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Abstract—This paper proposes a hybrid method for time-
resolved electromagnetic near-field scanning, merging model-
based ( Gaussian processes regression model, a.k.a. Kriging
method) and data-driven (dynamic mode decomposition) tech-
niques. Specifically, Latin hypercube sampling enables spatially
sparse measurements, followed by dynamic mode decomposition
to analyze resulting sparse spatial-temporal data, extracting
frequency information and sparse dynamic modes. The Kriging
method is then employed for full-state reconstruction. The
proposed approach is evaluated using crossed dipole antennas.
Results indicate that, even with a spatial subsampling factor of
130, achieving a fully reconstructed field distribution suitable for
engineering applications with frequency information extraction is
feasible. This hybrid framework presents a promising avenue to
enhance efficiency in electromagnetic near-field measurements,
potentially finding applications across diverse electromagnetic
measurement scenarios.

Index Terms—Time-resolved electromagnetic near-field scan-
ning, Kriging, spatially sparse sampling strategy, dynamic mode
decomposition.

I. INTRODUCTION

Electromagnetic near-field scanning (NFS) plays a vital

role in antenna measurement and investigating electromagnetic

interference (EMI) and compatibility (EMC) phenomena [1].

Despite its importance, obtaining the radiation distribution

during this scanning process is time-consuming [2]. The tra-

ditional approach involves physically moving sensing probes

to different positions, resulting in notably time-intensive data

collection from numerous pixels [3], [4]. To overcome this

challenge, various accelerated data acquisition methods have

been developed, including such as compressed sensing [5],

sequential sampling [2], Kriging method [6], and wide-mesh

scanning [7]. These techniques primarily concentrate on ob-

taining sparsely sampled spatial data in the frequency domain

to reconstruct global spatial distributions.

Recently, there has been a shift towards incorporating time-

domain distribution measurements in electromagnetic NFS to

enhance the analysis of transient electromagnetic phenom-

ena [8], [9]. Unlike traditional frequency-domain measure-

ments, time-resolved measurement involves acquiring elec-

trical signals through high-speed oscilloscopes and deduc-

ing time-varying field signals [10], [11]. Effectively captur-

ing time-varying near-field distributions requires simultaneous

sampling of temporal and spatial dimensions, introducing

complexities in fast NFS. In particular, tackling the time-

consuming and costly aspects of time-resolved NFS is essen-

tial, which demands accessibility to all on-board locations and

fast probe positioning.

This work proposes a novel hybrid framework named

Kriging-DMD, integrating Gaussian processes regression (K-

riging) and dynamic mode decomposition (DMD) for elec-

tromagnetic NFS. Specifically, we first employ the Latin

hypercube sampling algorithm for sparse measurements in

the spatial domain. Subsequently, DMD facilitates spatial-

temporal decomposition analysis, extracting sparse dynamic

modes and frequency information. Leveraging the Kriging

method, we recover the full state of dynamic modes using

sparse data from a small number of sampled points. Finally,

Kriging-DMD offers the reconstruction of the raw near-field,

enabling analysis of time-varying or transient signals.

II. KRIGING-DYNAMIC MODE DECOMPOSITION

This section presents the proposed Kriging-DMD method

for electromagnetic NFS. The method aims to provide a com-

prehensive representation of the electromagnetic field through

a multi-step process:

Step 1): In the initial phase of spatial data collection through

sparse measurement, Latin Hypercube Sampling (LHS) strate-

gically samples the spatial distribution during NFS. LHS,

derived from statistics and combinatorial mathematics, effi-

ciently divides the multidimensional spatial scanning domain

into equally spaced intervals along each dimension [12]. The

advantage of LHS lies in its ability to maximize information

gain while conserving resources [13]. By selectively choosing

a subset of data points for measurement, LHS expedites the

data collection process, proving to be an efficient technique for

spatial analysis and modeling. In essence, sparse measurement

involves selecting representative locations or sensor nodes for

data collection, which are then used to reconstruct complete

spatial data using the Kriging method.
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Fig. 1. Schematic of the proposed Kriging-dynamic mode decomposition
for near-field scanning with sparse sampling in space domains.

Step 2): Then, the DMD is used to compute the sparse

measured data. DMD is a technique used for modeling and

analyzing the dynamics and extracting coherent structures

from time-varying EM data [14], [15]. Notably, even in the

context of sparse measured field data, the application of DMD

remains feasible, which can be detailed as follows [16].

x(t) =

I∑

i=1

mi exp(ωit)ai =

I∑

i=1

mi exp(ω
real
i

t+ jω
imag
i

t)ai.

(1)

where the sparse field x(t) is expressed as a linear combination

of dynamic modes mi with associated frequency and damping

factor information, denoted by ωi = ωreal
i

+ jω
imag
i

, and am-

plitude weights ai. Through the LHS, the sparse measurement

is obtained, which means that only a subset of the complete

dataset is available. It is assumed that only K measured data

sample are selected. Then, the EM radiated field is also with

K dimension, i.e., xt ∈ R
K in (3). Similarly, due to sparse

measurement, mi ∈ R
K in (3). Overall, when computing D-

MD on sparse measured data, sparse spatial features, and their

corresponding time-varying characteristics are also extracted.

Step 3): Next, the Kriging method is employed to facilitate

the mapping of spatially sparse dynamic modes to their full-

state counterparts. Illustratively, considering the i th dynamic

mode, denoted as mi, the Kriging technique is applied to

reconstruct data for additional spatial points, effecting a transi-

tion from the K-dimensional space to the full state residing in

the Z-dimensional space, where Z signifies the dimensionality

of the complete state. To be specific, the GPR model, denoted

as gK(r), takes the following form:

m
Z

i
(r) =

M∑

m=1

βmhm(r) +
K∑

k=1

αkφ (θ, rk, r) (2)

where the coefficients βm and αk are determined through

estimation using a generalized least-squares procedure. The

initial section of (2) corresponds to a linear regression with

respect to the basis functions hm(r). Typically, these basis

functions are chosen to be low-order polynomials or constants.

