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Abstract—In this paper, high-speed channel simulators 

using neural language models are proposed. Given the input 
sequence of geometry design parameters of differential 
channels, the proposed channel simulator predicts SI 
characteristic sequences such as insertion loss (IL) and far-end 
crosstalk (FEXT). Sequence-to-sequence (seq2seq) networks 
using a recurrent neural network (RNN) and a long short-term 
memory (LSTM) are utilized for the estimator. Moreover, a 
transformer network which is a recent neural engine of large 
language models (LLMs) is introduced for the first time. 
Compared to seq2seq networks, the transformer network-based 
simulator can achieve shorter computing time due to its parallel 
computation called an attention. The accuracy and training time 
of seq2seq and transformer networks are validated and 
compared. As a result, all the proposed simulators show ~1% 
error rates for both the IL and FEXT. However, for the training 
time, the transformer network achieves 75%–83% reduction 
compared to seq2seq networks. 

Keywords— High-speed channel, Neural language model, 
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I. INTRODUCTION  
Neural network (NN) models have been actively 

developed for signal integrity (SI), power integrity (PI), and 
electromagnetic compatibility (EMC) applications [1]–[3]. As 
shown in Fig. 1, deep NNs (DNNs) can characterize complex 
and non-linear relationships between inputs and outputs [1], 
[4]. In addition, DNN models are faster than the conventional 
electromagnetic (EM) and SPICE simulators and comparable 
in the accuracy [1], [5]. Therefore, those have kept proving 
their feasibility in practical usage.  

Especially, various DNNs have been studied for the high-
speed channel SI simulation [1], [5]–[9]. Basic multi-layer 
perceptron (MLP) models are developed to estimate eye 
diagram considering all the interconnect, transmitter, and 
receiver [1]. Also, MLP-based time domain reflectometry 
(TDR) impedance estimators for high-speed vias are 
investigated [5], [6]. To improve the accuracy compared to the 
MLP, advanced convolutional neural network (CNN) models 
are utilized for S-parameter prediction of high-speed 
interconnects [7], [8]. Torun et al. [8] validates that the 
proposed CNN model outperforms the MLP model. Graph 
neural network (GNN) and RNN are combined to estimate 
time-domain output waveforms of high-speed serial links [9]. 
By introducing GNN, Li et al. [9] enables a flexible and 
reusable solver that can used for different topologies and 
physical parameters. 

In this paper, high-speed channel simulators using neural 
language models are proposed and compared for the first time. 
Given the input geometry design parameters of differential 

channels, the proposed simulator predicts SI characteristics. 
The seq2seq networks and transformer network are developed 
to estimate IL and crosstalk responses. Moreover, the 
developed neural language models including RNN-RNN, 
LSTM-LSTM, and transformer network are compared and 
analyzed in terms of the accuracy and the training time.  

II. PROPOSED CHANNEL SI SIMULATOR USING NEURAL 
LANGUAGE MODELS 

When the NN models are developed for the prediction, the 
encoder-decoder structure is widely used as shown in Fig. 2 
[10]–[13]. The encoder performs a feature embedding for 
given the input data xe to output the embedded feature h: 
h=fenc(xe). Then, the decoder conducts the prediction to output 
y for given inputs as h and the decoder’s input xd: y=fdec(xd, h). 
Therefore, depending on the task and the representations of 
the input and output, the proper NNs should be used for the 
encoder and decoder. 

For the neural language models, the task is to transform 
from sequence xe to sequence y, where usually xe and y are 
the sequences of vectors [11].  Those previously adopted 
seq2seq networks using a RNN, LSTM, or gated recurrent 
unit (GRU) [11]. Recently, a transformer network has been 
adopted which is a main engine for recent large language 
models (LLMs) [12]. In this section, high-speed channel SI 
simulators using seq2seq networks and transformer network 
are proposed to estimate IL or crosstalk. 

A. Seq2seq networks 
Fig. 3 (a) shows the proposed channel SI simulator using 

seq2seq network. It is configured with the encoder and the 
decoder, which consist of a series of encoding and decoding 
units. Either RNN or LSTM cell is used for the encoding and 
decoding units in this work. The task of the proposed channel 
SI simulator is to transform channel geometry and frequency 
sequences (xe, xd) to SI characteristic sequences (yIL, yFEXT) at 
n number of frequency points. The encoder input xe is 
represented as a set of vectors that are configured with 14 
design parameters of each differential channel as shown in This work was supported in part by the National Science Foundation 

(NSF) under Grant IIP-1916535. 

