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Abstract—This paper introduces vertical interconnect 
technology in silicon, package, and printed circuit board (PCB) 
levels with a coaxial structure, respectively. The coaxial structure 
has been known to be advantageous in terms of signal integrity 
(SI) compared to the non-coaxial structure. The coaxial structure 
is easy to control the characteristic impedance Z0 and robust to 
crosstalk. The silicon-level interconnect includes the wire bonding 
(WB) and through-silicon via (TSV) technology, the package-level 
interconnect includes an elastomer package test socket. The PCB-
level interconnect includes the vias, and vertical conductive 
structure (VeCS). For each level, the non-coaxial and coaxial 
interconnects are compared with the measurement results in the 
frequency domain. In conclusion, this paper successfully shows the 
improvement of the coaxial structure at silicon, package, and PCB 
levels. 

Keywords—3D integrated circuit, coaxial structure, package, 
PCB, signal integrity, TSV, vertical interconnect. 

I. INTRODUCTION 
A three-dimensional (3D) vertical structure has advantages 

compared to a two-dimensional (2D) planar structure in terms of 
signal integrity (SI) [1]. Manhattan distance is the distance 
between two routing points. The Manhattan distance can be 
substantially decreased when the 3D structure is applied [2, 3]. 
The Manhattan distance can be regarded as the amount of 
parasitic resistance and inductance between two routing points 
[4]. The decreased resistance mitigates an RC delay which 
attenuates and widens a signal over a high-speed channel [5]. 
Also, the decreased inductance mitigates crosstalk. The 
crosstalk is caused by the capacitive and magnetic coupling [6]. 
Therefore, the 3D structure is desirable in terms of SI. 

As the data rate increases, SI issues like the above have been 
addressed [7]. The SI issues are different depending on the 
levels: silicon, package, and PCB as shown in Fig. 1. Because 
they have different fabrication processes, they have totally 

different structures and parasitic values. However, all levels 
have to be considered to achieve the signal integrity. For this, 
the SI analysis has been introduced for the silicon level [8]–[10], 
and the PCB level [11]. Vertical interconnections include a 
through-silicon via (TSV), elastomer package socket, and 
printed circuit board (PDB) via depending on levels. The 
interconnections always have references, which determines a 
characteristic impedance Z0. The Z0 is the ratio between electric 
(E) and magnetic (H) -fields at the cross-section of a 
transmission line, thus, it is determined by a signal and a 
reference [12]. The coaxial structure has the signal and reference 
placed on the same axis, thus it has the well-confined E- and H-
fields. A coplanar waveguide as an example of a non-coaxial 
structure has a concentrated E-field distribution between the 
signal and reference, which leads to being sensitive to the 
characteristic impedance depending on the change in the 
dimensions. The above characteristic of the coaxial structure 
makes the impedance control easy. The signal is shielded by the 
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Fig. 1. Vertical interconnects depending on silicon, package, and PCB. 
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reference, which leads to being robust to crosstalk noise. Also, 
the impedance discontinuity is avoidable in the coaxial 
configuration. Because the signal is surrounded by the ground, 
the return path only exists in the ground shield. Thus, the 
microwave system uses the coaxial configuration such as 
SubMiniature version A (SMA). 

This paper introduces the vertical interconnects at silicon, 
package, and PCB levels. Also, this paper introduces how a 
coaxial configuration is applied at each level. This paper is 
organized as follows. The vertical interconnects at the silicon, 
package, and PCB levels are introduced, respectively. Each 
section compares the non-coaxial and coaxial interconnects in 
terms of SI. 

II. VERTICAL INTERCONNECTS AT SILICON LEVEL 
Silicon-level vertical interconnects include the TSV and the 

wire bonding (WB) technologies to interconnect between silicon 
dies. 

A. Through-Silion Via (TSV) 
The TSV technology achieves a shorter physical distance 

and a lower parasitic inductance compared to the WB 
technology [13] for stacked multi-silicon dies such as a high-
bandwidth memory (HBM). The WB technology provides a 
vertical interconnection, however, a gold wire introduces a 
substantial amount of parasitic inductance. The WB technology 
cannot also provide a direct connection because the silicon dies 
are flipped and interconnected by the WB technology. The 

property of the TSV is advantageous in terms of SI. The TSV 
technology drills a silicon die and filled by the copper to 
interconnect the silicon dies, as shown in Fig. 2 (a). 

Fig. 2 (b) shows the measured insertion loss of the fabricated 
TSVs. The test vehicle included 8 stacked TSVs and 
redistribution layers (RDLs) [14]. The insertion loss was 
measured up to 20 GHz in the frequency domain. The test 
vehicle had a gradual insertion loss in MHz range and a steep 
insertion loss in GHz range. When the signal propagates along 
with the TSV, the reference is typically the closest conductive 
thing nearby. The above introduces the coaxial structure of the 
TSV to mitigate the impedance mismatches in the high-speed 
channel including the TSV. 

