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Abstract—Time-resolved electromagnetic near-field scanning is
vital for antenna measurement and addressing complex elec-
tromagnetic interference and compatibility issues. However, the
swift acquisition of high-resolution spatiotemporal data remains
challenging due to physical constraints, such as moving the
probe position and allowing sufficient time for sampling. This
paper introduces a novel hybrid approach that combines Kriging
for sparse spatial measurement, compressed sensing (CS) for
sparse temporal sampling, and dynamic mode decomposition
(DMD) for a comprehensive analysis of dual-sparse sampling
electromagnetic near-field data. CS optimizes sparse sampling in
the time domain, capitalizing on the inherent sparsity within elec-
tromagnetic radiated signals, resulting in reliable representation
of time-domain signals and reducing the required time samples.
Latin hypercube sampling guides the probe position, facilitat-
ing sparse measurement in the space domain. DMD extracts
meaningful insights from the resulting sparse spatiotemporal
data, producing sparse dynamic modes and temporal evolution
information. Subsequently, Kriging is employed to infer missing
spatial measurements for each sparse dynamic mode. Finally,
the entire spatiotemporal signals are reconstructed based on
interpolated dynamic modes and temporal evolution information.
Validation of the proposed method is demonstrated with an
example using crossed dipole antennas as the device under test.
The Kriging-CS-DMD framework effectively reconstructs elec-
tromagnetic fields with precision while concurrently reducing the
measurement workload in both the time and space domains. This
methodology holds promise for various applications, including
space-time-modulated electronic devices.

Index Terms—Time-resolved electromagnetic near-field scan-
ning, compressed sensing, Kriging, dynamic mode decomposition.

I. INTRODUCTION

Electromagnetic near-field scanning is crucial for antenna

measurement and investigating electromagnetic interference

(EMI) and compatibility (EMC) phenomena [1]. However, ob-

taining radiation distribution in this scanning process remains

time-consuming [2]. The traditional approach involves physi-

cally moving sensing probes to different positions during near-

field scanning, making data collection from numerous pixels

notably time-intensive [3], [4]. To address this challenge,

accelerated data acquisition methods have been developed,

such as sequential sampling [2], compressed sensing [5],

equilateral-triangular-spaced samples [6], Kriging method [7],

and wide-mesh scanning [8]. These methods primarily focus

on spatially sparse sampling in the frequency domain to

reconstruct global spatial distributions.

Recently, there has been an introduction of time-domain

distribution measurements in electromagnetic near-field scan-

ning to enhance the analysis of transient electromagnetic phe-

nomena [9], [10]. Unlike traditional frequency-domain mea-

surements, this approach involves acquiring electrical signals

through high-speed oscilloscopes and deducing time-varying

field signals through basic computational processes [11], [12].

Herein, effectively capturing time-varying near-field distribu-

tions requires simultaneous sampling of both temporal and

spatial dimensions, introducing complexities in high-speed

near-field scanning. Accurate characterization of transient

electromagnetic phenomena necessitates synchronization and

coordination of temporal and spatial sampling methodologies.

In this study, we introduce a novel hybrid method named

Kriging-CS-DMD to effectively tackle the challenges associat-

ed with temporal and spatial sampling in near-field scanning.

Our approach combines Kriging, compressed sensing (CS),

and dynamic mode decomposition (DMD). Specifically, we

leverage CS to attain temporal sparsity in data acquisition,

and Latin hypercube sampling enables spatial sparse sampling.

The resulting spatiotemporal dual-sparse data undergoes DMD

analysis, allowing the extraction of sparse dynamic modes

and corresponding frequency information. Subsequently, we

apply the Kriging method to recover the full dynamic modes

from the sparse dynamic modes. Finally, our hybrid approach

reconstructs the original spatiotemporal field distributions

based on the full dynamic modes and corresponding frequency

information.

