2024 1EEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI) | 979-8-3503-6039-4/24/$31.00 ©2024 IEEE | DOI: 10.1109/EMCSIP149824.2024.10705608

A

Graph Convolutional Neural Network Assisted
Genetic Algorithm for PDN Decap Optimization

Haran Manoharan®!, Jack Juang™?, Ling Zhang®?, Hanfeng Wang", Jingnan Pan"®, Kelvin Qiu *, Xu Gao"” and Chulsoon Hwang"®

*EMC Laboratory, Missouri University of Science and Technology, Rolla, Mo, USA
"hm6h6, 2jjryb, Shwangc@mst.edu
*Google Inc, Mountain View, CA, USA
*hanfengw, jingnan, kqiu, "xugao@google.com
$Zhejiang University, Hangzhou, China
lingzhang zju@zju.edu.cn

Abstract—This paper proposes a hybrid algorithm
combining reinforcement learning (RL) and a genetic algorithm
(GA) for PDN decap optimization. The trained RL agent uses a
graph convolutional neural network as a policy network and
predicts the decap solution for a given PDN impedance and
target impedance, which is seeded as an initial population to the
GA. The trained RL agent is scalable regarding the number of
decap ports. The main goal is to save computation time and find
the near global minimum or global minimum. Generalization of
the algorithm to different decap libraries is achieved through
transfer learning, eventually reducing the training time of the
RL agent. The proposed algorithm finds a decap solution
satisfying target impedance twice as fast compared with genetic
algorithms.

Keywords—graph convolutional neural network, transfer
learning, decap optimization, genetic algorithm

I. INTRODUCTION

Decap Optimization is a challenging combinatorial
problem. Machine learning offers a powerful approach to
combinatorial problems by handling complex combinations
efficiently, learning from data to uncover hidden patterns,
adapting to changing problem dynamics, and potentially
discovering novel solutions. Several works using machine
learning techniques [1- 4] have been conducted to find a better
decap solution with less computation time.

In [1], a transformer network-based RL algorithm was
proposed to find the optimal decap port for placement. The
algorithm is scalable in terms of decap ports, but the algorithm
was able to handle only one decap. In [2], a deep
reinforcement learning-based algorithm using the actor-critic
method was proposed for decap optimization, but this method
was not generalizable to different PCB boards. In [3], Q
learning-based reinforcement learning was proposed to
optimize the decaps for solid-state drives, yet this method was
also not generalized. Having a generalized model for different
decap libraries is quite challenging without re-training the
model, and evolutionary algorithms like genetic algorithms
excel in this problem. A genetic algorithm is a population-
based algorithm that does not require training.

Works in [4-7] used a genetic algorithm alone to predict
the decap solution for a given PDN impedance and target
impedance. It is known that initial population is one of the
most critical factors determining the faster convergence and
eventually finding the global minimum. Most of the
algorithms developed so far start with a random initial
population or augmented initial population [5-7]. In [5], the
proportions of decaps in the decap library needed for specific
boards and their target impedance are computed and used as

This work was supported in part by the National Science Foundation
(NSF) under Grant No. ITP-1916535.

979-8-3503-6039-4/24/$31.00 ©2024 IEEE

146

weights to generate the initial population. A reinforcement
learning agent was added to [5] in [6] to tune the mutation
probability, which helps the algorithm not get stuck in local
minima. In [7], the algorithm’s initial population was
improved by having a disproportionate initial population to
help converge the algorithm faster for loose target
impedances. This algorithm was also designed to minimize
the cost of the decaps used. The algorithms [5-7] are
computationally expensive and might get stuck in local
minimum if their hyperparameters like population size and
number of generations are not selected properly.

This work proposes a scalable reinforcement learning
agent that uses graph convolutional neural networks as a
policy network to predict the decap solution for a given board
impedance and target impedance. This solution is seeded to
the GA used in [6] to fine-tune and find the near or true global
minimum. The trained RL agent works well for the decap
library it is trained on. To make the algorithm generalizable,
this work also leverages transfer learning, where the pre-
trained model is fine-tuned to the new decap library to predict
the solution based on the new decap library.

