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Abstract—This paper proposes a hybrid algorithm 

combining reinforcement learning (RL) and a genetic algorithm 

(GA) for PDN decap optimization. The trained RL agent uses a 

graph convolutional neural network as a policy network and 

predicts the decap solution for a given PDN impedance and 

target impedance, which is seeded as an initial population to the 

GA. The trained RL agent is scalable regarding the number of 

decap ports.  The main goal is to save computation time and find 

the near global minimum or global minimum. Generalization of 

the algorithm to different decap libraries is achieved through 

transfer learning, eventually reducing the training time of the 

RL agent.  The proposed algorithm finds a decap solution 

satisfying target impedance twice as fast compared with genetic 

algorithms. 
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I. INTRODUCTION 

Decap Optimization is a challenging combinatorial 
problem. Machine learning offers a powerful approach to 
combinatorial problems by handling complex combinations 
efficiently, learning from data to uncover hidden patterns, 
adapting to changing problem dynamics, and potentially 
discovering novel solutions.  Several works using machine 
learning techniques [1- 4] have been conducted to find a better 
decap solution with less computation time.  

In [1], a transformer network-based RL algorithm was 
proposed to find the optimal decap port for placement. The 
algorithm is scalable in terms of decap ports, but the algorithm 
was able to handle only one decap. In [2], a deep 
reinforcement learning-based algorithm using the actor-critic 
method was proposed for decap optimization, but this method 
was not generalizable to different PCB boards. In [3], Q 
learning-based reinforcement learning was proposed to 
optimize the decaps for solid-state drives, yet this method was 
also not generalized. Having a generalized model for different 
decap libraries is quite challenging without re-training the 
model, and evolutionary algorithms like genetic algorithms 
excel in this problem. A genetic algorithm is a population-
based algorithm that does not require training. 

Works in [4-7] used a genetic algorithm alone to predict 
the decap solution for a given PDN impedance and target 
impedance. It is known that initial population is one of the 
most critical factors determining the faster convergence and 
eventually finding the global minimum. Most of the 
algorithms developed so far start with a random initial 
population or augmented initial population [5-7]. In [5], the 
proportions of decaps in the decap library needed for specific 
boards and their target impedance are computed and used as 

weights to generate the initial population. A reinforcement 
learning agent was added to [5] in [6] to tune the mutation 
probability, which helps the algorithm not get stuck in local 
minima. In [7], the algorithm’s initial population was 
improved by having a disproportionate initial population to 
help converge the algorithm faster for loose target 
impedances. This algorithm was also designed to minimize 
the cost of the decaps used. The algorithms [5-7] are 
computationally expensive and might get stuck in local 
minimum if their hyperparameters like population size and 
number of generations are not selected properly.  

This work proposes a scalable reinforcement learning 
agent that uses graph convolutional neural networks as a 
policy network to predict the decap solution for a given board 
impedance and target impedance. This solution is seeded to 
the GA used in [6] to fine-tune and find the near or true global 
minimum. The trained RL agent works well for the decap 
library it is trained on. To make the algorithm generalizable, 
this work also leverages transfer learning, where the pre-
trained model is fine-tuned to the new decap library to predict 
the solution based on the new decap library. 

II. PREVIOUS WORK 

A. Augmented GA V1 & V2 

GA is a population-based optimization algorithm that is 
used to solve combinatorial problems. In [5], augmented GA 
V1 was proposed. Based on the PDN impedance at the last 
frequency point for the R type and both the transition and last 
frequency point for the RL type, target impedance decap type 
weights are generated. These weights are used to generate the 
initial population that will lead the GA to near global 
minimum. The results in [5] showed faster convergence time 
and better solution quality than normal GA. The decap 
solution was encoded as a set of real numbers [5] based on the 
decap library. Three mutation operators were introduced, and 
crossover operation was removed from the GA process. 

