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Rapeseed cultivation on winter-fallow fields enables a seasonal switch between agricultural and bioenergy
output. In view of the spectral features during the rapeseed flowering period (RFP), numerous remote sensing
studies identified and produced the maps of rapeseed fields. The RFP is frequently identified by field surveys,
visual imagery interpretation, or empirical crop knowledge in a specific region, none of which is appropriate for
large-scale rapeseed identification and mapping. In this research, we combine social media data on the RFP
fields, Sentinel-2 imagery, and deep learning algorithm to identify and produce maps of yellow-flowering
rapeseed fields. In the context of citizen science and crowdsourcing, the social media data on the fields is
regarded as reference data and utilized to generate the spatial distribution of the RFP and select temporal
Setninel-2 imagery. We develop and evaluate the novel method in Anhui Province, China. The resultant rapeseed
map in 2018 has a user’s accuracy and a producer’s accuracy of 0.93 and 0.99, respectively. To test the
generalization of the knowledge-based method, we apply the deep neural network (DNN) model trained in Anhui
Province to produce the maps of yellow-flowering rapeseed fields in Hubei Province and Shaanxi Province,
China. The overall accuracy of the resultant rapeseed maps for Hubei Province and Shaanxi Province is 0.97 and
0.95, respectively. The proposed method provides a new way to produce rapeseed maps on a large scale, which
could be used to support agricultural planning and ecological system management.

1. Introduction

As a major biofuel and cash crop, rapeseed can boost farmer incomes
while lowering dependency on fossil fuels and environmental risks
(Davis et al., 2009). More attractively, the seasonal rotation between
rapeseed and other summer crops allows for bioenergy and agricultural
production. Compared to other crop types, the bright-yellow flowers of
rapeseed present a distinctive feature which is highly informative to
monitor growth status and predict final yield (d’Andrimont et al., 2020,
Sulik and Long, 2016). Therefore, in-season identification and mapping
of yellow-flowering rapeseed fields is critical for the sustainability of
agricultural systems and ecosystems, as well as food security.

For purposes of illustration, we define the abbreviation RFD as the
flowering date of rapeseed, and RFP as the rapeseed flowering period
determined by the start and end flowering dates. Traditional ground-
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based methods for obtaining prior knowledge of RFD or RFP include
field surveys, questionnaires, interviews, etc. However, these methods
typically require a lot of labor and time. In comparison, remote sensing
has become a feasible and efficient approach to obtain spatial and
spectral information on rapeseed due to the advantages of wide
coverage and synchronous observation (Liu and Zhang, 2023). Specif-
ically, yellow-flowering rapeseed and other crop types exhibit a signif-
icant difference in the reflectance of the green, red, and near-infrared
bands (Sulik and Long, 2015, 2016). Numerous studies identify and map
rapeseed fields using the spectral features during the RFP (Breckling
etal., 2011). For example, the research in (Wang et al., 2018) combined
the colorimetric transformation and spectral features to identify the
yellow-flowering rapeseed fields. Multiple yellowness indices are
applied to extract rapeseed from other vegetation during the RFP, such
as the ratio yellowness index (RYI) (Sulik and Long, 2015) and the
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normalized difference yellowness index (NDYI) (Sulik and Long, 2016).
Generally, rapeseed and winter wheat are often cultivated from the late
fall to spring seasons (Fig. S1). Many studies have also explored the
classification of rapeseed and winter wheat according to the spectral
features during the RFP (RuBwurm et al., 2023). In this case, prior
knowledge of the RFP is essential for rapeseed identification. Since the
RFP could vary over different regions (Han et al., 2022, Luo et al., 2018),
these methods are not suitable for large-scale rapeseed mapping. To
determine the best temporal window for rapeseed mapping, the research
(Meng et al., 2020) assessed all possible combinations of temporal
windows using all available cloud-free Sentinel-2 multispectral instru-
ment (MSI) imagery. However, this method relies on a large amount of
ground survey data and is computationally inefficient. In addition, the
RFP may also not be homogeneous even in the same region due to
variations in planting dates and topography (Wang et al., 2019).
Therefore, it is still a significant and challenging task to automatically
obtain the prior knowledge of the RFP on a large scale so as to determine
the acquisition times of corresponding remote sensing data in different
regions.

In the last decade, with social networks growing quickly, social
media data in the citizen science context can be gathered and processed
in real time for scientific research (Huang et al., 2024). It has shown
great potential to obtain valuable geographic information in many ap-
plications, such as socioeconomic factor estimation (Zhao et al., 2020),
emergency response (Liu et al., 2020), etc. Recently, social media data
has also been considered and shown great potential in crop monitoring.
For instance, a large and public dataset of crowdsourced road view
photos from major grain-producing areas of China was established for
crop type identification (Wu et al., 2021). Some studies used social
media streams for regional-scale crop disease monitoring (Shankar et al.,
2020). In particular, rapeseed presents a unique characteristic of social
media. The public prefers to visit rapeseed fields during the flowering
period and share relevant contents, photos, and videos with geo-
locations and date information. In this context, social media data has
great potential to capture the biological characteristics of yellow-
flowering rapeseed during the RFP. In addition, similar to in-situ data
from researchers’ surveys, social media could also provide a way to
obtain in-situ information, e.g., points of interest (POIs). However, so-
cial media data is generated in the form of text or point data with un-
certainty and noise. As mentioned earlier, remote sensing is a reliable
data source for rapeseed mapping, but it relies on the prior knowledge of
the RFP. Therefore, the combination of remote sensing and social media
data offers an unprecedented chance for large-scale rapeseed mapping.

