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Abstract—This paper proposes a hybrid method for time-
resolved electromagnetic near-field scanning, merging model-
based ( Gaussian processes regression model, a.k.a. Kriging
method) and data-driven (dynamic mode decomposition) tech-
niques. Specifically, Latin hypercube sampling enables spatially
sparse measurements, followed by dynamic mode decomposition
to analyze resulting sparse spatial-temporal data, extracting
frequency information and sparse dynamic modes. The Kriging
method is then employed for full-state reconstruction. The
proposed approach is evaluated using crossed dipole antennas.
Results indicate that, even with a spatial subsampling factor of
130, achieving a fully reconstructed field distribution suitable for
engineering applications with frequency information extraction is
feasible. This hybrid framework presents a promising avenue to
enhance efficiency in electromagnetic near-field measurements,
potentially finding applications across diverse electromagnetic
measurement scenarios.

Index Terms—Time-resolved electromagnetic near-field scan-
ning, Kriging, spatially sparse sampling strategy, dynamic mode
decomposition.

I. INTRODUCTION

Electromagnetic near-field scanning (NFS) plays a vital
role in antenna measurement and investigating electromagnetic
interference (EMI) and compatibility (EMC) phenomena [1].
Despite its importance, obtaining the radiation distribution
during this scanning process is time-consuming [2]. The tra-
ditional approach involves physically moving sensing probes
to different positions, resulting in notably time-intensive data
collection from numerous pixels [3], [4]. To overcome this
challenge, various accelerated data acquisition methods have
been developed, including such as compressed sensing [5],
sequential sampling [2], Kriging method [6], and wide-mesh
scanning [7]. These techniques primarily concentrate on ob-
taining sparsely sampled spatial data in the frequency domain
to reconstruct global spatial distributions.

Recently, there has been a shift towards incorporating time-
domain distribution measurements in electromagnetic NFS to
enhance the analysis of transient electromagnetic phenom-
ena [8], [9]. Unlike traditional frequency-domain measure-
ments, time-resolved measurement involves acquiring elec-
trical signals through high-speed oscilloscopes and deduc-
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ing time-varying field signals [10], [11]. Effectively captur-
ing time-varying near-field distributions requires simultaneous
sampling of temporal and spatial dimensions, introducing
complexities in fast NFS. In particular, tackling the time-
consuming and costly aspects of time-resolved NFS is essen-
tial, which demands accessibility to all on-board locations and
fast probe positioning.

This work proposes a novel hybrid framework named
Kriging-DMD, integrating Gaussian processes regression (K-
riging) and dynamic mode decomposition (DMD) for elec-
tromagnetic NFS. Specifically, we first employ the Latin
hypercube sampling algorithm for sparse measurements in
the spatial domain. Subsequently, DMD facilitates spatial-
temporal decomposition analysis, extracting sparse dynamic
modes and frequency information. Leveraging the Kriging
method, we recover the full state of dynamic modes using
sparse data from a small number of sampled points. Finally,
Kriging-DMD offers the reconstruction of the raw near-field,
enabling analysis of time-varying or transient signals.

II. KRIGING-DYNAMIC MODE DECOMPOSITION

This section presents the proposed Kriging-DMD method
for electromagnetic NFS. The method aims to provide a com-
prehensive representation of the electromagnetic field through
a multi-step process:

Step 1): In the initial phase of spatial data collection through
sparse measurement, Latin Hypercube Sampling (LHS) strate-
gically samples the spatial distribution during NFS. LHS,
derived from statistics and combinatorial mathematics, effi-
ciently divides the multidimensional spatial scanning domain
into equally spaced intervals along each dimension [12]. The
advantage of LHS lies in its ability to maximize information
gain while conserving resources [13]. By selectively choosing
a subset of data points for measurement, LHS expedites the
data collection process, proving to be an efficient technique for
spatial analysis and modeling. In essence, sparse measurement
involves selecting representative locations or sensor nodes for
data collection, which are then used to reconstruct complete
spatial data using the Kriging method.
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Fig. 1. Schematic of the proposed Kriging-dynamic mode decomposition
for near-field scanning with sparse sampling in space domains.

Step 2): Then, the DMD is used to compute the sparse
measured data. DMD is a technique used for modeling and
analyzing the dynamics and extracting coherent structures
from time-varying EM data [14], [15]. Notably, even in the
context of sparse measured field data, the application of DMD
remains feasible, which can be detailed as follows [16].

Z m; exp(w redlt + ]wlmagt)

=1

(D
where the sparse field x(¢) is expressed as a linear combination
of dynamic modes m; with associated frequency and damping
factor information, denoted by w; = wi¥ + lemag’ and am-
plitude weights a;. Through the LHS, the sparse measurement
is obtained, which means that only a subset of the complete
dataset is available. It is assumed that only K measured data
sample are selected. Then, the EM radiated field is also with
K dimension, ie., x; € R¥ in (3). Similarly, due to sparse
measurement, m; € R¥ in (3). Overall, when computing D-
MD on sparse measured data, sparse spatial features, and their
corresponding time-varying characteristics are also extracted.
Step 3): Next, the Kriging method is employed to facilitate
the mapping of spatially sparse dynamic modes to their full-
state counterparts. Illustratively, considering the ¢ th dynamic
mode, denoted as m;, the Kriging technique is applied to
reconstruct data for additional spatial points, effecting a transi-
tion from the K -dimensional space to the full state residing in
the Z-dimensional space, where Z signifies the dimensionality
of the complete state. To be specific, the GPR model, denoted

as gk (r), takes the following form:

M
= Bnhm(r
m=1

where the coefficients f3,, and «j are determined through
estimation using a generalized least-squares procedure. The
initial section of (2) corresponds to a linear regression with

g m; exp(w;t)a; =
=1

K
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respect to the basis functions h,,(r). Typically, these basis
functions are chosen to be low-order polynomials or constants.
The latter part of (2) signifies a localized deviation from
the regression component, expressed as a sum of K shifted
instances of the correlation function, each centered on an
individual data sample. For each of the sparse dynamic modes,
we establish an associated Kriging model, facilitating the
recovery of the complete set of dynamic modes that constitute
the entire state.

