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Abstract—This paper presents a data-driven methodology that
utilizes Dynamic Mode Decomposition (DMD) for the time-
domain (TD) electromagnetic (EM) modeling of microwave
devices. As an unsupervised machine learning technique, DMD
leverages a limited set of unlabeled spatio-temporal electromag-
netic (EM) data to determine DMD eigenvalues and eigenmodes.
Then, the obtained DMD model reconstructs the dynamics as
a series of exponential terms based on linear assumptions.
The effectiveness of this approach is demonstrated through the
TD EM modeling of photonic crystal waveguides. Comparative
analysis with the finite-difference time-domain (FDTD) method
shows that the DMD model not only achieves precise modeling
but also facilitates robust short-term forecasting.

Index Terms—Time-domain electromagnetic modeling, finite-
difference time-domain method, data-driven approach, dynamic
mode decomposition

I. INTRODUCTION

Time-domain (TD) electromagnetic (EM) modeling has
been a cornerstone in the field of microwave and pho-
tonic devices [1]. Herein, The finite-difference time-domain
method (FDTD), pioneered by Yee in 1966 [2], has been
particularly influential, providing a versatile and powerful
computational technique that has been extensively used in
the modeling of electromagnetic wave interactions [3], [4].
This method offers high accuracy and flexibility in handling
complex boundaries and media [5]. However, one of the
main drawbacks of traditional TD EM modeling approaches,
including FDTD, is their computational intensity, which often
results in long simulation times [6].

The advent of machine learning (ML) has introduced sig-
nificant innovations in computational methodologies, revolu-
tionizing various scientific fields, including electromagnetic
modeling [7], [8]. ML techniques, such as convolutional
neural networks (CNN) and artificial neural networks (ANN),
have been employed to enhance or even bypass traditional
computational approaches [7]. These methods capitalize on the
ability of ML models to learn from large datasets and make
predictions. Nevertheless, these supervised ML approaches
require extensive labeled datasets for training, which not only
demands substantial data collection and labeling efforts but
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also significant computational resources [9]. In response to
these challenges, there is a growing interest in unsupervised
machine learning techniques that do not rely on labeled data,
offering a promising avenue for efficient and scalable model-
ing. Unsupervised learning can exploit the inherent structures
and patterns in data, providing insights without the need for
labeling.

In this study, we leverage dynamic mode decomposition
(DMD) to develop a data-driven approach for TD EM model-
ing. By applying DMD to a set of unlabeled electromagnetic
field data collected from simulations of microwave devices,
we extract meaningful dynamic modes that significantly sim-
plify the complexity of the system while preserving essential
dynamic behaviors. The proposed method not only reduces
the computational burden but also provides an effective tool
for short-term forecasting and dynamic analysis. We demon-
strate the validity and effectiveness of our DMD-based model
through comparisons with the FDTD method, showing that
DMD not only captures the essential dynamics with fewer
computational resources but also provides insights that are not
readily accessible through traditional methods.

II. METHODOLOGY
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Fig. 1. Schematic of the proposed dynamic mode decomposition-based time-

domain electromagnetic modeling method, where the training data is provided
by the FDTD method.

* Modeling Prediction

Fig. 1 illustrates the proposed DMD-based TD EM mod-
eling method. In the initial phase, spanning from ¢y to ¢,
the FDTD method is utilized to generate the requisite training
data. Subsequently, this data serves as the basis for the DMD
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to conduct data-driven modeling. Leveraging the developed
DMD model, predictions state of the electromagnetic fields
are extrapolated, extending beyond ¢; towards to. DMD, orig-
inally developed in the field of hydrodynamics and based on
Koopman theory [10], is adept at handling complex dynamical
systems by decomposing spatiotemporal data into dynamic
modes without needing explicit governing equations [11]-
[14]. Mathematically, Given the sequence of EM field data
e(t) simulated by FDTD from ¢, to t; at discrete time
intervals, DMD simplifies the representation of the system
dynamics through the matrix relation E? ~ AE!, where
E' = [eg,e1, - ,e, 1] and E?> = [ej, ez, - ,€,]. A
encapsulates the linear dynamics estimated by DMD, which
is derived using the singular value decomposition (SVD) of
E!', namely E! = UXV*. Then, the matrix A can be
obtained by the pseudoinverse of E' in term of the SVD
approximation as: A = E?VX~!U*. This is followed by
the projection of A onto a lower-dimensional space using the
proper orthogonal decomposition (POD) modes contained in
U, resulting in the compressed form A. The eigendecompo-
sition of A then reveals the EM system’s dynamic modes and
their associated temporal behaviors, effectively capturing the
underlying dynamics of the em fields. Finally, the modeled
EM field solution can be represented by [15]