Deep learning can automatically discover the key feature represen-
tations for classification from original imagery at multiple levels, which
is essential for crop identification because of the intricate relationships
between internal biochemical processes and innate relationships be-
tween external variables (Zhao et al., 2019). Deep learning has been
extensively employed in related crop -classification investigations
(Zhong et al., 2019). For instance, a study (Kussul et al., 2017) adopted
convolutional neural network (CNN) to discriminate summer crop types
based on Landsat-8 operational land imager (OLI) and Sentinel-1 syn-
thetic aperture radar (SAR) data produced during the whole vegetation
season. Their results demonstrated that the CNN outperformed the
traditional machine learning methods, and the resultant rapeseed map
had high producer’s accuracy but comparatively low user’s accuracy,
which could be attributed to the inclusion of the non-RFP imagery. The
non-RFP imagery may not provide effective information to identify
rapeseed from other crops and may also contain some noise. Despite the
fact that deep learning algorithms are effective to identify rapeseed from
other crops, prior knowledge of the RFP is still required, especially for
large-scale rapeseed mapping.

Considering the spectral features of yellow-flowering rapeseed dur-
ing the RFP, most spectral- or deep learning-based methods rely on prior
knowledge to determine the RFP in a specific region and select corre-
sponding remote sensing data. However, the RFP could be varied in
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different regions, even within the same remote sensing imagery (Han
et al., 2022, Wang et al., 2019). Therefore, existing methods have
certain limitations for large-scale rapeseed mapping. The following are
the contributions made by our work: (1) The key knowledge of RFD and
RFP is obtained through the information of dates and locations from
social media data; (2) the proposed knowledge-based method can
automatically associate the remote sensing data produced during the
RFP without considering the spatial heterogeneity of phenological
periods.

2. Material and methods
2.1. Study area

Anhui Province, China (extending from 114°54-119°37' E and
29°41'-34°38' N) is located in the transition area between warm-
temperate and subtropical climate zones (Fig. 1). The average annual
sunlight, average annual temperature, and average annual precipitation
are 1800-2500 h, 14-17 °C, 800-1800 mm, respectively. During the
rapeseed growing period from September to May, abundant precipita-
tion and a low temperature stage around zero degrees in winter are
conducive to the vernalization and overwintering of rapeseed. In late
autumn and early spring, there is sufficient sunlight, and the tempera-
ture drops and rises slowly, which is suitable for the growth of rapeseed.
The yield of rapeseed was 843 x 10> tons in 2018. In Anhui Province,
cropping intensity is dominated by double cropping of crops in a year,
mainly wheat (Triticum aestivum)-soybean (Glycine max), wheat (Tri-
ticum aestivum)-rice (Oryza sativa), rapeseed (Brassica napus)-rice
(Oryza sativa), and rice (Oryza sativa)-rice (Oryza sativa).

Hubei Province, China (extending from 108°21-116°07" E and
29°01'-33°06' N) belongs to a subtropical humid monsoon climate zone
with sufficient sunlight, heat, and precipitation (Fig. 1). The average
annual sunlight, average annual temperature, and average annual pre-
cipitation are 1100-2150 h, 15-17 °C, 800-1600 mm, respectively.
Hubei Province and Anhui Province are both located in the middle and
lower reaches of the Yangtze River and have similar climatic conditions
suitable for the cultivation and growth of rapeseed. In 2018, the yield of
rapeseed reached 2053 x 10° tons. In Hubei Province, cropping in-
tensity is dominated by double cropping of crops, mainly wheat (Triti-
cum aestivum)-rice (Oryza sativa), rapeseed (Brassica napus)-rice
(Oryza sativa), and rice (Oryza sativa)-rice (Oryza sativa).

Shaanxi Province is located in Loess Plateau, China, extending from
105029-111015' E and 31042-39035' N (Fig. 1). Due to its large span in
latitude, the northern, central, and southern regions respectively belong
to moderate-temperate, warm-temperate, and subtropical climate zones.
The average annual sunlight, average annual temperature, and average
annual precipitation are 1300-2900 h, 9-16 °C, 400-900 mm, respec-
tively. The precipitation and temperature in central and southern re-
gions can meet the requirements for rapeseed growth. Rapeseed
experiences typical budding and flowering times since the winter is
humid and the temperature rises early in the spring. The yield of rape-
seed was 369 x 10° tons in 2018. In Shaanxi Province, cropping in-
tensity is dominated by double cropping of crops, mainly wheat
(Triticum aestivum)-corn (Zea mays) and rapeseed (Brassica napus)-rice
(Oryza sativa).

