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Abstract—In this paper, high-speed channel simulators
using neural language models are proposed. Given the input
sequence of geometry design parameters of differential
channels, the proposed channel simulator predicts SI
characteristic sequences such as insertion loss (IL) and far-end
crosstalk (FEXT). Sequence-to-sequence (seq2seq) networks
using a recurrent neural network (RNN) and a long short-term
memory (LSTM) are utilized for the estimator. Moreover, a
transformer network which is a recent neural engine of large
language models (LLMs) is introduced for the first time.
Compared to seq2seq networks, the transformer network-based
simulator can achieve shorter computing time due to its parallel
computation called an attention. The accuracy and training time
of seq2seq and transformer networks are validated and
compared. As a result, all the proposed simulators show ~1%
error rates for both the IL and FEXT. However, for the training
time, the transformer network achieves 75%-83% reduction
compared to seq2seq networks.

Keywords— High-speed channel, Neural language model,
Signal integrity, Transformer network

[. INTRODUCTION

Neural network (NN) models have been actively
developed for signal integrity (SI), power integrity (PI), and
electromagnetic compatibility (EMC) applications [1]-[3]. As
shown in Fig. 1, deep NNs (DNNs) can characterize complex
and non-linear relationships between inputs and outputs [1],
[4]. In addition, DNN models are faster than the conventional
electromagnetic (EM) and SPICE simulators and comparable
in the accuracy [1], [5]. Therefore, those have kept proving
their feasibility in practical usage.

Especially, various DNNs have been studied for the high-
speed channel SI simulation [1], [5S]-[9]. Basic multi-layer
perceptron (MLP) models are developed to estimate eye
diagram considering all the interconnect, transmitter, and
receiver [1]. Also, MLP-based time domain reflectometry
(TDR) impedance estimators for high-speed vias are
investigated [5], [6]. To improve the accuracy compared to the
MLP, advanced convolutional neural network (CNN) models
are utilized for S-parameter prediction of high-speed
interconnects [7], [8]. Torun et al. [8] validates that the
proposed CNN model outperforms the MLP model. Graph
neural network (GNN) and RNN are combined to estimate
time-domain output waveforms of high-speed serial links [9].
By introducing GNN, Li ef al. [9] enables a flexible and
reusable solver that can used for different topologies and
physical parameters.

In this paper, high-speed channel simulators using neural

language models are proposed and compared for the first time.
Given the input geometry design parameters of differential
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Fig. 1. Deep neural network model for fast and accurate SI simulation.

channels, the proposed simulator predicts SI characteristics.
The seq2seq networks and transformer network are developed
to estimate IL and crosstalk responses. Moreover, the
developed neural language models including RNN-RNN,
LSTM-LSTM, and transformer network are compared and
analyzed in terms of the accuracy and the training time.

II. PROPOSED CHANNEL SI SIMULATOR USING NEURAL
LANGUAGE MODELS

When the NN models are developed for the prediction, the
encoder-decoder structure is widely used as shown in Fig. 2
[10]-{13]. The encoder performs a feature embedding for
given the input data x. to output the embedded feature 4:
h=fen(x.). Then, the decoder conducts the prediction to output
y for given inputs as / and the decoder’s input x4: y=faec(Xa, 7).
Therefore, depending on the task and the representations of
the input and output, the proper NNs should be used for the
encoder and decoder.

For the neural language models, the task is to transform
from sequence x. to sequence y, where usually x. and y are
the sequences of vectors [11]. Those previously adopted
seq2seq networks using a RNN, LSTM, or gated recurrent
unit (GRU) [11]. Recently, a transformer network has been
adopted which is a main engine for recent large language
models (LLMs) [12]. In this section, high-speed channel SI
simulators using seq2seq networks and transformer network
are proposed to estimate IL or crosstalk.

A. Seq2seq networks

Fig. 3 (a) shows the proposed channel SI simulator using
seq2seq network. It is configured with the encoder and the
decoder, which consist of a series of encoding and decoding
units. Either RNN or LSTM cell is used for the encoding and
decoding units in this work. The task of the proposed channel
SI simulator is to transform channel geometry and frequency
sequences (x., X,) to SI characteristic sequences (yiL, yrext) at
n number of frequency points. The encoder input x. is
represented as a set of vectors that are configured with 14
design parameters of each differential channel as shown in
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Fig. 3. (a) Proposed channel SI simulator using seq2seq network. (b) Target
stack-up of 2 differential strip-line channels.

