A Data-Driven Approach to Time-Domain Electromagnetic Modeling Based on Dynamic Mode Decomposition

Yanming Zhang

Dept. of Electronic Engineering Chinese University of Hong Kong Shatin, NT, Hong Kong ymzhang@cuhk.edu.hk

Steven Gao

Dept. of Electronic Engineering Chinese University of Hong Kong Shatin, NT, Hong Kong scgao@ee.cuhk.edu.hk

Lijun Jiang

Dept. of Electrical and Computer Engineering Missouri University of Science and Technology Rolla, MO, USA ljf82@mst.edu

Abstract—This paper presents a data-driven methodology that utilizes Dynamic Mode Decomposition (DMD) for the time-domain (TD) electromagnetic (EM) modeling of microwave devices. As an unsupervised machine learning technique, DMD leverages a limited set of unlabeled spatio-temporal electromagnetic (EM) data to determine DMD eigenvalues and eigenmodes. Then, the obtained DMD model reconstructs the dynamics as a series of exponential terms based on linear assumptions. The effectiveness of this approach is demonstrated through the TD EM modeling of photonic crystal waveguides. Comparative analysis with the finite-difference time-domain (FDTD) method shows that the DMD model not only achieves precise modeling but also facilitates robust short-term forecasting.

Index Terms—Time-domain electromagnetic modeling, finite-difference time-domain method, data-driven approach, dynamic mode decomposition

I. INTRODUCTION

Time-domain (TD) electromagnetic (EM) modeling has been a cornerstone in the field of microwave and photonic devices [1]. Herein, The finite-difference time-domain method (FDTD), pioneered by Yee in 1966 [2], has been particularly influential, providing a versatile and powerful computational technique that has been extensively used in the modeling of electromagnetic wave interactions [3], [4]. This method offers high accuracy and flexibility in handling complex boundaries and media [5]. However, one of the main drawbacks of traditional TD EM modeling approaches, including FDTD, is their computational intensity, which often results in long simulation times [6].

The advent of machine learning (ML) has introduced significant innovations in computational methodologies, revolutionizing various scientific fields, including electromagnetic modeling [7], [8]. ML techniques, such as convolutional neural networks (CNN) and artificial neural networks (ANN), have been employed to enhance or even bypass traditional computational approaches [7]. These methods capitalize on the ability of ML models to learn from large datasets and make predictions. Nevertheless, these supervised ML approaches require extensive labeled datasets for training, which not only demands substantial data collection and labeling efforts but

also significant computational resources [9]. In response to these challenges, there is a growing interest in unsupervised machine learning techniques that do not rely on labeled data, offering a promising avenue for efficient and scalable modeling. Unsupervised learning can exploit the inherent structures and patterns in data, providing insights without the need for labeling.

In this study, we leverage dynamic mode decomposition (DMD) to develop a data-driven approach for TD EM modeling. By applying DMD to a set of unlabeled electromagnetic field data collected from simulations of microwave devices, we extract meaningful dynamic modes that significantly simplify the complexity of the system while preserving essential dynamic behaviors. The proposed method not only reduces the computational burden but also provides an effective tool for short-term forecasting and dynamic analysis. We demonstrate the validity and effectiveness of our DMD-based model through comparisons with the FDTD method, showing that DMD not only captures the essential dynamics with fewer computational resources but also provides insights that are not readily accessible through traditional methods.

II. METHODOLOGY

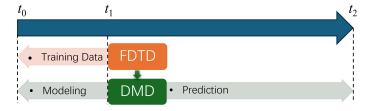


Fig. 1. Schematic of the proposed dynamic mode decomposition-based timedomain electromagnetic modeling method, where the training data is provided by the FDTD method.

Fig. 1 illustrates the proposed DMD-based TD EM modeling method. In the initial phase, spanning from t_0 to t_1 , the FDTD method is utilized to generate the requisite training data. Subsequently, this data serves as the basis for the DMD

to conduct data-driven modeling. Leveraging the developed DMD model, predictions state of the electromagnetic fields are extrapolated, extending beyond t_1 towards t_2 . DMD, originally developed in the field of hydrodynamics and based on Koopman theory [10], is adept at handling complex dynamical systems by decomposing spatiotemporal data into dynamic modes without needing explicit governing equations [11]-[14]. Mathematically, Given the sequence of EM field data e(t) simulated by FDTD from t_0 to t_1 at discrete time intervals, DMD simplifies the representation of the system dynamics through the matrix relation $E^2 \approx AE^1$, where $oldsymbol{E}^1 = [oldsymbol{e}_0, oldsymbol{e}_1, \cdots, oldsymbol{e}_{n-1}]$ and $oldsymbol{E}^2 = [oldsymbol{e}_1, oldsymbol{e}_2, \cdots, oldsymbol{e}_n]$. $oldsymbol{A}$ encapsulates the linear dynamics estimated by DMD, which is derived using the singular value decomposition (SVD) of E^1 , namely $E^1 = U\Sigma V^*$. Then, the matrix A can be obtained by the pseudoinverse of E^1 in term of the SVD approximation as: $A = E^2 V \Sigma^{-1} U^*$. This is followed by the projection of A onto a lower-dimensional space using the proper orthogonal decomposition (POD) modes contained in U, resulting in the compressed form A. The eigendecomposition of A then reveals the EM system's dynamic modes and their associated temporal behaviors, effectively capturing the underlying dynamics of the em fields. Finally, the modeled EM field solution can be represented by [15]