2.2. Data

2.2.1. Social media data and preprocessing for rapeseed locations and
rapeseed flowering dates

Sina Weibo, or simply Weibo, is the largest social media platform in
China, with over 462 million active users in 2018. We collect geo-tagged
Weibo data with the specific keyword “rapeseed” (in Chinese) through
an open platform application programming interface (API). Specifically,
the geo-tagged Weibo data covering the study areas in 2018 is obtained.
In total, there are 593, 493, and 720 geo-tagged Weibo data in Anhui
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Fig. 1. (a) Location of study areas and (b) zoom-in view of Anhui Province, Hubei Province, and Shaanxi Province, China.

Province, Hubei Province, and Shaanxi Province, respectively. Each
Weibo data contains information about time (date) and location
(longitude and latitude).

Since the raw Weibo data can be very noisy, we develop a procedure
to clean the data that is irrelevant to the rapeseed flowering. First, we
adopt a Python module, namely Jieba word segmentation, to extract
semantic unit information from Weibo messages. Then, we remove the
Weibo data containing specific words irrelevant to our research, such as
“Miss the rapeseed,” “Flowering season is over,” “Come back when the
rapeseed is blooming,” “Not yet flowering,” etc. Even though these data
are related to rapeseed, they may not be right to describe the RFD. After
data cleaning, there are a total of 472, 406, and 577 geo-tagged Weibo
data covering Anhui Province, Hubei Province, and Shaanxi Province,

respectively. The preprocessed data in Anhui Province are shown in
Fig. 2, overlaid with a rapeseed extent map (Liu and Zhang, 2023).

2.2.2. Sentinel-2 data and preprocessing

We collect Sentinel-2 imagery covering the study areas through the
Google Earth Engine (GEE). Considering the time required for Sentinel-2
surface reflectance (SR) data production, Sentinel-2 top of atmosphere
(TOA) reflectance data are used for in-season mapping of yellow-
flowering rapeseed fields. Concerning the Sentinel-2 data, bad obser-
vations are first identified by the FMask algorithm (Zhu et al., 2015),
including cloud (shadow), cirrus, and snow/ice. Specifically, the pa-
rameters of cloud probability, cloud displacement index (CDI), cirrus
band reflectance, maximum distance (km) to search for cloud shadows,
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Fig. 2. Sina Weibo messages related to the flowering period of rapeseed in Anhui Province.

and distance (m) to dilate the edge of cloud-identified objects are
respectively set as 0.4, —0.5, 0.01, 10, 50. The number of pixel-based
valid observations for different latitude ranges and months in 2018 is
presented in Fig. S2.

Spectral bands and spectral indices have been widely used to identify
rapeseed fields by detecting specific signals during the RFP (Fig. 3).
Here, we calculate the following spectral indices: (1) NDYI, (2)
enhanced vegetation index (EVI) (Huete et al., 1997) (Tucker, 1979), (3)
land surface water index (LSWI) (Xiao et al., 2005), (4) normalized
difference soil index (NDSI) (Deng et al., 2015), (5) normalized differ-
ence vegetation index (NDVI) (Tucker, 1979), and (6) normalized dif-
ference water index (NDWI) (McFeeters, 1996) from the Sentinel-2 TOA
reflectance data.

2.2.3. DEM and air temperature data

The National Aeronautics and Space Administration (NASA) pro-
vides a publicly- and freely-available digital elevation model (DEM),
namely NASADEM (Crippen et al. 2016). The NASADEM data with a 30-
m spatial resolution are collected through GEE, which is used as a co-
variate for the interpolation of air temperature data. Topographic slope
data are also calculated from the NASADEM data.

The average air temperature data in 2018 are obtained from the
Chinese Meteorological Administration, which is interpolated to a

spatial resolution of 1 km through ANUSPLIN v.4.4 software. ANUSPLIN
is provided for interpolation of noisy multi-variate data using thin plate
smoothing splines (Hutchinson and Xu, 2013). Latitude and longitude
are the independent variables, and elevation is adopted as a covariate to
establish the change in air temperature along the altitudinal gradient.
The SPLINE program is used to fit partial thin plate smoothing spline
functions of independent variables. The LAPGRD program is used to
calculate values and Bayesian standard error estimates of partial thin
plate smoothing spline surfaces.

2.3. Methods

Fig. 4 presents the workflow of the proposed knowledge-based
method for the identification and mapping of yellow-flowering rape-
seed fields. First, we delineate regions of interest (ROIs) for rapeseed and
non-rapeseed as ground reference data based on the Weibo POIs data,
temporal spectral features, and visual interpretation of Sentinel-2 and
Google Earth imagery. The locations and dates of the Weibo POIs data
are then used to generate maps of RFD and RFP through spatial inter-
polation. Spectral bands and spectral indices extracted from 6 valid
Sentinel-2 TOA reflectance data closest to the RFD are input into a deep
neural network (DNN) model to identify yellow-flowering rapeseed
fields. The ROIs, stratified random samples, and statistical data are used
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Fig. 3. Temporal profiles of Sentinel-2 (a) spectral bands of blue, green, red, red edge 1 (RE1), red edge 2 (RE2), red edge 3 (RE3), near infrared (NIR), red edge 4
(RE4), short-wave infrared 1 (SWIR1) and short-wave infrared 2 (SWIR2), and (b) spectral indices of normalized difference vegetation index (NDVI), land surface
water index (LSWI), normalized difference water index (NDWI), normalized difference soil index (NDSI), normalized difference yellowness index (NDYI), and
enhanced vegetation index (EVI) for rapeseed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

for accuracy assessment. In the following paragraphs, we describe the
above steps in detail.