B. Coaxial TSV 
The TSV can be fabricated with a coaxial configuration. As 

shown in Fig. 3 (a), additional copper is fabricated around the 
TSV [15]. The fabricated coaxial TSV consists of a center 
conductor and a shield. The thin-film and organic lamination 
technique was used to fabricate the low-cost coaxial TSV. The 
fabrication includes laser drilling and copper metallization. The 
shield makes impedance control easier than the non-coaxial 
TSV. Also, the reference shield in the coaxial TSV mitigates the 
near- and far-end crosstalk. In conclusion, the TSV even 
improves the SI at the silicon level compared to the WB 
technology, the coaxial TSV improves further the SI. 

Identify applicable funding agency here. If none, delete this text box. 

 
(a) 

       
(b) 

Fig. 2. (a) Cross-section of the fabricated TSVs (Fig. 4 in [14]). The silicon is 
drilled and filled by copper. (b) The measured insertion loss of the fabricated 
TSV chain (Fig. 5 in [14]). 

 
(a) 

     
(b) 

Fig. 3. (a) A scanning electrode microscope (SEM) image of the cross-section 
for the coaxial through-silicon via (TSV) (Fig. 1. (b) in [15]). (b) Measured 
insertion loss (black solid line) of the fabricated coaxial TSV. (Fig. 4 in [15]). 
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Fig. 3 (b) (Fig. 4 in [15]) shows the measured insertion loss 
of the fabricated coaxial TSVs. The test vehicle included 4 
coaxial TSVs and RDLs. The insertion loss of the test vehicle 
was measured up to 20 GHz. Unlike the measurement result of 
the non-coaxial TSV, the resonances were not identified up to 
20 GHz. As discussed earlier, the impedance mismatch was 
suppressed by introducing the coaxial structure. That is, the 
coaxial structure is advantageous in terms of the SI. Also, the 
crosstalk performance can be improved by the shield conductor 
in the coaxial TSV. However, the coaxial structure may increase 
the fabrication cost due to additional processes. 

III. VERTICAL INTERCONNECT AT PACKAGE LEVEL 
Package test sockets are required to provide a temporary 

connection for SI. A temporary connection is achieved by 
compression with a force. Thus, test sockets with a compressible 
interconnect are introduced in this section. 

A. Elastomer package test socket 
A pogo pin is conductive when being compressed, because 

it includes a metal spring [16]. However, the metal spring 
introduces a substantial parasitic inductance due to its structure. 
Hence, the pogo pin is limited to use for high-frequency package 
tests. An elastomer package socket is also conductive when a 
vertical force is applied. As shown in Fig. 4 (a), the elastomer 
socket includes conductive powders in an elastomer material 
[17]. The powders are contacted with one another when the 
elastomer material is compressed [18]. In terms of the temporary 
connection, the pogo pin and elastomer socket are the same. 
However, the absence of the metal spring improves the 
elastomer socket in terms of the electrical performance in the 
high-frequency range. 

B. Coaxial elastomer package test socket 
The coaxial approach was also applied to the pogo pin [19]. 

The coaxial pogo pin improved the crosstalk performance, 

however the principal limitation which is the significant amount 
of parasitic inductance was still inevitable. The elastomer socket 
without the metal spring is also fabricable in the coaxial 
structure. The coaxial elastomer socket was fabricated by 
injecting conductive powders in a coaxial direction inside the 
elastomer material [20]. The conductive powders are then placed 
in the coaxial form after the fabrication process. The inner set of 
the powders is for signal and the outer set of the powders is for 
reference as shown in Fig. 5. Both of the non-coaxial and coaxial 
elastomer sockets have the same pitch of 1.0 mm. 

Fig. 6 compares the measured insertion loss and the far-end 
crosstalk (FEXT) in the frequency domain. According to the 
comparison, the advantage of the coaxial structure is clearly 
shown again as discussed in this paper. The non-coaxial socket 
had a resonance near 20 GHz, while the coaxial socket did not. 
The non-coaxial socket has a reference column next to the signal 
column, which causes the E-field to be distributed in between. 
While, the coaxial socket has a larger reference column to 
surround the signal column. The E-field is equally distributed 
along with the circumference of the signal column. The 
difference in the field distribution makes the different resonance 
frequencies. 

Another advantage of the coaxial structure was identified in 
the measured crosstalk: 20 dB/dec [21]. The slope difference in 
the crosstalk resulted from an asymmetry in the signaling [22]. 
The non-coaxial structure only supports the ground-signal (GS) 
signaling, hence, asymmetry is inevitable. However, the coaxial 
structure supports the ground-signal-ground (GSG) signaling 
which is desirable in terms of the asymmetry. Therefore, another 
advantage of the coaxial structure is identified in the crosstalk 
measurement herein. The cost for the coaxial case is nearly the 
same as that of the non-coaxial case. Because they have the same 
amount of conductive powders. They only have different 
configurations of the applied E-field to align the conductive 
powders in an elastoemer material. 