II. KRIGING-COMPRESSED SENSING-DYNAMIC MODE

DECOMPOSITION

Fig. 1 outlines the proposed Kriging-CS-DMD method for

electromagnetic near-field scanning, specifically addressing

situations with sparse spatial and temporal sampling. The
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Fig. 1. Schematic of the proposed Kriging-compressed sensing-dynamic mode decomposition for near-field scanning with dual sparse sampling in both time
and space domains.

method aims to provide a comprehensive representation of the

electromagnetic field through a multi-step process:

Step 1): The initial phase of the process commences

with sparse sampling, a technique that meticulously gathers a

limited set of spatial data points, represented by Z, alongside

discrete samples in time, denoted as n. This selection of spatial

points is strategically executed using the Latin Hypercube

Sampling (LHS) method, a statistical approach designed to

ensure a comprehensive and uniformly distributed representa-

tion of the multidimensional parameter space. Concurrently,

temporal samples are acquired at these spatial locations in

a randomized manner. This deliberate methodology results

in the formation of sparse spatiotemporal data, symbolically

represented as Qn

Z
∈ R

Z×n. The essence of this step lies in its

ability to efficiently capture critical points in space and time

with minimal data, setting a robust foundation for subsequent

analysis efforts.

Step 2): To enhance temporal resolution, compressed sens-

ing matching pursuit [13] is used, increasing the number of

time samples (n) by generating m contiguous time samples at

each of the Z spatial points. The result is a denser and more

informative temporal dataset, denoted as Qm

Z
∈ R

Z×m.

Step 3): The dataset Qm

Z
with Z×m data points undergoes

DMD analysis, extracting sparse dynamic modes and corre-

sponding frequency information. DMD models Qm

Z
as [14]–

[16]

qZ(t) =

L∑

l=1

xl exp(ηlt)αl =

L∑

l=1

xl exp(η
real
l t+ jη

imag

l
t)αl.

(1)

where qZ(t) represents the time-varying state in the sparse

spatial domain.

Step 4): The Kriging method is then applied to recover

complete global dynamic modes from the sparse dynamic

modes. Specifically, it is employed to extrapolate the informa-

tion obtained from a limited number of spatial dimensions (Z)

to a fully realized spatial domain encompassing R dimensions.

This is achieved by transforming the sparse dynamic modes

represented by xl ∈ R
Z into comprehensive global dynamic

modes, denoted as xKri

l
∈ R

R. As a result, Kriging not

only fills in the gaps within the sparse dataset but does so

in a manner that is statistically optimized based on the spatial

distribution of the known data points.

Step 5): The recovered xKri

l
replaces xl in (1), modeling

the entire spatial-temporal radiated fields as

qR(t) =
L∑

l=1

xKri

l exp(ηlt)αl

=
L∑

l=1

xKri

l exp(ηreal
l t+ jη

imag

l
t)αl.

(2)

The Kriging-CS-DMD approach constructs a data-driven mod-

el for time-resolved near-field scanning based on doubly sparse

data. This enables the reconstruction of entire distributions, the

identification of frequency components, and the determination

of corresponding spatial distributions. The method proves

valuable for gaining insights into time-varying electromagnetic

field behavior, especially in scenarios with limited and sparse

sampling in both spatial and temporal dimensions.
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Fig. 2. Crossed dipole antenna with two different exciting signal

III. RESULTS

To validate the proposed method, we conducted a simulation

experiment using a crossed dipole antenna configuration [17]

as the DUT, visually depicted in Fig. 2. Both antennas are

designed as half-wave dipole antennas. Antenna 1 operates

at the 2.4 GHz frequency band with λ1 = 0.125 m, while

Antenna 2 is tailored for the 5 GHz frequency band (λ2 = 0.06
m). Sinusoidal waves v1(t) and v2(t), operating at 2.4 GHz

and 5 GHz, respectively, are used to excite Antenna 1 and

Antenna 2.

Herein, we first illustrate sparse sampling in the time

domain, starting with an initial sampling of 1000 data points.

Through the application of Compressed Sensing (CS), this

quantity is efficiently reduced to 128 data points, resulting in

a temporal sparse sampling factor of approximately 7.8 times.

Simultaneously, in the spatial domain, the original pixel count

for sampling is 256×256. By employing the Kriging method,

we select 500 pixels for subsequent reconstruction, leading to

a spatial sparse sampling factor of approximately 131. The

combination of temporal and spatial sparse sampling not only

significantly reduces data dimensionality but also enhances the

overall efficiency of the data acquisition process.