Step 4): Finally, the original full state spatial-temporal EM
radiation field can be reconstructed. In particular, Kriging
serves as a predictive tool for extrapolating values at unsam-
pled points of each dynamic mode based on the information
garnered from sampled points. Thus, the original full state EM
radiation field can be expressed as follows.

I
2(t) = ZmZZ exp(w;t)a;
i=1

The presented method underscores the significance of em-
ploying kriging for the estimation of missing data points
across dynamic modes. This approach ensures the preserva-
tion of temporal sampling integrity, independent treatment of
time and space dimensions, consistency in DMD spectrum
characteristics, and, fundamentally, the reconstruction of the
complete time-varying electromagnetic (EM) radiation field
through the application of DMD-based analytical formulations.
The schematic flow of the proposed Kriging-DMD framework
is depicted in Figure 1.
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III. RESULTS
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Fig. 2. Crossed dipole antenna with two different exciting signal

To validate the proposed method, we performed a simulation
experiment employing a crossed dipole antenna configura-
tion [17] depicted in Fig. 2. Both antennas are half-wave dipole
antennas, with Antenna 1 operating at 2.4 GHz (wavelength
A1 = 0.125 m) and Antenna 2 at 5 GHz (A> = 0.06 m).
Sinusoidal waves v1(t) and wva(t) at 2.4 GHz and 5 GHz,
respectively, serve as excitations for Antenna 1 and Antenna
2.

In the spatial domain, the initial pixel count for sampling
is 256 x 256. Through the application of the Kriging method,
we select 500 pixels for subsequent reconstruction, resulting
in a spatial sparse sampling factor of approximately 131.
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The integration of temporal and spatial sparse sampling not
only significantly diminishes data dimensionality but also
elevates the overall efficiency of the data acquisition process.
Subsequently, we scrutinize the data acquired through spatially
sparse sampling utilizing the Kriging-DMD framework. The
DMD spectrum derived from the Kriging-DMD analysis of
spatially sparse sampled data is illustrated in Fig. 3 (b). For
reference, we compute the DMD spectrum obtained through
raw data analysis, as depicted in Fig. 3 (a). The outcomes
manifest the successful extraction of two distinct frequency
components, 2.4 GHz and 5.0 GHz, closely aligning with the
actual scenario. This alignment underscores the Kriging-DMD
method’s proficiency in extracting frequency information using
spatially sparse sampled data.
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Fig. 3. The distribution of the eigenvalues obtained by the (a) traditional
DMD in the analyze of global EM radiation and (b) Kriging-DMD in the
analyze of sparse EM radiation.

Subsequently, Fig. 4 presents the reconstruction of sparse
dynamic modes by the Kriging method alongside the original
modes for direct comparison. Examining the 2.4 GHz dynamic
mode as an illustrative case (Fig. 4 (c)), we observe good
agreement between the reconstructed field data from 500
sampling points and the actual radiation mode illustrated in
Fig. 4 (a). Comparable observations are made for the 5.0 GHz
frequency, as evident in Fig. 4 (b) and (d). The Kriging-DMD
method deduces spatial radiation patterns for each frequency
based on spatially sparse sampled data. These findings under-
score the method’s proficiency in extracting crucial frequency
information and elucidating associated spatial distributions.

Fig. 5 displays the initial spatial distribution of the electric
field E, and the corresponding reconstructions at 0.4 ns and 1
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Fig. 4. (a) Initial distribution of the electromagnetic (EM) radiation field at
2.4 GHz. (b) Initial distribution of the electromagnetic (EM) radiation field at
5.0 GHz. (c) Kriging interpolation for the dynamic mode at 2.4 GHz (spatial
sampling: 500). (d) Kriging interpolation for the dynamic mode at 5.0 GHz
(spatial sampling: 500).
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Fig. 5. Original spatial distribution of electric field E/. and reconstruction

result of the spatial distribution of electric field E, at 0.4 ns: (a) original
radiated field with 256 x 256 pixels; (b) Krigin-DMD reconstruction with
500 pixels, at 1 ns: (c) original radiated field with 256 X 256 pixels; (d)
Krigin-DMD reconstruction with 500 pixels.
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ns. Specifically, Fig. 5 (a) and (c) exhibit the original radiated
field at these time points with a resolution of 256 x 256
pixels. Additionally, Fig. 5 (b) and (d) plots the Kriging-DMD
reconstruction results achieved with spatially sparse sampled
data involving 500 spatial pixels. It can be clearly seen that
Kriging-DMD can reconstruct the global EM signal with fewer
spatial sampling points and provide frequency information and
corresponding spatial distribution.

IV. CONCLUSION

In conclusion, we presented a hybrid framework, the
Kriging-DMD method, for spatially sparse sampling in time-
resolved electromagnetic NFS. The efficacy of this approach
was verified through its successful application to crossed
dipole antennas, encompassing two distinct dipole antenna
configurations. Moreover, the proposed method could be use-
ful for extension and applicability across diverse electromag-
netic measurement settings.
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