

Hydrodynamic Slip in Nanoconfined Flows: A Review of Experimental, Computational, and Theoretical Progress

Abdul Aziz Shuvo^a, Luis E. Paniagua-Guerra^a, Juseok Choi^b, Seong H. Kim^{b, c, d}, and Bladimir Ramos-Alvarado^{a*}

^a Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States.

^bDepartment of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States.

^c Department of Material Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States.

^d Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States.

* Corresponding author: bzs52@psu.edu

Al 1 1

Nanofluidics has made significant impacts and advancements in various fields, including ultrafiltration, water desalination, biomedical applications, and energy conversion. These advancements are driven by the distinct behavior of fluids at the nanoscale, where fluid behaviors are affected or altered due to interactions with solid surfaces. A key challenge in nanofluidics is understanding hydrodynamic slip, a phenomenon where liquid flows past solid boundaries with a non-zero velocity, deviating from the classical no-slip boundary condition. This review consolidates experimental, computational, and theoretical efforts to elucidate the mechanisms behind hydrodynamic slip in nanoconfined flows. We evaluate essential experimental methodologies, including surface force apparatus, atomic force microscopy, and micro-particle image velocimetry, which have been instrumental in characterizing slip at the nanoscale. The review also discusses the contributions of molecular dynamics simulations, including both non-equilibrium (NEMD) and equilibrium (EMD) approaches, in modeling interfacial phenomena and slip behavior. Additionally, it explores the influence of factors such as surface wettability, shear rate, and confinement on slip, emphasizing the interaction between liquid structuring and solid-liquid interactions. Advancements made so far have uncovered more complexities in nanoconfined flows which have not been considered in the past, inviting more investigation to fully understand and control fluid behavior at the molecular level.

35 Keywords: Nanofluidics, slip length, hydrodynamic slip, interfaces, molecular dynamics.

36

37 **1. Introduction**

38 Investigations on nanoconfined fluids date to the first half of the last century. Following early investigations
39 of fluid transport in nanoconfinements,¹ the study of fluid flow in the nanoscale emerged as a new field of science
40 called nanofluidics, a term coined in the 1990s.^{2,3} Furthermore, the integration of nanofabrication with nanofluidic
41 technology offers potential breakthroughs in the manipulation and control of fluids at the molecular level, which
42 could revolutionize our approach to a variety of scientific and industrial challenges. This surge in interest is driven
43 by the capability of nanofluidic devices to operate with high efficiency and sensitivity due to their minute scale
44 and the unique properties of fluids confined to such small dimensions.

45 The application of nanofluidic devices could impact promising technology, including biomedical
46 applications, ultrafiltration and desalination processes, and ionic transport for energy conversion. In the biomedical
47 field, nanofluidics may reduce the amount of genomic material and time for analysis of DNA.⁴⁻⁶ Nanochannel
48 devices have therapeutic applications on high-precision drug delivery systems;⁷⁻¹⁰ while, nanoengineered fluidic
49 devices enable low-cost cell analysis and disease diagnostics.^{11,12} Similarly, the integration of nanoconduits in lab-
50 on-a-chip systems allows for single-cell analysis, increasing the reliability of portable point-of-care medical
51 diagnostic systems.^{13,14} Beyond biomedical applications, nanoconfined fluid flows offer precise manipulation of
52 ionic concentrations and enhance electrochemical-mechanical energy conversion in batteries.¹⁵ Such technologies
53 also facilitate groundbreaking electrical energy production from salinity gradients.^{16,17} Furthermore, the active
54 control of ion charge concentration in nanoflows is applied to the development of fluid-based devices analogous
55 to micro-electronics, such as nanofluidic transistors¹⁸⁻²⁰ and diodes.²¹⁻²⁴ Another main research venue on
56 nanofluidics applications takes advantage of the filtration capabilities of nanotubes and nanopores.²⁵ Capillary
57 devices with atomic-scale precision are used in ultrafiltration,^{26,27} while nanometer-scale porous membranes are
58 promising alternatives for seawater desalination.²⁸⁻³² In addition to the highly specialized applications discussed
59 so far, the behavior of thin, confined fluids is essential in numerous industrial operations, mainly involving
60 lubrication³³, nanoencapsulation³⁴, and nanofabrication.³⁵ Electrospinning technologies leverage the interaction

61 between electrostatic forces and working fluids at the spinneret nozzle to create innovative nanofabrication
62 methods to produce hollow, core-shell, and multichannel nanofibers, which are crucial for high-performance
63 materials used in catalysis, drug delivery, and energy storage.³⁵

64 Along with the enhanced capabilities of nanofluidic devices comes a major increase in flow friction, which
65 is an inevitable challenge. Fluid flow through minuscule confinements experiences a vast increase in flow
66 resistance, per the classical hydrodynamics theory. The significance of friction in nanoconfined flows is attributed
67 to the interfacial interactions as the surface-to-volume ratio increases at the nanoscale.³⁶ However, due to the
68 dominant effects of interfacial properties such as wettability and surface roughness, fluid flow in nanochannels
69 can be tailored to overcome the hydraulic limitations imposed by high confinement levels. For instance,
70 experimental investigations of flow in carbon nanotubes (CNT) have reported flow enhancements up to five times
71 higher than expected from the conventional continuum theory.³⁷⁻³⁹ CNTs are atomically smooth surfaces with
72 hydrophobic properties, a combination that hypothetically offers a reduced resistance to flow.

73 Nanoconfined flows have been described by classical fluid dynamics combined with atomistic modeling to
74 account for interfacial interactions in nanochannels with diameters down to 1.4 nm.⁴⁰ The applicability of the
75 continuum approach facilitates the creation of a theoretical framework to model fluid flow. However, the boundary
76 condition compatible with the continuum approach remains a challenge, i.e., accounting for and quantifying
77 hydrodynamic slip.⁴¹⁻⁴³ The earliest efforts to simulate flow through nanochannels resulted in flow velocities
78 between 2 to 10 orders of magnitude higher than experimental measurements,⁴⁴ indicating an overestimation of
79 the hydrodynamic slip. Sophisticated simulations, considering complex wettability interactions⁴¹ and long
80 averaged simulated times⁴⁴ ($\sim 100 \mu\text{s}$) have been conducted in recent years, obtaining flow regimes comparable
81 with the flow velocities reported in the experimental literature. However, a complete understanding of the
82 mechanisms and significant parameters in nanoconfined flows is still needed.⁴¹

83 In this literature review, the basics of hydrodynamics in nanoconfined flows are introduced in Section 2.
84 A review of the experimental efforts aimed at explaining the different variables affecting hydrodynamic slip is
85 presented in Section 3; the most relevant experimental techniques and the tendency towards higher resolution
86 measurements are highlighted as well as the controversy regarding the effects of wettability and liquid structuring

metrics on the hydrodynamic slip. Subsequently, a more comprehensive review of the modeling efforts for investigating the complex phenomena of nanoconfined flows is reported in Section 4. The different non-equilibrium and equilibrium methods for modeling fluid friction in nanochannels are revised and compared. Lastly, in Section 5 a more fundamental review of the underlying physics behind slip as well as the effects of wettability, shear rate, and confinement is presented. Figure 1 illustrates a knowledge map of this review's contents.