2.3.1. Development of rapeseed ROIs data

To develop rapeseed ROIs, the recorded locations and dates of
rapeseed are first extracted from preprocessed geo-tagged Weibo data in
Anhui Province. The Weibo POIs data are overlaid with the closest
Sentinel-2 imagery and Google Earth imagery (Fig. S3). Due to the in-
fluence of cloud cover, it may not be possible to obtain cloudless im-
agery near Weibo POIs data. Moreover, the noisy nature of social media
is another limitation for rapeseed ROIs development within a certain
geographical range from the Weibo POIs data. In this context, 160
rapeseed ROIs (16,008 pixels) within 1 km from the Weibo POIs data are
first delineated by visually interpreting Google Earth imagery and
temporal Sentinel-2 spectral reflectance (e.g., red and SWIR bands)
(Shen et al., 2009, Wilson et al., 2015) and spectral indices (e.g., NDYI)
(d’Andrimont et al., 2020, Sulik and Long, 2016). Then, another 1545
rapeseed ROIs (233,344 pixels) are evenly delineated within Anhui

Province. In total, 1705 ROIs of rapeseed are developed (Fig. 5a-d). The
majority of rapeseed ROIs are distributed in southern Anhui province,
where the cropping system is dominated by rapeseed-rice. Since the
predominant cropping system in northern Anhui province is wheat-rice,
there are significantly fewer rapeseed ROIs (Fig. 5a). The shape of
manually developed rapeseed ROIs is irregular, which mainly takes into
account the fragmentation of many rapeseed fields in the study areas,
especially in the mountainous regions (e.g., Fig. 5¢).

637 ROIs of non-rapeseed (1,088,233 pixels) are delineated in a
stratified and even distribution sampling strategy from the available
Sentinel-2 and Google Earth imagery. The non-rapeseed ROIs are widely
distributed in Anhui Province, which include bare soil (14,308 pixels),
construction land (101,882 pixels), forest (510,103 pixels), water
(134,741 pixels), winter wheat (90,760 pixels) and other green vege-
tations (236,439 pixels). Some examples of ROIs of non-rapeseed are
shown in Fig. 5e-g.
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2.3.2. Maps of rapeseed flowering date (RFD) and rapeseed flowering
period (RFP)

Based on the recorded dates and locations of the Weibo POIs data,
the day of year (DoY) is spatially interpolated into the map of RFD using
thin plate smoothing splines of ANUSPLIN v.4.4 software. Since the RFD
is sensitive to air temperature (Luo et al., 2018, Marjanovi¢-Jeromela
et al., 2019), the average air temperature data in 2018 is used as a co-
variate for the spatial interpolation of DoY. The default parameter set-
tings of the SPLINE and LAPGRD programs are used.

Since the Weibo POIs data may be generated during early or late RFP,
and the RFP generally lasts approximately 30 days (Wang et al., 2016), a
window of 30 days as a tolerance is used for the RFD map to generate the
RFP maps. Specifically, the period for 30 days before and after RFD (60
days in total) is identified as the RFP in this study. For each pixel in the
RFD map, the start date and end date of the RFP are calculated by
subtracting 30 days and adding 30 days from the RFD, respectively.
After that, the RFP maps can be obtained from the RFD map, including
the starting RFP map and ending RFP map.

2.3.3. Selection of the Sentinel-2 data during RFP
After excluding the bad observations of Sentinel-2 TOA reflectance
data described in Section 2.2.2, the number of valid observations for

Anhui Province in 2018 is presented in Fig. S2. Based on the starting RFP
map and ending RFP map generated in Section 2.3.2, the number of
valid observations during the RFP in 2018 is counted (Fig. S4). There is
at least one valid observation for 99.82 % of the pixels. Considering the
spatial heterogeneity of valid observations and flowering periods, we
construct pixel-based connections between the RFP maps and 6 valid
Sentinel-2 TOA reflectance data. For the pixels with more than 6 valid
data, the 6 valid data that are closest to the RFD are selected for sub-
sequent identification of yellow-flowering rapeseed fields. For the pixels
with less than 6 valid data, the valid data closest to the RFD is duplicated
for supplementation, so that each pixel has 6 valid data. For the
3,056,085 pixels without any valid data, they are masked out. After that,
the spectral bands and spectral indices (i.e., NDVI, EVI, NDWI, NDSI,
NDYI and LSWI) of the 6 valid data can be calculated and obtained.