$$e(t) = \sum_{i=1}^{I} \psi_i b_i \exp(\omega_i t) = \Psi b \exp(\Omega t)$$
 (1)

This DMD model represents the electromagnetic field solution, which comprises various modes indexed by i (totaling I modes). Each mode's initial amplitude is denoted by b_i . The diagonal matrix Ω contains ω_i as its diagonal elements, defining the DMD spectrum. Ψ is a matrix with columns representing DMD eigenvectors ψ_i , matching the spatial size of the original data snapshot. According to (1), we can make predictions for future time steps, namely beyond from t_1 towards t_2 . It is clear that each mode, ψ_i , varies over time with a fixed damping factor and frequency from ω_i . Hence, DMD offers a fully data-driven modeling approach without the need for explicit equations.

III. BENCHMARKS

To validate the proposed method, we consider an example of a ring resonator structure within a $3.05\mu\mathrm{m}\times3.6\mu\mathrm{m}$ domain. As shown in Fig. 2, the structure includes a $0.45\mu\mathrm{m}$ thick horizontal straight waveguide located $0.3\mu\mathrm{m}$ from the top and a $0.45\mu\mathrm{m}$ thick ridged circular waveguide with a central radius of $1\mu\mathrm{m}$, positioned $0.1\mu\mathrm{m}$ below the straight waveguide. Both waveguides are composed of material with a relative permittivity of 6, while the surrounding medium is free space with a relative permittivity of 1. 171THz sinusoidal source is employed to excite this ring resonator at the left end of the straight waveguide as a line source along its width. A perfectly matched layer boundary condition is employed in the FDTD simulation, and the E_z wave's propagation through the waveguides is observed as training data for the DMD method.

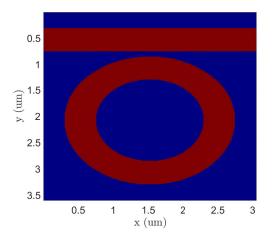


Fig. 2. Schematic of the ring resonator structure

Fig. 3 presents the reconstruction and prediction results utilizing the proposed MD method. Specifically, data spanning from time indices 0 to 1000 served as the training set for DMD to reconstruct the E_z field distributions. Fig. 3(a) illustrates the original E_z field distribution at time index 500, as simulated by the FDTD method. Fig. 3(b) displays the corresponding DMDbased reconstruction at the same time index, demonstrating a close approximation to the FDTD simulation. This level of accuracy is also evident in the comparison between Fig. 3(c) and (d) at time index 800. Employing the DMD model, as outlined in (1), predictions for the E_z field distribution can be obtained. Fig. 3(f) depicts the predicted E_z field at time index 1500. For comparative analysis, Fig. 3(e) provides the corresponding FDTD simulation results at the same future time index. The notable agreement between the predicted values (Fig. 3(f)) and the actual FDTD simulation results (Fig. 3(e)) clearly demonstrates the effectiveness and precision of the DMD model in forecasting the dynamics of EM fields over time. The peak signal-to-noise ratio (PSNR) is used to measure these reconstruction and prediction results, as shown in Table I. Hence, we can conclude that as an unsupervised learning method, DMD can use a small amount of unlabeled data to model the EM system, and the model has good reconstruction and prediction capabilities.

IV. CONCLUSION

In summary, we presented a data-driven methodology using DMD for TD EM modeling of a ring resonator. DMD, as an unsupervised ML technique, provides a data-driven approach for capturing dynamic behaviors in EM systems without the need for equations. The effectiveness of the DMD-based model is demonstrated through comparisons with the FDTD simulation. This approach offers a promising data-driven avenue for efficient TD EM modeling.