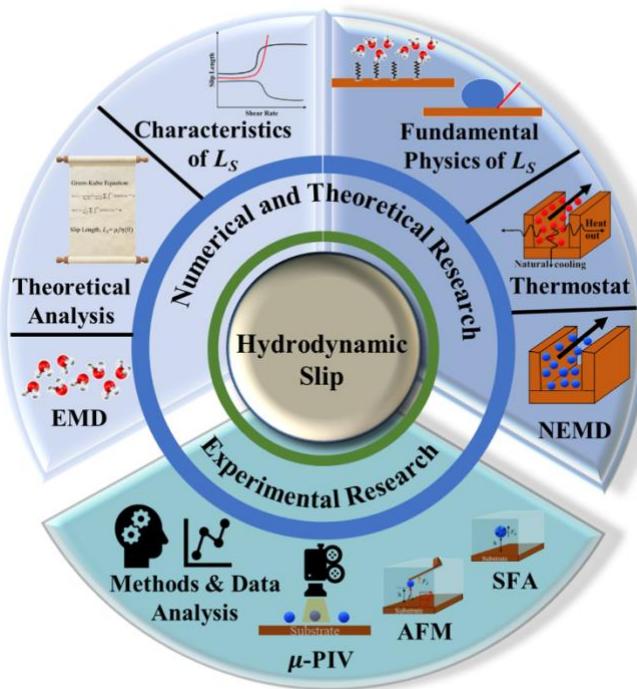


Figure 1. Knowledge map of our literature review.

2. Friction and hydrodynamic slippage in nanoconfined liquids

In macroscale fluid dynamics, the no-slip boundary condition has allowed experimental results to align with numerical and analytical models across various applications. Despite its widespread use, the no-slip boundary condition is phenomenological and not derived from fundamental physical principles.⁴⁵ In Navier's early work,⁴⁶ an alternative boundary condition that permits slippage has been suggested:

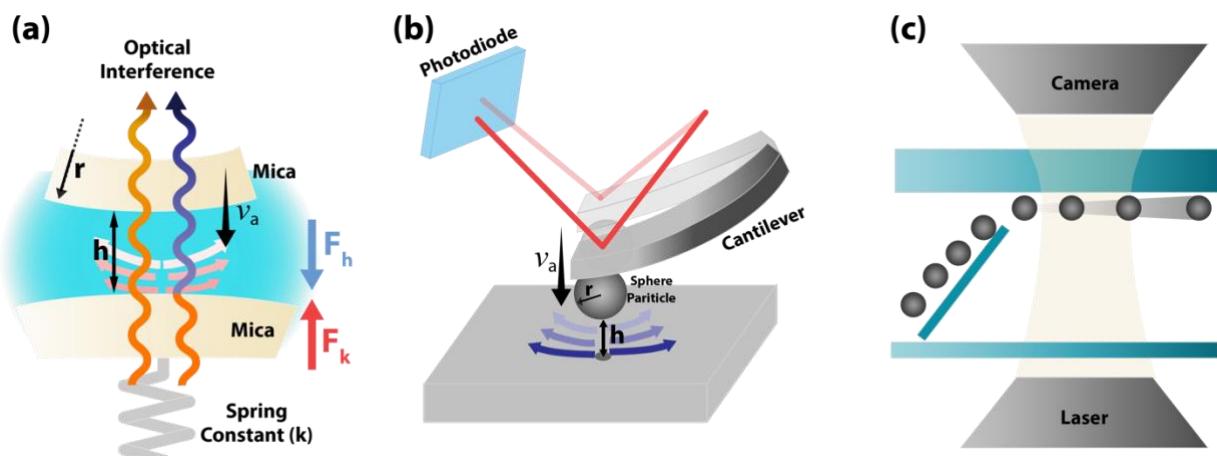
$$u_s = L_s \frac{\partial u}{\partial z} \Big|_{z=0} \quad (1)$$

where u_s and L_s represent the slip velocity and slip length, respectively. Here, z is the coordinate normal to the interface where the velocity gradient is assessed, and L_s is defined as the distance at which the linearly extrapolated

102 velocity reaches zero. $L_s = 0$ denotes the no-slip condition. However, this slip boundary condition, as described in
103 Eq. (1), is also empirical and lacks a solid theoretical foundation.

104 Conversely, the governing equations of continuum fluid mechanics have a solid theoretical foundation. In the
105 continuum assumption, Newton's second law is applied to infinitesimal volume elements large enough to preserve
106 the bulk values of the thermophysical and transport properties of the fluid. After applying the Newtonian
107 corollaries to the relation between stresses and deformations, the famous Navier-Stokes (NS) equations arise.
108 However, these equations break down when the flow system is reduced to dimensions comparable to the molecular
109 size due to the uncertainty of the continuum assumption.⁴⁰

110 In the hydrodynamic regime where the Navier-Stokes (NS) equations are applicable, there is a distinct
111 separation in length and time scales between bulk properties and surface effects.³ In bulk systems with particles in
112 the order of Avogadro's number, the molecular degrees of freedom can be described with only a few variables
113 such as pressure, velocity field, temperature, etc., while the complexity of the transport phenomena is lumped into
114 transport coefficients. Bocquet and Charlaix³ calculated the applicability range of the NS by determining the
115 lower-scale limit for the concept of shear viscosity η , which is represented by the Green-Kubo relation:


$$\eta = \frac{1}{V k_B T} \int_0^\infty \langle \sigma_{xy}(t) \sigma_{xy}(0) \rangle_{eq} dt \quad (2)$$

116
117 where V , k_B , T , $\langle \sigma_{xy}(t) \sigma_{xy}(0) \rangle_{eq}$ are the system volume, Boltzmann constant, absolute temperature, and
118 autocorrelation function of the off-diagonal component of the stress tensor, respectively. The validity of this
119 equation assumes that the timescale of the stress-stress correlation function τ_σ is smaller than any hydrodynamic
120 timescale. For instance, the relaxation time of momentum, $\tau_q = (vq^2)^{-1}$, where v is the kinematic viscosity and q is
121 a wave vector; thus, $vq^2 \tau_\sigma < 1$ fixes the limit for timescales at confinements w larger than a viscous length scale,
122 namely $w > \sqrt{v \tau_\sigma}$. For water $\tau_\sigma \sim 10^{-12}$ s and $v = 10^{-6}$ m²/s at 20 °C, which yield a limit of $w \approx 1$ nm, proving the
123 robustness of the NS equations. Thus, for water, confinement levels in the nanometer scale can be modeled using
124 the classical governing equations of fluid mechanics. It is noteworthy that Thomas and McGaughey⁴⁰ confirmed
125 the bulk-like behavior of water flowing through CNT of diameters ~ 1.4 nm.

