pleiotropy of individual elements (Box 2). We propose that
both of these attributes influence the evolvability of a gene’s expression. For example, the more
pleiotropic an element is, the more likely it is that a mutation will have deleterious effects. Con-
versely, functionally autonomous elements with highly specific effects will be less evolutionarily
constrained.

Beyond simply being constrained, however, highly interdependent pleiotropic architectures could
be pre-adapted to achieve a higher level of precision in timing and spatial activation than simpler
systems [102,103]. A combinatorial system of interdependent elements could also realize more
‘higher-order’ patterns than a simple system of discrete modular elements. That is, there could
be a greater diversity of nuanced gene expression patterns that emerge from groupings of
interacting elements, compared with what could be generated by an array ofmonofunctional, inde-
pendently-acting elements. More complex interactive structures could expand the capacity of a
gene’s cis-regulatory region to generate new patterns of expression.

Do enhancers evolve to become more or less specialized over time?
Traditional models of modular enhancer evolution usually assume an additive process, in which
new expression domains are added via the de novo evolution of new autonomous elements
[82]. However, to our knowledge, there is little evidence that de novo enhancers emerge special-
ized and sufficient to activate expression in discrete, highly specific spatial domains. One might
instead predict that enhancers initially drive expression quite broadly, like random sequences
often do when inserted into reporter constructs [67]. This prediction may not apply to some de-
velopmental genes, for which broad expression is likely deleterious. Nevertheless, across all en-
hancers of all ages, most are active in multiple contexts [8,75].

What selective processes could drive these broad-acting or pleiotropic enhancers to become
more context-specific? Selection could favor an enhancer allele because of an advantageous
Trends in Ecology & Evolution, November 2024, Vol. 39, No. 11 1041
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effect on one trait despite weak deleterious effects on another trait, resulting in antagonistic plei-
otropy. One way of resolving this antagonismwould involve degeneration of the enhancer’s effect
on the negatively affected trait, thus leading to increased specificity. Context-specific cis-
regulatory elements could also evolve as a result of selection for robustness. For example, re-
dundant shadow enhancers might be selected for under environmental perturbation because
they confer higher developmental robustness [104]. In more stable environments, these en-
hancers would be released from constraints and could become specialized for separate develop-
mental roles depending on the population size and rates of binding site gain and loss through a
process similar to the subfunctionalization of duplicate genes [61]. Neutral evolution alone
could also produce context-specific elements. Many genes are regulated by cis-regulatory ele-
ments that have been duplicated, and these duplicate elements could similarly diverge to become
specialized [83,105,106].

It remains unknown whether there is a trend for existing cis-regulatory elements to become more or
less multifunctional over time. Are regulatory elements like most genes, repeatedly undergoing co-
option to progressively accumulate new functions over time? Or do they originate as relatively non-
specific, and become progressively more specialized? Or perhaps there is a more nuanced, yet pre-
dictable, arc in the typical lifespan of a cis-regulatory element (e.g., broad→ specialized→ pleiotro-
pic). With newmethods now available in comparative systems, we are poised to address these kinds
of questions.

Regulatory fragility, robustness, and the tempo of evolution
The discovery that deleting one enhancer can affect multiple phenotypes, sometimes drastically,
challenges more than one paradigm in regulatory genomics. It should not be so trivial to experi-
mentally crack nature’s molds if cis-regulatory architecture is robust. Deletions as small as 18
base pairs of noncoding DNA have significant effects on the pigmentation of a butterfly, for exam-
ple [107]. On the other hand, deletions of enhancers of 1 kb or more have no noticeable effect on
mouse development [108]. Clearly, some cis-regulatory architectures are more robust to muta-
tion than others. We propose that this variation in robustness could correspond to variation in
evolvability.

To understand the consequences of cis-regulatory robustness, we should first consider the
mechanisms by which it can be achieved. Robustness to mutational or environmental perturba-
tion can be conferred by functional redundancy both within and between cis-regulatory elements.
This redundancy is typically manifested by clustering repeats of certain transcription factor bind-
ing sites [104,108–115]. cis-Regulatory elements can also tolerate many single nucleotide substi-
tutions becausemost transcription factors can tolerate a certain amount of flexibility in binding site
sequencemotifs, and cis-regulatory elements can sometimes maintain the same function despite
changes in the arrangement of binding sites [37,116]. Some enhancers are even robust to inser-
tion of insulators and are still able to interact with their target gene’s promoter to drive expres-
sion [117]. Most of these studies of robustness have been conducted only within the past
decade, and we do not yet have a good sense of how generalizable they are or whether these
mechanisms contribute to the developmental buffering of some classes of traits more than
others.