 
 
Fig. 1. Deep neural network model for fast and accurate SI simulation.  
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Fig. 3 (b): xe={xe,1, xe,2, … , xe,N} where xe,t={x1:14} and N is the 
number of differential channels. Details on the design 
parameters x1:14 are summarized in Table I. For output 
sequences yIL and yFEXT, the decoder input xd is a set of vectors 
consisting of a frequency point ft and the previous estimated 
value yt-1: xd,t={ft, yt-1}.  

The main purpose of the encoder is the channel geometry 
embedding to compute relationships between differential 
channels. Details on the encoder using RNN is shown in Fig. 
4(a). For every time step t, a hidden state he,t is recursively 
computed as a linear combination of xe,t and the previous 
hidden state he,t-1:  ℎ௘,௧ = ���ℎ(�௫௛௘ �௘,௧ + �௫௘ + �௛௛௘ ℎ௘,௧ିଵ + �௛௘). (1) �௫௛௘ ∈ �ௗ೓×ௗೣ, �௫௛௘ ∈ �ௗ೓×ௗೣ , �௫௘ ∈ �ௗ೓, and  �௛௘ ∈ �ௗ೓ are 
the learnable parameters. ���ℎ  is a hyperbolic tangent 
function as a non-linear activation function, which is typically 
used for the RNN [4]. Through the recursive computation of 
he,t, all the geometry information of xe1:eN is embedded in the 
final hidden state he,N at time step N. he,N becomes the 
encoder’s output embedded feature node hc, which is also 
called a context node. Then, hc is given to the decoder as an 
important clue for the prediction. 

In the decoder, SI characteristic yIL or yFEXT is sequentially 
predicted by decoding units. Details on the decoder using 
RNN is shown in Fig. 4(b). Using hc as a first hidden state for 
the decoder hd,0, decoder hidden states hd,t are computed 
similarly to the encoder, but with the learnable parameters �௫௛ௗ , �௛௛ௗ , �௫ௗ, and �௛ௗ. The decoder has an additional shared 
parameter �௛௬ௗ ∈ �ௗ೤×ௗ೓ and �௬ௗ ∈ �௬ to convert from hd,t to 
yt at ft: �௧ = �௛௬ௗ ℎௗ,௧ + �௬ௗ. (2) 

The main limitation of the RNN is a long-term dependency 
problem. RNN uses ���ℎ function as the activation function 
which always maps to the value between 0 and 1 [2]. 

 
 
Fig. 2. Encoder-decoder NN architecture for the prediction.  
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Fig. 3. (a) Proposed channel SI simulator using seq2seq network. (b) Target 
stack-up of 2 differential strip-line channels. 
 
 

TABLE I.          DESIGN PARAMETERS OF DIFFERENTIAL CHANNELS 
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Fig. 4. (a) Encoder RNN. (b) Decoder RNN. 
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Therefore, the previous hidden states are not well preserved 
along the time steps since the ���ℎ is being taken recursively. 
Likewise, the geometry-embedded feature node hc also easily 
vanishes along the time-steps in the decoder. Eventually, this 
problem causes the accuracy degradation of the NN estimator.  

To mitigate this problem, the LSTM cell can be used 
instead of the RNN cell. As shown in Fig. 5, the LSTM 
introduces a cell state ct that is responsible for long-term 
memory and three gates including the forget gate ft, input gate 
it, and output gate ot that control the degree of the memory, 
input, and output respectively. ct can propagate down the 
LSTM cell chain, with only some minor linear interactions by 
the forget gate and input gate, which enables long-term 
dependency [4], [11].  

The number of layers of the RNN shown in Fig. 4 is 1. 
Both the RNN and LSTM cells can be vertically stacked up to 
make a deeper model to further describe complex and non-
linear relationships between x and y [4]. 

B. Transformer network 
Fig. 6 shows the proposed channel SI simulator using 

transformer network. The main roles for both the encoder and 
decoder transformer networks are the same as those of the 
seq2seq network. The encoder performs geometry embedding 
and the decoder estimates yIL or yFEXT. However, the main 
difference compared to the seq2seq network is that the parallel 
computation is enabled to reduce the computing time.  

