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Abstract—This paper introduces vertical interconnect
technology in silicon, package, and printed circuit board (PCB)
levels with a coaxial structure, respectively. The coaxial structure
has been known to be advantageous in terms of signal integrity
(SI) compared to the non-coaxial structure. The coaxial structure
is easy to control the characteristic impedance Zo and robust to
crosstalk. The silicon-level interconnect includes the wire bonding
(WB) and through-silicon via (TSV) technology, the package-level
interconnect includes an elastomer package test socket. The PCB-
level interconnect includes the vias, and vertical conductive
structure (VeCS). For each level, the non-coaxial and coaxial
interconnects are compared with the measurement results in the
frequency domain. In conclusion, this paper successfully shows the
improvement of the coaxial structure at silicon, package, and PCB
levels.

Keywords—3D integrated circuit, coaxial structure, package,
PCB, signal integrity, TSV, vertical interconnect.

I. INTRODUCTION

A three-dimensional (3D) vertical structure has advantages
compared to a two-dimensional (2D) planar structure in terms of
signal integrity (SI) [1]. Manhattan distance is the distance
between two routing points. The Manhattan distance can be
substantially decreased when the 3D structure is applied [2, 3].
The Manhattan distance can be regarded as the amount of
parasitic resistance and inductance between two routing points
[4]. The decreased resistance mitigates an RC delay which
attenuates and widens a signal over a high-speed channel [5].
Also, the decreased inductance mitigates crosstalk. The
crosstalk is caused by the capacitive and magnetic coupling [6].
Therefore, the 3D structure is desirable in terms of SI.

As the data rate increases, Sl issues like the above have been
addressed [7]. The SI issues are different depending on the
levels: silicon, package, and PCB as shown in Fig. 1. Because
they have different fabrication processes, they have totally
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different structures and parasitic values. However, all levels
have to be considered to achieve the signal integrity. For this,
the ST analysis has been introduced for the silicon level [8]-[10],
and the PCB level [11]. Vertical interconnections include a
through-silicon via (TSV), elastomer package socket, and
printed circuit board (PDB) via depending on levels. The
interconnections always have references, which determines a
characteristic impedance Zo. The Zy is the ratio between electric
(E) and magnetic (H) -fields at the cross-section of a
transmission line, thus, it is determined by a signal and a
reference [12]. The coaxial structure has the signal and reference
placed on the same axis, thus it has the well-confined E- and H-
fields. A coplanar waveguide as an example of a non-coaxial
structure has a concentrated E-field distribution between the
signal and reference, which leads to being sensitive to the
characteristic impedance depending on the change in the
dimensions. The above characteristic of the coaxial structure
makes the impedance control easy. The signal is shielded by the
1

Coaxial TSV TSV

Coaxial elastomer
PKG socket

VeCS PTHvia

Fig. 1. Vertical interconnects depending on silicon, package, and PCB.
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reference, which leads to being robust to crosstalk noise. Also,
the impedance discontinuity is avoidable in the coaxial
configuration. Because the signal is surrounded by the ground,
the return path only exists in the ground shield. Thus, the
microwave system uses the coaxial configuration such as
SubMiniature version A (SMA).

This paper introduces the vertical interconnects at silicon,
package, and PCB levels. Also, this paper introduces how a
coaxial configuration is applied at each level. This paper is
organized as follows. The vertical interconnects at the silicon,
package, and PCB levels are introduced, respectively. Each
section compares the non-coaxial and coaxial interconnects in
terms of SI.

II. VERTICAL INTERCONNECTS AT SILICON LEVEL

Silicon-level vertical interconnects include the TSV and the
wire bonding (WB) technologies to interconnect between silicon
dies.

A. Through-Silion Via (TSV)

The TSV technology achieves a shorter physical distance
and a lower parasitic inductance compared to the WB
technology [13] for stacked multi-silicon dies such as a high-
bandwidth memory (HBM). The WB technology provides a
vertical interconnection, however, a gold wire introduces a
substantial amount of parasitic inductance. The WB technology
cannot also provide a direct connection because the silicon dies
are flipped and interconnected by the WB technology. The
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Fig. 2. (a) Cross-section of the fabricated TSVs (Fig. 4 in [14]). The silicon is

drilled and filled by copper. (b) The measured insertion loss of the fabricated

TSV chain (Fig. 5 in [14]).

Identify applicable funding agency here. If none, delete this text box.

40

property of the TSV is advantageous in terms of SI. The TSV
technology drills a silicon die and filled by the copper to
interconnect the silicon dies, as shown in Fig. 2 (a).

