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Abstract— This report documents 51 instances of human
error for small uncrewed aerial system (sUAS) for 34 missions
flown under the direction of the State of Florida UAS Task Force
1 at Hurricane Ian from 9/29/2022 to 10/2/2022. The current
state of human failure analysis for small UAS has been directed
at aviation safety, rather than overall mission success. This
work focuses on mission success, which includes data product
delivery. Using an expansion of an existing failure taxonomy for
disaster robotics, the data suggests that human error was not
directly responsible any failures of the physical platform, but
was the source of four failures to complete missions (terminal
failures) and delays in 27 missions in data product delivery
(non-terminal failures). Human error occurred in all but three
missions. Procedural errors were occurred approximately twice
as often as skill-based errors, and most frequently occurred
during the Initiation and Termination phases of the mission,
not the Execution phase. The documentation and preliminary
analysis contributes to robotics and HRI research in interfaces,
human error, training, and procedures for small UAS in any
domain. The analysis is also expected to have societal impact
as it alerts emergency management leadership and UAS pilots
to tendencies towards errors during disasters.

I. INTRODUCTION

Fourteen agencies and institutions deployed UAS and pi-
lots, operating under the direction of the State of Florida UAS
task force, FL UAS-1, to Hurricane Ian is now considered
to be the third costliest hurricane to strike the United States.
Hurricane made landfall near Fort Meyers Beach, Florida
on 9/28/2022 as a Category 4 storm after briefly attained a
Category 5 status. FL UAS-1, directed by Florida State Uni-
versity, deployed nine squads from 9/27/2022 to 10/5/2022,
with flying beginning on 9/29/2022 when the hurricane winds
had subsided. All pilots, see Fig. 1, were experienced with
UAS, had trained or deployed together in regional incidents,
and used UAS in the course of their normal work. In the first
4 days of flying, the squads successfully completed 30 out of
34 missions producing 567.6GB of valid mission data. The
metrics of mission success are that the data products from the
UAS sorties are provided in the time requested. This means
that mission success is more than safely or quickly flying
over an area, it includes any formatting, post-processing, or
labeling of data for distribution to incident command.

However, the missions were not seamless; in addition to
the four terminal missions, 27 of the remaining 30 showed
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Fig. 1. Small UAS squads at Hurricane Ian.

evidence of human error, leaving only three error-free mis-
sions. The evidence comes from detailed mission logs that
were kept for the first four days of flying. These logs provide
an opportunity to perform a post hoc analysis of human error,
as the logs capture what a drone squad was tasked to do and
whether they were able to meet those expectations. The first
four days is particularly interesting because missions were all
a single type, Recon/Rapid Needs Assessment, and thus can
be directly compared. This mission type is the most common
for disasters (see [1], [2], [3]) and has high urgency since
the resulting data products are used for directing life-saving
search and rescue efforts, determining additional resources
needed for civilians, and projecting recovery costs.

An analysis of the logs, summarized in the remainder of
the paper, documents that UAS squads were returning with
missions with unusable data or data that was in the wrong
format or incomplete, requiring unexpected additional work
at the forward operating base to produce the data products,
delaying their release for dissemination to responders and
emergency managers.

II. RELATED WORK

This work is novel in that it explores small UAS pilot error
over the different mission phases and its impact on mission
objectives, in contrast to papers focusing on aviation safety
[4], [5], [6], [7], [8], [9]. It adapts prior work in formal
taxonomies for categorizing human error based on previous
work in disaster robotics or field robotics, merging the human
error categories in Carlson and Murphy [10] with Honig and
Orad-Gilad [11]. However, the four categories of human error
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(mistakes, slips, lapses, and deliberate violations) all require
knowledge of the motivation of the human. This paper is
limited to error analysis from mission logs; therefore, the
squads’ motivations are unknown, and thus, the analysis
cannot place errors into these categories. However, this paper
can associate errors with the type of activity in which
the error occurred, either following procedures or protocols
(procedural-based activities) or directing the drone (skills-
based activities). As shown in Fig. 2, the activity level would
be a refinement of the categories.

human 
error

terminal

non-
terminal

mistakes slips

procedure
-based

skill-
based

procedure
-based

skill-
based

lapses deliberate
violations

procedure
-based

skill-
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Fig. 2. Graphical representation of the merged human error taxonomy
for field robots. Categories of human error that cannot be extracted from
mission logs are cross-hatched.