2.3.4. Rapeseed mapping algorithm — deep neural network (DNN)

In this study, a straightforward five-layer DNN model architecture is
used, including one input layer, three hidden layers, and one output
layer. The rectified linear unit (ReLU) activation function (Glorot et al.,
2011) is used for the hidden layers, which have 32, 64, and 128 neuron
nodes, respectively. Batch normalization technique and dropout regu-
larization with a rate of 0.3 are adopted to prevent overfitting and
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enhance the generalization ability of the DNN model (Ioffe and Szegedy,
2015, Srivastava et al., 2014). Since the flowering period usually only
lasts for approximately 30 days (Wang et al., 2016), the collected 6 valid
data are likely to contain the Sentinel-2 imagery that are produced
during the non-RFP. To avoid the interference of these data, we develop
a new DNN model to predict rapeseed and non-rapeseed. The pipeline of
training and prediction for the proposed DNN model is given (Fig. 6).
During the training process, the 6 valid data are input in a parallel
manner, instead of directly using all bands of the 6 valid data for model
training. Then, only the highest probability among the 6 predicted
probabilities is used to calculate the training loss. The network param-
eters are adjusted by using the gradient descent optimization algorithm.
Shared multilayer perception (MLP) (Qi et al., 2017) is adopted to
realize weight sharing and reduce network training parameters. Simi-
larly, the 6 valid data are parallelly input into the trained DNN model,
and the highest probability is retained as the final result of the
prediction.

Spectral bands and spectral indices can provide information for deep
learning-based remote sensing classification (Wang et al., 2022, Yao
et al., 2022). To determine the input variables of the DNN model, we
perform a variable importance analysis (Gregorutti et al., 2017) using
225,670 and 797,945 pixels of random samples from the 1705 rapeseed
ROIs and the 637 non-rapeseed ROIs, respectively, and exclude the
variables with an importance score less than 0.01. According to
Table S1, 9 spectral bands and 6 spectral indices are selected. Topo-
graphic slope data is also used as an input band for the DNN model. In
total, there are 91 bands for each sample. Then, we respectively slice the
15 Sentinel-2 bands and topographic slope band for each of the 6 valid
data from the 91 bands of each sample. Eventually, 6 valid data (each
containing 16 bands) are input into the DNN model (Fig. 6).

The 1705 rapeseed ROIs and the 637 non-rapeseed ROIs delineated
in Section 2.3.1 are split into a training dataset and a validation dataset
in accordance with the 70:30 ratio. The overall accuracy (OA), Kappa,
and F1 score of the validation dataset are reported by averaging ten
independent Monte Carlo runs. We train the DNN model with a batch
size of 2048 and use Adam Optimizer with an initial learning rate of 1
e *. The DNN model is trained for 100 epochs, and early stopping is
adopted to avoid overfitting.

2.3.5. Application of the trained DNN model in Hubei Province and
Shaanxi Province
To test the generalization of the knowledge-based method, the
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trained DNN model is directly applied for rapeseed mapping in Hubei
Province and Shaanxi Province, which have distinctly different envi-
ronments and climates. The same steps for processing data collected in
Anhui Province are applied to the data collected in Hubei Province and
Shaanxi Province. Specifically, we spatially interpolate the DoY to the
RFD map with a spatial resolution of 10 m based on the geo-tagged
Weibo POIs data. The RFP maps are obtained by subtracting 30 days
and adding 30 days from the RFD map, respectively. Then, the 6 valid
Sentinel-2 TOA reflectance data closest to the RFD during RFP are
selected through GEE and used for the extraction of spectral bands and
spectral indices. After that, the DNN model trained in Anhui Province is
directly applied to the yellow-flowering rapeseed mapping in these two
provinces.

2.3.6. Accuracy assessment

The RFD map derived from Weibo POIs data is validated based on the
160 rapeseed ROIs delineated in Section 2.3.1. Specifically, one ground
reference sample is randomly generated in each ROL In total, there are
160 ground reference samples for validation. The 160 ground reference
samples are overlaid with the closest cloudless Sentinel-2 imagery ac-
cording to the DoY of these samples on the RFD map. The accuracy of the
RFD map is assessed by the proportion of 160 ground reference samples
that appear in distinctive yellowness in the closest cloudless Sentinel-2
imagery.

To validate the resultant maps of yellow-flowering rapeseed fields,
stratified random sampling is adopted to assess the resultant yellow-
flowering rapeseed maps (Olofsson et al., 2014). There are 389 sam-
ples and 1168 samples of rapeseed and non-rapeseed in Anhui Province,
respectively. There are 378 samples and 1133 samples of rapeseed and
non-rapeseed in Hubei Province, respectively. There are 377 samples
and 1131 samples of rapeseed and non-rapeseed in Shaanxi Province,
respectively. According to the results of sample allocation to strata, we
generate stratified random samples on the rapeseed and non-rapeseed
maps (Fig. 7). The stratified random samples are visually interpreted
based on the Sentinel-2 spectral profiles and available Google Earth
imagery during the RFP. These stratified random samples are then used
to generate confusion matrices, user accuracy (UA), producer accuracy
(PA), overall accuracy (OA), and Kappa coefficient for accuracy
assessment.

In addition, we calculate the area of yellow-flowering rapeseed fields
from the 2018 resultant rapeseed maps for the study areas, which are
contrasted with the statistics on the rapeseed sown area released by the
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Fig. 7. Distribution of stratified random reference samples for (a) Anhui Province, (b) Hubei Province and (c) Shaanxi Province.

