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Uncertainty Quantification in PEEC Method: A
Physics-Informed Neural Networks-Based
Polynomial Chaos Expansion

Yuan Ping

Abstract—In this article, we propose a novel machine learning
approach for uncertainty quantification (UQ) within the partial
equivalent element circuit (PEEC) framework, employing physics-
informed neural networks (PINNs)-based polynomial chaos ex-
pansion (PCE) scheme. Initially, the PEEC method is formulated
via the electrical field integral equations and current continuity
equations. Subsequently, random parameters are introduced to
construct corresponding stochastic equations, thereby facilitating
the generation of input—-output data pairs for the training process.
Then, by utilizing the PCE methodology, a mapping function is
established. Next, the PINN-based approach is adopted to compute
the coefficients of the polynomial bases, leveraging the matrix
constructed from training data. Finally, this proposed approach
enables the determination of stochastic parameters for quantities
of interest within the PEEC method. The numerical examples
involving the transmission lines are provided to verify the efficiency
of the proposed method. It is found that the uncertainty is well
quantified in each case. Compared to the traditional MCM, the
proposed method can make UQ in the PEEC method 20 times faster.
Hence, our work offers a practical machine learning approach for
quantifying uncertainty, which could also be extended to other
computational electromagnetic methods.

Index Terms—Machine learning, partial equivalent element
circuit (PEEC), physics-informed neural networks (PINNSs),
polynomial chaos expansion (PCE), uncertainty quantification

UQ).
1. INTRODUCTION

HE partial element equivalent circuit (PEEC) method,
originally proposed by Ruehli [1], has become a corner-
stone in the field of electromagnetic (EM) simulation, offering
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a comprehensive 3-D full-wave modeling capability [2], [3].
This method is particularly lauded for its broad applicability,
ranging from direct current to high-frequency scenarios, effec-
tively capturing the EM behavior across the spectrum through the
adept approximation of Green’s function [4]. However, different
random factors, such as constitutive [5], [6] and/or geometrical
parameters [7], [8], are often induced by the inherent uncertain-
ties during manufacturing processes of the electronic devices,
which degrades the precision of the simulation in PEEC [9],
[10]. Therefore, the adoption of uncertainty quantification (UQ)
in the PEEC method is required for the stochastic modeling
of the devices [11]. In particular, the effect of the current or
field of interest is analyzed and the output quantity is then
evaluated and statistically characterized [12]. Although other
computational EM methods, such as the finite element method
and finite differential time domain, can work in our method,
they require absorbing and impedance boundary conditions.
However, the PEEC method converts an EM problem into the
circuit domain, the voltage or current source, and the circuit
components, such as a resistor, capacitor, and resistor, are added
into an equivalent circuit system by introducing extra current
branches. Therefore, it is very convenient to realize excitation
and load using the PEEC method. In addition, the voltages
and currents of the ports can be obtained by directly solving
the matrix equation (modified nodal analysis matrix). The S
parameters can be obtained via the nodal current and voltage.
The PEEC method is convenient to extract the port parameters
by converting an EM problem into an equivalent circuit system.
In addition, it provides an effective and straightforward approach
to combining the EM problem with the circuit unit.

To this end, various methods have been proposed for the UQ
issue, such as the Monte Carlo method (MCM) [13], stochastic
Galerkin method (SGM) [14], stochastic collocation method
(SCM) [15], etc. Herein, SGM is an intrusive method, where
the terms in the deterministic equation that are affected by the
uncertain terms are expanded by the polynomial chaos expansion
(PCE) [14]. Galerkin testing is then used to form the stochas-
tic matrix, which can become a large matrix that varies with
the number of basis functions [16]. However, the number of
functions increases with the number of random variables (RVs)
and the highest order of polynomial bases [17], which could
be prohibitive. The SCM is a nonintrusive method, where the
collocation points can be obtained through different strategies.
Specifically, SCM combines the high resolution of stochastic
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Galerkin methods, which results from polynomial approxima-
tions in random spaces, with the ease of implementation of the
MCM by sampling at discrete points in random spaces [18],
[19]. However, all of these approaches are subject to the “curse
of dimensionality” [20], [21]. Hence, it is still an open issue
to develop a fast, accurate, and efficient method for the UQ
problem.