A. Taxonomies of Human Error with small UAS

The literature on human error for small UAS has focused
on aviation safety and root causes following the classic
human factors analysis and classification system (HFACS)
framework for aviation safety [12], which is not helpful for
understanding data-to-decision mission success. In a 2020
survey of 69 papers on human factors for UAS [6], only five
papers discussed specific sources of UAS pilot error for i)
mishaps in general [7], ii) collisions [5], or iii) general avia-
tion safety [4], [8], [9]. None considered the role of the pilot
in meeting mission objectives or methods for documenting
associated errors. One additional paper discussed the role of
pilot error in performing missions but errors were limited to
an element within a larger Model-based Systems Engineering
framework for human factors analysis [13].

B. Taxonomies of Human Error with Robots in General

Three human-robot error taxonomies [10], [14], [11] are
relevant for categorizing and counting the frequency of
occurrence of human error in field robots. Fig. 2 represents
a novel merger of the specific interaction errors in [10]
(mistakes, slips) with [11] (lapses, deliberative violations).
However, those interaction errors cannot be determined from
mission logs because knowledge of the motivation or intent
of the human is required for classification. The taxonomy
in Fig. 2 is also novel because it notes that each of the
four interaction errors could be further classified by activ-
ity, procedure-based, or skill-based, which would help with
understanding impacts and root causes. An analysis of human
error can capture those activities without understanding the

mental state of the human. Other human-robot error tax-
onomies, notably [15], [16], [17], are outside of the scope
of this article as they focus on categorizing failures in terms
of impact on the social-emotional aspects of how robots are
perceived or how users interact with them socially, which
are not germane to field robotics.

Carlson and Murphy [10] put forth a robot failure tax-
onomy that divided failures into physical or human and
subdivided human failures into mistakes (performing an
action with the wrong intent, e.g., flying a mission using the
incorrect technique) or slips (attempting to do the right thing
unsuccessfully, e.g., accidentally performing a step out of
sequence). The taxonomy is mission-oriented, as the impact
of each failure is classified as either terminal, where the robot
failed to complete its mission, or non-terminal, where the
mission was delayed or degraded but still accomplished in
some form. This taxonomy has been used in human-robot
interaction research characterizing influences on trust [18].

A similar fault taxonomy was used in [14] for assessing
failures in the RoboCup competition entries through 2012.
This taxonomy divided failures into hardware, software,
algorithms, and interaction, with interaction failures being
subdivided into human, agent-robot, and environment. How-
ever, no data on specific instances or frequency of occurrence
of interaction errors were provided. The work did not pose
any refinement of interaction errors, in contrast to [10] which
subdivided interaction errors into mistakes and slips.

Honig and Orad-Gilad [11] offered a dedicated human-
robot failure taxonomy which divided the source of failures
into technical failures (software, hardware) and interaction
failures (social norm violations, human errors, and environ-
ment and other agents). [11] use a similar scheme to [10]
for rating the functional severity of human error: terminal,
non-critical, and recoverable. Terminal is the equivalent of
terminal in [10], while non-critical and recoverable appears
to be subcategories of non-terminal in [10], though neither
non-critical nor recoverable were precisely defined in [11].
[11] expands [10] include lapses, such as errors in memory or
attention (e.g., forgetting to recharge batteries) and deliberate
violations (e.g., knowingly not following procedures).

III. HUMAN ERROR IDENTIFIED AT HURRICANE IAN

The preliminary analysis of the 51 instances of human
error loosely follows Sutcliffe and Rugg’s recommendations
on what questions to ask in defining root causes of human-
machine error [19]. Sec. III-A describes the mission logs and
answers the questions of when were the effects of failure
apparent? and who observed/reported the failure? Sec. III-B
answers what has been observed to have failed? followed
by Sec. III-C on what are the consequences of the failures?
The question of where did the failure occur? is addressed in
two ways, with an examination of what activity did the error
occur in (Sec. III-D) and what phase of the mission did it
occur in (Sec. III-E).
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A. Missions and Mission Logs
In order to follow the analysis, it is helpful for the reader to

understand the mission tasking process and how the mission
logs were created and maintained at Hurricane Ian. Each
morning, the task force leader would receive a list of requests
for aerial data from an incident commander, translate those
requests into one of the nine types of missions[20], and then
allocate one or more missions to squads to cover the requests.
The squads were informed of the assignments at the morning
briefing and each squad was given a paper form for each
mission with the mission name (usually the location where
the mission was to be flown) and a form to fill out on sorties.
The data managers, co-authors Murphy and Manzini, created
a spreadsheet with mission names, mission types, and squads.
The form also had a reminder to label all data products using
the mission name before giving the data to the data managers.