126 **3. Experimental investigations of hydrodynamic slip**

127 Nanoconfined flowing liquids can be described by the equations of bulk hydrodynamics down to scales of
128 approximately 1 nm (approximately three water molecular diameters). However, characterizing the boundary
129 conditions for these flows remains challenging. The no-slip boundary condition has been successfully applied to
130 macroscopic systems, where it remains phenomenologically valid. However, at smaller scales dominated by
131 surface interactions, deviations from the no-slip boundary condition have been observed, meaning its validity is
132 questionable.

133 Accurately measuring interfacial properties in nanofluidics is challenging due to the dynamic interactions at
134 liquid-solid interfaces and spatial resolution limitations.³ Recently, these experimental challenges have been
135 addressed significantly. For instance, the surface force apparatus (SFA) and atomic force microscopy (AFM) can
136 directly access the hydrodynamic forces with high sensitivity and in a controlled environment. Additionally, μ -
137 PIV enables visualization of the velocity field in real time, which is critical for slip measurements. This Section
138 will discuss these primary methodologies—SFA, AFM, and μ -PIV—and their recent developments in measuring
139 L_S in nanoconfinements. Moreover, Section 3.4 will explore emerging techniques for measuring L_S using
140 suspended microchannel resonators (SMR), Dynamic Quartz Crystal Microbalance (QCM-D), and hybrid
141 graphene/silica nanochannel techniques. Along with L_S metrologies, surface characterization techniques, such as
142 sum frequency generation (SFG) spectroscopy and X-ray reflectometry (XRR), will also be presented in Section
143 3.5. These techniques are useful in uncovering the origins of hydrodynamic slip behavior, particularly concerning
144 the chemical interactions of interfacial water molecules.

146 Figure 2. Schematic of the operational principles of (a) SFA, (b) AFM, and (c) μ -PIV. In (a) and (b), the radius of
147 the sphere (r), separation distance (h), and approach velocity (v_a) are indicated as the parameters of the
148 hydrodynamic drag force (F_h) and the restorative force of the cantilever (F_k), which are balanced for hydrodynamic
149 slip measurement.

150

151 **3.1 Surface force apparatus (SFA)**

152 The SFA quantifies the viscous force, F_h , between two surfaces submerged in a liquid with viscosity η , based
153 on their separation distance h , and balanced by the cantilever restorative force, F_k ,⁴⁷ as shown in Figure 2(a). This
154 viscous force is detected using piezoelectric materials, and the gap between the surfaces is determined through
155 interferometry. Employing SFA in conjunction with multiple beam interferometry enables measurements with
156 sub-nanometer accuracy. The expression for F_h is provided in Eq. (3) where v_a represents the relative approach
157 velocity of the surfaces, r is the radius of the sphere immersed in the liquid, and f^* is a correction factor that
158 compensates for hydrodynamic slip. When $f^* = 1$, Eq. (3) corresponds to the Navier-Stokes (NS) solution in the
159 lubrication approximation. For surfaces of comparable characteristics, Vinogradova⁴⁸ derived the solution for f^*
160 as presented in Eq. (4).

$$F_h = \frac{6\pi\eta r^2 v_a}{h} f^* \quad (3)$$

$$f^* = \frac{h}{3L_s} \left[\left(1 + \frac{h}{6L_s} \right) \ln \left(1 + \frac{6L_s}{h} \right) - 1 \right] \quad (4)$$

161

162 Chan and Horn⁴⁹ investigated the drainage of three non-polar organic Newtonian liquid films between
163 molecularly smooth mica surfaces using the SFA. Their results were in good agreement with the Reynolds theory
164 of lubrication (no-slip boundary condition) for film thicknesses above 50 nm; however, for thinner films, an
165 apparent enhancement of the viscosity was observed. Chan and Horn⁴⁹ indicated that as the film thickness
166 decreases, the surface effects are more significant and produce a “solid-like” ordering in liquid layers near the
167 wall, causing an increase in the liquid resistance to shear. A modification to the formerly static SFA apparatus is
168 reported in Luengo et al.⁵⁰ where a shear attachment was added to the original design, now allowing for dynamic
169 rheological analyses. A series of transition regimes in the rheological behavior of polymer melts as well as a
170 reduction of viscosity with film thickness were found using the modified SFA.

171 Baudry et al.⁵¹ used a similar version of the dynamic SFA to investigate the slippage of glycerol in contact
172 with wetting and non-wetting surfaces. On a wetting cobalt surface, the no-slip boundary condition was found to
173 hold; alternatively, when cobalt was coated with a thiol, the surface became non-wetting, and $L_S \approx 65$ glycerol
174 molecular diameters were measured. The liquid confined between wetting surfaces showed a constant viscosity as
175 the confinement was varied; in contrast, for non-wetting cobalt-thiol, a reduction in the liquid viscosity was
176 observed as the separation between surfaces decreased.

177 High shear rates have been observed to trigger bubble nucleation, leading to increased slip. Zhu and Granick⁵²
178 observed extensive L_S with water and tetradecane on hydrophobic surfaces, noting that L_S escalated unboundedly
179 as shear rates increased in their experiments, reaching up to the micrometer range. Furthermore, Cottinn-Bizonne
180 et al.⁵³ investigated the hydrodynamic boundary conditions of water and dodecane on both hydrophobic and
181 hydrophilic surfaces, employing a dynamic SFA under shear rates up to 5×10^3 s⁻¹. They found that the viscosity
182 of water remained consistent with its bulk value in confinements as narrow as 10 nm. On hydrophilic Pyrex
183 surfaces, neither water nor dodecane exhibited hydrodynamic slip; however, on hydrophobic surfaces, both fluids
184 showed slip with L_S reaching approximately 20 nm.

185 The findings by Cottinn-Bizonne et al.⁵³ present notable contradictions to those of Zhu and Granick.⁵²
186 Cottinn-Bizonne et al.⁵³ noted that the oscillation amplitude of pressure in their SFA experiments remained below
187 the vapor pressure of the examined liquids, precluding cavitation, which might have been possible under the
188 conditions used by Zhu et al.⁵² Furthermore, they hypothesized that discrepancies could arise from the
189 contamination of surfaces by hydrophobic materials. Continuing this investigation, Cottinn-Bizonne et al.⁵⁴ also
190 explored potential experimental inaccuracies affecting their results. They highlighted that even small
191 miscalculations in measuring the separation distance between surfaces could significantly impact the calculated
192 L_S . Their further studies using water and water mixtures aimed to discern the impact of viscosity on different
193 wettability surfaces, finding that surfaces with higher hydrophobicity exhibited greater L_S , though not exceeding
194 20 nm.