 
(a) 

 
(b) 

Fig. 4. (a) Top view image and (b) cross-sectional SEM image of the non-
coaxial elastomer socket. 
 

 
(a) 

 
(b) 

Fig. 5. (a) Top view image and (b) cross-sectional SEM image of the coaxial 
elastomer socket. 
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IV. VERTICAL INTERCONNECT AT PCB LEVEL 
The PCB provides interconnections between the packages 

and discrete components such as capacitors, switches, 
connectors, filters, and resistors [23]–[24]. The PCB is required 
to be designed as small as possible due to the form factor of a 
system. To satisfy the above, the PCB had to be designed and 
fabricated with a multi-layer structure, which leads to vertical 
interconnects in the PCB. 

A. Plated Through Hole (PTH) Via 
The vertical interconnections in the multi-layer PCB include 

blind, stacked, staggered, buried, and PTH vias depending on 
which layers are connected [25]. As can be seen from Fig. 7, the 
PTH via provides a connection from the top to bottom layers 
[26]. Thus, the PTH via is the longest type among the fabricable 
vias in the PCB technology. In the SI, the longest channel 
typically implies the worst channel. Because the corresponding 
insertion loss and FEXT are usually proportional to the length 
[27]–[28]. Furthermore, the non-coaxial structure may have 
resonance depending on the channel. Therefore, the multi-layer 
PCB generally has limited electrical performances due to the 
PTH vias. For this reason, most signal integrity analyses on the 

via have focused on a modeling-based approach [29–31]. The 
PCB via also has multiple reflections due to impedance 
mismatches [32]. 

B. Vertical Conductive Struture (VeCS) 
The VeCS was introduced to improve the electrical 

performances of the multi-layer PCB [33]–[35]. The VeCS 
consists of a VeCS trace and metal jacket to shield the VeCS 
trace as can be seen from Fig. 8. (a). The VeCS is a semi-coaxial 
structure, because most of the electric (E)- and magnetic (H)-
fields are distributed between the VeCS trace and metal jacket. 
Thus, the VeCS also has the advantage of the coaxial structure. 
When the signal propagates over the VeCS trace (Fig. 8 (b)), the 
return current for the signal is induced over the metal shield (Fig. 
8 (c)). That is, the characteristic impedance is constant during 
the signal propagation on the VeCS. In contrast, the PTH via has 
no vertical reference such as the metal jacket in the VeCS. Thus, 
the PTH via typically has a substantial amount of signal 
reflection during the signal propagation. This signal reflection 
may cause resonances on the insertion loss. 

Fig. 9 shows the simulated time-domain reflectometer 
(TDR) in the time domain, and the measured insertion loss up to 
70 GHz in the frequency domain. The simulated models include 
only either the PTH via or the VeCS, and the HFSS from 
ANSYS was used. The TDR shows how much the voltage is 
reflected along with the signal propagation, which can be used 
to show how much the characteristic impedance varies. The 
simulated TDR shows that the VeCS has less amount of signal 
reflection along with the signal propagation. The measured test 
vehicles included the fabricable ranges for the PTH vias and the 
VeCS with the same pitch. Thus, each set shows the practical 
insertion losses for the PTH vias and the VeCS, respectively. 
According to the measurement result, while some PTH vias had 
resonances around 35 GHz, the VeCS did not. The undesired 
resonances are resulted from the poor return path [36]. Because 
the PTH vias have the reference changes along with the signal 
propagation. Also, the slope of the measured insertion loss is less 
steep in the case of the VeCS. Therefore, the VeCS improved 
the electrical performances with the semi-coaxial structure. The 
VeCS shows better electrical performances, however the cost for 
the VeCS is comparable to that of the PTH via. 

    
(a) 

 
(b)              

Fig. 6. Measured insertion losses and FEXT of non-coaxial and coaxial 
elastomer sockets. 

 
Fig. 7. The PTH via provides a connection between the top and bottom layers 
[26]. 
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V. CONCLUSION 
This paper introduces the vertical technology with the 

coaxial structure in silicon, package, and PCB levels, 
respectively. The coaxial structure has advantages in the SI due 
to its geometrical characteristics. The charge distribution is 
determined by the signal and reference, thus, the coaxial 
structure has equally distributed charges over a circumference. 
While, the non-coaxial structure has a biased charge distribution 
depending on the reference. The vertical interconnect in the 
laminated multi-layer may be sensitive to signal reflection by 
the mismatched characteristic impedance. The laminated 
structure may have different characteristic impedance, the non-
coaxial structure may be sensitive correspondingly. Also, the 
crosstalk noise is suppressed by a surrounding reference in the 
coaxial structure. The measurement and simulation results 
herein successfully show the above advantages of the coaxial 

structure for the TSV, the elastomer package socket, and the 
PCB via. 
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