When the squads returned in the late afternoon, the data
managers would log the arrival of the data in the spreadsheet,
copy the data, and then begin any mission-specific post-
processing (e.g., editing videos, creating orthomosaics). The
data managers also attempted to enter into the log any
additional processing needed to rectify or mitigate incorrect
data products and to make notes as to the effects of the failure
and whether it was identified by the squad in the field or by
the data managers. In general, most squad members were
visibly fatigued and eager to hand off the data so they could
get food and start recharging their gear for the next day.
Attempts to informally interview the pilots or ask questions
beyond casual conversation were met with complaints to
the task force leader that the data managers were wasting
the pilot’s time even though the questions were being asked
while the pilots were waiting for the data to be copied. The
reluctance of pilots to be interviewed after flying long days
during disasters has been documented in other disasters [21].

Human error was detected primarily by the data managers,
who could quickly see the returned data was not what had
been asked for or was not in the correct format. Some squads
self-reported to the data managers that there had been a
problem during a flight, while other instances of human error
came up in conversation in the evenings or in the informal
evening briefing; these were logged opportunistically by the
data managers.

B. Overview of Human Error Counts
Table I summarizes the missions by day, the number of

missions flown that day, the number of human errors for
each mission, and flight style (flown either autonomously or
manually). The table shows that there were a total of 34
missions, of which only three had no recorded errors (12,
20, and 27). 20 of the missions were autonomous, and 17
were manual, with missions 8, 13, and 17 involving both
autonomous and manual flights. Missions 8 and 13 contained
errors in only one of the flight styles, while mission 17 had
errors occur in both the autonomous and manual portions of
the mission.

The only mission type for the four-day period was the
Recon/Rapid Needs Assessment, which had manual and

TABLE I
OVERVIEW OF MISSIONS AND ERRORS BY DAY. A WHITE CELL

INDICATES THE MISSION WAS FLOWN WITH AN AUTONOMOUS OR

MANUAL FLIGHT STYLE. MISSIONS 8, 13, AND 17 USED BOTH FLIGHT

STYLES.

Date # M
iss

ion
s

Miss
ion

 ID

# E
rro

rs

Auto
no

mou
s F

lig
ht

Man
ua

l F
lig

ht

1 2  
2 2
3 1  
4 2
5 2
6 1
7 1
8 1
9 1
10 1
11 1
12 0
13 1
14 3
15 1
16 1
17 2
18 1
19 2
20 0
21 1
22 1
23 2
24 1
25 4
26 3
27 0
28 2
29 3
30 1
31 3
32 1
33 1
34 2

Grand Total 34 51 20 17

9/30/2022 5

10/1/2022 14

10/2/2022 9

9/29/2022 6

autonomous variants of flight style. The flight style was
specified at the time of tasking. One was targeted rapid
inspection of infrastructure damage (e.g. bridge inspection);
these flights are typically flown manually in first-person view
mode. The data product for this variation is still images
of significant damage and video snippets. A data manager
would typically select several 30-second to 3-minute snippets
from the longer 12-20 minute flight videos for dissemination
as the final data product. The other was rapid low-resolution
mapping of an area of interest, flown autonomously with a
software flight and camera control package that collected
raw images. The images would be merged into the data
product, an orthomosaic map, by the squad (if they had the
post-processing software) or a GIS specialist at the forward
operating base.

The temporal pattern of mission variants followed the pre-
viously observed patterns at Hurricanes Harvey [3], Michael
[2], and more recent hurricanes, which suggests that the
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TABLE II
TERMINAL ERRORS COMPARED WITH NON-TERMINAL.

Autonomous Manual Autonomous Manual
9/29/22 6 10 1 9 0 0
9/30/22 5 5 1 3 1 0
10/1/22 14 20 11 6 1 2
10/2/22 9 16 10 5 1 0

Total 34 51 23 23 3 2

Date # Missions # Errors Non-Terminal Failures (46) Terminal Failures (5)

human error is representative for disasters in general. The
pattern is for pilots to fly manually for the first days to pro-
vide rapid spot checks on Infrastructure Damage that could
be used tactically, then begin flying more systematically for
Rapid Low-Res Mappiong for documentation.