In [6], it was found that the GA in [5] was heavily 
dependent on mutation probability (hyperparameter of GA). 
Hence, an RL agent was used to tune the mutation probability 
of the GA for every 5 generations. The RL agent first explores 
the action space (the mutation probability) by taking random 
actions. Then, in the exploitation phase, the agent takes action 
that will lead to a positive reward. This way, the GA will not 
get stuck at the local minimum and will try to find the near 
global minimum possible. Overall, the results in [6] were 
better in terms of solution quality (number of decaps) and time 
cost. In this work, the GA proposed in [6] is used. 
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B. Augmented GA V3 

In [7], the initial population was further improved by 
having a disproportionate initial population. This was made 
to ensure that the population diversity of the GA is 
maintained. Population diversity is an important factor in GA 
that determines the flow of convergence and solution quality. 
Instead of filling all the decap ports for all the solutions in the 
initial population, the population consists of 100%, 80%, 
60%, and 40% filled decap ports as solutions. This made the 
diversity of solutions unique and gave a faster convergence 
rate for boards with loose target impedance. This algorithm 
was improved to handle decap cost as another objective, 
finding a solution with a minimum number of decaps and less 
decap cost.   

III. GRAPH NEURAL NETWORK-BASED RL 

Graph neural networks (GNNs) are a type of neural 
network designed to operate on graph structures directly [8]. 
They are particularly effective in learning from data that is 
represented as graphs, a common structure in many real-world 
applications, including social networks, molecular chemistry, 
and physical systems. There are three critical components for 
graphs: 

1. Nodes: Represent entities or elements of the graph. In 
our case, each port in the impedance matrix is a node. 

2. Edges: Define the relationships or interactions between 
nodes. In the impedance matrix, these represent the 
connections between different ports. Fig. 1 shows the graph 
representation of a 50 decap port example case. There are 51 
ports, including one IC port.   

3. Node Features: Attributes or properties of each node. 
Here, impedance values at different frequency points and 
target impedance are used as node features. 

GNNs perform computations at the node level, applying 
the same operation across all nodes regardless of the total 
number of nodes in the graph. This means that the network 
can seamlessly process graphs with varying numbers of nodes 
[9]. In this algorithm, a graph convolutional network (GCN) 
is used. It is a type of GNN that generalizes convolutional 
neural networks (CNNs) to graph-structured data. It is 
particularly suited for this decap optimization task because it 
can efficiently handle the variable-sized input (different 
numbers of ports) and capture the complex relationships in the 
impedance matrix. Each port's impedance across frequency 
points and the corresponding target impedance are encoded as 
node features. 

 

Fig.  1. Graph representation of impedance matrix (50 decap port 
example case). 

The GCN processes these features through its layers, 
considering the graph's topology (how ports are 
interconnected). Here, the output of the GCN is connected to 
the feedforward neural network and outputs a set of 

 
Fig.  2. RL agent training process. 

 

 
Fig.  3. Graph neural network architecture 
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probabilities for each decap option at each port. These 
probabilities guide the RL agent in choosing the optimal 
decap placements to meet the impedance targets with 
minimal usage of decaps. 

A. Training 

Training is essential for the neural network to learn the 
features of the task. Fig. 2 shows the training process of the 
proposed algorithm. The inputs (the impedance matrix and 
target impedance) are encoded as graphs. The features are fed 
to the neural network to give out probabilities of decaps in the 
decap library for all the ports. If there are m number of decaps 
and n number of ports, the output is nÍm probabilities. 

 Based on the probabilities, the RL agent places the decaps 
and sees the reward for the decap solution.  For a solution 
satisfying target impedance, the reward is given as (1), and for 
not satisfying target impedance, the reward is given as (2) [5]. 

