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Abstract—In this article, we propose a novel machine learning
approach for uncertainty quantification (UQ) within the partial
equivalent element circuit (PEEC) framework, employing physics-
informed neural networks (PINNs)-based polynomial chaos ex-
pansion (PCE) scheme. Initially, the PEEC method is formulated
via the electrical field integral equations and current continuity
equations. Subsequently, random parameters are introduced to
construct corresponding stochastic equations, thereby facilitating
the generation of input–output data pairs for the training process.
Then, by utilizing the PCE methodology, a mapping function is
established. Next, the PINN-based approach is adopted to compute
the coefficients of the polynomial bases, leveraging the matrix
constructed from training data. Finally, this proposed approach
enables the determination of stochastic parameters for quantities
of interest within the PEEC method. The numerical examples
involving the transmission lines are provided to verify the efficiency
of the proposed method. It is found that the uncertainty is well
quantified in each case. Compared to the traditional MCM, the
proposed method can make UQ in the PEEC method 20 times faster.
Hence, our work offers a practical machine learning approach for
quantifying uncertainty, which could also be extended to other
computational electromagnetic methods.

Index Terms—Machine learning, partial equivalent element
circuit (PEEC), physics-informed neural networks (PINNs),
polynomial chaos expansion (PCE), uncertainty quantification
(UQ).

I. INTRODUCTION

T
HE partial element equivalent circuit (PEEC) method,

originally proposed by Ruehli [1], has become a corner-

stone in the field of electromagnetic (EM) simulation, offering
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a comprehensive 3-D full-wave modeling capability [2], [3].

This method is particularly lauded for its broad applicability,

ranging from direct current to high-frequency scenarios, effec-

tively capturing the EM behavior across the spectrum through the

adept approximation of Green’s function [4]. However, different

random factors, such as constitutive [5], [6] and/or geometrical

parameters [7], [8], are often induced by the inherent uncertain-

ties during manufacturing processes of the electronic devices,

which degrades the precision of the simulation in PEEC [9],

[10]. Therefore, the adoption of uncertainty quantification (UQ)

in the PEEC method is required for the stochastic modeling

of the devices [11]. In particular, the effect of the current or

field of interest is analyzed and the output quantity is then

evaluated and statistically characterized [12]. Although other

computational EM methods, such as the finite element method

and finite differential time domain, can work in our method,

they require absorbing and impedance boundary conditions.

However, the PEEC method converts an EM problem into the

circuit domain, the voltage or current source, and the circuit

components, such as a resistor, capacitor, and resistor, are added

into an equivalent circuit system by introducing extra current

branches. Therefore, it is very convenient to realize excitation

and load using the PEEC method. In addition, the voltages

and currents of the ports can be obtained by directly solving

the matrix equation (modified nodal analysis matrix). The S

parameters can be obtained via the nodal current and voltage.

The PEEC method is convenient to extract the port parameters

by converting an EM problem into an equivalent circuit system.

In addition, it provides an effective and straightforward approach

to combining the EM problem with the circuit unit.

To this end, various methods have been proposed for the UQ

issue, such as the Monte Carlo method (MCM) [13], stochastic

Galerkin method (SGM) [14], stochastic collocation method

(SCM) [15], etc. Herein, SGM is an intrusive method, where

the terms in the deterministic equation that are affected by the

uncertain terms are expanded by the polynomial chaos expansion

(PCE) [14]. Galerkin testing is then used to form the stochas-

tic matrix, which can become a large matrix that varies with

the number of basis functions [16]. However, the number of

functions increases with the number of random variables (RVs)

and the highest order of polynomial bases [17], which could

be prohibitive. The SCM is a nonintrusive method, where the

collocation points can be obtained through different strategies.