C. Non-Terminal Compared with Terminal Errors
Table II shows the distribution of non-terminal and termi-

nal errors. The 51 instances of human error had a notice-
able impact on mission success, with 27 having avoidable
delays or degradations (non-terminal failure), four missions
not completed (terminal failure), and only three of the 34
missions being completed without any observed errors. The
errors appear to be evenly split between manual (23) and
autonomous (23), suggesting that one style of flying is not
inherently less error inducing than the other. The errors show
a slight dip on 9/30/22 and then rise on 10/2/22, possibly
consistent with cumulative pilot fatigue reported in [22].

Twenty-seven missions had a total of 46 instances of
human error that were correctable by data managers, but
delayed or degraded the final data product and thus are
considered non-terminal. The details of the non-terminal
errors are as follows:

• Data from 27 missions (1, 2, 3, 4, 5, 10, 13,14, 15,
16, 17,18, 19,21, 22, 23, 24, 25, 26, 28, 29, 30 31,
32, 33, 31, 34) was delivered to the data managers in
the wrong format, with either a sortie level naming
error, top level naming error, or both. This required
the data managers to have to manually determine the
mission details and manually rename the files before
uploading to incident command. While not individually
time consuming, the delay was pronounced because the
data managers would get the majority of mission data
at the same time when squads returned for the evening.
The delays in reformatting large batches of data led to
delays in supplying incident command with the data in
time for their evening planning cycle.

• Ten missions (1, 2, 4, 5, 6, 7, 9, 11, 25, 26) did not have
the requested .SRT file from a drone that supported that
option. The .SRT file streamlines documenting where
the drone has flown.

• Two missions (28,31) were mapping missions flown
manually instead of using autonomous software which
guaranteed complete coverage of an area and minimized
noise. For mission 28, a squad attempted to collect
mapping data despite not having been requested or
trained to perform mapping. The data from mission 28
was not usable for mapping purposes. For mission 31,

TABLE III
HUMAN ERROR BY FLIGHT STYLE AND ACTIVITY.

Date # Missions # Errors Procedure Skill Procedure Skill
9/29/22 6 10 1 0 4 5
9/30/22 5 5 1 1 0 3
10/1/22 14 20 11 1 5 3
10/2/22 9 16 9 2 4 1

Total 34 51 22 4 13 12

Autonomous (26) Manual (25)

a squad was requested to perform and accepted a map-
ping mission despite not being trained. The collected
data was processed into a map of lower quality than
expected.

• One mission (19) was an unrequested mission, where
the squad self-dispatched to survey an area that was
not requested, wasting time and resources.

Four missions had a total of 5 instances of human error
that prevented production of the data product and thus are
considered terminal. In Missions 8, 14, and 29, the squads
encountered a software bug in the autonomous flight and
data collection software, which resulted in no usable data;
the human error was not re-flying with a different available
data collection software package. Mission 25 had two errors
that, in combination, resulted in the terminal failure of the
mission. That squad neglected to turn on data recording on
the drone, then compounded the error by failing to recognize
no data was recorded during the post-flight quality assurance
step.

D. Human Errors By Flight Style and Activity

As shown in Table III, the 51 errors were associated with
either procedure-based (35) or skill-based (16) activities.
Procedure-based activities are those related to following
expected protocols for the mission (e.g., adhering to the
mission tasking), data management (e.g., performing quality
assurance, editing data into the required format), or aviation
safety (e.g., following checklist). Skill-based activities in-
volve configuring or controlling the drone. Skill-based errors
reflect the squad’s direct interaction with a specific drone.
In contrast, procedure-based errors reflect the relationship
between the squad and the larger incident command system
which is tasking the drone and consuming the data products.
Human-robot interaction has traditionally restricted its focus
to squad-drone control. Still, the high number of procedural
errors and their negative impact on meeting the mission
goals suggests the focus should be broadened beyond only
satisfying aviation safety. These errors raise questions as to
the impact of training and reminders on enabling squads
to temporarily adopt new procedures and on the true level
of situation awareness being maintained by pilots during
autonomous flight.

The errors in the procedure-based activities were more
evenly distributed between autonomous (22) and manual
flight styles (13) than skill-based errors, which were 4
and 12, respectively. This is not surprising given that the
procedure-based errors appear to cluster around data report-
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ing and quality assurance tasks that occur independently of
the actual flight of a drone.