Recently, the explosive growth of machine learning has ush-
ered in a revolutionary wave of change across various elec-
tromagnetic compatibility (EMC) problems [22], [23], [24],
particularly in addressing challenges that traditional methods
struggle with [25]. Machine learning techniques are broadly
categorized into supervised and unsupervised learning [26],
[27]. Supervised learning, which requires labeled data, tends to
consume substantial resources and suffers from limited portabil-
ity [28]. On the other hand, unsupervised learning offers a rapid
and straightforward approach [29], [30], presenting a promising
pathway for solving UQ problems within the PEEC method.

In this article, we propose an unsupervised machine learning
method, namely, a physics-informed neural networks (PINN)-
based PCE scheme, for UQ problems in the PEEC method. First,
the input and output observations employed as training data are
obtained by introducing random parameters into deterministic
PEEC equations to construct their corresponding stochastic
form. Then, PCE is employed to construct the mapping function.
Next, the PINN-based method is developed to calculate the
coefficients of polynomial bases from the training data. Finally,
the stochastic parameters of quantities of interest are obtained,
and thereby the UQ is achieved in the PEEC method. Our
contributions are listed as follows.

1) We develop a novel PINN-based PCE scheme for UQ in
the PEEC method. As an unsupervised learning method,
it employs the collocation method and PCE to construct
the mapping function and polynomial matrix. Notably, it
is not limited by the number of training data and can adapt
to both overdetermined and underdetermined cases, when
the proposed scheme is used to calculate the weights of
the basis function in the UQ issues.

2) The proposed PINN-based approach combines the high-
resolution capabilities of the SGM with the operational
simplicity of Monte Carlo sampling techniques. This fu-
sion not only enhances the computational efficiency by
reducing the requisite number of samples, but also cap-
italizes on PCE to significantly refine the accuracy of
the outcomes. Consequently, this scheme synergy offers a
compelling advantage in the realm of the UQ, presenting
a balanced blend of precision and practicality.

3) Our proposed PINN-based PCE method outperforms sim-
ilar approaches, achieving over 20 times faster computa-
tion, highlighting its efficiency for the UQ problem in the
PEEC method. Besides, the proposed machine learning
scheme also could be extended to other computational EM
methods in the future.

The rest of this article is organized as follows. The proposed
PINN-based PCE method is detailed in Section II. The numerical
examples are provided in Section III to verify the proposed
method. Finally, Section IV concludes this article.
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II. METHODOLOGY

In this section, we first introduce the PCE and PEEC methods.
Then, the proposed PINN-PCE method for UQ in PEEC is
detailed.

A. Polynomial Chaos Expansion

PCE, as a spectral method, illustrates the approximation of
the input—output relationship by casting the model response onto
orthogonal polynomials. Without loss of generality, the quantity
of interest Y admits the spectral representation as follows:

K
Y(€) =) vaVa(8) (1

a=1

where ¥, denotes the polynomial basis, and y, is the cor-
responding coefficient. Herein, the bases vary with different
input RV distributions. Often, the RVs could be satisfied with
specific functions, such as Gaussian, uniform, Gamma, and Beta
distribution [31]. In particular, the space integrable functions
with respect to the probability measure fy admits a basis ¥, of
polynomials orthonormal to each other, such that

(o (£), Ws(€)) = /

-0

oo

Va(§)Ws(6)fx (§)dE = dap.  (2)

Here, d,3 is the Kronecker delta symbol, and K means the num-
ber of orthogonal polynomial bases, which could be determined
by
|
K- (n+p)! 3)

nlp!

where n is the number of RVs and p is the highest polynomial
order. Obviously, the number of polynomial bases varies with
the number of RVs and the highest order of polynomial bases.
To be specific, the computational cost grows fast as the number
of RVs or the highest order of polynomial bases increases. If the
coefficients of the orthogonal polynomial bases are obtained,
then the stochastic properties can be acquired subsequently. The
mean value and variance of the quantity of interest, namely,
Y (&) = Zle ua Vo (), are calculated as follows:

E(Y(£) =w 4)

K
Var (Y (§)) = Z u? (5)

where u, denotes the coefficient of ath orthogonal basis
function.