Reward = -(Total # of Ports - # of Ports Used)           (1) 

Reward
solution_z(f) - target_z(f)

max( )
target_z(f)

             (2) 

The rewards are backpropagated through REINFORCE 
[1], and the neural network weights are updated. The neural 
network architecture used as a policy network is shown in Fig. 
3. The total number of episodes was 200, and the first 120 
episodes were used for the exploration and the remaining for 
the exploitation phases. This process was done for different 
decap boards and different target impedances. The training 
was done for ten 50 decap port cases and ten 75 decap port 
cases. The total training time was 5 hours. The test cases are 
arbitrarily shaped boards generated, and their impedances 
were obtained using the boundary element method and the 
node voltage method [8]. For each case, the target impedance 
was varied from loose to tight target impedance. 

B. RL+GA 

Fig. 4 shows the overall proposed hybrid algorithm 
framework. The RL agent predicts the decap solution for a 
given input matrix and target impedance. This process is 
repeated to fill the initial population. If the initial population 
of the GA is 20, then the process is repeated 20 times. It is to 
be noted that predicting a decap solution single time by the 
trained RL agent, the time taken is in milliseconds. Then, the 
GA used in [6] is used to fine-tune and find the solution with 
a minimum number of decaps. The decap library used is 
shown in Table I. 

IV. COMPARISON 

A comparison of the proposed approach to previous works 
was carried out for different test cases. The test cases included 
one 25 decap port, two 50 decap ports, two 75 decap ports, 
and three 150 decap port cases. The target impedances of the 
cases were varied to test the efficiency of the proposed 
algorithm. The impedances of the test cases were generated 
using the node voltage method [8]. All the algorithms used the 
same decap library as in Table I and the exact system 

specification. Table II compares the proposed approach to the 
other approaches [5-7]. The comparison of the solution quality 
is plotted in Fig. 5. The population size and number of 
generations for all the algorithms were set to 20 and 100, 
respectively. 

TABLE I.  DECAP LIBRARY 

 
 
The proposed approach can generally find a better 

solution than the previous works within less computation 
time. In 75 decap ports case #1, the algorithm found a 
solution of 13 decaps in 91 seconds, while [7] gave a solution 
of 14 decaps in 173 seconds. In all the 150 decap ports test 
cases, the proposed approach found a better solution than the 
algorithm in [7]. In terms of time cost for all these 150 decap 
port cases, the proposed approach is 3 times faster than the 
algorithm used in [7]. With the RL agent predicting the initial 
population, the algorithm converges faster and hence can 
explore more to find better solutions available. As the number 
of ports increases, matrix manipulations take significant 
computation time for each decap solution in the population. 
In the proposed approach, since the number of generations 
required to converge is less than others, the computation time 
is less. Hence, with less computation time, the proposed 
approach is able to find better solutions. 

 

TABLE II.  COMPARISON OF SOLUTION QUALITY 

Test Case # 
Minimum # of decaps 

This work [5] [6] [7] 

25 decap ports 5 6 6 5 

50 decap ports #1 13 16 15 15 

50 decap ports #2 22 25 24 22 

75 decap ports #1 13 18 16 14 

75 decap ports #2 14 17 15 14 

150 decap ports #1 43 51 45 44 

150 decap ports #2 32 39 34 34 

150 decap ports #3 14 20 16 16 

Decap # Name Cap. (uF) ESL (nH) 

1 GRM31CR60J227ME11 220 0.3 

2 GRM32EC80E337ME05 330 0.4 

3 GRM033C80J104KE84 0.1 0.2 

4 GRM033R60J474KE90 0.47 0.19 

5 GRM155B31C105KA12 1 0.2 

6 GRM155C70J225KE11 2.2 0.2 

7 GRM185C81A475KE11 4.7 0.27 

8 GRM188B30J226MEA0 22 0.22 

9 GRM219D80E476ME44 47 0.25 

 
Fig.  4. Proposed hybrid algorithm flow 
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TABLE III.  COMPARISON OF TIME COST 

Test Case # 
Time Taken (seconds) 

This work [5] [6] [7] 