195 3.2 Atomic force microscopy (AFM)

196 AFM, as described in Figure 2(b), also employs the same approaches and equations Eq. (3)-(4) as the SFA.
197 However, AFM has smaller probed areas, which are determined by the size of the spherical bead attached to the

198 AFM probe.³ Craig et al.⁵⁵ utilized an AFM setup to assess the drainage force in aqueous sucrose solutions between
199 a spherical tip and a flat surface. They employed analytical models to determine variables such as L_S from the
200 measured force-distance curves. They observed that the L_S varied with the fluid's viscosity and the rate at which
201 the AFM cantilever approached (shear rate). At lower velocities, there was no slip, indicative of a "free system"
202 behavior, whereas at higher velocities where $L_S \leq 20$ nm. A notable limitation of AFM in measuring viscous
203 forces in nanoconfined liquids is its sensitivity to deflections in the AFM cantilever caused by viscous drag.⁵⁶ To
204 address this, Vinogradova et al.⁵⁶ developed multiple models aimed at curbing or even eliminating the increase in
205 viscous drag as the speed of the AFM cantilever escalated. Further, Vinagroda et al.⁵⁷ engineered an AFM probe
206 that reduced drag. Employing a data reduction method previously outlined by Vinogradova et al.⁵⁶, they
207 successfully identified the no-slip boundary condition and measured an L_S of 10 nm on hydrophobic surfaces.

208 Using AFM, Bonaccorso et al.⁵⁸ assessed the hydrodynamic force between hydrophilic mica and glass in the
209 presence of aqueous solutions, measuring L_S of 8 – 9 nm on these surfaces, irrespective of the AFM probe approach
210 speed. The experiments were conducted at high shear rates (10^4 s⁻¹), which accounted for the observed
211 hydrodynamic slippage on the hydrophilic surfaces. Honig and Ducker⁵⁹ explored the impact of rapidly
212 approaching AFM probes on measuring viscous forces within sucrose solutions varying in viscosity. They
213 observed no significant increase of L_S exceeding zero, even at shear rates up to 2.5×10^5 s⁻¹, contrasting with the
214 results from Bonaccorso et al.⁵⁸ when examining similar systems. However, their findings were in line with those
215 of Vinagroda et al.⁵⁷ The discrepancies are thought to stem from the different methods used to measure the gap
216 between the surface and the probe. Traditional AFM experiments calculate this distance using the combined
217 displacement of the piezoelectric scanner movement and the cantilever deflection, while Honig and Ducker⁵⁹
218 derived the separation distance through the intensity of scattered evanescent waves. Bushan et al.⁶⁰ investigated
219 L_S for different surface conditions using the AFM tapping mode. The authors reported L_S values of 43 nm and 232
220 nm for hydrophobic and superhydrophobic surfaces, respectively. Maali et al.⁶¹ enhanced the design of
221 commercially available AFM cantilevers by adapting them for improved acoustic excitation in liquid environments.
222 They integrated an anti-reflective coated glass slide into the cantilever holder to reduce unwanted oscillation peaks.
223 Subsequently, Maali et al.⁶² used this improved version of the AFM to measure the L_S of water on graphitic-carbon
224 surfaces at a value of 8 nm.

225 In AFM experiments, instrumental uncertainties such as offsets and improper calibrations result in significant
226 errors in determining the slip length.^{54,63} Such errors originate from the necessity of independently providing
227 accurate values for the liquid viscosity, sphere radius, and spring constant when calculating L_s , as inaccuracies in
228 these parameters can propagate and lead to incorrect L_s estimations.⁵⁴ For example, Bonaccorso et al.⁵⁸ reported
229 L_s of approximately 8 nm for a hydrophilic substrate (mica–water interface), while Maali et al.⁶⁴ and Zhang et al.⁶⁵
230 reported values close to zero. To overcome these discrepancies, a new data analysis model was proposed, assuming
231 that the diameter of the microsphere is much larger than the slip length.^{54,66,67}

$$\frac{v}{F_h} = \frac{h + L_s}{6\pi\eta R^2} \quad (5)$$

232
233 where h is the separation between the microsphere and the surface of the substrate, v is the approach speed of the
234 sphere to the substrate, F_h is the hydrodynamic force acting on the tip, η is the viscosity of the liquid, and R is the
235 diameter of the microsphere. Because v/F_h is proportional to $h + L_s$, the slip length is determined by its intercept
236 on the x -axis without knowing the viscosity of the liquid and the size of the microsphere. Haruya Ishida et al.⁶⁸
237 proposed an analytical alternative to Eq. (5) adding the assumption that the L_s of the substrate is identical to that
238 of the microsphere on the AFM tip. With their new analytical approach, they proposed that the L_s of a mica
239 substrate with water is close to zero.

240

241 3.3 Micro-particle image velocimetry (μ -PIV)

242 The μ -PIV method, as illustrated in Figure 2(c), involves tracking particle movement within a liquid flow
243 constrained to microscale dimensions. This technique focuses image velocimetry analysis on areas close to the
244 surface to sample the velocity profile and observe interfacial phenomena. Although theoretically applicable to
245 nanoscale conduits, μ -PIV faces significant challenges in accurately tracking particles that are only a fraction of
246 the size of the nanochannels. Additionally, as the resolution of μ -PIV improves, the measurements become noisier
247 due to increased Brownian motion affecting smaller tracer particles.³ Consequently, μ -PIV is typically employed
248 in microchannels, with efforts concentrated on enhancing resolution near the surface to detect the presence of
249 hydrodynamic slip. Tretheway and Meinhart⁴⁵ utilized standard μ -PIV to investigate slip in hydrophilic and

250 hydrophobic channels with a cross-section area $A_{cross-section} = 30 \times 300 \mu\text{m}^2$. They used fluorescent polystyrene
251 spheres with a diameter of 300 nm as tracers in the sampled region measuring $25 \times 100 \mu\text{m}$. They reported $L_s = 1$
252 μm for hydrophobic surfaces, while no-slip ($L_s = 0$) for hydrophilic conditions. These findings exceeded theoretical
253 predictions but aligned with the expected effects of wettability.

254 Lumma et al.⁶⁹ enhanced the precision of velocity profiling within a 100 μm wide microchannel by using the
255 fluorescence correlation spectroscopy (FCS) method to cross-correlate the fluorescence signals of clearly
256 identified tracer particles with a diameter of 40 nm. This approach distinguishes between flow and diffusion
257 effects, revealing L_s ranging from 0.2 to 1 μm . They recognized that their measurements of L_s might be larger,
258 influenced by interactions between the liquid and surface and the repulsive forces among the tracer colloids. In
259 another investigation using conventional μ -PIV, Ou and Rothstein⁷⁰ measured L_s of 7.5 μm in micro-ridges with
260 ultra-hydrophobic surfaces and a shear-free configuration. Their results also matched independent experiments
261 using a pressure drop calculation of slip. Joseph and Tabeling⁷¹ refined the μ -PIV method significantly, achieving
262 near-simulation accuracy. They used fluorescent beads ranging from 100 to 200 nm in diameter within a
263 microchannel measuring $10 \times 100 \mu\text{m}$. To precisely ascertain the wall position, they tracked the location of tracer
264 particles that adhered to the walls, reporting $L_s < 100 \text{ nm}$, with uncertainties comparable to the measured values.

