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Abstract—Time-resolved electromagnetic near-field scanning is
vital for antenna measurement and addressing complex elec-
tromagnetic interference and compatibility issues. However, the
swift acquisition of high-resolution spatiotemporal data remains
challenging due to physical constraints, such as moving the
probe position and allowing sufficient time for sampling. This
paper introduces a novel hybrid approach that combines Kriging
for sparse spatial measurement, compressed sensing (CS) for
sparse temporal sampling, and dynamic mode decomposition
(DMD) for a comprehensive analysis of dual-sparse sampling
electromagnetic near-field data. CS optimizes sparse sampling in
the time domain, capitalizing on the inherent sparsity within elec-
tromagnetic radiated signals, resulting in reliable representation
of time-domain signals and reducing the required time samples.
Latin hypercube sampling guides the probe position, facilitat-
ing sparse measurement in the space domain. DMD extracts
meaningful insights from the resulting sparse spatiotemporal
data, producing sparse dynamic modes and temporal evolution
information. Subsequently, Kriging is employed to infer missing
spatial measurements for each sparse dynamic mode. Finally,
the entire spatiotemporal signals are reconstructed based on
interpolated dynamic modes and temporal evolution information.
Validation of the proposed method is demonstrated with an
example using crossed dipole antennas as the device under test.
The Kriging-CS-DMD framework effectively reconstructs elec-
tromagnetic fields with precision while concurrently reducing the
measurement workload in both the time and space domains. This
methodology holds promise for various applications, including
space-time-modulated electronic devices.

Index Terms—Time-resolved electromagnetic near-field scan-
ning, compressed sensing, Kriging, dynamic mode decomposition.

I. INTRODUCTION

Electromagnetic near-field scanning is crucial for antenna
measurement and investigating electromagnetic interference
(EMI) and compatibility (EMC) phenomena [1]. However, ob-
taining radiation distribution in this scanning process remains
time-consuming [2]. The traditional approach involves physi-
cally moving sensing probes to different positions during near-
field scanning, making data collection from numerous pixels
notably time-intensive [3], [4]. To address this challenge,
accelerated data acquisition methods have been developed,
such as sequential sampling [2], compressed sensing [5],
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equilateral-triangular-spaced samples [6], Kriging method [7],
and wide-mesh scanning [8]. These methods primarily focus
on spatially sparse sampling in the frequency domain to
reconstruct global spatial distributions.

Recently, there has been an introduction of time-domain
distribution measurements in electromagnetic near-field scan-
ning to enhance the analysis of transient electromagnetic phe-
nomena [9], [10]. Unlike traditional frequency-domain mea-
surements, this approach involves acquiring electrical signals
through high-speed oscilloscopes and deducing time-varying
field signals through basic computational processes [11], [12].
Herein, effectively capturing time-varying near-field distribu-
tions requires simultaneous sampling of both temporal and
spatial dimensions, introducing complexities in high-speed
near-field scanning. Accurate characterization of transient
electromagnetic phenomena necessitates synchronization and
coordination of temporal and spatial sampling methodologies.

In this study, we introduce a novel hybrid method named
Kriging-CS-DMD to effectively tackle the challenges associat-
ed with temporal and spatial sampling in near-field scanning.
Our approach combines Kriging, compressed sensing (CS),
and dynamic mode decomposition (DMD). Specifically, we
leverage CS to attain temporal sparsity in data acquisition,
and Latin hypercube sampling enables spatial sparse sampling.
The resulting spatiotemporal dual-sparse data undergoes DMD
analysis, allowing the extraction of sparse dynamic modes
and corresponding frequency information. Subsequently, we
apply the Kriging method to recover the full dynamic modes
from the sparse dynamic modes. Finally, our hybrid approach
reconstructs the original spatiotemporal field distributions
based on the full dynamic modes and corresponding frequency
information.