Fig. 3 (b): xe&={x¢ 1, X2, ..., Xen} Where xe,={x1.14} and N is the
number of differential channels. Details on the design
parameters xi.4 are summarized in Table 1. For output
sequences yi. and yrexT, the decoder input x, is a set of vectors
consisting of a frequency point f; and the previous estimated
value ypi: Xq={f, ye1}-

The main purpose of the encoder is the channel geometry
embedding to compute relationships between differential
channels. Details on the encoder using RNN is shown in Fig.
4(a). For every time step ¢, a hidden state /., is recursively
computed as a linear combination of x., and the previous
hidden state /..

he,t = tanh(erhxe,t + b; + W}fhhe,t—l + b}el) (1)

WE, € R>dx We € R%*4x he € R% and bf € R% are
the learnable parameters. tanh is a hyperbolic tangent
function as a non-linear activation function, which is typically
used for the RNN [4]. Through the recursive computation of
he, all the geometry information of x.i..y is embedded in the
final hidden state h.ny at time step N. h.y becomes the
encoder’s output embedded feature node /4., which is also
called a context node. Then, A is given to the decoder as an
important clue for the prediction.
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TABLE L. DESIGN PARAMETERS OF DIFFERENTIAL CHANNELS
i Range
Desish Description e
parameter Min Max
wt (x;) Width of trace 2 mil 16 mil
st (x,) Space of trace 2 mil 16 mil
he (x3) Height of core 2 mil 10 mil
& core (X4) | Dielectric constant of core 2.5 4.5
tanD .. (Xs5) Loss tangent of core 0.001 0.03
ht (x4) Height of trace 0.4 mil 2.6 mil
Dielectric constant of metal
&rm (%7) layer dielectric fill %3 w9
Loss tangent of metal layer
D) dielectric fill o:001 003
hpp (xo) Height of prepreg 2 mil 30 mil
Dielectric constant of
&rpp (X10) prepres 2.5 4.5
tanD,, (x;;) | Loss tangent of prepreg 0.001 0.03
sr(x;5) Surface roughness -10 10
d (x;3) Pair 2 pair distance 6 mil 40 mil
ef (x14) Etch factor 0 1
=1 =t =N

(b)
Fig. 4. (a) Encoder RNN. (b) Decoder RNN.

In the decoder, SI characteristic yir or yrexr is sequentially
predicted by decoding units. Details on the decoder using
RNN is shown in Fig. 4(b). Using /. as a first hidden state for
the decoder /449, decoder hidden states /g, are computed
similarly to the encoder, but with the learnable parameters
wa, W, b, and b. The decoder has an additional shared
parameter W,fy € R%*ah and by € RY to convert from /4, to

yrat fi:

Ye = W}?yhd,t + b;’- 2
The main limitation of the RNN is a long-term dependency

problem. RNN uses tanh function as the activation function

which always maps to the value between 0 and 1 [2].
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Therefore, the previous hidden states are not well preserved
along the time steps since the tanh is being taken recursively.
Likewise, the geometry-embedded feature node /4 also easily
vanishes along the time-steps in the decoder. Eventually, this
problem causes the accuracy degradation of the NN estimator.

To mitigate this problem, the LSTM cell can be used
instead of the RNN cell. As shown in Fig. 5, the LSTM
introduces a cell state ¢, that is responsible for long-term
memory and three gates including the forget gate f;, input gate
ir, and output gate o that control the degree of the memory,
input, and output respectively. ¢, can propagate down the
LSTM cell chain, with only some minor linear interactions by
the forget gate and input gate, which enables long-term
dependency [4], [11].

The number of layers of the RNN shown in Fig. 4 is 1.
Both the RNN and LSTM cells can be vertically stacked up to
make a deeper model to further describe complex and non-
linear relationships between x and y [4].

B. Transformer network

Fig. 6 shows the proposed channel SI simulator using
transformer network. The main roles for both the encoder and
decoder transformer networks are the same as those of the
seq2seq network. The encoder performs geometry embedding
and the decoder estimates yir or yrext. However, the main
difference compared to the seq2seq network is that the parallel
computation is enabled to reduce the computing time.

The main parallel computation of the proposed
transformer network is called an attention. By a self-attention,
the encoder embeds the input x. into high-dimensional
embedded node h. By an encoder-decoder attention, the
decoder estimates the sequence yi or yrext using /. from the
encoder and x, from the decoder. Since the output sequences
are computed in a parallel way at once, x; only contains
frequency point f. It can’t include the previously estimated
result y.;, which is also different compared to the seq2seq
networks.