25 decap ports 4 42 40 30 

50 decap ports #1 27 350 340 290 

50 decap ports #2 28 357 363 260 

75 decap ports #1 90 349 284 180 

75 decap ports #2 91 343 274 173 

150 decap ports #1 724 3540 2884 2040 

150 decap ports #2 543 2879 2554 1854 

150 decap ports #3 467 2634 2056 1456 

 

Fig.  5. Comparison of this work to [5-7] in terms of solution quality 

V. TRANSFER LEARNING 

 
The proposed algorithm works well if the decap library 

is not changed. But the algorithms in [5-7] can work for any 
decap library. Instead of re-training the model for a different 
decap library, this work uses the approach of transfer learning 
for this task. Transfer learning (TL) is a powerful technique 
in machine learning where knowledge gained while solving 
one task is applied to a different but related task [10].  

Here, the task of placing the decaps is the same; only the 
decap library changes. Another challenge in the domain is the 
change in output size. The output size of the neural network 
is nÍm, where m is the number of decaps in the library, and 
for a new decap library with size m_new, the output size 
should be different nÍm_new. In this proposed approach, the 
weights of all the layers except the output layer are not re-
trained. Only the last layer of the neural network weights in 
Fig. 3 is updated in the training process. Hence, the training 
time is less than re-training the model from the start. The 
initial training time was 5 hours, but with transfer learning, 
the re-training to the new decap library is 30 minutes. 

The proposed transfer learning approach is tested on 3 
different test cases with an entirely different decap library (d 
decaps) other than the one used in section IV, as given in 
Table IV.  

TABLE IV.  NEW DECAP LIBRARY 

Decap # Name Cap. (uF) ESL (nH) 

1 GRM152R60J104KE19 0.1 0.22 

2 GRM152R60J474ME15 0.47 0.23 

3 GRM035R60E475ME01 4.7 0.28 

4 GRM033R60G225ME44 2.2 0.27 

5 GRM032R60G105ME05 1 0.16 

6 GRM152R60G105ME15 1 0.2 

 
The training process is the same as the previous one, but 

the number of training cases is less. The time taken for the 
fine training of the model on the different decap library is 30 
minutes.  The approach is tested with other works that can 
work for any decap library [5-7]. Tables V & VI compare the 
proposed approach with [5-7] regarding solution quality and 
time cost, respectively. The comparison in terms of solution 
quality to [5-7] is plotted in Fig. 6. 

TABLE V.  COMPARISON OF SOLUTION QUALITY (TL PART) 

Test Case # 
Minimum # of decaps 

This work [5] [6] [7] 

50 decap ports 20 22 21 21 

75 decap ports #1 42 44 44 43 

75 decap ports #2 18 19 19 18 

TABLE VI.  COMPARISON OF TIME COST (TL PART) 

Test Case # 
Time Taken (seconds) 

This work [5] [6] [7] 

50 decap ports 24 369 357 267 

75 decap ports #1 160 578 563 358 

75 decap ports #2 130 363 356 262 

 

 
Fig.  6. Comparison of this work to [5-7] in terms of solution quality 

(Transfer learning part) 

With 30 minutes of training, the algorithm was fine-
tuned to the new decap library and produced results 
comparatively better than the previous works. In the case of 
75 decap ports #1, the proposed approach found a better 
solution of 42 decaps within 160 seconds. Overall, the 
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proposed approach is comparatively faster and has improved 
solution quality. 

VI. CONCLUSION 

With a graph neural network as a policy network, the 
proposed RL agent is scalable and can adapt to any number 
of decap ports. The decap solution produced by the RL agent 
will eventually lead the GA to the global or near-global 
minimum and thus reduces the convergence time of the GA. 
For the 75 decap port cases tested, the proposed algorithm 
takes half the computation time taken by the algorithm in [7]. 
With the use of transfer learning, the neural network is 
adapted to a new decap library and performs better in terms 
of solution quality and time than other previous works. In the 
future, the algorithm can be further improved to predict decap 
solutions without the need for a genetic algorithm. This will 
significantly reduce the computation time.  
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