265

266 3.4 Other techniques for direct slip measurement

267 In addition to the hydrodynamic slip characterization techniques described in Sections 3.1 – 3.3, there are
268 methods to directly measure L_s . Collis et al.⁷² first proposed L_s measurements on individual gold nanoparticles
269 immersed in water. They used suspended microchannel resonators (SMRs) introducing gold nanoparticles into
270 “U-shaped” channels embedded in a cantilever. When a nanoparticle passes through the channel, it increases the
271 inertial mass of the sensor. In the experiments, the flow at the particle surface is closely related to the
272 hydrodynamic boundary condition, and the slip at the particle surface is the result of the discrepancy between
273 measured and actual mass. Thus, L_s can be calculated by fitting the varying excitation frequencies of each
274 vibrational mode versus mass discrepancies. The main advantage of using SMRs is the measurement without
275 confinement conditions which can modify the nature of the slip. Unfortunately, further study of the hydrodynamic

276 slip using SMRs has not been reported, but the authors suggested the measurement capability of particle wettability,
277 particle crystal structure, particle surface functionalization, particle surface charge, system temperature, liquid
278 viscosity, and polarity.

279 Xie et al.⁷³ developed a hybrid graphene/silica nanochannel for L_S measurements. The ratio of mass flow
280 resistance between the silica and graphene sections was calculated using the meniscus movement in the graphene
281 section and the corresponding capillary flow constants. The variation of mass flow resistance between graphene
282 and the hybrid nanochannels is likely due to variations in slippage between the different sections of the hybrid
283 nanochannel. This approach enables an indirect measurement of L_S in the graphene section of the nanochannel. In
284 their result, the measured $L_S = 16$ nm is smaller than what has been estimated in the MD simulation of graphene
285 capillaries with pristine multilayered graphene ($L_S = 60$ nm).⁷⁴ They hypothesize that the observed variation of the
286 graphene slip length is due to the functional groups and charges on the graphene surface during the CVD
287 process.^{75,76} This implies that there is growing interest in the relationship between hydrodynamic slip and
288 interfacial chemistry.

289 Dynamic quartz crystal microbalance (QCM-D) is another emerging technique to study hydrodynamic
290 slip. QCM-D measures changes in the resonant frequency of the crystal under oscillation, both before and after
291 the deposition of mass onto the substrate; Zhdanov and Kasemo⁷⁷ reported the simulation-based observation of
292 hydrodynamic slip on the surface of a QCM-D sensor. According to theoretical calculations, at low oscillation
293 amplitudes, the amplitude of the substrate matched that of the central bead deposited on it, indicating a no-slip
294 boundary condition. However, as the substrate oscillation amplitude increased, the oscillation amplitudes of the
295 substrate and bead deviated from the theoretical prediction. Zhdanov and Kasemo⁷⁷ hypothesized that this
296 mismatch is due to a transition from sticking to slipping at the interface between the substrate and the bead. Their
297 additional finding that a lower transition amplitude occurred with a Ca²⁺-containing buffer (which changed the
298 bead-support interaction) supported this hypothesis, inferring that the frequency shift and energy dissipation in
299 QCM-D may increase or decrease depending on the slippage between the substrate and the beads (or fluids). This
300 approach could provide valuable insights into the influence of interfacial interactions on hydrodynamic slip,
301 though further fundamental studies are needed to fully develop it.

302 **3.5 Interfacial liquid characterization**

303 In the previous Section, we introduced experimental techniques for the characterization of hydrodynamic slip
304 at solid-liquid interfaces. The fundamental mechanisms of slip at the interface are not fully understood, but theories
305 and hypotheses suggest a significant influence of interfacial liquid properties, structure, and ordering on the nature
306 of momentum transfer at solid-liquid interfaces. In this Section, analytical tools to probe the water/liquid interface
307 at the molecular level will be introduced. It should be noted that while the techniques presented here are not capable
308 of directly measuring hydrodynamic slip, they can provide important properties linked to its origin and
309 fundamental principles.

310

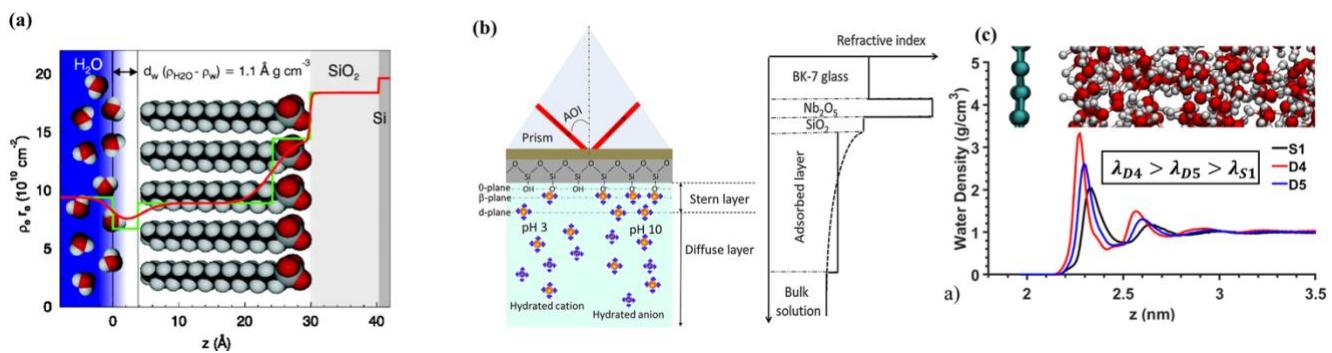
311 **3.5.1 Sum frequency generation (SFG) vibrational spectroscopy**

312 SFG vibrational spectroscopy is a non-linear optical process where two photons are combined at a surface
313 and a new photon with its energy equal to the sum of two input photons is generated. This process requires
314 noncentrosymmetry. In the bulk liquid phase, all molecules are randomly moving, and such randomness is
315 equivalent to centrosymmetry because the positive and negative directions on any axis are equivalent. Thus, bulk
316 liquid cannot generate an SFG signal. In contrast, at solid-liquid interfaces, the randomness is broken, creating
317 noncentrosymmetry; thus, SFG can detect interfacial molecular species without interference from the bulk phase
318 molecules of the same species.

319 SFG has been extensively employed to investigate the interaction between water molecules and solid surfaces
320 by analyzing the behavior of OH stretching signals. One study on fused quartz revealed that all free OH groups at
321 the silica surface are hydrogen-bonded to water molecules in contact with liquid water, which induces
322 noncentrosymmetric ordering of water molecules near the surface. The distribution of disordered and ordered
323 water structures in the interfacial region varies depending on pH.⁷⁸ The dipole direction of water at the liquid/solid
324 interface flips by 180° when the pH of the aqueous solution crosses the isoelectric point of the surface.⁷⁹ This is
325 significant as previous computational studies have demonstrated that the structuring of liquids at the solid-liquid
326 interface plays a pivotal role in capturing the hydrodynamic slip behavior across different solid-liquid interfaces
327 (see Section 5.2 for further information). Hence, the experimental characterization of liquid structure and

328 orientation at the interface is crucial for bridging the knowledge gap between measurements and calculations of
329 slip.