Specifically, SCM combines the high resolution of stochastic
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Galerkin methods, which results from polynomial approxima-

tions in random spaces, with the ease of implementation of the

MCM by sampling at discrete points in random spaces [18],

[19]. However, all of these approaches are subject to the “curse

of dimensionality” [20], [21]. Hence, it is still an open issue

to develop a fast, accurate, and efficient method for the UQ

problem.

Recently, the explosive growth of machine learning has ush-

ered in a revolutionary wave of change across various elec-

tromagnetic compatibility (EMC) problems [22], [23], [24],

particularly in addressing challenges that traditional methods

struggle with [25]. Machine learning techniques are broadly

categorized into supervised and unsupervised learning [26],

[27]. Supervised learning, which requires labeled data, tends to

consume substantial resources and suffers from limited portabil-

ity [28]. On the other hand, unsupervised learning offers a rapid

and straightforward approach [29], [30], presenting a promising

pathway for solving UQ problems within the PEEC method.

In this article, we propose an unsupervised machine learning

method, namely, a physics-informed neural networks (PINN)-

based PCE scheme, for UQ problems in the PEEC method. First,

the input and output observations employed as training data are

obtained by introducing random parameters into deterministic

PEEC equations to construct their corresponding stochastic

form. Then, PCE is employed to construct the mapping function.

Next, the PINN-based method is developed to calculate the

coefficients of polynomial bases from the training data. Finally,

the stochastic parameters of quantities of interest are obtained,

and thereby the UQ is achieved in the PEEC method. Our

contributions are listed as follows.

1) We develop a novel PINN-based PCE scheme for UQ in

the PEEC method. As an unsupervised learning method,

it employs the collocation method and PCE to construct

the mapping function and polynomial matrix. Notably, it

is not limited by the number of training data and can adapt

to both overdetermined and underdetermined cases, when

the proposed scheme is used to calculate the weights of

the basis function in the UQ issues.

2) The proposed PINN-based approach combines the high-

resolution capabilities of the SGM with the operational

simplicity of Monte Carlo sampling techniques. This fu-

sion not only enhances the computational efficiency by

reducing the requisite number of samples, but also cap-

italizes on PCE to significantly refine the accuracy of

the outcomes. Consequently, this scheme synergy offers a

compelling advantage in the realm of the UQ, presenting

a balanced blend of precision and practicality.

3) Our proposed PINN-based PCE method outperforms sim-

ilar approaches, achieving over 20 times faster computa-

tion, highlighting its efficiency for the UQ problem in the

PEEC method. Besides, the proposed machine learning

scheme also could be extended to other computational EM

methods in the future.

The rest of this article is organized as follows. The proposed

PINN-based PCE method is detailed in Section II. The numerical

examples are provided in Section III to verify the proposed

method. Finally, Section IV concludes this article.

II. METHODOLOGY

In this section, we first introduce the PCE and PEEC methods.

Then, the proposed PINN-PCE method for UQ in PEEC is

detailed.

A. Polynomial Chaos Expansion

PCE, as a spectral method, illustrates the approximation of

the input–output relationship by casting the model response onto

orthogonal polynomials. Without loss of generality, the quantity

of interest Y admits the spectral representation as follows:

Y (ξ) =

K
∑

α=1

yαΨα(ξ) (1)

where Ψα denotes the polynomial basis, and yα is the cor-

responding coefficient. Herein, the bases vary with different

input RV distributions. Often, the RVs could be satisfied with

specific functions, such as Gaussian, uniform, Gamma, and Beta

distribution [31]. In particular, the space integrable functions

with respect to the probability measure fX admits a basis Ψα of

polynomials orthonormal to each other, such that

〈Ψα(ξ),Ψβ(ξ)〉 =

∫ ∞

−∞

Ψα(ξ)Ψβ(ξ)fX(ξ)dξ = δαβ . (2)

Here, δαβ is the Kronecker delta symbol, andK means the num-

ber of orthogonal polynomial bases, which could be determined

by

K =
(n+ p)!

n!p!
(3)

where n is the number of RVs and p is the highest polynomial

order. Obviously, the number of polynomial bases varies with

the number of RVs and the highest order of polynomial bases.