The attention computation is all about computing
relationship between node as shown in Fig. 7 [13]. The
attention function always starts from query ¢, key & and value
v. ¢ is the object questioning the neighbor nodes /’s including
itself. k£ and v are the descriptions or characteristics of each
node [12]. Every node /; can have query ¢, key & and value v,
which are linearly transformed by learnable parameters W,
Wy, and W.:

q; = VthL , ki = thi; v = VV‘Dh‘L (4)

i is a node index. The linear weights W, ER* %

[ |

Fem———ea———aa|
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Attention layer ]Fzg 8

@ @ @
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@@@

s

Fig. 6. Proposed channel SI simulator using transformer network.
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Fig. 7. Single-head attention (SHA) [13].

Wi€RYU % and W,eR % are shared between all the nodes
hi’s. dn, dg, di, and d, are the dimension of the 4, &, ¢, and v
respectively. dy is always same as d,. Then, each node /; can
compute its compatibility u by scaled-dot product of its ¢ and
k from neighbor nodes including itself:

T
qi kj
ul — . 5
T (5)

u;; indicates the relevance between two nodes 4; and 4. To
normalize, a sofimax function is taken to u to get an attention
weight a:

ui}-

Tyet

a;; = softmax(u;) =

(6)

Finally, output head h; can be embedded in the weighted
average of v’s by the attention weights a;;’s:

Jj
Therefore, relationships between node h; and all the neighbor
node s 4;’s, where j€ {1:N} and N is the number of nodes, can

be captured in h;. Since it outputs a single output head, it is
also called as single-head attention (SHA). A multi-head
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attention (MHA) is a parallel computation of SHA in order to
learn diverse representation [12], [13].

Fig. 8 shows details of the proposed encoder transformer
network. Initial node embed x; is embedded by the linear
projection of input node x,,;:

xi’ = VVxxe,i + by, )]

where i € {1:N} indicates the node index. W,ER% % and
b,ER% are learnable parameters. Then, x| is updated to h;
by an attention layer. The attention layer consists of one
MHA sublayer and one feed-forward (FF) sublayer with skip
connections:

hi = x{ + MHA(x{, x3, ..., Xy) ©)

h; = h} + FF(h)). (10)
hi is the output of the MHA sublayer using learnable
parameters Wy, W, W, and W, h; is the output of the FF
sublayer. The skip connection x+f{x) prevents the gradient
vanishing [13]. Especially in the MHA sublayer, all the nodes
have their own queries which are denoted in the red lines in
Fig. 8. This means each geometry node compute its
relationship to all the nodes through the self-attention.

Fig. 9 shows details of the proposed decoder transformer
network for yi. or yrext estimation. The decoder is configured
of an attention layer and a SHA layer. First, input frequency
f’s are embedded into high-dimensional /4, by initial linear
projection and the attention layer. Those computations are the
same with (8)—(10) of the encoder.

Since the /. becomes a key factor for the estimation, it is
defined as follows:

h, = Concat(Ryic, Raggr)- (11)

hyic and hggg, are the victim and aggressor channels’
geometry-embedded nodes from the encoder. For the IL,
haggr and hy;. are set to be the same. Concat is the
concatenation operation. With the defined #hc, the
compatibility #; is computed by the SHA between g, and k;
where q, is projected from h., and k; is from h ;:
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Fig. 9. Decoder transformer network.

u = aik;
L \/a'

Finally, in the FF layer, u is linearly projected to output final
sequence y.

(12)

III. VERIFICATION

The hyper-parameters of seq2seq networks are set as
follows. Dimension of hidden states for both the RNN and
LSTM is set to 128. Dimension of the cell state of the LSTM
is also 128. The number of layers of RNN and LSTM are set
to 2 for both the encoder and decoder. For the transformer
network, the dimensions of the embed (hidden) and
feedforward layers in the attention layers are set to 128, 512
respectively. The number of heads for the MHA is 8. The
dimensions of the key and value (dk, dv) are set to 16 and 16
for the MHA layer respectively. The key dimension is 128 for
the decoder SHA layer.