Fig. 2 (b) shows the measured insertion loss of the fabricated
TSVs. The test vehicle included 8 stacked TSVs and
redistribution layers (RDLs) [14]. The insertion loss was
measured up to 20 GHz in the frequency domain. The test
vehicle had a gradual insertion loss in MHz range and a steep
insertion loss in GHz range. When the signal propagates along
with the TSV, the reference is typically the closest conductive
thing nearby. The above introduces the coaxial structure of the
TSV to mitigate the impedance mismatches in the high-speed
channel including the TSV.

B. Coaxial TSV

The TSV can be fabricated with a coaxial configuration. As
shown in Fig. 3 (a), additional copper is fabricated around the
TSV [15]. The fabricated coaxial TSV consists of a center
conductor and a shield. The thin-film and organic lamination
technique was used to fabricate the low-cost coaxial TSV. The
fabrication includes laser drilling and copper metallization. The
shield makes impedance control easier than the non-coaxial
TSV. Also, the reference shield in the coaxial TSV mitigates the
near- and far-end crosstalk. In conclusion, the TSV even
improves the SI at the silicon level compared to the WB
technology, the coaxial TSV improves further the SI.
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Fig. 3. (a) A scanning electrode microscope (SEM) image of the cross-section
for the coaxial through-silicon via (TSV) (Fig. 1. (b) in [15]). (b) Measured
insertion loss (black solid line) of the fabricated coaxial TSV. (Fig. 4 in [15]).
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Fig. 3 (b) (Fig. 4 in [15]) shows the measured insertion loss
of the fabricated coaxial TSVs. The test vehicle included 4
coaxial TSVs and RDLs. The insertion loss of the test vehicle
was measured up to 20 GHz. Unlike the measurement result of
the non-coaxial TSV, the resonances were not identified up to
20 GHz. As discussed earlier, the impedance mismatch was
suppressed by introducing the coaxial structure. That is, the
coaxial structure is advantageous in terms of the SI. Also, the
crosstalk performance can be improved by the shield conductor
in the coaxial TSV. However, the coaxial structure may increase
the fabrication cost due to additional processes.

III. VERTICAL INTERCONNECT AT PACKAGE LEVEL

Package test sockets are required to provide a temporary
connection for SI. A temporary connection is achieved by
compression with a force. Thus, test sockets with a compressible
interconnect are introduced in this section.

A. Elastomer package test socket

A pogo pin is conductive when being compressed, because
it includes a metal spring [16]. However, the metal spring
introduces a substantial parasitic inductance due to its structure.
Hence, the pogo pin is limited to use for high-frequency package
tests. An elastomer package socket is also conductive when a
vertical force is applied. As shown in Fig. 4 (a), the elastomer
socket includes conductive powders in an elastomer material
[17]. The powders are contacted with one another when the
elastomer material is compressed [ 18]. In terms of the temporary
connection, the pogo pin and elastomer socket are the same.
However, the absence of the metal spring improves the
elastomer socket in terms of the electrical performance in the
high-frequency range.

B. Coaxial elastomer package test socket

The coaxial approach was also applied to the pogo pin [19].
The coaxial pogo pin improved the crosstalk performance,

10.0k\V. 8.8mmﬂx70 SEM)

(b)
Fig. 4. (a) Top view image and (b) cross-sectional SEM image of the non-
coaxial elastomer socket.
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however the principal limitation which is the significant amount
of parasitic inductance was still inevitable. The elastomer socket
without the metal spring is also fabricable in the coaxial
structure. The coaxial elastomer socket was fabricated by
injecting conductive powders in a coaxial direction inside the
elastomer material [20]. The conductive powders are then placed
in the coaxial form after the fabrication process. The inner set of
the powders is for signal and the outer set of the powders is for
reference as shown in Fig. 5. Both of the non-coaxial and coaxial
elastomer sockets have the same pitch of 1.0 mm.

Fig. 6 compares the measured insertion loss and the far-end
crosstalk (FEXT) in the frequency domain. According to the
comparison, the advantage of the coaxial structure is clearly
shown again as discussed in this paper. The non-coaxial socket
had a resonance near 20 GHz, while the coaxial socket did not.
The non-coaxial socket has a reference column next to the signal
column, which causes the E-field to be distributed in between.
While, the coaxial socket has a larger reference column to
surround the signal column. The E-field is equally distributed
along with the circumference of the signal column. The
difference in the field distribution makes the different resonance
frequencies.

Another advantage of the coaxial structure was identified in
the measured crosstalk: 20 dB/dec [21]. The slope difference in
the crosstalk resulted from an asymmetry in the signaling [22].
The non-coaxial structure only supports the ground-signal (GS)
signaling, hence, asymmetry is inevitable. However, the coaxial
structure supports the ground-signal-ground (GSG) signaling
which is desirable in terms of the asymmetry. Therefore, another
advantage of the coaxial structure is identified in the crosstalk
measurement herein. The cost for the coaxial case is nearly the
same as that of the non-coaxial case. Because they have the same
amount of conductive powders. They only have different
configurations of the applied E-field to align the conductive
powders in an elastoemer material.