To be specific, the computational cost grows fast as the number

of RVs or the highest order of polynomial bases increases. If the

coefficients of the orthogonal polynomial bases are obtained,

then the stochastic properties can be acquired subsequently. The

mean value and variance of the quantity of interest, namely,

Y(ξ) =
∑K

α=1
uαΨα(ξ), are calculated as follows:

E (Y(ξ)) = u1 (4)

V ar (Y(ξ)) =

K
∑

α=2

u2

α (5)

where uα denotes the coefficient of αth orthogonal basis

function.

B. PEEC Method

The PEEC method is derived from the electrical field integral

equation (EFIE) and continuity equation, which is written as

E0(r) =
J(r)

σ
+ jωA(r) +∇φ (6)

and

∇ · J = −jωρ (7)
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where E0 means an applied electric field and J refers to the

current density in the conductor with conductivity σ. A and

φ are vector and scalar potential, respectively. ρ is the charge

density. r represents the location of the observation location.

Then, using Green’s function and space discretization, par-

asitic parameters in PEEC could be calculated as equivalent

circuit elements. Next, these equivalent circuit elements form

a densely coupled circuit network, where the modified nodal

analysis in matrix form can be illustrated as
[

jωCp Ap

A
T
p − (jωLp +Rp)

][

V

I

]

=

[

I0

V0

]

(8)

where Lp is a matrix representing all the inductive components

including self-inductance and mutual inductance, and Cp is for

the capacitance matrix. Rp is a diagonal matrix that contains

resistors in inductive branches. The vectors I and V represent

the branch currents and node voltages. I0 and V0 denote the

current and voltage sources that are applied to the circuit system.

Ap represents the connection matrix.

C. Proposed PINN-Based PCE in PEEC

In the following, we consider the input RVs, namely, ξ(ξ1,
. . . , ξn), in PEEC simulation. The corresponding output obser-

vations can be obtained, which is denoted asY(y1, y2, . . . , yM ).
Herein, M represents the number of samples in the PEEC

simulation, andn is the number of RVs. In particular, we use PCE

to expressY as a polynomial function of ξ. Then, the relationship

between ξ(ξ1, . . . , ξn) andY(y1, y2, . . . , yM ) can be derived in

a computationally efficient manner as follows:

Y
(

y1, y2, . . . , yM
)

=

M
∑

i=1

K
∑

α=1

uαΨα

(

ξi
)

(9)

where Ψα(α = 1, 2, . . . ,K) denotes multidimensional orthog-

onal polynomial. uα (α = 1, 2, . . . K) means the coefficient

of αth orthogonal basis function. It can be represented in the

Vandermonde-type matrix form as follows:
£

¤

¥

Ψ1

(

ξ1
)

· · · ΨK

(

ξ1
)

...
...

Ψ1

(

ξM
)

· · · ΨK

(

ξM
)

¦

§

¨
·

£

¤

¥

u1

...

uK

¦

§

¨
=

£

¤

¥

y1

...

yM

¦

§

¨
. (10)

Next, we establish the PINN to determine the coefficients of

these orthogonal basis functions. Herein, the concept of PINN

for both forward and inverse problems is first introduced by

Raissi et al. [10], [12]. In [10] and [12], the differential equation

is the governing equation with nonlinear parameters, and the

variables of space or time domain are the input of the DNN to

output the solution and nonlinear parameters. The outputs of the

DNNs are employed to construct the differential equation by

automatic differentiation. The loss function is the combination

of the residual of the differential equation, boundary, and initial

condition. In this work, we try to mimic the process of the

PINN. The sample data of the QoI and the Vandemonde-type

matrix are utilized to construct the loss function of PINN.