The main parallel computation of the proposed 
transformer network is called an attention. By a self-attention, 
the encoder embeds the input xe into high-dimensional 
embedded node h. By an encoder-decoder attention, the 
decoder estimates the sequence yIL or yFEXT using hc from the 
encoder and xd from the decoder. Since the output sequences 
are computed in a parallel way at once, xd only contains 
frequency point f. It can’t include the previously estimated 
result yt-1, which is also different compared to the seq2seq 
networks.  

The attention computation is all about computing 
relationship between node as shown in Fig. 7 [13]. The 
attention function always starts from query q, key k and value 
v. q is the object questioning the neighbor nodes h’s including 
itself. k and v are the descriptions or characteristics of each 
node [12]. Every node hi can have query q, key k and value v, 
which are linearly transformed by learnable parameters Wq, 
Wk, and Wv: �௜ = �௤ℎ௜  , �௜ = �௞ℎ௜ ,           �௜ = �௩ℎ௜ . (4) �  is a node index. The linear weights Wq ∈Rௗೖ×ௗ೓ ,

Wk∈Rௗೖ×ௗ೓ , and Wv∈Rௗೡ×ௗ೓ are shared between all the nodes 
hi’s. dh, dq, dk, and dv are the dimension of the h, k, q, and v 
respectively. dk is always same as dq. Then, each node hi can 
compute its compatibility u by scaled-dot product of its q and 
k from neighbor nodes including itself: �௜௝ = �௜் �௝ඥ�௞ . (5) 

uij indicates the relevance between two nodes hi and hj. To 
normalize, a softmax function is taken to u to get an attention 
weight a: 

�௜௝ = �������൫�௜௝൯ = �௨೔ೕ∑ �௨೔ೕᇲ௝ᇲ . (6) 

Finally, output head ℎ௜ᇱ  can be embedded in the weighted 
average of v’s by the attention weights aij’s: ℎ௜ᇱ = ෍ �௜௝�௝ .௝  (7) 

Therefore, relationships between node ℎ௜ and all the neighbor 
node s hj’s, where j∈{1:N} and N is the number of nodes, can 
be captured in ℎ௜ᇱ. Since it outputs a single output head, it is 
also called as single-head attention (SHA). A multi-head 

 

 
Fig. 5. LSTM cell. 
 

 
Fig. 6. Proposed channel SI simulator using transformer network.  
 
 

 

Fig. 7. Single-head attention (SHA) [13].  
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attention (MHA) is a parallel computation of SHA in order to 
learn diverse representation [12], [13]. 

Fig. 8 shows details of the proposed encoder transformer 
network. Initial node embed �௜ᇱ  is embedded by the linear 
projection of input node xe,i: �௜ᇱ = �௫�௘,௜ + �௫ . (8) 

where i ∈{1:N} indicates the node index. Wx∈Rdh×dx  and 
bx∈Rdh  are learnable parameters. Then, �௜ᇱ is updated to ℎ௜ 
by an attention layer. The attention layer consists of one 
MHA sublayer and one feed-forward (FF) sublayer with skip 
connections: ℎ௜ᇱ = �௜ᇱ + ���(�ଵᇱ , �ଶᇱ , … , �ேᇱ ) (9) ℎ௜ = ℎ௜ᇱ + ��(ℎ௜ᇱ). (10) ℎ௜ᇱ  is the output of the MHA sublayer using learnable 
parameters �௤ , �௞ , �௩ , and �௢ . ℎ௜  is the output of the FF 
sublayer. The skip connection x+f(x) prevents the gradient 
vanishing [13]. Especially in the MHA sublayer, all the nodes 
have their own queries which are denoted in the red lines in 
Fig. 8. This means each geometry node compute its 
relationship to all the nodes through the self-attention.  

Fig. 9 shows details of the proposed decoder transformer 
network for yIL or yFEXT estimation. The decoder is configured 
of an attention layer and a SHA layer. First, input frequency 
f’s are embedded into high-dimensional hf by initial linear 
projection and the attention layer. Those computations are the 
same with (8)–(10) of the encoder.  

Since the hc becomes a key factor for the estimation, it is 
defined as follows: ℎ௖ = ������൫ℎ௩௜௖ , ℎ௔௚௚௥൯. (11) ℎ௩௜௖  and ℎ௔௚௚௥  are the victim and aggressor channels’ 
geometry-embedded nodes from the encoder. For the IL, ℎ௔௚௚௥  and ℎ௩௜௖  are set to be the same. ������  is the 
concatenation operation. With the defined hc, the 
compatibility ui is computed by the SHA between �௖ and �௜ 
where �௖ is projected from ℎ௖, and �௜ is from ℎ௙,௜: 

�௜ = �௖் �௜ඥ�௞ 
. (12) 

Finally, in the FF layer, u is linearly projected to output final 
sequence y. 