B. PEEC Method

The PEEC method is derived from the electrical field integral

equation (EFIE) and continuity equation, which is written as
J(r )
Ey(r) = % + jwA(r) + V¢ (6)

and

V-J=—jwp 7
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where Ey means an applied electric field and J refers to the
current density in the conductor with conductivity . A and
¢ are vector and scalar potential, respectively. p is the charge
density. r represents the location of the observation location.

Then, using Green’s function and space discretization, par-
asitic parameters in PEEC could be calculated as equivalent
circuit elements. Next, these equivalent circuit elements form
a densely coupled circuit network, where the modified nodal
analysis in matrix form can be illustrated as

R

where L, is a matrix representing all the inductive components
including self-inductance and mutual inductance, and C,, is for
the capacitance matrix. R, is a diagonal matrix that contains
resistors in inductive branches. The vectors I and V represent
the branch currents and node voltages. Iy and V( denote the
current and voltage sources that are applied to the circuit system.
A, represents the connection matrix.

JwCyp
Ay

Ap
- (jwL, +R,)

C. Proposed PINN-Based PCE in PEEC

In the following, we consider the input RVs, namely, £(1,
..»&n), in PEEC simulation. The corresponding output obser-
vations can be obtained, whichis denoted as Y (y*, 32, ..., y™).
Herein, M represents the number of samples in the PEEC
simulation, and n is the number of RVs. In particular, we use PCE
toexpress Y as a polynomial function of &. Then, the relationship

between £(&1,...,&,) and Y (31,42, ..., y™) can be derived in
a computationally efficient manner as follows:
M K
Y (yh 07 uM) =)0 uala (€) ©)
i=1 a=1

where ¥, (o = 1,2,..., K) denotes multidimensional orthog-
onal polynomial. u, (o =1,2,...K) means the coefficient
of ath orthogonal basis function. It can be represented in the

Vandermonde-type matrix form as follows:

vy (€h) Ve ()] [w v
: I N e I B U
oy (€M) Ui (EM)] lux yM

Next, we establish the PINN to determine the coefficients of
these orthogonal basis functions. Herein, the concept of PINN
for both forward and inverse problems is first introduced by
Raissi et al. [10], [12]. In [10] and [12], the differential equation
is the governing equation with nonlinear parameters, and the
variables of space or time domain are the input of the DNN to
output the solution and nonlinear parameters. The outputs of the
DNNs are employed to construct the differential equation by
automatic differentiation. The loss function is the combination
of the residual of the differential equation, boundary, and initial
condition. In this work, we try to mimic the process of the
PINN. The sample data of the Qol and the Vandemonde-type
matrix are utilized to construct the loss function of PINN.
Due to no boundary and initial condition, the residual of the
matrix equation is only considered in the loss function. A set
of random variables are regarded as the variables in the time
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or space domain, the stochastic parameters of the quantities of
the interest, such as mean value and standard deviation, can be
obtained by training the hyperparameters of the PINN. In our
scenarios, the PINN method is explored to solve (10). The loss
function of PINN is constructed with a sum of the mean squared
errors as follows:

L= (1)

(B Uy

=1

Herein, B;o, = ¥ (¢%),a=1,...,K,i=1,..., M.Giventhe
statistical model of the input and PCE model of the input—output
map, the model response Y is not only known pointwise but can
also be characterized statistically. For instance, the orthonormal-
ity of the polynomial basis ensures that the mean value and the
variance of Y are derived as