The procedure-based errors may be a side-effect of squads
being expected to adhere to new protocols that conflict with
their normal ways of working, despite prior training or a
deployment within the past 12 months. In terms of data re-
porting, each agency has their own internal protocols for for-
matting and delivering data. When working collaboratively
for incident command, agencies are expected to temporarily
adopt new protocols. In terms of quality assurance, agencies
may not explicitly require a quality assurance check of the
data before the squad leads the flight location. One reason
is that quality assurance is often ignored in manufacturer-
provided checklists, as those checklists are oriented towards
aviation safety, not mission objectives. Another reason may
be that quality assurance is not required for tactical op-
erations where sUAS data is streamed to provide tactical
overwatch of an incident or monitor a building fire. However,
as with data reporting, quality assurance was emphasized in
training for disasters.

These procedural errors appear to be the result of a
collision between normal and off-normal practices, but lack
of training does not appear to the cause or solution. Agencies
participating in multi-agency events such as disasters are
explicitly acknowledge in the mutual aid agreement that
they temporarily report a different agency and must follow
that agency’s protocols. At Hurricane Ian, each squad had
participated in at least one training exercise or prior deploy-
ment within the past 12 months, which explicitly trained
them on the data reporting and quality assurance protocols.
In addition to this prior experience, the task force leader
reviewed the new protocols at the start of the deployment.
Furthermore, each mission tasking for a squad included a
slip of paper with the expected format of data product to
serve as a reminder.

Skill-based errors were notably less frequent than
procedure-based errors, and none impacted aviation safety.
However, skill-based errors were more severe as they ac-
counted for all (5) terminal errors (errors resulting in mission
failure). No procedural-based errors resulted in a terminal
error during a mission. The majority (12) of skill-based errors
were associated with manual flight, with 4 associated with
autonomous flight. The skill-based errors took four forms:
did not configure the drone to record the requested secondary
.SRT files containing metadata about manual flights (10),
did not recognize a software error during autonomous flight
(3 terminal), manually flying a mapping mission instead of
using autonomous software package (2), and one mission
where a squad did not record the primary data during manual
flight (1 terminal) and failed to recognize that data loss
during post-flight data inspection (1 terminal).

None of the skill-based errors directly impacted aviation
safety but their impact on the overall mission success raises
concerns for human-robot interaction and training. They
suggest that the squads are not deeply familiar with all of
the capabilities of their sUAS. This could be an indication
of training that is restricted to normative missions. The three

TABLE IV
HUMAN ERROR COUNT BY MISSION PHASE AND FLIGHT STYLE.

Date # Missions # Errors Autonomous Manual Autonomous Manual Autonomous Manual
9/29/22 6 10 0 5 0 0 1 4
9/30/22 5 5 1 3 0 0 1 0
10/1/22 14 20 1 1 0 2 11 5
10/2/22 9 16 2 0 0 1 9 4

Total 34 51 4 9 0 3 22 13

Initiation (13) Execution (3) Termination (35)

instances where pilots failed to recognize a software error in
flight are more troubling because these instances indicate a
lack of meaningful supervisory control. In those missions,
the sUAS was flying autonomously, but a software bug
was incorrectly re-positioning the camera after take-off; this
meant that the sUAS flew the correct path to acquire the data
and collected images at the correct intervals along the path,
but the images were not usable because the camera was not
at the correct nadir angle. These were costly terminal errors
as the missions were over large areas of intense interest to
incident command, and each failure represented a lost day.
The pilot can detect the camera tilt by looking at the camera
pane in the pilot’s real-time display. Failure to do so suggests
that pilots are not maintaining true situation awareness during
flight; even if they did not use the autonomous software
frequently in their normal operations, the camera view was
clearly visible on the pilot’s display, and the difference
between pointing straight down and at the horizon is obvious.
The errors also raise fears that the pilots may have over-trust
in the sUAS autonomy, assuming that all aspects of the sUAS
must be functioning correctly if the navigational autonomy
is working.

E. Human Errors by Phase of Mission

The human errors by phase of the mission offer a surprise:
The majority of skill-based errors (13) occurred in the
Initiation phase, and the majority of procedure-based errors
(33) occurred in the Termination phase. The high frequency
of skill-based errors in the Initiation phase, particularly as the
majority are associated with the manual flight style, suggests
that the squads may not be sufficiently familiar with flying
for disaster missions despite frequent use in their regular
jobs.