The data sets for the validation are generated by Intel
Interconnect Modeler Loss Calculator (IMLC) tool. Total
99991 of two pair of differential channels in Fig. 3(b) are
simulated at 40 frequency points from 1 GHz to 40 GHz, with
1 GHz linear spacing. The generated data sets are split into
84992, 7499, and 7500 for the training, validation, and test
sets respectively. The total number of 500 epochs are trained.
The size of one epoch is 84992. The batch size is 256 and the
validation size is 7499. The initial learning rate is 5x10-4 and
is linearly decayed by 0.99 times every epoch. The root mean
squared error (RMSE) in dB scale is used for the loss function.
All the inputs and outputs x., x4, and y are normalized by using
min-max normalization.

Fig. 10 shows the loss convergence results when training
the NNs for IL estimation. All the RNN-RNN, LSTM-LSTM,
and transformer network converge both in the training and
validation loss at the end of the training epoch. The training
losses at the 500" training epoch are 0.0041, 0.0022, and
0.0009 for RNN, LSTM, and transformer respectively. The
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Fig. 10. Training and validation loss convergence results for IL estimator.
TABLEIL ACCURACY TEST RESULTS
Error rate
IL FEXT Average
RNN-RNN 1.7% 0.8% 1.25%
LSTM-LSTM 0.7% 0.44% 0.57%
Transformer 0.48% 0.86% 0.67%

validation losses are 0.0041, 0.0022, and 0.0014 respectively.
All the training and validation losses when training the NNs
for FEXT estimation are also converged well.

Table II shows the comparison of accuracy test results. For
the IL estimation, the error rates of the RNN, LSTM, and
transformer are 1.7 %, 0.7 %, and 0.48 % respectively. For
the FEXT, 0.8 %, 0.44 %, and 0.86 % respectively. All the
seq2seq and transformer networks show good correlations
with the labels, achieving ~1 % of the average error rate: 1.25
% for the RNN, 0.57 % for the LSTM, and 0.67 % for the
transformer network. Compared to the RNN, the LSTM
shows better accuracy thanks to its long-term dependency.
Since the transformer network compute attention in a parallel
way both in the encoder and decoder, there is less memory
distortion compared to the RNN. Therefore, it shows a lower
error rate than the RNN. However, compared to the LSTM, it
shows a slightly larger error rate because it can’t take the
previous estimated value y.; as a decoder input. Detailed
comparison plots of 10 random test sets between the
prediction by NNs and labels are depicted in Fig. 11. Fig.
11(a), 11(b), and 11(c) illustrate the RNN-RNN, LSTM-
LSTM, and transformer network respectively.

Table III shows the comparison of the training time
between the proposed NNs. The training times are 2h 13m, 3h
20m, and 33m for RNN, LSTM, and transformer network
respectively. Transformer network conducts parallel
computations for the geometry embedding in the encoder and
for the IL or FEXT estimation in the decoder. However,
sequential computations should be performed for both the
RNN and LSTM. Therefore, the training time of the
transformer network can be reduced by 75% compared to
RNN; 83% compared to LSTM. Compared to RNN, LSTM
shows the longer training time since it has more learnable
parameters to enhance long term dependency.

15

: Label
: Prediction

=)

3, —

g 4 g

= : ¥

=

s 6 o]

51 =

2 3 ----: Label -120) =7

- —— : Prediction

-10 -160
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Frequency [GHz] Frequency [GHz]

(2)

=)
A —
g g
g =
=
£ 6 E
2 2120 e . —
2 3 h /
—— : Prediction
-10 -160
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Frequency [GHz] Frequency [GHz]
(®)
0
e | T == : Label
5 —— : Prediction
= -
3 —
g * g
g =
=
g 5
5 =) _
a g 200 [ : Label -120 k. =
- —— : Prediction
10 160!
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Frequency [GHz] Frequency [GHz]
(©

Fig. 11. Comparison of IL and FEXT estimation results with labels. (a) RNN-
RNN. (b) LSTM-LSTM. (c¢) Transformer.

TABLEIIL COMPARISON OF THE TRAINING TIME
LSTM-
RNN-RNN LSTM Transformer
Training time
(500 epochs) 2h 13m 3h 20m 33m

*CPU: Intel 12 Gen i5, GPU: NVIDIA RTX 3060

IV. CONCLUSION

In this paper, neural language model-based high-speed
channel SI simulators are proposed, validated, and compared.
The seq2seq networks using RNN and LSTM, and the
transformer network are investigated to predict IL and FEXT
responses. As a result, all the proposed networks achieve ~1 %
error rates. Especially, thanks to its powerful parallel attention
computation, the proposed transformer network reduces the
training time more than by 75% compared to the seq2seq
networks.
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