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Abstract—This paper presents a data-driven methodology that
utilizes Dynamic Mode Decomposition (DMD) for the time-
domain (TD) electromagnetic (EM) modeling of microwave
devices. As an unsupervised machine learning technique, DMD
leverages a limited set of unlabeled spatio-temporal electromag-
netic (EM) data to determine DMD eigenvalues and eigenmodes.
Then, the obtained DMD model reconstructs the dynamics as
a series of exponential terms based on linear assumptions.
The effectiveness of this approach is demonstrated through the
TD EM modeling of photonic crystal waveguides. Comparative
analysis with the finite-difference time-domain (FDTD) method
shows that the DMD model not only achieves precise modeling
but also facilitates robust short-term forecasting.

Index Terms—Time-domain electromagnetic modeling, finite-
difference time-domain method, data-driven approach, dynamic
mode decomposition

I. INTRODUCTION

Time-domain (TD) electromagnetic (EM) modeling has

been a cornerstone in the field of microwave and pho-

tonic devices [1]. Herein, The finite-difference time-domain

method (FDTD), pioneered by Yee in 1966 [2], has been

particularly influential, providing a versatile and powerful

computational technique that has been extensively used in

the modeling of electromagnetic wave interactions [3], [4].

This method offers high accuracy and flexibility in handling

complex boundaries and media [5]. However, one of the

main drawbacks of traditional TD EM modeling approaches,

including FDTD, is their computational intensity, which often

results in long simulation times [6].

The advent of machine learning (ML) has introduced sig-

nificant innovations in computational methodologies, revolu-

tionizing various scientific fields, including electromagnetic

modeling [7], [8]. ML techniques, such as convolutional

neural networks (CNN) and artificial neural networks (ANN),

have been employed to enhance or even bypass traditional

computational approaches [7]. These methods capitalize on the

ability of ML models to learn from large datasets and make

predictions. Nevertheless, these supervised ML approaches

require extensive labeled datasets for training, which not only

demands substantial data collection and labeling efforts but

also significant computational resources [9]. In response to

these challenges, there is a growing interest in unsupervised

machine learning techniques that do not rely on labeled data,

offering a promising avenue for efficient and scalable model-

ing. Unsupervised learning can exploit the inherent structures

and patterns in data, providing insights without the need for

labeling.

In this study, we leverage dynamic mode decomposition

(DMD) to develop a data-driven approach for TD EM model-

ing. By applying DMD to a set of unlabeled electromagnetic

field data collected from simulations of microwave devices,

we extract meaningful dynamic modes that significantly sim-

plify the complexity of the system while preserving essential

dynamic behaviors. The proposed method not only reduces

the computational burden but also provides an effective tool

for short-term forecasting and dynamic analysis. We demon-

strate the validity and effectiveness of our DMD-based model

through comparisons with the FDTD method, showing that

DMD not only captures the essential dynamics with fewer

computational resources but also provides insights that are not

readily accessible through traditional methods.

II. METHODOLOGY

Fig. 1. Schematic of the proposed dynamic mode decomposition-based time-
domain electromagnetic modeling method, where the training data is provided
by the FDTD method.

Fig. 1 illustrates the proposed DMD-based TD EM mod-

eling method. In the initial phase, spanning from t0 to t1,

the FDTD method is utilized to generate the requisite training

data. Subsequently, this data serves as the basis for the DMD
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to conduct data-driven modeling. Leveraging the developed

DMD model, predictions state of the electromagnetic fields

are extrapolated, extending beyond t1 towards t2. DMD, orig-

inally developed in the field of hydrodynamics and based on

Koopman theory [10], is adept at handling complex dynamical

systems by decomposing spatiotemporal data into dynamic

modes without needing explicit governing equations [11]–

[14]. Mathematically, Given the sequence of EM field data

e(t) simulated by FDTD from t0 to t1 at discrete time

intervals, DMD simplifies the representation of the system

dynamics through the matrix relation E2
≈ AE1, where

E1 = [e0, e1, · · · , en−1] and E2 = [e1, e2, · · · , en]. A
encapsulates the linear dynamics estimated by DMD, which

is derived using the singular value decomposition (SVD) of

E1, namely E1 = UΣV ∗. Then, the matrix A can be

obtained by the pseudoinverse of E1 in term of the SVD

approximation as: A = E2V Σ
−1U∗. This is followed by

the projection of A onto a lower-dimensional space using the

proper orthogonal decomposition (POD) modes contained in

U , resulting in the compressed form Ã. The eigendecompo-

sition of Ã then reveals the EM system’s dynamic modes and

their associated temporal behaviors, effectively capturing the

underlying dynamics of the em fields. Finally, the modeled

EM field solution can be represented by [15]

e(t) =

I∑

i=1

ψibi exp(ωit) = Ψb exp(Ωt) (1)

This DMD model represents the electromagnetic field solution,

which comprises various modes indexed by i (totaling I

modes). Each mode’s initial amplitude is denoted by bi.