II. PREVIOUS WORK

A. Augmented GA VI & V2

GA is a population-based optimization algorithm that is
used to solve combinatorial problems. In [5], augmented GA
V1 was proposed. Based on the PDN impedance at the last
frequency point for the R type and both the transition and last
frequency point for the RL type, target impedance decap type
weights are generated. These weights are used to generate the
initial population that will lead the GA to near global
minimum. The results in [5] showed faster convergence time
and better solution quality than normal GA. The decap
solution was encoded as a set of real numbers [5] based on the
decap library. Three mutation operators were introduced, and
crossover operation was removed from the GA process.

In [6], it was found that the GA in [5] was heavily
dependent on mutation probability (hyperparameter of GA).
Hence, an RL agent was used to tune the mutation probability
of the GA for every 5 generations. The RL agent first explores
the action space (the mutation probability) by taking random
actions. Then, in the exploitation phase, the agent takes action
that will lead to a positive reward. This way, the GA will not
get stuck at the local minimum and will try to find the near
global minimum possible. Overall, the results in [6] were
better in terms of solution quality (number of decaps) and time
cost. In this work, the GA proposed in [6] is used.

B. Augmented GA V3

In [7], the initial population was further improved by
having a disproportionate initial population. This was made
to ensure that the population diversity of the GA is
maintained. Population diversity is an important factor in GA
that determines the flow of convergence and solution quality.
Instead of filling all the decap ports for all the solutions in the
initial population, the population consists of 100%, 80%,
60%, and 40% filled decap ports as solutions. This made the
diversity of solutions unique and gave a faster convergence
rate for boards with loose target impedance. This algorithm
was improved to handle decap cost as another objective,
finding a solution with a minimum number of decaps and less
decap cost.

III. GRAPH NEURAL NETWORK-BASED RL

Graph neural networks (GNNs) are a type of neural
network designed to operate on graph structures directly [8].
They are particularly effective in learning from data that is
represented as graphs, a common structure in many real-world
applications, including social networks, molecular chemistry,
and physical systems. There are three critical components for
graphs:

1. Nodes: Represent entities or elements of the graph. In
our case, each port in the impedance matrix is a node.

2. Edges: Define the relationships or interactions between
nodes. In the impedance matrix, these represent the
connections between different ports. Fig. 1 shows the graph
representation of a 50 decap port example case. There are 51
ports, including one IC port.

3. Node Features: Attributes or properties of each node.
Here, impedance values at different frequency points and
target impedance are used as node features.

GNNs perform computations at the node level, applying
the same operation across all nodes regardless of the total
number of nodes in the graph. This means that the network
can seamlessly process graphs with varying numbers of nodes
[9]. In this algorithm, a graph convolutional network (GCN)
is used. It is a type of GNN that generalizes convolutional
neural networks (CNNs) to graph-structured data. It is
particularly suited for this decap optimization task because it
can efficiently handle the variable-sized input (different
numbers of ports) and capture the complex relationships in the
impedance matrix. Each port's impedance across frequency
points and the corresponding target impedance are encoded as
node features.

Fig. 1. Graph representation of impedance matrix (50 decap port
example case).

The GCN processes these features through its layers,
considering the graph's topology (how ports are
interconnected). Here, the output of the GCN is connected to
the feedforward neural network and outputs a set of

RL part
Input state Graph Convolutional Reward function — s i
Z matrix for n ports Network Loss function ecap solution
La:st Last Iteration?
episode?
Update weights
Fig. 2. RL agent training process.
. Graph

inpu’i nlllatrlx Conlzloluti onal Sc?rlr?alization ligs f ully connected

nput shape laver ayer

(# of nodes x ‘ Oztput shape — ‘ Output shape — ‘ Output shape —(#

201) (# of nodes x 64) (# of nodes x 64) of nodes x128)

Fig. 3. Graph neural network architecture

!

Output Layer _ Fully connected
Output shape — layer

(# of nodes x # of Output shape —
decaps in library (# of nodes x64)

147

I T T T

T

Input state
Z matrix for n ports

—

Trained RL agent fills
initial population

Initial Population
seeded to GA

—

Fig. 4. Proposed hybrid algorithm flow

probabilities for each decap option at each port. These
probabilities guide the RL agent in choosing the optimal
decap placements to meet the impedance targets with
minimal usage of decaps.