K
EY]=u, Var[Y]=) ul. (12)
k=2

Fig. 1 illustrates the overall process of the proposed PINN-
based method. The proposed method involves several steps.
First, the PEEC function is determined by incorporating the
EFIE and current continuity equation. Next, the modified anal-
ysis nodal matrix is obtained using Green’s function and space
discretization. The matrix of MNA is constructed, and it can
be denoted as the deterministic PEEC. The sampling data are
generated by the distribution of the RVs £(£1, &2, . .., £ ). Then,
the sampling data of the RVs are introduced to the determin-
istic matrix to construct the stochastic PEEC. By solving the
stochastic PEEC, the nodal voltages and branch currents can
be obtained. Subsequently, the sample data of the S parame-
ter Y(y', 9%, ...,yM) can be calculated by the nodal voltages
and branch currents. In PEC, the S parameter is expended by
the polynomial chaos, and the RVs ¢ are substituted into the
orthogonal polynomial function to construct a Vandemonde-
type matrix B. Then, the sample data of S parameter Y and
the Vandemonde-type matrix B are employed to construct the
loss function of the PINN. A set of random variables is regarded
as the input of PINN. The stochastic parameters, such as mean
value and standard deviation, can be obtained through training
the parameters of the PINN.

III. RESULTS

In this section, we conduct two different numerical examples
to verify the proposed method, namely, multisegment transmis-
sion line and power divider. The considered RVs are Gaus-
sian distributions. Therefore, the Hermite chaos is exploited to
construct the polynomial bases. For the case with one random
variable, the highest order of the polynomial function is 9, and
then, the number of the polynomial bases is 10. For the case
with three random variables, the highest order of the polynomial
function is 3, and the number of polynomial bases is 20. For two
random variables, the highest order is 3, and the number of the
polynomial chaos could be 10 computed by (3). In addition, the
random variables are mutually independent. It is worth noting
that the patch is modeled as a perfect conductor with negligible
thickness compared to the wavelength, eliminating the need to
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Fig. 1. PINN architecture for UQ problem in PEEC method.

consider skin depth. The metal part of the transmission line is
considered as a plane. The material of the substrate is vacuum.
All the results are compared with those of the conventional MCM
to demonstrate the superiority of the proposed machine learning
method. The sample data are from the PEEC simulation. The
activation function of the DNN is tanh, Adam optimizer with
learning rate 10~2 is employed to train the network.

The implementation of the PINN combing with PCE can be
demonstrated as follows. Due to the S parameters considered
in all the examples, the port voltages and the corresponding
branch currents are considered the Qols. The PEEC method is
convenient for obtaining the parameters at the port. The nodal
voltage is extracted at the given port and current at the additional
branch is sampled. Then, the S parameter with random variables
can be obtained. A set of random variables is regarded as the
input of the PINN, and the coefficients of the polynomial are the
output of the PINN. In our analysis, a third-order polynomial is
utilized in the PCE analysis, necessitating 20 polynomial bases.
The PEEC simulation employs 50 samples, while the PINN
ascertains the polynomial base coefficients. Herein, the PINN is
structured with four hidden layers, each comprising 40 neurons.
The number of the training steps is 500. All the simulations are
implemented at Intel Core i5-8500 CPU at 3.00 GHz within the
MATLAB R2023b.

A. Case I: Multisegment Transmission Line

For the verification, we first consider a multisegment trans-
mission line to examine the impact of multiple RV's on geometri-
cal parameters using the proposed method. Fig. 2 illustrates two
parallel transmission lines, identical in structure and dimensions,

Output

Mean value
Variance

wi w2

L1 L3
L2

Fig. 2.

Structure and the detail dimension of transmission line in Case 1.

TABLE I
MEAN VALUE AND STANDARD DEVIATION OF RVS IN CASE I

wl w2 d
Mean value(mm) 1 6.915 10
Deviation 0.1 | 0.6195 1

with widths denoted as w1, w2, and w3 measuring 1, 6.915, and
1 mm, respectively. The lengths L1-L3 are uniformly 30 mm,
while the interline center distance d stands at 10 mm. Ports
1-4 serve as impedance-matched excitation points. The lines are
situated 0.2035 mm above the ground plane, and the geometrical
parameters w1, w2, w3, and d could be considered as RVs. These
results in three independent Gaussian-distributed RVs (wl =
w3) are detailed in Table I with their mean values and standard
deviations.
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TABLE IT
COMPARISON RESULTS OF THE MEAN VALUE, STANDARD DEVIATION, AND
TIME OF S11 CALCULATED BY THE MCM AND PINN-BASED METHOD
AT 1 GHZ IN CASE |

MCM PINN Relative error(%)
Mean value (dB) -16.923  -16.869 0.32
Deviation 1.022 1.036 1.37
Time (s) 775.12 48.29 -
Speedup - 16 -

The bold value denotes the computational time by the proposed method and
the speedup of the proposed method compared with the Monte Carlo method.
It is clear to illustrate the efficiency of the proposed method.