Bureau of Statistics of Anhui Province, Hubei Province, and Shaanxi
Province.

3. Results
3.1. Maps of rapeseed flowering period in 2018 for Anhui Province

The RFD and RFP maps are generated by the spatial interpolation of
geo-tagged Weibo DoY, considering the average air temperature data as
a covariate (Fig. 8). It can be observed that earlier flowering dates are
distributed in the southern regions, which may be due to their warmer
climate. The spatial distribution of the RFP is presented in the form of
the flowering starting date (Fig. 8c) and ending date (Fig. 8d) by sub-
tracting 30 days and adding 30 days from the RFD map (Fig. 8b),
respectively. The RFP in most areas of Anhui Province is between the
68th day (i.e., March 9th) and the 133rd day (i.e., May 13th), which is
consistent with the flowering period of rapeseed in Anhui Province

(generally from mid-March to the end of April).

The 160 ground reference samples described in Section 2.3.6 are
used for validating the RFD map. 95 % of the ground reference samples
appear distinctive yellowness in the closest cloudless Sentinel-2 imag-
ery, which indicates that the obtained RFD map can well capture the
flowering time information of rapeseed. In addition, we also compare
the RFD map with that generated from the Sentinel-2-based maximum
NDYI for the 160 rapeseed ROIs (Fig. 9a). Here we empirically set the
time range from January to May 2018 for extracting the maximum NDYI
in order to exclude other high NDYI values that occur in non-RFP situ-
ations. It can be found that taking a window of 30 days as the tolerance
for the RFD from the Weibo POIs data to generate the RFP maps can
overcome the uncertainty of the social media data. A random cloudless
rapeseed site (Fig. 9b-d) is taken as an example for illustration, the RFP
of this site is between the 68th day (i.e., March 9th) and the 128th day (i.
e., May 8th). Concerning the rapeseed fields in yellow (Fig. 9a), the DoY
(Fig. 9¢) corresponding to maximum NDYI (Fig. 9b) mainly includes 83
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Fig. 8. Spatial distribution of (a) preprocessed geo-tagged Weibo data, (b) RFD, (c) starting RFP and (d) ending RFP of Anhui Province in 2018. The acronyms are

defined as: flowering date (RFD), rapeseed flowering period (RFP).
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and 88, which are within the RFP. with a 95 % confidence interval (Table 1). The F1 score, OA, and Kappa
are up to 0.97, 0.99, and 0.97, respectively. Then, the accuracy of the

3.2. A map of rapeseed in 2018 for Anhui Province and its accuracy

assessment
Table 1

Accuracy assessment of the validation dataset with a 95% confidence interval.

Based on the trained DNN model described in Section 2.3.4, we
identify and map rapeseed in Anhui Province. A map of yellow-
flowering rapeseed fields at 10-m spatial resolution is produced 0.974 + 0.0025 0.9938 =+ 0.0006 0.9705 + 0.0028
(Fig. 10). First, the accuracy assessment of the validation dataset is given

F1 score OA Kappa

(b1)

(c1)

(d1)

(el)

Rapcse_:f;d [ IKilometers o L

Fig. 10. (a) Rapeseed mapping for Anhui Province in 2018. Five regions in Figure a are randomly selected, which are denoted as b, c, d, e, f, and the corresponding
zoom-in views are displayed in Fig. b1, c1, d1, el, f1, and the views of Sentinel-2 imagery are displayed in b2, c2, d2, e2, f2.
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resultant rapeseed map for Anhui Province is evaluated by the stratified
random samples. The confusion matrix is calculated to assess the yellow-
flowering rapeseed map (Table 2). Specifically, the UA and PA of
rapeseed are 0.93 and 0.99, respectively. In addition, we count the
number of stratified random reference samples with different landcover
types identified as rapeseed by visual interpretation (Table S2). It can be
observed that rapeseed is primarily confused with bare soil, construction
land, water, and other green vegetations in Anhui Province.

It can be observed from the resultant rapeseed map (Fig. 10a) that a
large area of yellower-flowering rapeseed fields is distributed in the
southern Anhui Province. To further illustrate the rapeseed map, five
random regions are presented in zoom-in views (Fig. 10bl-fl).
Comparing with the Sentinel-2 imagery collected during the RFP
(Fig. 10b2-f2), the rapeseed field distribution is highly consistent with
the ground truth distribution. For instance, as marked by the white
rectangles, the yellow-flowering rapeseed fields are well distinguished
from other kinds of land cover.

Here, the area of yellow-flowering rapeseed fields in Anhui Province
is presented across various scales (Fig. S5). The counties with relatively
large areas of yellow-flowering rapeseed fields are concentrated in the
southwestern region of Anhui Province, 5 of which have an area over
10,000 ha. Then, we sum the area of yellow-flowering rapeseed fields at
the prefecture/city scale from the resultant rapeseed map. The largest
area of rapeseed fields occurs in Anqing (56.62 x 10° ha). Totally, the
area c3)f the yellow-flowering rapeseed fields in Anhui Province is 212.87
x 107 ha.