The diagonal matrix Ω contains ωi as its diagonal elements,

defining the DMD spectrum. Ψ is a matrix with columns

representing DMD eigenvectors ψi, matching the spatial size

of the original data snapshot. According to (1), we can make

predictions for future time steps, namely beyond from t1
towards t2. It is clear that each mode, ψi, varies over time

with a fixed damping factor and frequency from ωi. Hence,

DMD offers a fully data-driven modeling approach without

the need for explicit equations.

III. BENCHMARKS

To validate the proposed method, we consider an example of

a ring resonator structure within a 3.05µm × 3.6µm domain.

As shown in Fig. 2, the structure includes a 0.45µm thick

horizontal straight waveguide located 0.3µm from the top and

a 0.45µm thick ridged circular waveguide with a central radius

of 1µm, positioned 0.1µm below the straight waveguide.

Both waveguides are composed of material with a relative

permittivity of 6, while the surrounding medium is free space

with a relative permittivity of 1. 171THz sinusoidal source

is employed to excite this ring resonator at the left end of

the straight waveguide as a line source along its width. A

perfectly matched layer boundary condition is employed in the

FDTD simulation, and the Ez wave’s propagation through the

waveguides is observed as training data for the DMD method.

Fig. 2. Schematic of the ring resonator structure

Fig. 3 presents the reconstruction and prediction results

utilizing the proposed MD method. Specifically, data spanning

from time indices 0 to 1000 served as the training set for DMD

to reconstruct the Ez field distributions. Fig. 3(a) illustrates the

original Ez field distribution at time index 500, as simulated by

the FDTD method. Fig. 3(b) displays the corresponding DMD-

based reconstruction at the same time index, demonstrating a

close approximation to the FDTD simulation. This level of

accuracy is also evident in the comparison between Fig. 3(c)

and (d) at time index 800. Employing the DMD model, as

outlined in (1), predictions for the Ez field distribution can

be obtained. Fig. 3(f) depicts the predicted Ez field at time

index 1500. For comparative analysis, Fig. 3(e) provides the

corresponding FDTD simulation results at the same future time

index. The notable agreement between the predicted values

(Fig. 3(f)) and the actual FDTD simulation results (Fig. 3(e))

clearly demonstrates the effectiveness and precision of the

DMD model in forecasting the dynamics of EM fields over

time. The peak signal-to-noise ratio (PSNR) is used to measure

these reconstruction and prediction results, as shown in Table

I. Hence, we can conclude that as an unsupervised learning

method, DMD can use a small amount of unlabeled data to

model the EM system, and the model has good reconstruction

and prediction capabilities.

IV. CONCLUSION

In summary, we presented a data-driven methodology using

DMD for TD EM modeling of a ring resonator. DMD, as an

unsupervised ML technique, provides a data-driven approach

for capturing dynamic behaviors in EM systems without the

need for equations. The effectiveness of the DMD-based model

is demonstrated through comparisons with the FDTD simula-

tion. This approach offers a promising data-driven avenue for

efficient TD EM modeling.
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Fig. 3. Reconstruction and prediction of Ez field distributions using the proposed DMD method: (a) the original field at time index 500 simulated by
FDTD and (b) the corresponding reconstruction obtained by DMD; (c) the original field at time index 800 simulated by FDTD and (d) the corresponding
reconstruction; (f) the prediction result at time index 1500 provided by DMD and (e) the corresponding comparison obtained by the FDTD.

TABLE I
COMPARISON OF PEAK SIGNAL-TO-NOISE RATIO OF THE

RECONSTRUCTION AND PREDICTION RESULTS SHOWN IN FIG. 3

Time Index PSNR

Reconstruction
500 41.9455 dB
800 41.2705 dB

Prediction 1500 23.1686 dB
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