As background, a mission activity is divided into three
phases: Initiation (e.g., preparation for flight and config-
uration of any software control settings), Execution (e.g.,
flight), and Termination (e.g., quality control of the data,
file formatting, post-processing, etc.). Since the phases have
different functions, but each impacts mission success, it is
especially important to document the frequency of errors in
the Initiation and Termination phases since prior work has
primarily focused on aviation safety in the Execution phase.

Table IV presents the human error count by phase of
mission and flight style while Table V shows the error by
phase and activity. A comparison of the two tables shows the
errors cluster around the activity, not the flight style. Human
error in the Initiation phase is solely skill-based (13), with
errors in the Termination phase primarily procedure-based
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TABLE V
HUMAN ERROR COUNT BY MISSION PHASE AND ACTIVITY.

Date # Missions # Errors Procedure Skill Procedure Skill Procedure Skill
9/29/22 6 10 0 5 0 0 5 0
9/30/22 5 5 0 4 0 0 1 0
10/1/22 14 20 0 2 1 1 15 1
10/2/22 9 16 0 2 1 0 12 1

Total 34 51 0 13 2 1 33 2

Initiation (13) Execution (3) Termination (35)

(33 out of 35), and the few errors occurring in the Execution
phase (3) fairly evenly split between procedure-based (2) and
skill-based (1). Furthermore, the skill-based Initiation errors
decrease over time while the procedure-based Termination
errors increase.

Comparing Table IV and Table V indicates that it was
the manual configuration that was the locus of problems
in the Initiation phase, not the configuration of the au-
tonomous software despite most squads using that software
less frequently. This could indicate that the squads paid more
attention to the autonomous software, either because it was
new or because the risks of a mishap were perceived to be
lower than a more mundane manual flight. It could also
indicate that familiarity with manual control led to over-
confidence in configuring that flight style.

The errors in the Termination phase occur with both
autonomous and manual flight styles, and the magnitude of
errors trends with the number of missions each day; essen-
tially, the data from almost every mission was incorrectly
handled. Yet, as noted in the Introduction and Sec. III-A, the
squads had been trained to use those procedures and were
given explicit verbal and written instructions.

IV. DISCUSSION

The preliminary analysis yields four main findings, though
it is limited by the nature of using mission logs as the sole
source of observing human error.

A. Findings
There was a high incidence of human error in complet-

ing missions correctly. Only three missions (8.8%) were
completed without errors of any kind, which is troubling,
given that errors were likely under-counted. Four of 34
missions (11.7%) ended in terminal failure due to human
error, while 31 completed missions (91.2%) evidenced hu-
man error. There were almost twice as many procedure-based
mistakes (35) as skill-based mistakes (16); the procedure-
based mistakes resulted in mission completion delays (i.e.,
data delivery delays, unavailability of the squad), while a
small portion of the skill-based mistakes resulted in terminal
failures. Skill-based mistakes were related to configuring
autonomous software packages, not direct piloting skills or
aircraft safety.

The use of sUAS should be treated as a data-to-decision
system, not a drone control problem or an autonomy prob-
lem. The high incidence of human error in producing the
requested data products indicates the need for research,
development, and training in small UAS to consider the entire
mission and mission objectives, not just the aviation safety

TABLE VI
HUMAN ERROR COUNTS BY INSTITUTION.

Date # Missions # Errors
Insurance/  
Academic 
(2 squads)

Fire       
Rescue        

(3 squads)

Law 
Enforcement 
(5 squads)

9/29/22 6 10 2 8 0
9/30/22 5 5 3 2 0
10/1/22 14 20 1 3 16
10/2/22 9 16 1 9 6

Total 34 51 7 22 22

or autonomous navigation components. As such, designs and
training should include the Initiation and Termination phases,
not just the Execution flight phase. The error counts indicate
that adding an intelligent assistant for configuring for specific
missions, reminding the operator of mission constraints not
typically included on a manufacturer’s checklist, and pro-
viding interactive troubleshooting may offer more practical
value than increasing platform flight autonomy.

Training for off-normal, inter-agency deployments may be
need to be expanded or conducted more regularly. Table VI
shows that the eight squads from fire rescue and law en-
forcement agencies had more instances of human error than
the university or insurance team. The fire rescue and law
enforcement agencies presumably use their sUAS far more
frequently than the non-governmental squads, though that
makes them predisposed to revert to their own procedures.
Regardless of the cause, the high error count suggests that
training should focus on preparing or refreshing a broad
set of skills beyond the normative routine. The training,
and possibly the organizational culture, should help the
squad become comfortable with new procedures and able
to adapt to the requests and practices of whatever agency
has jurisdiction for the disaster.