3.3. Generalization of the knowledge-based method for rapeseed mapping
in Hubei Province and Shaanxi Province

Fig. S6 and Fig. S7 present the resultant rapeseed maps of Hubei
Province and Shaanxi Province, respectively. As can be observed, the
majority of rapeseed is found throughout Hubei Province’s middle-
southern and eastern regions, as well as Shaanxi Province’s southern,
central, and northern regions. And the rapeseed fields are easily iden-
tified from other adjacent land cover types, including winter wheat
fields, fallow fields, impervious surfaces, and rivers.

The UA and PA of the rapeseed map for Hubei Province are 0.88 and
0.99, respectively (Table 3). As for Shaanxi Province, the UA and PA of
the rapeseed map are 0.83 and 0.99, respectively (Table 4). The pro-
posed knowledge-based method for yellow-flowering rapeseed mapping
can be easily transferred to other large-scale areas with quite robust
performance. According to Table S2, rapeseed is mainly confused with
bare soil, forest, and other green vegetations in Hubei Province and
Shaanxi Province.

Here, we also estimate the area of yellow-flowering rapeseed fields
across the scales from county to prefecture/city and province for Hubei
Province and Shaanxi Province. The area of yellow-flowering rapeseed
fields at the county scale and prefecture/city scale is presented in
Figs. S8 and S9. Totally, the area of yellow-flowering rapeseed fields in
Hubei Province and Shaanxi Province was 253.09 x 10° ha and 78.84 x
10° ha in 2018, respectively.

3.4. Accuracy comparison with machine learning methods

The mapping results obtained from the proposed knowledge-based
method are compared with those from traditional machine learning
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methods, including extreme gradient boosting (XGBOOST) and random
forest (RF) (Table 5). First of all, the accuracy of our proposed method is
better than traditional methods, which could be explained by avoiding
the interference of the data collected during the non-RFP period among
the 6 valid data when using the newly proposed DNN model. In addition,
since the proposed method can automatically select the Sentinel-2 data
produced during the RFP without considering the spatial heterogeneity
of phenological periods, the DNN model trained in Anhui Province can
be easily transferred to Hubei Province and Shaanxi Province with quite
robust performance. This is the main advantage of our method over
data-driven methods. In contrast, the accuracies of these two provinces
as acquired from XGBOOST and RF show a substantial decline compared
to the results in Anhui Province.

3.5. Comparison with the statistical data

The sown area of rapeseed in 2018 for Anhui Province, Hubei
Province, and Shaanxi Province reported from the agricultural statistical
data was 357.02 x 10° ha, 932.97 x 10> ha, and 176.70 x 10° ha,
respectively. In comparison, the area of yellow-flowering rapeseed fields
derived from the resultant rapeseed maps is generally smaller than the
statistical sown area. The difference in rapeseed area derived from the
satellite-based maps and the agricultural statistical dataset needs to be
investigated.

One factor is that the agricultural statistical dataset reports rapeseed
sown area, while our satellite-based maps report the rapeseed field area
at the yellow-flowering stage, which is close to harvest area. Climate and
other factors can also affect the harvested area. On the one hand, the
waterlogging damage caused by the continuous rain in September and
October 2017 and the freezing damage caused by the continuous low
temperature and heavy snow in January 2018 severely affected rapeseed
growth in the study areas. On the other hand, agricultural statistical data
could be skewed because of policy factors (Seto et al., 2000). For
example, rapeseed growers tend to over-report the sown area of rape-
seed or just sow without subsequent management to obtain more sub-
sidies (Khir et al., 2017).

4. Discussion
4.1. Reliability of the proposed knowledge-based method

The collection of remote sensing data for identification and mapping
of yellow-flowering rapeseed fields relies on the RFP, which is region-
specific and even field-specific (Wang et al., 2019, Zhang et al., 2022).
We explore the potential of social media as a new data source to obtain
prior knowledge of the RFP on a large scale. To mitigate the potential
uncertainty and time deviation of the RFD map derived from social
media data, the RFP maps are generated by adding and subtracting 30
days from the RFD map for the inclusion of Sentinel-2 imagery during
the RFP (Figs. 8 and 9). Furthermore, we develop a new DNN model for
rapeseed identification, in which the 6 valid data are input in a parallel
manner (Fig. 6). Combining the RFP maps and the new DNN model, the
final imagery used for training and prediction is very likely to be pro-
duced during the real flowering period. Therefore, the critical issue of
automatic selection of the RFP-related remote sensing imagery corre-
sponding to different regions can be addressed, thus allowing large-scale
rapeseed mapping.