II. KRIGING-COMPRESSED SENSING-DYNAMIC MODE
DECOMPOSITION

Fig. 1 outlines the proposed Kriging-CS-DMD method for
electromagnetic near-field scanning, specifically addressing
situations with sparse spatial and temporal sampling. The
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Fig. 1. Schematic of the proposed Kriging-compressed sensing-dynamic mode decomposition for near-field scanning with dual sparse sampling in both time

and space domains.

method aims to provide a comprehensive representation of the
electromagnetic field through a multi-step process:

Step 1): The initial phase of the process commences
with sparse sampling, a technique that meticulously gathers a
limited set of spatial data points, represented by Z, alongside
discrete samples in time, denoted as n. This selection of spatial
points is strategically executed using the Latin Hypercube
Sampling (LHS) method, a statistical approach designed to
ensure a comprehensive and uniformly distributed representa-
tion of the multidimensional parameter space. Concurrently,
temporal samples are acquired at these spatial locations in
a randomized manner. This deliberate methodology results
in the formation of sparse spatiotemporal data, symbolically
represented as Q% € RZ*™. The essence of this step lies in its
ability to efficiently capture critical points in space and time
with minimal data, setting a robust foundation for subsequent
analysis efforts.

Step 2): To enhance temporal resolution, compressed sens-
ing matching pursuit [13] is used, increasing the number of
time samples (n) by generating m contiguous time samples at
each of the Z spatial points. The result is a denser and more
informative temporal dataset, denoted as Q7 € RZxm,

Step 3): The dataset Q7 with Z x m data points undergoes
DMD analysis, extracting sparse dynamic modes and corre-
sponding frequency information. DMD models Q7 as [14]-
[16]

L

az(t) = Y xexp(mt)a

L
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where qz(t) represents the time-varying state in the sparse
spatial domain.

Step 4): The Kriging method is then applied to recover
complete global dynamic modes from the sparse dynamic
modes. Specifically, it is employed to extrapolate the informa-
tion obtained from a limited number of spatial dimensions (Z)
to a fully realized spatial domain encompassing 12 dimensions.
This is achieved by transforming the sparse dynamic modes
represented by x; € RZ into comprehensive global dynamic
modes, denoted as x*"" € Rf. As a result, Kriging not
only fills in the gaps within the sparse dataset but does so
in a manner that is statistically optimized based on the spatial

distribution of the known data points.

Step 5): The recovered x{*"* replaces x; in (1), modeling

the entire spatial-temporal radiated fields as

Xle

M=

qr(t) exp(mit)ay

~

1

(©))
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X[ exp(nit + jn) ") ay.

~

1

The Kriging-CS-DMD approach constructs a data-driven mod-
el for time-resolved near-field scanning based on doubly sparse
data. This enables the reconstruction of entire distributions, the
identification of frequency components, and the determination
of corresponding spatial distributions. The method proves
valuable for gaining insights into time-varying electromagnetic
field behavior, especially in scenarios with limited and sparse
sampling in both spatial and temporal dimensions.
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Fig. 2. Crossed dipole antenna with two different exciting signal

III. RESULTS

To validate the proposed method, we conducted a simulation
experiment using a crossed dipole antenna configuration [17]
as the DUT, visually depicted in Fig. 2. Both antennas are
designed as half-wave dipole antennas. Antenna 1 operates
at the 2.4 GHz frequency band with A\; = 0.125 m, while
Antenna 2 is tailored for the 5 GHz frequency band (A, = 0.06
m). Sinusoidal waves v1(t) and vs(t), operating at 2.4 GHz
and 5 GHz, respectively, are used to excite Antenna 1 and
Antenna 2.

Herein, we first illustrate sparse sampling in the time
domain, starting with an initial sampling of 1000 data points.
Through the application of Compressed Sensing (CS), this
quantity is efficiently reduced to 128 data points, resulting in
a temporal sparse sampling factor of approximately 7.8 times.
Simultaneously, in the spatial domain, the original pixel count
for sampling is 256 x 256. By employing the Kriging method,
we select 500 pixels for subsequent reconstruction, leading to
a spatial sparse sampling factor of approximately 131. The
combination of temporal and spatial sparse sampling not only
significantly reduces data dimensionality but also enhances the
overall efficiency of the data acquisition process.