A. Training

Training is essential for the neural network to learn the
features of the task. Fig. 2 shows the training process of the
proposed algorithm. The inputs (the impedance matrix and
target impedance) are encoded as graphs. The features are fed
to the neural network to give out probabilities of decaps in the
decap library for all the ports. If there are m number of decaps
and n number of ports, the output is n X m probabilities.

Based on the probabilities, the RL agent places the decaps
and sees the reward for the decap solution. For a solution
satisfying target impedance, the reward is given as (1), and for
not satisfying target impedance, the reward is given as (2) [5].

Reward = -(Total # of Ports - # of Ports Used) (1

Reward — max(bolutlon_z(f) target_z(f)) @
target z(f)

The rewards are backpropagated through REINFORCE
[1], and the neural network weights are updated. The neural
network architecture used as a policy network is shown in Fig.
3. The total number of episodes was 200, and the first 120
episodes were used for the exploration and the remaining for
the exploitation phases. This process was done for different
decap boards and different target impedances. The training
was done for ten 50 decap port cases and ten 75 decap port
cases. The total training time was 5 hours. The test cases are
arbitrarily shaped boards generated, and their impedances
were obtained using the boundary element method and the
node voltage method [8]. For each case, the target impedance
was varied from loose to tight target impedance.

B. RL+GA

Fig. 4 shows the overall proposed hybrid algorithm
framework. The RL agent predicts the decap solution for a
given input matrix and target impedance. This process is
repeated to fill the initial population. If the initial population
of the GA is 20, then the process is repeated 20 times. It is to
be noted that predicting a decap solution single time by the
trained RL agent, the time taken is in milliseconds. Then, the
GA used in [6] is used to fine-tune and find the solution with
a minimum number of decaps. The decap library used is
shown in Table I.

IV. COMPARISON

A comparison of the proposed approach to previous works
was carried out for different test cases. The test cases included
one 25 decap port, two 50 decap ports, two 75 decap ports,
and three 150 decap port cases. The target impedances of the
cases were varied to test the efficiency of the proposed
algorithm. The impedances of the test cases were generated
using the node voltage method [8]. All the algorithms used the
same decap library as in Table I and the exact system

148

specification. Table I compares the proposed approach to the
other approaches [5-7]. The comparison of the solution quality
is plotted in Fig. 5. The population size and number of
generations for all the algorithms were set to 20 and 100,
respectively.

TABLE 1. DECAP LIBRARY
Decap # Name Cap. (uF) ESL (nH)
1 GRM31CR60J227MEI1 1 220 0.3
2 GRM32EC80E337ME05 330 0.4
3 GRMO033C80J104KE84 0.1 0.2
4 GRMO33R60J474KE90 0.47 0.19
5 GRM155B31C105KA12 1 0.2
6 GRM155C70J225KE!11 22 0.2
7 GRMI185C81A475KEl11 4.7 0.27
8 GRMI188B30J226MEA0 22 0.22
9 GRM219D80E476ME44 47 0.25

The proposed approach can generally find a better
solution than the previous works within less computation
time. In 75 decap ports case #l1, the algorithm found a
solution of 13 decaps in 91 seconds, while [7] gave a solution
of 14 decaps in 173 seconds. In all the 150 decap ports test
cases, the proposed approach found a better solution than the
algorithm in [7]. In terms of time cost for all these 150 decap
port cases, the proposed approach is 3 times faster than the
algorithm used in [7]. With the RL agent predicting the initial
population, the algorithm converges faster and hence can
explore more to find better solutions available. As the number
of ports increases, matrix manipulations take significant
computation time for each decap solution in the population.
In the proposed approach, since the number of generations
required to converge is less than others, the computation time
is less. Hence, with less computation time, the proposed
approach is able to find better solutions.