Table 2
Accuracy assessment of the yellow-flowering rapeseed map for Anhui Province.
Land cover types Reference UA PA OA Kappa
Rapeseed Non-rapeseed Total
Map Rapeseed 362 27 389 0.9306 0.9891
Non-rapeseed 4 1165 1169 0.9966 0.9773
N Total 9891 1192 1558 0.9801 0.9458
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Table 3
Accuracy assessment of the rapeseed map for Hubei Province.
Land cover types Reference UA PA OA Kappa
Rapeseed Non-rapeseed Total
Map Rapeseed 332 46 378 0.8783 0.9852
Non-rapeseed 5 1128 1133 0.9956 0.9608
N Total 337 1174 1511 0.9662 0.9067
Table 4
Accuracy assessment of the rapeseed map for Shaanxi Province.
Land cover types Reference UA PA OA Kappa
Rapeseed Non-rapeseed Total
Map Rapeseed 313 64 377 0.8302 0.9874
Non-rapeseed 4 1127 1131 0.9965 0.9463
I Total 317 1191 1508 0.9549 0.8730

Table 5

Comparison of the mapping accuracy obtained from different methods for the
study areas. The acronyms are defined as: extreme gradient boosting
(XGBOOST), random forest (RF).

Study area Methods UA PA OA Kappa
Anhui Province Proposed 0.93 0.99 0.98 0.95
XGBOOST 0.65 0.97 0.92 0.73
RF 0.60 0.99 0.91 0.69
Hubei Province Proposed 0.88 0.99 0.97 0.91
XGBOOST 0.43 0.95 0.87 0.52
RF 0.44 0.98 0.88 0.55
Shaanxi Province Proposed 0.83 0.99 0.95 0.87
XGBOOST 0.44 0.80 0.86 0.49
RF 0.29 0.90 0.85 0.37

Some studies extracted peak flowering period based on the variations
during the RFP (Han et al., 2022, Sulik and Long, 2015, 2016). For
instance, SWIR bands can observe the decline in water contents in soil
and rapeseed during the RFP (Wilson et al., 2015). The reduction of
chlorophyll in rapeseed petals causes an increase in red band reflectance
(Shen et al., 2009). In general, temporal profiles of spectral bands or
spectral indices are built to capture these changes during the RFP
(d’Andrimont et al., 2020). Fig. S10 presents temporal spectral profiles
of rapeseed and non-rapeseed landcover, including winter wheat, paddy

Peak flowering period in 2017

0.15

0.1

0.05

NDYI

1 |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| k
| )
| |
| |
| |
| |
| |
| |

-0.15

rice, and forest. Different from non-rapeseed landcover, the NDYI profile
has an obvious peak, while the NDVI profile shows a downward trend
during the RFP for rapeseed. Taking the temporal profile of NDYI as an
example, the RFP can be detected by identifying the peaks (d’Andrimont
etal., 2020). As can be observed from Fig. 11, the NDYI value of the peak
is relatively high (>0.15) in 2017. However, a similar peak cannot be
found during the same periods in 2018, due to the absence of cloudless
Sentinel-2 TOA data in the peak flowering period. Even if there is valid
data within the RFP, it may be difficult to capture the signals for the RFP
extraction without valid data during the peak flowering period.

4.2. Potential sources of uncertainty and future work

It is challenging to identify the RFP across different regions and
produce an accurate rapeseed map over a large spatial domain. In this
study, the accuracy of the resultant rapeseed maps could be affected by
some factors. First, due to the notoriously noisy nature of social media,
some data irrelevant to the subject may also be included, despite data
cleaning. These incorrect data will affect the spatial interpolation of
RFD, especially in those areas with limited social media data. In view of
the potential uncertainty caused by social media data, the following
plausible future research lines are considered. The location information
from text contents can enrich the geo-tagged social media data via
natural language processing (Cervone et al., 2016). In addition,
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Fig. 11. Temporal profile of normalized difference yellowness index (NDYI) for the rapeseed without cloudless Sentinel-2 data during the peak flowering period in
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although there are some limitations in monitoring the RFP from tem-
poral profiles of spectral indices (e.g., NDYI), it has the potential to
enhance the RFP maps generated from social media data, especially for
areas with insufficient social media data.

Another potential source of uncertainty comes from the availability
of Sentinel-2 data. Due to the susceptibility of optical imagery to at-
mospheric opacity and satellite revisit time limitations, Sentinel-2 TOA
data may not be available during the RFP. Some rapeseed fields may be
missed because of the inconspicuous yellowness of rapeseed at the very
beginning or end of the RFP. In future research, we can adopt a few
measures to alleviate this uncertainty. First, some approaches for the
reconstruction of temporal Sentinel-2 data can be considered, such as
the Gaussian mixture model (Mouret et al., 2022). In addition, Sentinel-
1 SAR data can be included in our proposed method to increase the
number of valid data. In addition, the balance between Sentinel-2
spectral redundancy and information gain should be further explored
to realize more accurate model prediction based on deep learning
(Inglada et al., 2022).

5. Conclusion

There is a need to identify rapeseed flowering period and produce
accurate yellow-flowering rapeseed maps. In this article, a knowledge-
based method is proposed for yellow-flowering rapeseed identification
and mapping at a large scale by combining social media data, Sentinel-2
imagery, deep learning algorithm, and GEE. For Anhui Province, the UA
and PA of the resultant rapeseed map in 2018 are 0.93 and 0.99,
respectively. Moreover, our knowledge-based method can also be
directly applied for rapeseed mapping in Hubei Province and Shaanxi
Province with robust performance. It can be concluded that the pro-
posed method has great potential to identify and map yellow-flowering
rapeseed fields at the national scale and provides essential information
for agricultural management.
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