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Abstract—This paper proposes a novel approach for 

generating the initial population, termed disproportionate 

initialization, to enhance the genetic algorithm's efficiency in 

optimizing the number of decaps. This method is specifically 

designed to accelerate convergence, improving the algorithm's 

ability to find optimal solutions. The algorithm is improved to 

simultaneously reduce the number of decoupling capacitors and 

achieve the lowest cost, aiming to identify the global minima for 

comprehensive PDN optimization.  
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I. INTRODUCTION 

Recent research in PDN optimization has primarily 
focused on reducing the number of decoupling capacitors 
using machine learning techniques. Optimizing the selection 
of decoupling capacitors (decaps) in a power distribution 
network (PDN) is pivotal for reducing impedance and cost. 
Numerous research has utilized machine learning methods to 
optimize both the placement and values of decaps.  

In work by [1], a transformer network-based deep 
reinforcement learning agent was employed to optimize decap 
placement; however, this approach is constrained to using 
single decap, making it specifically suitable for single decap 
placement issues. In practical scenarios, capacitor libraries 
encompass numerous decaps that necessitate optimization. 
Another attempt in [2] utilized a deep reinforcement learning 
approach for optimizing decap placement and value. 
However, this algorithm had issues with scalability and 
generalizing to different boards. [3] proposed an advantage 
actor-critic reinforcement learning-based method, offering a 
broader action space. Nonetheless, scalability and reusability 
remain challenges for this method. 

The exploration of evolutionary computation techniques 
led [4] to propose a genetic algorithm for decap optimization. 
Although computationally expensive, employing a 
commercial tool for impedance calculations in each 
population, this method laid the foundation for further 
enhancements. Subsequently, [5] introduced a modified 
version of conventional genetic algorithms, termed gene-
suppressed GA, aiming for faster convergence. [6] presented 
a genetic algorithm with an augmented initial population, 
incorporating new genetic operators. While exhibiting 
commendable performance in terms of solution quality and 
time cost, this algorithm faced challenges related to 
convergence, occasionally becoming stuck in local minima. 
The algorithm proposed in [7] is an improved version of the 
algorithm in [6] with reinforcement learning (RL) for tuning 

the mutation probability of the genetic algorithm. The 
algorithm, with the addition of the RL agent, was able to 
converge faster and was able to find a better decap solution 
than the algorithm in [6]. The existing approaches collectively 
contribute to the evolving landscape of PDN decap 
optimization, each with its distinctive advantages and 
limitations. However, in many practical industrial scenarios, 
the optimization requirements extend beyond minimizing the 
capacitor count.  

In this work, the algorithm proposed in [7] is improved 
further with the extension of finding a solution with fewer 
decaps and minimal cost. In addition to this, the initial 
population of the algorithm is improved with disproportionate 
decap solutions in the initial population to allow for faster 
convergence and find a near-global minimum. 

II. PREVIOUS WORK 

A. Augmented GA v1 

A GA is a population-based optimization algorithm used 
to solve combinatorial problems. The initial population is 
important for the algorithm to converge faster to the near 
global minimum.  

Hence, in augmented GA v1, an augmented initial 
population was proposed. By finding the decap weights, the 
best proportion of decaps from the decap library needed for 
the board is generated. The decap solution is encoded as a 
vector of real numbers where the index corresponds to decap 
ports, and values in each index correspond to the decap type 
in the decap library.  

For solutions that satisfy the target impedance, the fitness 
is given by (1), and for solutions that do not satisfy the target 
impedance, the fitness is given by (2) [6]. 

fitness = -(total # of ports - # of ports used) + 1  (1) 

 

 
solution_z(f)-target_z(f)

fitness=max( )
target_z(f)

 (2) 

Apart from the initial population, new mutation operators 
were introduced, and crossover operation was removed. 
Helper functions for faster convergence were also used. 
Compared to conventional GA, the algorithm showed 
improved solution quality and took less computation time. 
Fig. 1 shows the flowchart of the augmented GA v1. 
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Fig.  1 Augmented GA v1 flowchart. 

 

Fig.  2  Selection of mutation probability by RL agent 

B. Augmented GA v2 

Mutation probability is a hyperparameter of GA and is 
predefined before the start of the algorithm. It was found that 
proper selection of mutation probability will make the 
algorithm find a better solution. Since this is different for 
different board cases, an intelligent way of tuning the mutation 
probability was proposed in v2[7]. Q learning-based 
reinforcement learning was used to tune the mutation 
probability. Fig. 2 shows the flowchart of the selection of 
mutation probability by the RL agent. The algorithm starts 
with a predefined mutation probability, and for every 5 
generations until the exploration stage, the algorithm chooses 
a random mutation probability and updates its Q table.  

The reward for the agent was defined as if there was an 
improvement in GA’s performance in terms of finding a better 
solution, and then a positive reward is awarded or vice-versa. 
Then, in the exploitation phase, the agent takes the action that 
tries to maximize the reward. In this way, the agent assists the 
GA in finding an optimal solution or near-optimal solution 
instead of getting stuck in the local minimum. 

The performance results were compared with v1 and 
conventional GA for 30 cases, and in all cases, algorithm v2 
outperformed in terms of solution quality and computation 
time.[7] 

III. AUGMENTED GENETIC ALGORITHM V3 

In both v1 and v2, the initial population is filled with decap 
solutions where all the ports are filled. If the population size 
is 20, then all the ports in these 20 decap solutions will have 

their ports filled. This leads to a case where there is no 
diversity in the initial population. Population diversity is really 
needed to improve the performance of the genetic algorithm. 
Hence, in this work, v3 disproportionate initial population is 
proposed to maintain the population diversity. 