III. VERIFICATION 
The hyper-parameters of seq2seq networks are set as 

follows. Dimension of hidden states for both the RNN and 
LSTM is set to 128. Dimension of the cell state of the LSTM 
is also 128. The number of layers of RNN and LSTM are set 
to 2 for both the encoder and decoder. For the transformer 
network, the dimensions of the embed (hidden) and 
feedforward layers in the attention layers are set to 128, 512 
respectively. The number of heads for the MHA is 8. The 
dimensions of the key and value (dk, dv) are set to 16 and 16 
for the MHA layer respectively. The key dimension is 128 for 
the decoder SHA layer.  

The data sets for the validation are generated by Intel 
Interconnect Modeler Loss Calculator (IMLC) tool. Total 
99991 of two pair of differential channels in Fig. 3(b) are 
simulated at 40 frequency points from 1 GHz to 40 GHz, with 
1 GHz linear spacing. The generated data sets are split into 
84992, 7499, and 7500 for the training, validation, and test 
sets respectively. The total number of 500 epochs are trained. 
The size of one epoch is 84992. The batch size is 256 and the 
validation size is 7499. The initial learning rate is 5×10-4 and 
is linearly decayed by 0.99 times every epoch. The root mean 
squared error (RMSE) in dB scale is used for the loss function. 
All the inputs and outputs xe, xd, and y are normalized by using 
min-max normalization.   

Fig. 10 shows the loss convergence results when training 
the NNs for IL estimation. All the RNN-RNN, LSTM-LSTM, 
and transformer network converge both in the training and 
validation loss at the end of the training epoch. The training 
losses at the 500th training epoch are 0.0041, 0.0022, and 
0.0009 for RNN, LSTM, and transformer respectively. The 

 

 
 

Fig. 8. Encoder transformer network.  
 

 

 
Fig. 9. Decoder transformer network.  
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validation losses are 0.0041, 0.0022, and 0.0014 respectively. 
All the training and validation losses when training the NNs 
for FEXT estimation are also converged well. 

Table II shows the comparison of accuracy test results. For 
the IL estimation, the error rates of the RNN, LSTM, and 
transformer are 1.7 %,  0.7 %, and 0.48 % respectively. For 
the FEXT, 0.8 %, 0.44 %, and 0.86 % respectively. All the 
seq2seq and transformer networks show good correlations 
with the labels, achieving ~1 % of the average error rate: 1.25 
% for the RNN, 0.57 % for the LSTM, and 0.67 % for the 
transformer network. Compared to the RNN, the LSTM 
shows better accuracy thanks to its long-term dependency. 
Since the transformer network compute attention in a parallel 
way both in the encoder and decoder, there is less memory 
distortion compared to the RNN. Therefore, it shows a lower 
error rate than the RNN. However, compared to the LSTM, it 
shows a slightly larger error rate because it can’t take the 
previous estimated value yt-1 as a decoder input. Detailed 
comparison plots of 10 random test sets between the 
prediction by NNs and labels are depicted in Fig. 11. Fig. 
11(a), 11(b), and 11(c) illustrate the RNN-RNN, LSTM-
LSTM, and transformer network respectively.  

Table III shows the comparison of the training time 
between the proposed NNs. The training times are 2h 13m, 3h 
20m, and 33m for RNN, LSTM, and transformer network 
respectively. Transformer network conducts parallel 
computations for the geometry embedding in the encoder and 
for the IL or FEXT estimation in the decoder. However, 
sequential computations should be performed for both the 
RNN and LSTM. Therefore, the training time of the 
transformer network can be reduced by 75% compared to 
RNN; 83% compared to LSTM. Compared to RNN, LSTM 
shows the longer training time since it has more learnable 
parameters to enhance long term dependency.  

IV. CONCLUSION 
In this paper, neural language model-based high-speed 

channel SI simulators are proposed, validated, and compared. 
The seq2seq networks using RNN and LSTM, and the 
transformer network are investigated to predict IL and FEXT 
responses. As a result, all the proposed networks achieve ~1 % 
error rates. Especially, thanks to its powerful parallel attention 
computation, the proposed transformer network reduces the 
training time more than by 75% compared to the seq2seq 
networks.  
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