The root cause of the procedure-based human errors
merits further investigation. The mission logs do not provide
insight into the underlying causes of the procedure-based
errors. It is intriguing that while the count of human error for
each mission per day remained relatively constant (1.7, 1.0,
1.4, 1.7 errors/mission for each of the four days), there was
a notable shift in errors by activity. Over time, the number
of procedure-based errors increased. If the cause was lack
of familiarity, poor training, or other issues associated with
operating robots in an off-normal situation [23], the squads
would be expected to have acclimated to novel processes.
Instead it appears they performed worse over time. Another
explanation may be fatigue.[22] It would be interesting to
examine the number of missions and pattern of errors over
time by squad and activity to determine if fatigue might be
an explanation and if procedure-based errors are more likely
than skill-based errors.

B. Limitations
Using mission logs for a post hoc analysis is not ideal

for quantifying human error and determining root causes.
However, it provides a lower bound on obvious errors made
during a mission, giving some insight into what is happening
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during missions. As shown in this paper, even coarse error
data can lead to discoveries: that procedural errors are as
important as skill-based errors. It also avoids disrupting the
life-saving response with more traditional human-robot in-
teraction research methods of data capture (e.g., adding HRI
observers, conducting interviews or surveys, and capturing
biometrics).[21]

Examining mission logs for indications of human errors
offers three advantages. One is that it provides real-world
data on human error during sUAS deployments without
inserting observers or new procedures (e.g., interviews) into
operations, both of which pose both logistical and ethical is-
sues as described in [24]. Second, examination could be done
in real-time, where the task force management can see errors
and attempt to correct them within one operational shift
through mechanisms such as just-in-time training to squads
with skill deficits, reinforcing procedures during morning
briefings and evening after-action reports, etc. Third, the
detection of squads exhibiting errors or an increasing fre-
quency of errors could be automated and depersonalized.
This would enable the task force leader to determine the
source of errors and mitigate appropriately (e.g., that the
squad was showing signs of fatigue and needs to be rotated
out) and would diffuse the perception that squads were being
selectively criticized thus undermining team cohesion.

The disadvantage is that the mission logs are a historical
management record, not an intentional capture of human
error during the mission. As a result, there are likely to be
gaps and data that lead to incorrect inferences. The logs do
not capture the occurrence of pilot errors during the flight
itself, so there could be a high count of errors during the
Execution phase. The mission logs could not capture any
errors that did not directly impact delivery of the desired
data products to the incident command. As a result, mission
logs are not helpful in ascertaining the root causes of human
error, though they can alert the presence of errors and the
need for further investigation.

V. CONCLUSIONS

This paper reports on human error in the use of small
UAS during the Hurricane Ian response, where 31 of the 34
missions flown had at least one error discernible from the
mission logs. In addition to quantifying the errors, the paper
makes three contributions to the field of disaster robotics
described below. From a practitioner’s viewpoint, the paper
shows the need for inter-agency training on off-normal flying
styles and procedures.

It reinforces the premise that disaster robotics is more than
the direct operation of a robot, in this case, a drone. The
robot is being used as a tool to acquire data essential to the
disaster management enterprise; thus, the robot is an element
within a data-to-decision process. The paper highlights that
current robot systems do not facilitate data-to-decision work
processes, as they tend to be oriented towards aviation safety
and flight autonomy (i.e., the Execution phase), not config-
uration (Initiation phase), or automating quality assurance
or simplifying mission-specific data packaging (Termination

phase). By not explicitly acknowledging that humans are in-
volved in the process, roboticists may overlook opportunities
to use AI to assist error-prone operators, especially when
working in off-normal situations such as a disaster.

The paper merged two existing human-robot failure tax-
onomies to produce a more comprehensive model for field
robotics. The new partitioning of human error also includes
the activity, either procedure- or skill-based, associated with
the failure. The analysis in this paper illustrated how the
refinement of errors by activity was of value.

The paper also offers a new methodology for unobtrusively
capturing human error by examining mission logs. Although
this method does not necessarily provide explanations or
root causes, it is quantitative, and the measures could be
monitored in real-time, enabling timely mitigations. The
mission logs, with squads and locations anonymized, are
available upon request.
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