0.4

T

[ Monte Carlo
——PINN

-25 -20 -15 -10
S11[dB]

Fig. 3. Comparison of the probability density function of S11 calculated by
the MCM and PINN-based method at 1 GHz in Case 1.

#  PINN UpperBound
+  PINN LowerBound
Monte Carlo

S11[dB]

1 2 3 4 5 6 7 8
Frequency [GHz]

Fig. 4. Comparison result of upper and lower bound of S11 obtained by the
MCM and PINN-based method in Case 1.

To evaluate the performance of the proposed method, the
stochastic parameters at single and multiple frequencies are
analyzed. Also, the 10° sampling MCM results are used for
the comparison. Table II presents the comparison results about
the mean value and standard deviation of the S11 parameter
at 1 GHz. It can be seen that the comparative analysis reveals
relative errors in mean value and standard deviation of 0.32%
and 1.37%, respectively. Fig. 3 plots the corresponding proba-
bility density function of the MCM and PINN. Clearly, a good
agreement can be achieved in terms of the probability density
function. Notably, time efficiency is also shown in Table II,
with the PINN simulation concluding in 48.29 s, significantly
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#  PINN UpperBound
ot ’ +  PINN LowerBound
"N Monte Carlo

S12 [dB]

Frequency [GHz]

Fig. 5. Comparison result of upper and lower bound of S12 obtained by the
MCM and PINN-based method in Case 1.

Fig. 6.  Structure and the detail dimension of power divider in Case II.
2.5 :
Il Monte Carlo
—PINN
I,
a
2%
-12 -11 -10 -9 -8
S11[dB]
Fig. 7. Comparison of the probability density function of S11 calculated by

the MCM and PINN-based method at 1 GHz in Case II.

outpacing the MCM’s 775.12 s, thereby achieving a 16-fold
speedup. All the comparison results are calculated on an Intel
Core i5-8500 CPU at 3.00 GHz within the MATLAB R2023b.
For further verification, we also test the S parameter across a
1-8 GHz frequency band, as shown in Figs. 4 and 5. The lower
and upper bounds of the PINN-base method are calculated by
[u — 30,u + 30], compared with results from the MCM. The
bounds of the PINN method agree well with those computed by
the MCM method. Hence, we can conclude that the proposed
PINN significantly enhances the efficiency and accuracy of the
UQ of geometrical parameters in the PEEC.
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Fig. 8. Comparison results between the MCM and PINN with one RV condition in Case II. (a) Mean value. (b) Standard deviation. (c) Vounds.
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P
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-20
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T 15 2 25 3 35 4 45 5 55 & 115 2 25 3
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Fig. 9. Comparison results between the MCM and PINN with three RVs condition in Case II. (a) Mean value. (b) Standard deviation. (c) Bounds.

B. Case II: Power Divider

To further validate the proposed method, we consider another
example of the power divider. Fig. 6 plots the structural and
dimensional attributes of the model, which is characterized by
its symmetry, with excitation ports denoted by red arrows and
impedance-matched to 50 €. In particular, the power divider
model is divided into three distinct parts, with the lengths of
part 1, part 2, and part 3 being L1, Lo, and Ly + L3, respectively,
assigned values of 20, 15, and 25 mm. Within part 3, Ly
and L3 have lengths of 15 and 10 mm, respectively. Also, the
widths W and Wy, are precisely 4.91 and 2.95 mm to achieve
characteristic impedances of 50 €2 and 70.7 €2, respectively. The
distance between the ground plane is maintained at 1 mm. The
spacing d is defined as twice the width of W;. The operational
frequency is established at 5 GHz, and the connection resistor R
is valued at 100 €2, thereby ensuring it is double the characteristic
impedance of part 1.