TABLE IL. COMPARISON OF SOLUTION QUALITY
Test Case # Minimum # of decaps

This work 5] 6] 7]

25 decap ports 5 6 6 5
50 decap ports #1 13 16 15 15
50 decap ports #2 22 25 24 22
75 decap ports #1 13 18 16 14
75 decap ports #2 14 17 15 14
150 decap ports #1 43 51 45 44
150 decap ports #2 32 39 34 34
150 decap ports #3 14 20 16 16

T T

TABLE IIL COMPARISON OF TIME COST TABLE V. NEW DECAP LIBRARY
Test Case # : Time Taken (seconds) Decap # Name Cap. (uF) ESL (nH)
This work | [3] 15 7 1 GRMI152R60J104KE19 0.1 022
25 decap ports 4 4 40 30 2 GRMI52R60J474ME15 0.47 0.23
50 decap ports #1 27 350 340 290 3 GRMO35R60E475MEO1 4.7 0.28
50 decap ports #2 28 357 363 260 4 GRMO33R60G225ME44 22 0.27
75 decap ports #1 90 349 284 180 5 GRMO032R60G105MEO5 1 0.16
75 decap ports #2 91 343 274 173 6 GRMI52R60G105MELS 1 02
150 decap ports #1 724 3540 2884 2040
PP The training process is the same as the previous one, but
150 decap ports #2 543 2879 2554 1854 the number of training cases is less. The time taken for the
150 decap ports #3 467 2634 2056 1456 ﬁr}e training of the model. on the different decap library is 30
minutes. The approach is tested with other works that can
work for any decap library [5-7]. Tables V & VI compare the
55 proposed approach with [5-7] regarding solution quality and
ol ol * [Ts‘] Work time cost, respectively. The comparison in terms of solution
o 0 quality to [5-7] is plotted in Fig. 6.
s g o [7
40 ° TABLE V. COMPARISON OF SOLUTION QUALITY (TL PART)
g5 [Minimum # of decaps
2 3% * Test Case # -
g This work 5] [6] 17
E¥r : 50 decap ports 20 22 21 21
£ s 75 decap ports #1 42 44 44 43
o
15 | 8 o
, x ® * bl 75 decap ports #2 18 19 19 18
& ‘ ‘ ‘ ‘ ‘ ‘ ‘ TABLE VL COMPARISON OF TIME COST (TL PART)
o " o o o S W
- o &MQ"‘ N o A&@QQ“ é&@v"“ = o & & Test Case # Time Taken (seconds)
© D o) \;e - N est Case This work /3] 16/ 17
est Cases
50 decap ports 24 369 357 267
Fig. 5. Comparison of this work to [5-7] in terms of solution quality
75 decap ports #1 160 578 563 358
V. TRANSFER LEARNING 75 decap ports #2 130 363 356 262
The proposed algorithm works well if the decap library o5
is not changed. But the algorithrps in [5-7] can work _for any [8 T ok
decap library. Instead of re-training the model for a different 40 | o I8l
decap library, this work uses the approach of transfer learning ﬁ (61
for this task. Transfer learning (TL) is a powerful technique £ o U
in machine learning where knowledge gained while solving e
one task is applied to a different but related task [10]. =
Here, the task of placing the decaps is the same; only the g =
decap library changes. Another challenge in the domain is the 25 208
change in output size. The output size of the neural network T &
is nXm, where m is the number of decaps in the library, and 5 _—
for a new decap library with size m_new, the output size & > o
should be different n Xm_new. In this proposed approach, the @q& & &
. &
weights of all the layers except the output layer are not re- N & &
trained. Only the last layer of the neural network weights in ® ®
Test Cases

Fig. 3 is updated in the training process. Hence, the training
time is less than re-training the model from the start. The
initial training time was 5 hours, but with transfer learning,
the re-training to the new decap library is 30 minutes.

The proposed transfer learning approach is tested on 3
different test cases with an entirely different decap library (d
decaps) other than the one used in section IV, as given in
Table I'V.

149

Fig. 6. Comparison of this work to [5-7] in terms of solution quality
(Transfer learning part)

With 30 minutes of training, the algorithm was fine-
tuned to the new decap library and produced results
comparatively better than the previous works. In the case of
75 decap ports #1, the proposed approach found a better
solution of 42 decaps within 160 seconds. Overall, the

proposed approach is comparatively faster and has improved
solution quality.