Fig. 5. (a) Top view image and (b) cross-sectional SEM image of the coaxial
elastomer socket.
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Fig. 6. Measured insertion losses and FEXT of non-coaxial and coaxial
elastomer sockets.

IV. VERTICAL INTERCONNECT AT PCB LEVEL

The PCB provides interconnections between the packages
and discrete components such as capacitors, switches,
connectors, filters, and resistors [23]-[24]. The PCB is required
to be designed as small as possible due to the form factor of a
system. To satisfy the above, the PCB had to be designed and
fabricated with a multi-layer structure, which leads to vertical
interconnects in the PCB.

A. Plated Through Hole (PTH) Via

The vertical interconnections in the multi-layer PCB include
blind, stacked, staggered, buried, and PTH vias depending on
which layers are connected [25]. As can be seen from Fig. 7, the
PTH via provides a connection from the top to bottom layers
[26]. Thus, the PTH via is the longest type among the fabricable
vias in the PCB technology. In the SI, the longest channel
typically implies the worst channel. Because the corresponding
insertion loss and FEXT are usually proportional to the length
[27]-[28]. Furthermore, the non-coaxial structure may have
resonance depending on the channel. Therefore, the multi-layer
PCB generally has limited electrical performances due to the
PTH vias. For this reason, most signal integrity analyses on the
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Fig. 7. The PTH via provides a connection between the top and bottom layers
[26].

via have focused on a modeling-based approach [29-31]. The
PCB via also has multiple reflections due to impedance
mismatches [32].

B. Vertical Conductive Struture (VeCS)

The VeCS was introduced to improve the -electrical
performances of the multi-layer PCB [33]-[35]. The VeCS
consists of a VeCS trace and metal jacket to shield the VeCS
trace as can be seen from Fig. 8. (2). The VeCS is a semi-coaxial
structure, because most of the electric (E)- and magnetic (H)-
fields are distributed between the VeCS trace and metal jacket.
Thus, the VeCS also has the advantage of the coaxial structure.
When the signal propagates over the VeCS trace (Fig. 8 (b)), the
return current for the signal is induced over the metal shield (Fig.
8 (¢)). That is, the characteristic impedance is constant during
the signal propagation on the VeCS. In contrast, the PTH via has
no vertical reference such as the metal jacket in the VeCS. Thus,
the PTH via typically has a substantial amount of signal
reflection during the signal propagation. This signal reflection
may cause resonances on the insertion loss.

Fig. 9 shows the simulated time-domain reflectometer
(TDR) in the time domain, and the measured insertion loss up to
70 GHz in the frequency domain. The simulated models include
only either the PTH via or the VeCS, and the HFSS from
ANSYS was used. The TDR shows how much the voltage is
reflected along with the signal propagation, which can be used
to show how much the characteristic impedance varies. The
simulated TDR shows that the VeCS has less amount of signal
reflection along with the signal propagation. The measured test
vehicles included the fabricable ranges for the PTH vias and the
VeCS with the same pitch. Thus, each set shows the practical
insertion losses for the PTH vias and the VeCS, respectively.
According to the measurement result, while some PTH vias had
resonances around 35 GHz, the VeCS did not. The undesired
resonances are resulted from the poor return path [36]. Because
the PTH vias have the reference changes along with the signal
propagation. Also, the slope of the measured insertion loss is less
steep in the case of the VeCS. Therefore, the VeCS improved
the electrical performances with the semi-coaxial structure. The
VeCS shows better electrical performances, however the cost for
the VeCS is comparable to that of the PTH via.
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Fig. 8. (a) The VeCS consists of the VeCS trace and metal jacket. The VeCS
also provides a connection from the top to the bottom layers with (b) the VeCS
trace and (c) metal shield.

V. CONCLUSION

This paper introduces the vertical technology with the
coaxial structure in silicon, package, and PCB levels,
respectively. The coaxial structure has advantages in the SI due
to its geometrical characteristics. The charge distribution is
determined by the signal and reference, thus, the coaxial
structure has equally distributed charges over a circumference.
While, the non-coaxial structure has a biased charge distribution
depending on the reference. The vertical interconnect in the
laminated multi-layer may be sensitive to signal reflection by
the mismatched characteristic impedance. The laminated
structure may have different characteristic impedance, the non-
coaxial structure may be sensitive correspondingly. Also, the
crosstalk noise is suppressed by a surrounding reference in the
coaxial structure. The measurement and simulation results
herein successfully show the above advantages of the coaxial
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structure for the TSV, the elastomer package socket, and the
PCB via.
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