The latter part of (2) signifies a localized deviation from

the regression component, expressed as a sum of K shifted

instances of the correlation function, each centered on an

individual data sample. For each of the sparse dynamic modes,

we establish an associated Kriging model, facilitating the

recovery of the complete set of dynamic modes that constitute

the entire state.

Step 4): Finally, the original full state spatial-temporal EM

radiation field can be reconstructed. In particular, Kriging

serves as a predictive tool for extrapolating values at unsam-

pled points of each dynamic mode based on the information

garnered from sampled points. Thus, the original full state EM

radiation field can be expressed as follows.

x
Z(t) =

I∑

i=1

m
Z

i
exp(ωit)ai (3)

The presented method underscores the significance of em-

ploying kriging for the estimation of missing data points

across dynamic modes. This approach ensures the preserva-

tion of temporal sampling integrity, independent treatment of

time and space dimensions, consistency in DMD spectrum

characteristics, and, fundamentally, the reconstruction of the

complete time-varying electromagnetic (EM) radiation field

through the application of DMD-based analytical formulations.

The schematic flow of the proposed Kriging-DMD framework

is depicted in Figure 1.

III. RESULTS
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Fig. 2. Crossed dipole antenna with two different exciting signal

To validate the proposed method, we performed a simulation

experiment employing a crossed dipole antenna configura-

tion [17] depicted in Fig. 2. Both antennas are half-wave dipole

antennas, with Antenna 1 operating at 2.4 GHz (wavelength

λ1 = 0.125 m) and Antenna 2 at 5 GHz (λ2 = 0.06 m).

Sinusoidal waves v1(t) and v2(t) at 2.4 GHz and 5 GHz,

respectively, serve as excitations for Antenna 1 and Antenna

2.

In the spatial domain, the initial pixel count for sampling

is 256× 256. Through the application of the Kriging method,

we select 500 pixels for subsequent reconstruction, resulting

in a spatial sparse sampling factor of approximately 131.
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The integration of temporal and spatial sparse sampling not

only significantly diminishes data dimensionality but also

elevates the overall efficiency of the data acquisition process.

Subsequently, we scrutinize the data acquired through spatially

sparse sampling utilizing the Kriging-DMD framework. The

DMD spectrum derived from the Kriging-DMD analysis of

spatially sparse sampled data is illustrated in Fig. 3 (b). For

reference, we compute the DMD spectrum obtained through

raw data analysis, as depicted in Fig. 3 (a). The outcomes

manifest the successful extraction of two distinct frequency

components, 2.4 GHz and 5.0 GHz, closely aligning with the

actual scenario. This alignment underscores the Kriging-DMD

method’s proficiency in extracting frequency information using

spatially sparse sampled data.

(a)

(b)

Fig. 3. The distribution of the eigenvalues obtained by the (a) traditional
DMD in the analyze of global EM radiation and (b) Kriging-DMD in the
analyze of sparse EM radiation.

Subsequently, Fig. 4 presents the reconstruction of sparse

dynamic modes by the Kriging method alongside the original

modes for direct comparison. Examining the 2.4 GHz dynamic

mode as an illustrative case (Fig. 4 (c)), we observe good

agreement between the reconstructed field data from 500

sampling points and the actual radiation mode illustrated in

Fig. 4 (a). Comparable observations are made for the 5.0 GHz

frequency, as evident in Fig. 4 (b) and (d). The Kriging-DMD

method deduces spatial radiation patterns for each frequency

based on spatially sparse sampled data. These findings under-

score the method’s proficiency in extracting crucial frequency

information and elucidating associated spatial distributions.

Fig. 5 displays the initial spatial distribution of the electric

field Ez and the corresponding reconstructions at 0.4 ns and 1

(a) (b)

(c) (d)

Fig. 4. (a) Initial distribution of the electromagnetic (EM) radiation field at
2.4 GHz. (b) Initial distribution of the electromagnetic (EM) radiation field at
5.0 GHz. (c) Kriging interpolation for the dynamic mode at 2.4 GHz (spatial
sampling: 500). (d) Kriging interpolation for the dynamic mode at 5.0 GHz
(spatial sampling: 500).
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Fig. 5. Original spatial distribution of electric field Ez and reconstruction
result of the spatial distribution of electric field Ez at 0.4 ns: (a) original
radiated field with 256 × 256 pixels; (b) Krigin-DMD reconstruction with
500 pixels, at 1 ns: (c) original radiated field with 256 × 256 pixels; (d)
Krigin-DMD reconstruction with 500 pixels.
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ns. Specifically, Fig. 5 (a) and (c) exhibit the original radiated

field at these time points with a resolution of 256 × 256
pixels. Additionally, Fig. 5 (b) and (d) plots the Kriging-DMD

reconstruction results achieved with spatially sparse sampled

data involving 500 spatial pixels. It can be clearly seen that

Kriging-DMD can reconstruct the global EM signal with fewer

spatial sampling points and provide frequency information and

corresponding spatial distribution.

IV. CONCLUSION

In conclusion, we presented a hybrid framework, the

Kriging-DMD method, for spatially sparse sampling in time-

resolved electromagnetic NFS. The efficacy of this approach

was verified through its successful application to crossed

dipole antennas, encompassing two distinct dipole antenna

configurations. Moreover, the proposed method could be use-

ful for extension and applicability across diverse electromag-

netic measurement settings.
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