VI. CONCLUSION

With a graph neural network as a policy network, the
proposed RL agent is scalable and can adapt to any number
of decap ports. The decap solution produced by the RL agent
will eventually lead the GA to the global or near-global
minimum and thus reduces the convergence time of the GA.
For the 75 decap port cases tested, the proposed algorithm
takes half the computation time taken by the algorithm in [7].
With the use of transfer learning, the neural network is
adapted to a new decap library and performs better in terms
of solution quality and time than other previous works. In the
future, the algorithm can be further improved to predict decap
solutions without the need for a genetic algorithm. This will
significantly reduce the computation time.

REFERENCES

[1] H. Park et al, “Deep Reinforcement Learning-Based Optimal
Decoupling Capacitor Design Method for Silicon Interposer-Based
2.5-D/3-d 1Cs,” IEEE Trans. Compon. Packaging Manuf. Technol.,
vol. 10, mno. 3, pp. 467-478, March 2020, doi:

10.1109/TCPMT.2020.2972019.

L. Zhang, W. Huang, J. Juang, H. Lin, B. -C. Tseng and C. Hwang,
“An Enhanced Deep Reinforcement Learning Algorithm for
Decoupling Capacitor Selection in Power Distribution Network
Design,” 2020 IEEE International Symposium on Electromagnetic
Compatibility & Signal/Power Integrity (EMCSI), 2020, pp. 245-250,
doi: 10.1109/EMCSI38923.2020.9191512.

J. Shin et al., "Reinforcement Learning-Based Decap Optimization
Method for High-Performance Solid-State Drive," 202/ IEEE

(2]

(3]

150

(6]

(7]

[10]

International Joint EMC/SI/PI and EMC Europe Symposium, Raleigh,
NC, USA, 2021, p. 718-721, doi:
10.1109/EMC/SI/PI/EMCEurope52599.2021.9559162.

F. De Paulis et al., "A Methodical Approach for PCB PDN Decoupling
Minimizing Overdesign with Genetic Algorithm Optimization," 2022
IEEE International Symposium on Electromagnetic Compatibility &
Signal/Power Integrity (EMCSI), Spokane, WA, USA, 2022, pp. 238-
243, doi: 10.1109/EMCSI39492.2022.9889490

J. Juanget al., “Augmented Genetic Algorithm for Decoupling
Capacitor Optimization in PDN Design Through Improved Population
Generation," submitted to /EEE Transactions on Signal and Power
Integrity.

H. Manoharan et al.,, "Augmented Genetic Algorithm v2 with
Reinforcement Learning for PDN Decap Optimization," 2023 IEEE
Symposium on Electromagnetic Compatibility & Signal/Power
Integrity (EMC+SIPI), Grand Rapids, MI, USA, 2023, pp. 255-258,
doi: 10.1109/EMCSIPI50001.2023.10241752.

H. Manoharan et al., " Augmented Genetic Algorithm V3 for Multi-
Objective PDN Decap Optimization," submitted to 2024 IEEE Joint
International Symposium on Electromagnetic Compatibility, Signal &
Power Integrity: EMC Japan/Asia- Pacific International Symposium
on Electromagnetic Compatibility.

L. Zhang et al., “Efficient DC and AC Impedance Calculation for
Arbitrary-Shape and Multilayer PDN Using Boundary Integration,” in
IEEE Transactions on Signal and Power Integrity, vol. 1, pp. 1-11,
2022, doi: 10.1109/TSIP1.2022.3164037.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang and P. S. Yu, "A
Comprehensive Survey on Graph Neural Networks," in [EEE
Transactions on Neural Networks and Learning Systems, vol. 32, no.
1, pp. 4-24, Jan. 2021, doi: 10.1109/TNNLS.2020.2978386.

Z. Zhu, K. Lin, A. K. Jain and J. Zhou, "Transfer Learning in Deep
Reinforcement Learning: A Survey," in IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 45, no. 11, pp. 13344-13362,
1 Nov. 2023, doi: 10.1109/TPAMI.2023.3292075.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 5
 4
 5

 1

 HistoryList_V1
 qi2base