I
e(t) =Y thib; exp(wit) = bexp() (1)
=1

This DMD model represents the electromagnetic field solution,
which comprises various modes indexed by ¢ (totaling [
modes). Each mode’s initial amplitude is denoted by b;.
The diagonal matrix €2 contains w; as its diagonal elements,
defining the DMD spectrum. ¥ is a matrix with columns
representing DMD eigenvectors 1p;, matching the spatial size
of the original data snapshot. According to (1), we can make
predictions for future time steps, namely beyond from t¢;
towards t5. It is clear that each mode, 1);, varies over time
with a fixed damping factor and frequency from w;. Hence,
DMD offers a fully data-driven modeling approach without
the need for explicit equations.

III. BENCHMARKS

To validate the proposed method, we consider an example of
a ring resonator structure within a 3.05um X 3.6um domain.
As shown in Fig. 2, the structure includes a 0.45um thick
horizontal straight waveguide located 0.3pm from the top and
a 0.45um thick ridged circular waveguide with a central radius
of lum, positioned 0.1pm below the straight waveguide.
Both waveguides are composed of material with a relative
permittivity of 6, while the surrounding medium is free space
with a relative permittivity of 1. 171THz sinusoidal source
is employed to excite this ring resonator at the left end of
the straight waveguide as a line source along its width. A
perfectly matched layer boundary condition is employed in the
FDTD simulation, and the E, wave’s propagation through the
waveguides is observed as training data for the DMD method.
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Fig. 2. Schematic of the ring resonator structure

Fig. 3 presents the reconstruction and prediction results
utilizing the proposed MD method. Specifically, data spanning
from time indices 0 to 1000 served as the training set for DMD
to reconstruct the F, field distributions. Fig. 3(a) illustrates the
original F, field distribution at time index 500, as simulated by
the FDTD method. Fig. 3(b) displays the corresponding DMD-
based reconstruction at the same time index, demonstrating a
close approximation to the FDTD simulation. This level of
accuracy is also evident in the comparison between Fig. 3(c)
and (d) at time index 800. Employing the DMD model, as
outlined in (1), predictions for the E, field distribution can
be obtained. Fig. 3(f) depicts the predicted E, field at time
index 1500. For comparative analysis, Fig. 3(e) provides the
corresponding FDTD simulation results at the same future time
index. The notable agreement between the predicted values
(Fig. 3(f)) and the actual FDTD simulation results (Fig. 3(e))
clearly demonstrates the effectiveness and precision of the
DMD model in forecasting the dynamics of EM fields over
time. The peak signal-to-noise ratio (PSNR) is used to measure
these reconstruction and prediction results, as shown in Table
I. Hence, we can conclude that as an unsupervised learning
method, DMD can use a small amount of unlabeled data to
model the EM system, and the model has good reconstruction
and prediction capabilities.

IV. CONCLUSION

In summary, we presented a data-driven methodology using
DMD for TD EM modeling of a ring resonator. DMD, as an
unsupervised ML technique, provides a data-driven approach
for capturing dynamic behaviors in EM systems without the
need for equations. The effectiveness of the DMD-based model
is demonstrated through comparisons with the FDTD simula-
tion. This approach offers a promising data-driven avenue for
efficient TD EM modeling.
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Fig. 3. Reconstruction and prediction of E. field distributions using the proposed DMD method: (a) the original field at time index 500 simulated by
FDTD and (b) the corresponding reconstruction obtained by DMD; (c) the original field at time index 800 simulated by FDTD and (d) the corresponding
reconstruction; (f) the prediction result at time index 1500 provided by DMD and (e) the corresponding comparison obtained by the FDTD.

TABLE 1
COMPARISON OF PEAK SIGNAL-TO-NOISE RATIO OF THE
RECONSTRUCTION AND PREDICTION RESULTS SHOWN IN FIG. 3

Time Index PSNR
Reconstruction 500 41.9455 dB
800 41.2705 dB
Prediction 1500 23.1686 dB
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