Due to no boundary and initial condition, the residual of the

matrix equation is only considered in the loss function. A set

of random variables are regarded as the variables in the time

or space domain, the stochastic parameters of the quantities of

the interest, such as mean value and standard deviation, can be

obtained by training the hyperparameters of the PINN. In our

scenarios, the PINN method is explored to solve (10). The loss

function of PINN is constructed with a sum of the mean squared

errors as follows:

L =
1

M

M
∑

i=1

·
(

||B ·U−Y||2
)

. (11)

Herein,Biα = Ψα(ξ
i),α = 1, . . . ,K, i = 1, . . . ,M . Given the

statistical model of the input and PCE model of the input–output

map, the model response Y is not only known pointwise but can

also be characterized statistically. For instance, the orthonormal-

ity of the polynomial basis ensures that the mean value and the

variance of Y are derived as

E[Y ] = u1, V ar[Y ] =
K
∑

k=2

u2

α. (12)

Fig. 1 illustrates the overall process of the proposed PINN-

based method. The proposed method involves several steps.

First, the PEEC function is determined by incorporating the

EFIE and current continuity equation. Next, the modified anal-

ysis nodal matrix is obtained using Green’s function and space

discretization. The matrix of MNA is constructed, and it can

be denoted as the deterministic PEEC. The sampling data are

generated by the distribution of the RVs ξ(ξ1, ξ2, . . . , ξN ). Then,

the sampling data of the RVs are introduced to the determin-

istic matrix to construct the stochastic PEEC. By solving the

stochastic PEEC, the nodal voltages and branch currents can

be obtained. Subsequently, the sample data of the S parame-

ter Y(y1, y2, . . . , yM ) can be calculated by the nodal voltages

and branch currents. In PEC, the S parameter is expended by

the polynomial chaos, and the RVs ξ are substituted into the

orthogonal polynomial function to construct a Vandemonde-

type matrix B. Then, the sample data of S parameter Y and

the Vandemonde-type matrix B are employed to construct the

loss function of the PINN. A set of random variables is regarded

as the input of PINN. The stochastic parameters, such as mean

value and standard deviation, can be obtained through training

the parameters of the PINN.

III. RESULTS

In this section, we conduct two different numerical examples

to verify the proposed method, namely, multisegment transmis-

sion line and power divider. The considered RVs are Gaus-

sian distributions. Therefore, the Hermite chaos is exploited to

construct the polynomial bases. For the case with one random

variable, the highest order of the polynomial function is 9, and

then, the number of the polynomial bases is 10. For the case

with three random variables, the highest order of the polynomial

function is 3, and the number of polynomial bases is 20. For two

random variables, the highest order is 3, and the number of the

polynomial chaos could be 10 computed by (3). In addition, the

random variables are mutually independent. It is worth noting

that the patch is modeled as a perfect conductor with negligible

thickness compared to the wavelength, eliminating the need to
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Fig. 1. PINN architecture for UQ problem in PEEC method.

consider skin depth. The metal part of the transmission line is

considered as a plane. The material of the substrate is vacuum.

All the results are compared with those of the conventional MCM

to demonstrate the superiority of the proposed machine learning

method. The sample data are from the PEEC simulation. The

activation function of the DNN is tanh, Adam optimizer with

learning rate 10−3 is employed to train the network.

The implementation of the PINN combing with PCE can be

demonstrated as follows. Due to the S parameters considered

in all the examples, the port voltages and the corresponding

branch currents are considered the QoIs. The PEEC method is

convenient for obtaining the parameters at the port. The nodal

voltage is extracted at the given port and current at the additional

branch is sampled. Then, the S parameter with random variables

can be obtained. A set of random variables is regarded as the

input of the PINN, and the coefficients of the polynomial are the

output of the PINN. In our analysis, a third-order polynomial is

utilized in the PCE analysis, necessitating 20 polynomial bases.

The PEEC simulation employs 50 samples, while the PINN

ascertains the polynomial base coefficients. Herein, the PINN is

structured with four hidden layers, each comprising 40 neurons.