We can make some predictions regarding the robustness and fragility of traits based on the
emerging case studies we do have, however. Surprisingly, deletion of highly conserved elements
often has no detectable effect on development (e.g., vertebrate embryogenesis), while deletion of
other elements that are diverged in sequence across species can have pronounced morpholog-
ical effects (e.g., butterfly wing patterns) [50,108]. These results are consistent with the
1042 Trends in Ecology & Evolution, November 2024, Vol. 39, No. 11
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Outstanding questions
To what extent do new phenotypes
evolve via changes to ancestral
regulatory elements versus the birth of
new elements?

Are certain types of cis-regulatory ele-
ment more likely to be co-opted for
new roles, rather than constrained to
specific, specialized roles?

Over time, do cis-regulatory elements
tend to evolve toward specificity or
multifunctionality?

How does the relative robustness of
the cis-regulatory architecture of a
trait constrain or facilitate phenotypic
evolution?
expectation that networks under stabilizing selection for a long period of time should become less
sensitive to mutation, unlike those that are evolving rapidly under strong positive selection [118].
Therefore, we predict that traits with more robust cis-regulatory architectures are more
constrained in their evolution because genetic variation will generate less phenotypic variation
that can be selected upon, while traits that are evolving rapidly are likely to have more easily mu-
table regulatory architectures with cis-regulatory elements that are more sensitive to mutation
[119].

Can robustness beget novelty?
A simple negative relationship between robustness and rate of trait evolution makes sense, but it
may also appear to contradict our previous suggestion that redundant enhancers serve as a
source of innovation. We propose, however, that this robustness-to-novelty effect could be an
important mode of cis-regulatory evolution, since it simultaneously buffers an ancestral trait
while providing the raw material for variations on a regulatory theme or even completely novel ex-
pression domains. We also note that robust traits could accumulate cryptic genetic variation that
could later be selected upon [120]. Thus, robust regulatory architectures could also provide ‘safe’
vessels in which regulatory variation can accumulate, and from which novelty can spring.

Concluding remarks
We conclude with more questions than answers, in part because many recent mechanistic stud-
ies show that cis-regulatory elements are much more complex than previously appreciated. cis-
Regulatory elements interact with each other in dynamic assemblages and often have multiple
functional roles and expression domains, rather than single specific ones. Homology cannot be
reliably inferred from sequence similarity; covertly homologous elements may be found in abun-
dance. We have few data-informed models of the general evolutionary trajectories of enhancers,
and whether they tend to become more or less autonomous over time. Some highly conserved
elements are redundant, while others are sensitive to small mutations. These findings raise
many new questions for evolutionary biologists (see Outstanding questions).

These new questions will need to be addressed through the synthesis of detailed investigations of
cis-regulatory evolution across populations and species. Specifically, a combination of methods,
including comparative chromatin annotations [e.g., assay for transposase-accessible chromatin
sequencing (ATAC-seq) and chromatin immunoprecipitation sequencing (ChIP-seq)], targeted
deletions, and reporter constructs (Box 1), will be necessary to measure and detect patterns in
the relative degree of modularity of different elements. Since reporter construct experiments are
easier than deletions in some systems, and the converse is true in others, there have been differ-
ent estimates of the prevalence of cis-regulatory pleiotropy from different studies. Consistently
pairing both approaches, to assess both necessity and sufficiency in the same experimental sys-
tem, could help resolvemany outstanding questions. Furthermore, the function of a cis-regulatory
element can elude detection by deletion experiments if it is redundant. Therefore, accurately de-
scribing the function and robustness of a cis-regulatory architecture will sometimes require sys-
tematic perturbation of many regions within a large locus. Although conducting this level of
detailed investigation across species and populations will be labor intensive, it will also shed
new light on cis-regulatory evolution that neither comparative sequencing studies nor single-
species mechanistic studies could do alone.

By focusing this review specifically on cis-regulatory elements, we could not cover the full breadth
of regulatory evolution. Alternative levels of regulation (e.g., splice variation, transcript untrans-
lated regions, etc.) have been comparatively neglected in evolutionary biology [121], although
that is beginning to change [122]. In general, further integration of molecular genetics and
Trends in Ecology & Evolution, November 2024, Vol. 39, No. 11 1043
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evolutionary biology will benefit each field. Just as studies of specific mechanisms inform our pre-
dictions for cis-regulatory evolution here, studies of variation in development will also inform our
understanding of how cis-regulatory elements work.
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