330 When a solid surface interacts with a polar solvent such as water, it can be charged. This surface charge can
331 arise through two mechanisms: either by the dissolution of surface groups into the contacting liquid and/or by the
332 adsorption of ions from the solution. This process leads to the formation of electrical double layers (EDL), which
333 can significantly influence solid-liquid friction. Using the SFG technique, Wei et al.⁸⁰ reported the relationship
334 between pH, electrolyte concentration, and hydrogen bonding interactions at the interface. They observed a
335 significant reduction of the SFG intensities of the OH stretching region ($3000 \sim 3800 \text{ cm}^{-1}$) as increasing electrolyte
336 concentration, and this drop was primarily attributed to the decrease of the net orientation of water molecules
337 orienting toward the solid surface in the EDL. Notably, numerical and theoretical models show that surface charges
338 and salt concentration directly influence the hydrodynamic slip behavior. The reduction of L_s with surface charge
339 was consistently reported in previous studies.⁸¹⁻⁸⁵ Geng et al.⁸³ highlighted that at high surface charge density, the
340 L_s behavior is dominated by ionic interactions rather than solid-liquid binding forces. Rezaei et al.⁸⁵ conducted
341 MD simulations to study the electro-osmotic flow of an aqueous NaCl solution on a charged silicon surface and
342 observed a similar relationship between L_s and surface charge density.


343 Recently, Wang et al.⁸⁶ successfully detected SFG signals at graphene/water interfaces. Previously, isolating
344 the graphene/water interaction was challenging due to interference from substrate/graphene signals because of the
345 transparent nature of graphene. They employed a method of suspending graphene on the water surface, creating
346 air/graphene/water interfaces under dry conditions to avoid signal interference from the air side. They observed
347 that the OH peak appears at nearly the same frequency and amplitude as at the air/water interface, suggesting that
348 graphene has only a weak effect on the organization of interfacial water. This result and approach open new
349 opportunities to study the chemical interactions between graphene and water, which is of great interest for
350 applications in microfluidic devices.

351 In addition to using spectroscopy metrologies for the characterization of solid-liquid interfaces, atomistic
352 scale simulations are pertinent for investigating local transport properties, such as viscosity (η), the EDL thickness,
353 and diffusion coefficients, particularly in nanoconfined electrolytes under varying electric fields and surface
354 charge conditions.⁸⁷⁻⁸⁹ For example, Masuduzzaman et al.⁸⁷ explored the effect of electric fields on nanoconfined

355 aqueous electrolytes, showing that the EDL thickness increased while the local η decreased due to the bulk motion
356 of counter-ions along the current flow direction. Further expanding this work, they also studied the impact of
357 surface charge, revealing that the high local η in the first and second hydration layers results from strong
358 electrostatic interactions and enhanced hydrogen bonding, which leads to a more ordered water structure.⁸⁸ This
359 molecular ordering restricts mobility, increasing resistance to flow and thus elevating local viscosity compared to
360 the bulk fluid ($\eta_{\text{first layer}} > \eta_{\text{second layer}} > \eta_{\text{bulk}}$). In addition, Masuduzzaman et al.⁸⁹ investigated the effect of
361 molecular interface position on EDL thickness and hydrodynamic properties. Their findings showed that
362 employing the hydration layer as a boundary rather than the solid substrate's first atomic layer position resulted in
363 better convergence toward the continuum assumptions. Furthermore, Ma et al.⁹⁰ conducted a comprehensive study
364 on the relationship between water ordering and friction at the interfaces of water-TiO₂ and water-silicone surfaces
365 using SFG and AFM. The wettability of TiO₂ and silicone substrates was systematically varied under different
366 heating or plasma-treated conditions to assess its effect on L_s . Their results revealed a stark contrast: while
367 hydrophobic TiO₂ substrates exhibited low friction, hydrophobic silicone surfaces demonstrated significantly
368 higher friction. To investigate this potential discrepancy, the structuring of interfacial water molecules was
369 analyzed through SFG. The spectra indicated that the interfacial water exhibited both loosely hydrogen-bonded
370 "water-like" (with a peak at 3300–3600 cm⁻¹) and strongly hydrogen-bonded "ice-like" (with a peak at 3100–3300
371 cm⁻¹) structures, with the inhomogeneity in water structuring contributing to higher friction at the solid-liquid
372 interface. Conversely, more uniformly ordered water structures (ice-like structures) in the first monolayer were
373 reported to reduce friction on both TiO₂ (hydrophobic) and silicone (hydrophilic) surfaces. This suggests that the
374 structuring of interfacial water, rather than wettability alone, plays a critical role in governing frictional behavior.
375 To support these experimental findings, molecular dynamics simulations were conducted, showing that more
376 ordered water structures reduced friction by decreasing hydrogen bonding and attractive interactions between the
377 first monolayer and the bulk water molecules. The reduction in hydrogen bonds and energy barriers facilitated a
378 smoother interlayer movement, significantly lowering friction. The integration of both experimental and numerical
379 approaches provides deeper insights into the complex interplay between water structuring, friction, and
380 hydrodynamic slip behavior.

381 **3.5.2 X-ray reflectometry and ellipsometry**

382 In Section 3.5.1, SFG spectroscopy was described as a surface-sensitive technique used to investigate the
 383 molecular water structure within the EDL regime, which can influence hydrodynamic slip behavior at solid-liquid
 384 interfaces. Studying the density profile of liquid at solid-liquid interfaces is crucial to understand the hydrodynamic
 385 slip behavior. Furthermore, density profile is used to compute density depletion length, in the previous MD
 386 investigations, which effectively captures hydrodynamic slip behavior; see Section 5.2 for a detailed discussion.
 387 However, measuring the density profile of water molecules near the interface is challenging due to the need for
 388 high surface sensitivity at the appropriate scale. In this Section, X-ray reflectometry (XRR) and ellipsometry are
 389 introduced as unique optical techniques capable of measuring the density of water molecules near the surface.

390 Figure 3. (a) Raw (Red line) or step functioned (green line) density profile of bulk
 391 water/depletion/OTS/SiO₂/Si layers using XRR (Copyright 2006 by The National Academy of Sciences of the
 392 USA),⁹¹ (b) schematic illustration of the experiment configuration of water/SiO₂/Nb₂O₅/BK-7 prism and refractive
 393 index profile used in the analysis of ellipsometry measurement (adapted from Wang et al.⁹² with permission), (c)
 394 density profiles obtained from MD simulations for different solid-liquid interactions. Adapted from Paniagua et
 395 al.⁹³ with permission. Copyright 2020, American Chemical Society.