The number of the training steps is 500. All the simulations are

implemented at Intel Core i5-8500 CPU at 3.00 GHz within the

MATLAB R2023b.

A. Case I: Multisegment Transmission Line

For the verification, we first consider a multisegment trans-

mission line to examine the impact of multiple RVs on geometri-

cal parameters using the proposed method. Fig. 2 illustrates two

parallel transmission lines, identical in structure and dimensions,

Fig. 2. Structure and the detail dimension of transmission line in Case I.

TABLE I
MEAN VALUE AND STANDARD DEVIATION OF RVS IN CASE I

with widths denoted as w1, w2, and w3 measuring 1, 6.915, and

1 mm, respectively. The lengths L1–L3 are uniformly 30 mm,

while the interline center distance d stands at 10 mm. Ports

1–4 serve as impedance-matched excitation points. The lines are

situated 0.2035 mm above the ground plane, and the geometrical

parameters w1, w2, w3, and d could be considered as RVs. These

results in three independent Gaussian-distributed RVs (w1 =
w3) are detailed in Table I with their mean values and standard

deviations.
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TABLE II
COMPARISON RESULTS OF THE MEAN VALUE, STANDARD DEVIATION, AND

TIME OF S11 CALCULATED BY THE MCM AND PINN-BASED METHOD

AT 1 GHZ IN CASE I

Fig. 3. Comparison of the probability density function of S11 calculated by
the MCM and PINN-based method at 1 GHz in Case I.

Fig. 4. Comparison result of upper and lower bound of S11 obtained by the
MCM and PINN-based method in Case I.

To evaluate the performance of the proposed method, the

stochastic parameters at single and multiple frequencies are

analyzed. Also, the 103 sampling MCM results are used for

the comparison. Table II presents the comparison results about

the mean value and standard deviation of the S11 parameter

at 1 GHz. It can be seen that the comparative analysis reveals

relative errors in mean value and standard deviation of 0.32%

and 1.37%, respectively. Fig. 3 plots the corresponding proba-

bility density function of the MCM and PINN. Clearly, a good

agreement can be achieved in terms of the probability density

function. Notably, time efficiency is also shown in Table II,

with the PINN simulation concluding in 48.29 s, significantly

Fig. 5. Comparison result of upper and lower bound of S12 obtained by the
MCM and PINN-based method in Case I.

Fig. 6. Structure and the detail dimension of power divider in Case II.

Fig. 7. Comparison of the probability density function of S11 calculated by
the MCM and PINN-based method at 1 GHz in Case II.

outpacing the MCM’s 775.12 s, thereby achieving a 16-fold

speedup. All the comparison results are calculated on an Intel

Core i5-8500 CPU at 3.00 GHz within the MATLAB R2023b.

For further verification, we also test the S parameter across a

1–8 GHz frequency band, as shown in Figs. 4 and 5. The lower

and upper bounds of the PINN-base method are calculated by

[u− 3σ, u+ 3σ], compared with results from the MCM. The

bounds of the PINN method agree well with those computed by

the MCM method. Hence, we can conclude that the proposed

PINN significantly enhances the efficiency and accuracy of the

UQ of geometrical parameters in the PEEC.
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Fig. 8. Comparison results between the MCM and PINN with one RV condition in Case II. (a) Mean value. (b) Standard deviation. (c) Vounds.

Fig. 9. Comparison results between the MCM and PINN with three RVs condition in Case II. (a) Mean value. (b) Standard deviation. (c) Bounds.