A. Disproportionate Initial Population 

In this proposed approach, the initial population is divided 
into four categories. These four categories include 100% 
filled, 80% filled, 60% filled, and 40% filled decap ports 
solution in the initial population. The ports are filled based on 
the port priority as in v1[6]. If the population size is 20, then 
each category will have 4 solutions.  Instead of starting with 
an initial population of all decap ports by the proposed 
method, there is a diverse initial population. This diverse 
initial population helps the convergence of the algorithm 
faster and, in some cases, finds better solutions. There are 
often cases that the optimized solution requires much fewer 
decaps than the available decap ports. For example, with 50-
board and loose target impedance, the global minimum is 25 
decaps. With this new initial population, the 60% filled decap 
ports solution (30 ports in this case) will satisfy the target 
impedance, and the algorithm now starts with a solution closer 
to the global minimum eventually, as the algorithm iterates, it 
will find the global minimum or near global minimum.  

To validate the performance of the proposed new initial 
population-based GA, 3 cases each for 75,100 and 150 decap 
ports were considered. These 3 cases included tight, loose, and 
very loose target impedance. The performance was tested 
against v2 in terms of solution quality and computation time. 
All cases were run on a Linux server that had 12 cpu cores. 
The comparison results are shown in Table I. For the 75 board 
in all 3 cases, both the v2 and v3 converge to the same 
solution, but v3 is faster than v2. For the 100 and 150 board 
cases, the v3 outperforms the v2 in terms of solution quality, 
finding a better solution. The same decap library used in [6] is 
used here too. 

TABLE I.  COMPARISON OF SOLUTION QUALITY AND TIME COST 

 

On an overall case with a diverse initial population, 
convergence is faster, and it allows the algorithm to explore 
and find a near-optimal solution. Fig. 3 shows the convergence 
plot comparison for the three 75 decap port cases shown in 

Example # 

Minimum # of 

capacitors needed 

Time taken 

v2 v3 v2 v3 

75 decap 
ports case #1 

27 27 
~19 mins ~12 mins 

75 decap 
ports case #2 

21 21 
~15 mins ~10 mins 

75 decap 
ports case #3 

13 13 
~10 mins ~6 mins 

100 decap 
ports case #1 

34 34 
~27 mins ~20 mins 

100 decap 
ports case #2 

29 28 
~25 mins ~16 mins 

100 decap 
ports case #3 

25 24 
~20 mins ~12 mins 

150 decap 
ports case #1 

45 44 
~48 mins ~34 mins 

150 decap 
ports case #2 

34 34 
~42 mins ~30 mins 

150 decap 
ports case #3 

16 15 
~36 mins ~25 mins 
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Table I. In the plot, blue, pink, and black show results for v2, 
and red, purple, and brown show results for v3. Comparing the 
blue and red curves, it shows that v3 finds the solution with 27 
decaps in the 5th generation while v2 takes the 51st generation 
to find the same solution with 27 decaps. The proposed initial 
population method made the GA converge faster to the 
minimum solution. 

 

Fig.  3 Convergence comparison plot of three 75 decap port cases 

Comparing the proposed approach to the full search, an 
exhaustive search was carried out to check if the algorithm 
could find the global minimum possible. For a 150-board case 
and 10 different decaps in the library, the number of 
combinations is around two thousand billion (2.1e15) 
samples. Carrying out this number of combinations is beyond 
the capability. Hence, a small board case with 50 decap ports 
and 4 decaps in the decap library is considered. This will lead 
to a total of 292825 samples. The comparison is shown in 
Table II. In the 50 decap ports case, the proposed algorithm is 
able to find the near-global minimum solution. However, the 
time taken for an exhaustive search is almost 2 days compared 
to the 15 minutes taken by the proposed approach. 

TABLE II.  COMPARISON WITH EXHAUSTIVE SEARCH 

 

B. Multi-Objective Optimization 

In this proposed version, the GA is modified to handle 
multi-objective optimization. To handle this task, the reward 
function is modified to a normalized version. Since the scaling 
differs for the number of decaps and the total cost, the 
normalized reward function is used to make the GA unbiased 
to one objective.  The modified reward function is given by 
(3) 

reward = reward1+reward2                                       (3) 

 -(total # of ports - # of ports used)
reward1 = 

total # of ports
            (4) 

total cost of decaps in the solution
 reward2= 

total cost possible
                      (5) 

Table III gives the results for the multi-objective decap 
optimization. Test cases were carried out for 25 and 50 board 
cases. The results show with the new reward function, the 
algorithm can handle both objectives (a smaller number of 
decaps and minimal cost). 

TABLE III.  MULTI-OBJECTIVE OPTIMIZATION RESULTS 

Example 

# 

Minimum # of capacitors 

needed 
Minimum Cost 

25 decap 
ports 

10 $1 

50 decap 
ports 

27 $2.7 

 

IV. CONCLUSION 

Population diversity is maintained by having a 
disproportionate initial population that aides in faster 
convergence of the algorithm. In addition to that, the reward 
function is modified to support multi-objective optimization 
of both the number of decaps and cost is implemented. In 
comparison with v2, the proposed algorithm v3 shows 
improved solution quality with less computation time. The 
solution obtained is compared with the exhaustive search, and 
the proposed algorithm finds the near global minimum. In the 
future, the algorithm performance will be improved, and a 
minimum decap area objective will be added in the multi-
objective optimization. 
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Example 

# 

Minimum # of capacitors 

needed 

Time Taken 

v3 
Exhaustive 

search 

v3 Exhaustive 

search 

50 decap 
ports case 
#1 

26 25 
~14 mins ~2 days 
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