Next, we analyze data acquired through dual sparse sam-
pling using the Kriging-CS-DMD framework. The DMD spec-
trum obtained through Kriging-CS-DMD analysis of doubly
sparse sampled data is depicted in Fig. 3 (b). For comparison,
we also calculate the DMD spectrum obtained via original
data analysis, shown in Fig. 3 (a). The results show successful
extraction of two distinct frequency components, 2.4 GHz and
5.0 GHz, aligning closely with the actual scenario. This con-
cordance underscores the Kriging-CS-DMD method’s ability
to extract frequency information using temporally and spatially
doubly sparse sampled data.

Furthermore, Fig. 4 visualizes the corresponding dynamic
modes alongside the representation of the original modes for
comparison. Taking the 2.4 GHz dynamic mode as an example
(Fig. 4 (b)), we observe consistency between the reconstructed
field data based on 500 sampling points and the actual radia-
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tion mode shown in Fig. 4 (a). Similar findings are observed
for the 5.0 GHz frequency, as depicted in Fig. 4 (c) and
(d). The Kriging-CS-DMD method effectively derives spatial
radiation patterns for each frequency based on temporally and
spatially doubly sparse sampled data. These results highlight
the method’s efficacy in extracting essential frequency infor-
mation and elucidating associated spatial distributions.

Fig. 5 presents the original spatial distribution of the electric
field £, and the corresponding reconstruction results at three
distinct time points: 2 ns, 4 ns, and 5 ns. Fig. 5 (a), (¢), and
(e) depict the original radiated field at these time instances
with a resolution of 256 x 256 pixels. Fig. 5 (b), (d), and
(f) show the Kriging-CS-DMD reconstruction results achieved
with temporally and spatially doubly sparse sampled data,
involving 128 temporal points and 500 spatial pixels. The
proposed approach is implemented by MATLAB R2022b, the
information of the adopted workstation is Intel(R) Xeon(R)
Gold 5222 @3.80GH 64GB, and the execution time is 6.89s.
The comparison between original and reconstructed fields
demonstrates the effectiveness of the Kriging-CS-DMD ap-
proach in capturing the dynamic evolution of the electric field
over time with reduced data points.

Original EM Field

Kriging-CS-DMD

t=0.4 ns

01BE
’| .
0.13

0.13 0

X (m) X (cm)
Fig. 5. Original Spatial Distribution of Electric Field E. and Reconstruction
Results at Different Time Points: (a) Original Radiated Field (256 x 256
pixels) at 2 ns; (b) Kriging-CS-DMD Reconstruction with Temporally and
Spatially Doubly Sparse Sampled Data (128 temporal points and 500 spatial
pixels) at 2 ns; (c) Original Radiated Field (256 x 256 pixels) at 4 ns;
(d) Kriging-CS-DMD Reconstruction with Temporally and Spatially Doubly
Sparse Sampled Data (128 temporal points and 500 spatial pixels) at 4 ns;
(e) Original Radiated Field (256 x 256 pixels) at 5 ns; (f) Kriging-CS-DMD
Reconstruction with Temporally and Spatially Doubly Sparse Sampled Data
(128 temporal points and 500 spatial pixels) at 5 ns.
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Fig. 3. (a) The DMD spectrum acquired through the utilization of DMD for the analysis of the original dataset. (b) The DMD spectrum obtained by employing

the Kriging-CS-DMD for the analysis of spatial-temporal dual sparse data.
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Fig. 4. (a) Original radiated filed distribution at 2.4 GHz. (b) 2.4 GHz mode extracted by Kriging-CS-DMD method. (a) Original radiated filed distribution
at 5.0 GHz. (b) 5.0 GHz mode extracted by Kriging-CS-DMD method.
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