B. Case II: Power Divider

To further validate the proposed method, we consider another

example of the power divider. Fig. 6 plots the structural and

dimensional attributes of the model, which is characterized by

its symmetry, with excitation ports denoted by red arrows and

impedance-matched to 50 Ω. In particular, the power divider

model is divided into three distinct parts, with the lengths of

part 1, part 2, and part 3 beingL1,L2, andLR + L3, respectively,

assigned values of 20, 15, and 25 mm. Within part 3, LR

and L3 have lengths of 15 and 10 mm, respectively. Also, the

widths W1 and W2 are precisely 4.91 and 2.95 mm to achieve

characteristic impedances of 50 Ω and 70.7 Ω, respectively. The

distance between the ground plane is maintained at 1 mm. The

spacing d0 is defined as twice the width of W1. The operational

frequency is established at 5 GHz, and the connection resistorR0

is valued at 100Ω, thereby ensuring it is double the characteristic

impedance of part 1.

Next, stochastic parameters at single and multiple frequencies

are analyzed. The width of the transmission line affects its

characteristic impedance, which in turn affects the performance

of the S parameters. Therefore, three RVs, namely,W1,W2, and

LR, are considered. Herein, the polynomial of the highest order

is 3 [see (3)] and thereby a total of 20 basis functions are used

in PCE. Also, 50 sampling simulations of the PEEC are used

to generate an orthogonal basis functions matrix. Accordingly,

20 random numbers are employed as inputs for the PINN.

Besides, the PINN architecture with 4 hidden layers, each having

40 nodes, is designed, where the Adam optimizer is employed

to update the network parameters.

Table III shows the stochastic parameters of three RVs.

Through the analysis, the mean value and standard deviation

TABLE III
MEAN VALUE AND STANDARD DEVIATION OF RVS IN THE POWER DIVIDER

TABLE IV
COMPARISON RESULTS OF THE MEAN VALUE, STANDARD DEVIATION, AND

TIME OF S11 CALCULATED BY THE MCM AND PINN-BASED METHOD

AT 1 GHZ IN CASE II

of the S parameter at 1 GHz are presented in Table IV. Also,

the MCM with 103 samples is calculated for the comparison.

Clearly, the results obtained using the proposed method are in

good agreement with those obtained from the MCM. The relative

errors of the mean value and standard deviation are 0.0283%

and 2.96%, respectively. In addition, the computational time

required by the proposed method is more than twenty times

less than that of the MCM. The workstation configuration is the

same as the case I. Besides, the probability density function of

MCM and PINN is depicted in Fig. 7. It can be seen that a good

agreement can be obtained between these two methods.
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For further demonstration of the performance of the stochastic

parameters, the analysis of the S parameter with two conditions,

namely, one RV and three RVs, are conducted, respectively.

On the one hand, for one RV condition, we consider the W1.

Similarly, in this condition, we use the same PINN architecture

with the single frequency scenario shown in Fig. 7. Through the

proposed PINN-based method, we can obtain the mean value,

standard deviation, and bounds, which are plotted in Fig. 8.

Again, the MCM is applied to compute these statistical prop-

erties for the comparison. Obviously, the mean value, standard

deviation, and bounds computed by the PINN align closely with

those obtained from MCM’s results.

On the other hand, we also consider the second condition

with three RVs. The same PINN architecture is employed, and

the MCM is also applied for the comparison. Fig. 9 shows the

comparison results about the mean value, standard deviation,

and bounds. We can see that a good agreement can be obtained

between the MCM and the proposed PINN method. Hence, we

can conclude that the proposed PINN-based method can realize

UQ in PEEC with improved efficiency.

IV. CONCLUSION

In conclusion, we propose a machine learning-based approach

utilizing PINN to address the UQ challenges in PEEC simula-

tions. This PINN-based strategy adeptly handles stochastic ma-

trices regardless of the dimensional relationship between rows

and columns, effectively navigating the complexities inherent

in regression-based methods. Through the integration of PCE,

our approach reduces the requisite number of samples, thereby

enhancing computational efficiency. The efficacy of our method

has been demonstrated through the numerical examples, reveal-

ing that it outperforms existing methods with a computational

speedup of about 20 times. Besides, the proposed approach holds

the potential for extension to other computational EM frame-

works, promising broader applicability for the UQ problem.
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