Next, stochastic parameters at single and multiple frequencies
are analyzed. The width of the transmission line affects its
characteristic impedance, which in turn affects the performance
of the S parameters. Therefore, three RVs, namely, W1, Wy, and
LR, are considered. Herein, the polynomial of the highest order
is 3 [see (3)] and thereby a total of 20 basis functions are used
in PCE. Also, 50 sampling simulations of the PEEC are used
to generate an orthogonal basis functions matrix. Accordingly,
20 random numbers are employed as inputs for the PINN.
Besides, the PINN architecture with 4 hidden layers, each having
40 nodes, is designed, where the Adam optimizer is employed
to update the network parameters.

Table III shows the stochastic parameters of three RVs.
Through the analysis, the mean value and standard deviation

TABLE III
MEAN VALUE AND STANDARD DEVIATION OF RVS IN THE POWER DIVIDER

W; | Wy | Lg
Mean value(mm) | 491 | 2.95 15
Deviation 0.49 | 0.29 | 1.50
TABLE IV

COMPARISON RESULTS OF THE MEAN VALUE, STANDARD DEVIATION, AND
TIME OF S11 CALCULATED BY THE MCM AND PINN-BASED METHOD
AT 1 GHZ IN CASE 11

MCM PINN Relative error(%)
Mean value (dB) -10.583  -10.586 0.028
Deviation 0.239 0.247 2.960
Time (s) 898.68 42.18 -
Speedup - 21 -

The bold value denotes the computational time by the proposed method. and the
speedup of the proposed method compared with the Monte Carlo method. It is
clear to illustrate the efficiency of the proposed method.

of the S parameter at 1 GHz are presented in Table IV. Also,
the MCM with 10 samples is calculated for the comparison.
Clearly, the results obtained using the proposed method are in
good agreement with those obtained from the MCM. The relative
errors of the mean value and standard deviation are 0.0283%
and 2.96%, respectively. In addition, the computational time
required by the proposed method is more than twenty times
less than that of the MCM. The workstation configuration is the
same as the case 1. Besides, the probability density function of
MCM and PINN is depicted in Fig. 7. It can be seen that a good
agreement can be obtained between these two methods.
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For further demonstration of the performance of the stochastic
parameters, the analysis of the S parameter with two conditions,
namely, one RV and three RVs, are conducted, respectively.
On the one hand, for one RV condition, we consider the W;.
Similarly, in this condition, we use the same PINN architecture
with the single frequency scenario shown in Fig. 7. Through the
proposed PINN-based method, we can obtain the mean value,
standard deviation, and bounds, which are plotted in Fig. 8.
Again, the MCM is applied to compute these statistical prop-
erties for the comparison. Obviously, the mean value, standard
deviation, and bounds computed by the PINN align closely with
those obtained from MCM’s results.

On the other hand, we also consider the second condition
with three RVs. The same PINN architecture is employed, and
the MCM is also applied for the comparison. Fig. 9 shows the
comparison results about the mean value, standard deviation,
and bounds. We can see that a good agreement can be obtained
between the MCM and the proposed PINN method. Hence, we
can conclude that the proposed PINN-based method can realize
UQ in PEEC with improved efficiency.

IV. CONCLUSION

In conclusion, we propose a machine learning-based approach
utilizing PINN to address the UQ challenges in PEEC simula-
tions. This PINN-based strategy adeptly handles stochastic ma-
trices regardless of the dimensional relationship between rows
and columns, effectively navigating the complexities inherent
in regression-based methods. Through the integration of PCE,
our approach reduces the requisite number of samples, thereby
enhancing computational efficiency. The efficacy of our method
has been demonstrated through the numerical examples, reveal-
ing that it outperforms existing methods with a computational
speedup of about 20 times. Besides, the proposed approach holds
the potential for extension to other computational EM frame-
works, promising broader applicability for the UQ problem.
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