ACKNOWLEDGMENT

This work is supported in part by Chinese University of Hong Kong Startup Fund under Grant 4937123, Grant

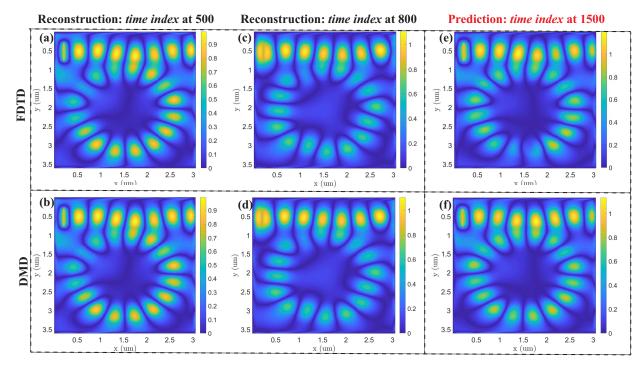


Fig. 3. Reconstruction and prediction of E_z field distributions using the proposed DMD method: (a) the original field at time index 500 simulated by FDTD and (b) the corresponding reconstruction obtained by DMD; (c) the original field at time index 800 simulated by FDTD and (d) the corresponding reconstruction; (f) the prediction result at time index 1500 provided by DMD and (e) the corresponding comparison obtained by the FDTD.

TABLE I
COMPARISON OF PEAK SIGNAL-TO-NOISE RATIO OF THE
RECONSTRUCTION AND PREDICTION RESULTS SHOWN IN FIG. 3

	Time Index	PSNR
Reconstruction	500 800	41.9455 dB 41.2705 dB
Prediction	1500	23.1686 dB

4937124, Grant 14223422 and Grant 14201923, in part by the Research Grants Council of Hong Kong under Grant GRF 14210623, in part by ITF Grant ITP/007/23LP, in part by AoE/E-101/23-N, and in part by AoE/E-603/18.

REFERENCES

- [1] E. Miller, "Time-domain modeling in electromagnetics," *J. Electromagn. Waves Appl.*, vol. 8, no. 9-10, pp. 1125–1172, 1994.
- [2] K. Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," *IEEE Trans. Antennas Propag.*, vol. 14, no. 3, pp. 302–307, 1966.
- [3] Q. Yang, B. Wei, L. Li, D. Ge, and D. Haochuan, "Analysis of the shielding effectiveness of thin wire cages by a hybrid DGTD-FDTD method," *IEEE Trans. Electromagn. Compat.*, vol. 64, no. 6, pp. 2198– 2206, 2022.
- [4] F. Teixeira, C. Sarris, Y. Zhang, D.-Y. Na, J.-P. Berenger, Y. Su, M. Okoniewski, W. Chew, V. Backman, and J. Simpson, "Finite-difference time-domain methods," *Nat. Rev. Dis. Primers*, vol. 3, no. 1, p. 75, 2023.
- [5] A. Taflove, "A perspective on the 40-year history of FDTD computational electrodynamics," *Appl. Comput. Electromagn. Soc. J.*, vol. 22, no. 1, p. 1, 2007.

- [6] D. Sullivan, J. Liu, and M. Kuzyk, "Three-dimensional optical pulse simulation using the FDTD method," *IEEE Trans. Microw. Theory Tech.*, vol. 48, no. 7, pp. 1127–1133, 2000.
- [7] H. M. Yao and L. Jiang, "Machine-learning-based PML for the FDTD method," *IEEE Antennas Wirel. Propag. Lett.*, vol. 18, no. 1, pp. 192–196, 2018.
- [8] L. Guo, M. Li, S. Xu, F. Yang, and L. Liu, "Electromagnetic modeling using an FDTD-equivalent recurrent convolution neural network: Accurate computing on a deep learning framework," *IEEE Antennas and Propagation Magazine*, vol. 65, no. 1, pp. 93–102, 2021.
- [9] L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, "Machine learning on big data: Opportunities and challenges," *Neurocomputing*, vol. 237, pp. 350–361, 2017.
- [10] S. L. Brunton, B. W. Brunton, J. L. Proctor, E. Kaiser, and J. N. Kutz, "Chaos as an intermittently forced linear system," *Nat. Commun.*, vol. 8, no. 1, p. 19, 2017.
- [11] Y. Zhang and L. Jiang, "A novel data-driven analysis method for electromagnetic radiations based on dynamic mode decomposition," *IEEE Trans. Electromagn. Compat.*, vol. 62, no. 4, pp. 1443–1450, 2020.
- [12] Y. Zhang, L. Jiang, and H.-T. Chou, "Data-driven scheme for joint estimation of direction-of-arrival and frequency with uniform linear array," *IEEE Trans. Veh. Technol.*, pp. 1–13, 2023.
- [13] I. Nayak, F. L. Teixeira, and R. J. Burkholder, "On-the-fly dynamic mode decomposition for rapid time-extrapolation and analysis of cavity resonances," *IEEE Trans. Antennas Propag.*, 2023.
- [14] Y. Zhang and L. Jiang, "Suppressing white-noise interference for orbital angular momentum waves via the forwardbackward dynamic mode decomposition," *IEEE Trans. Antennas Propag.*, vol. 71, no. 3, pp. 2879– 2884, 2023.
- [15] Y. Zhang, L. Jiang, and H. T. Ewe, "A novel data-driven modeling method for the spatialtemporal correlated complex sea clutter," *IEEE Trans. Geosci. Remote Sens.*, vol. 60, pp. 1–11, 2022.