396 XRR is used to obtain quantitative information on the electron density profile by observing changes in
 397 reflectivity (in-plane) of X-ray radiation at grazing incidence angles. In a multi-layer structure, reflected X-ray
 398 beams at each interface generate constructive or destructive interference patterns that can be compared to
 399 theoretical calculations based on the Fresnel equation. Using XRR, Mezger et al.⁹¹ determined the density profile
 400 of water/OTS(octadecyl-trichlorosilane)/SiO₂/Si layers, as shown in Figure 3(a). They highlighted the depletion
 401 of water density at the interface between water and hydrophobic OTS layers, which was not detected by other
 402

404 experimental techniques. XRR was also used to investigate the surface of ionic liquid (1-methyl-3-
405 octadecylimidazolium tris(perfluoroethyl) trifluorophosphate, $[\text{C}_{18}\text{mim}]^+ [\text{FAP}]^-$).⁹⁴ The coexistence of positively
406 and negatively charged parts of the ionic liquid allows for structuring at the air-liquid surface. However, due to its
407 structural complexity, the degree of structural ordering by positively or negatively charged particles periodically
408 oscillates with a depth-decaying, showing the convergence of density as away from the surface. This result
409 demonstrates the capability of XRR to measure the density profile of ionic liquid multilayers at the surface, as
410 well as the limitations of general measurement methods for slip length (described in Sections 3.1-3.3), which
411 typically involve fitting a single force-distance curve to calculate slip length.

412 Ellipsometry is also capable of detecting the density profiles of liquids near solid surfaces. It measures
413 changes in polarization of the reflected light and relates them to the refractive index change as a function of
414 distance. The refractive index profile can be related to the density profile via the Clausius-Mossotti relation. Wang
415 et al.⁹² measured the refractive index profile of a water/SiO₂/Nb₂O₅/BK-7 prism under acidic and basic conditions.
416 At pH 3, the surface is almost uncharged due to the isoelectric point of SiO₂, making the EDL layer negligible
417 (referred to as the absorbed layer in the paper). However, at pH 10, an additional layer representing the EDL is
418 observed due to the more negatively charged silica surface by the deprotonation of the silanol groups, as shown in
419 Figure 3(b).

420 Although both XRR and ellipsometry lack chemical specificity, these techniques provide important structural
421 properties (density and thickness) of liquid molecules near the surface, which are critical for determining
422 hydrodynamic slip behavior. The experimental results from these techniques can be used to validate computational
423 hydrodynamics simulations such as density profiles predicted from MD simulations. An example is shown in
424 Figure 3(c).⁸⁸

425 **3.6 Summary**

426 In this Section, widely used experimental methodologies including SFA, AFM, and μ -PIV were described
427 for the direct measurement of L_s . SFA and AFM quantify the viscous drag force, which is balanced by the
428 restorative force imposed on the surfaces compressing a liquid. μ -PIV can directly measure the surface velocity of
429 liquid near a solid wall by tracking particle movement. Additionally, other approaches such as using microchannel

430 resonators, hybrid nanochannels, and QCM-D with varying flow resistances were presented. These techniques are
 431 capable of measuring L_s at the solid-liquid interface, but they also have limitations in providing detailed
 432 information on the fundamental mechanisms of hydrodynamic slip. Specifically, these dynamic measurement
 433 methods cannot provide any information on the liquid-surface interactions. Such information can be obtained with
 434 SFG, XRR, and ellipsometry. But, since these techniques work for the static condition, the link between the
 435 dynamic slip and the static interfacial structure remains elusive. The working principle and limitations of all these
 436 experimental techniques are summarized in Table I.

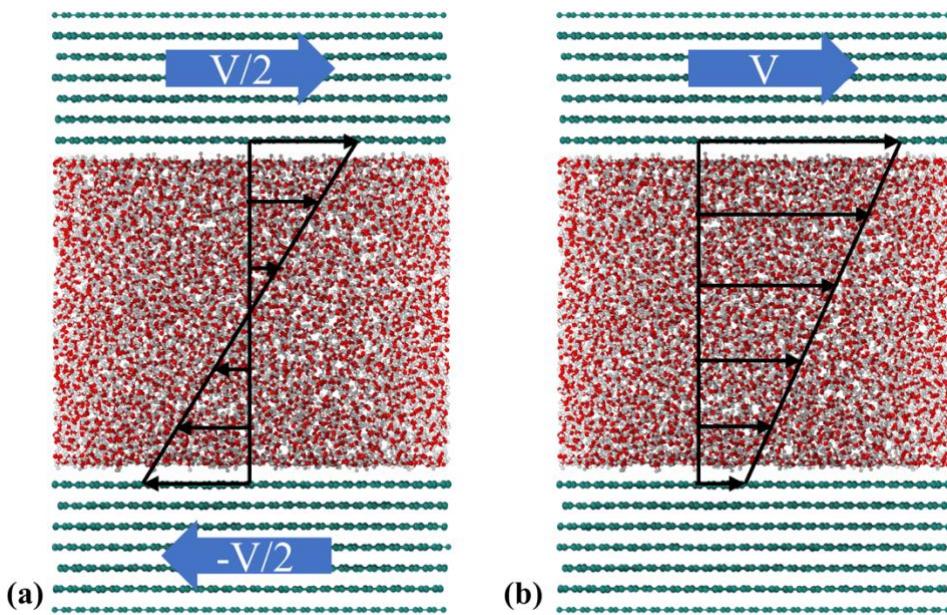
437 Table I. Summary of experimental techniques used to analyze the hydrodynamic slip behavior at the
 438 liquid-solid interface and the surface chemistry effect on liquid structure.

Technique	Description	Limitation
Surface force apparatus (SFA)	<ul style="list-style-type: none"> Measures the repulsive force as two surfaces approach one another Directly measures of hydrodynamic slip and slip length based on the rigid theories 	<ul style="list-style-type: none"> Interpretation is model-based Requires highly controlled and smooth surfaces; limited to the chemistry control on mica Limited to relatively small separations
Atomic force microscopy (AFM)	<ul style="list-style-type: none"> Measures the repulsive force between a cantilever tip and a surface Sensitive to very small-scale interaction tip Directly probe hydrodynamic slip and slip length on the surface 	<ul style="list-style-type: none"> Interpretation is model-based Sensitive to probe type and geometry Difficult to reproducibly control the chemistry of the probe surface
Micro-particle image velocimetry (μ PIV)	<ul style="list-style-type: none"> Tracks particle movement and velocity within a liquid flow confined to a microscale dimension channel. 	<ul style="list-style-type: none"> Lack of surface chemistry control Limited resolution Requires the use of appropriate tracer
Microchannel resonators (SMR), Hybrid nanochannel	<ul style="list-style-type: none"> Measures mass changes of flows through a vibrating microchannel caused by the interaction at the surface boundaries (such as channel wall or nanoparticles) 	<ul style="list-style-type: none"> Lack of surface chemistry Requires complex fabrication and precise design Complex interpretation