Next, we analyze data acquired through dual sparse sam-

pling using the Kriging-CS-DMD framework. The DMD spec-

trum obtained through Kriging-CS-DMD analysis of doubly

sparse sampled data is depicted in Fig. 3 (b). For comparison,

we also calculate the DMD spectrum obtained via original

data analysis, shown in Fig. 3 (a). The results show successful

extraction of two distinct frequency components, 2.4 GHz and

5.0 GHz, aligning closely with the actual scenario. This con-

cordance underscores the Kriging-CS-DMD method’s ability

to extract frequency information using temporally and spatially

doubly sparse sampled data.

Furthermore, Fig. 4 visualizes the corresponding dynamic

modes alongside the representation of the original modes for

comparison. Taking the 2.4 GHz dynamic mode as an example

(Fig. 4 (b)), we observe consistency between the reconstructed

field data based on 500 sampling points and the actual radia-

tion mode shown in Fig. 4 (a). Similar findings are observed

for the 5.0 GHz frequency, as depicted in Fig. 4 (c) and

(d). The Kriging-CS-DMD method effectively derives spatial

radiation patterns for each frequency based on temporally and

spatially doubly sparse sampled data. These results highlight

the method’s efficacy in extracting essential frequency infor-

mation and elucidating associated spatial distributions.

Fig. 5 presents the original spatial distribution of the electric

field Ez and the corresponding reconstruction results at three

distinct time points: 2 ns, 4 ns, and 5 ns. Fig. 5 (a), (c), and

(e) depict the original radiated field at these time instances

with a resolution of 256 × 256 pixels. Fig. 5 (b), (d), and

(f) show the Kriging-CS-DMD reconstruction results achieved

with temporally and spatially doubly sparse sampled data,

involving 128 temporal points and 500 spatial pixels. The

proposed approach is implemented by MATLAB R2022b, the

information of the adopted workstation is Intel(R) Xeon(R)

Gold 5222 @3.80GH 64GB, and the execution time is 6.89s.

The comparison between original and reconstructed fields

demonstrates the effectiveness of the Kriging-CS-DMD ap-

proach in capturing the dynamic evolution of the electric field

over time with reduced data points.
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Fig. 5. Original Spatial Distribution of Electric Field Ez and Reconstruction
Results at Different Time Points: (a) Original Radiated Field (256 × 256

pixels) at 2 ns; (b) Kriging-CS-DMD Reconstruction with Temporally and
Spatially Doubly Sparse Sampled Data (128 temporal points and 500 spatial
pixels) at 2 ns; (c) Original Radiated Field (256 × 256 pixels) at 4 ns;
(d) Kriging-CS-DMD Reconstruction with Temporally and Spatially Doubly
Sparse Sampled Data (128 temporal points and 500 spatial pixels) at 4 ns;
(e) Original Radiated Field (256× 256 pixels) at 5 ns; (f) Kriging-CS-DMD
Reconstruction with Temporally and Spatially Doubly Sparse Sampled Data
(128 temporal points and 500 spatial pixels) at 5 ns.
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Original DMD spectrum

(a)

Time sparse DMD spectrum

(b)

Fig. 3. (a) The DMD spectrum acquired through the utilization of DMD for the analysis of the original dataset. (b) The DMD spectrum obtained by employing
the Kriging-CS-DMD for the analysis of spatial-temporal dual sparse data.

(a) (b) (c) (d)

Fig. 4. (a) Original radiated filed distribution at 2.4 GHz. (b) 2.4 GHz mode extracted by Kriging-CS-DMD method. (a) Original radiated filed distribution
at 5.0 GHz. (b) 5.0 GHz mode extracted by Kriging-CS-DMD method.

IV. CONCLUSION

In summary, we presented the Kriging-CS-DMD approach

to overcome the challenges posed by dual temporal and spatial

sampling in near-field scanning. Our method optimizes data

acquisition by employing Kriging for spatial sparse sam-

pling and compressed sensing for achieving temporal sparsity,

preserving data fidelity. The application of dynamic mode

decomposition to the resulting spatiotemporal dual-sparse data

enables the extraction of valuable insights, encompassing

frequency information and global spatial distributions for each

frequency. Our numerical case study effectively demonstrated

the method’s efficiency and accuracy in reconstructing electro-

magnetic fields while simultaneously reducing measurement

overhead. The versatility of this methodology makes it appli-

cable in various scenarios, especially in space-time-modulated

electronic devices.
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