Dynamic QCM	<ul style="list-style-type: none"> Measures the frequency shift and energy dissipation of a vibrating quartz crystal as a liquid interacts with its surface 	<ul style="list-style-type: none"> Deconvoluting from the bulk fluid effect
(QCM-D)	<ul style="list-style-type: none"> Sensitive to very small changes in interfacial properties 	<ul style="list-style-type: none"> Insufficient studies on hydrodynamic slip
Sum frequency generation (SFG)	<ul style="list-style-type: none"> Nonlinear optical technique by combining two laser beams to produce an SFG signal Can provide molecular-level information about the alignment and behavior of liquid molecules at the solid-liquid interface 	<ul style="list-style-type: none"> Does not provide a direct measurement of dynamic slip Limited to surfaces and interfaces that are optically accessible
X-ray reflectometry (XRR)	<ul style="list-style-type: none"> Measures the reflectivity of X-rays from a surface with high resolution and sensitive to atomic-scale structural changes Can provide information about the density profile of a liquid near the solid interface 	<ul style="list-style-type: none"> Does not provide a direct measurement of dynamic slip Limited to well-defined, homogeneous surfaces
Ellipsometry	<ul style="list-style-type: none"> Measures changes in polarization of the reflected light providing the density profiles of liquids near solid surfaces 	<ul style="list-style-type: none"> Does not provide a direct measurement of dynamic slip Requires precise knowledge of the optical properties of the interface

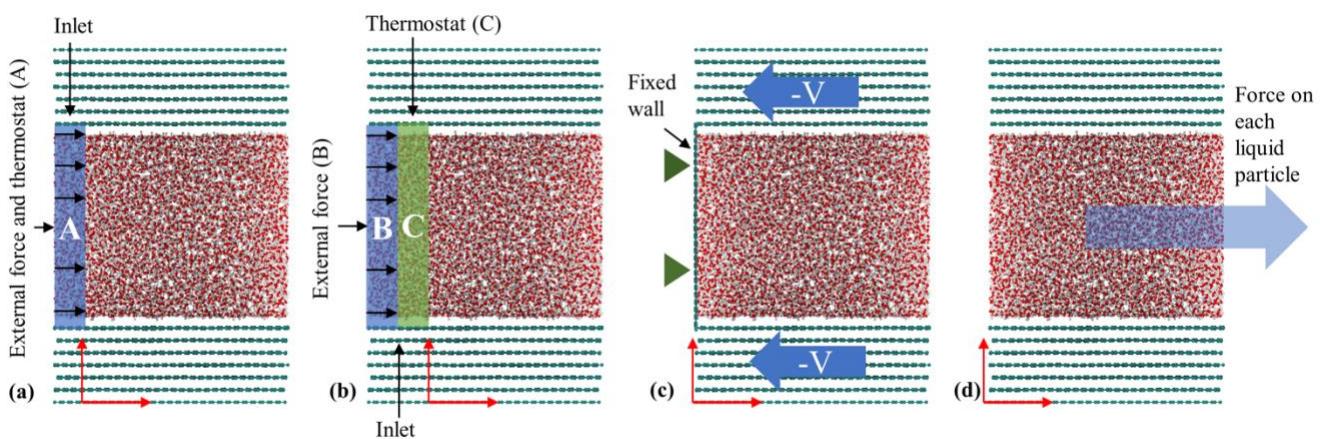
439

440 Combining dynamic and static characterization methods as complementary probes is paramount to
 441 understanding the underlying mechanisms of hydrodynamic slip; however, such a combination of multiple
 442 experimental techniques for the same interfacial system has not been done systematically yet. In contrast, studies
 443 bridging the complex interplay between water structuring, friction, and hydrodynamic slip behaviors, have been
 444 done computationally, which is reviewed in Section 4.


445 **4. Molecular dynamics (MD) simulations for the analysis of hydrodynamics of nanoconfined liquids**

446 **4.1 Non-equilibrium molecular dynamics (NEMD)**

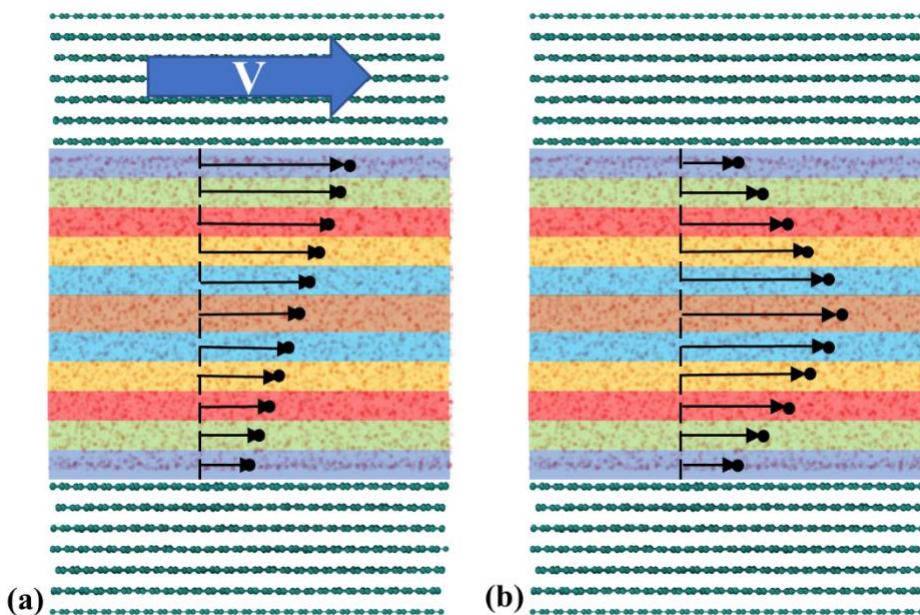
447 NEMD simulations have been applied to determine the friction coefficient and L_S for different solid-liquid
 448 interfaces. A key aspect of NEMD simulations is the application of a gradient across the molecular or atomic
 449 configuration to observe the system's linear response. The variables of interest are monitored over time, and once


450 a quasi-steady state is achieved, transport or interfacial properties can be determined by fitting the data to a
 451 continuum-based model, typically involving a gradient. While the NEMD method is conceptually straightforward
 452 and closely mimics real experimental setups, it is significantly influenced by the size of the simulation box and
 453 the large gradients needed to extract information constrained by the limited time scales accessible in MD
 454 simulations. Additionally, defining the location of the solid-liquid interface is paramount for performing the
 455 velocity extrapolation needed to compute L_S in the NEMD model. Karim et al.⁹⁵ reported that L_S and η calculations
 456 based on a solid-liquid interface defined at the first hydration layer closely matched experimental data and
 457 predictions from the modified Hagen–Poiseuille equation.

458 For the analysis of nanochannels flow, NEMD simulations that resemble Couette and Poiseuille flow
 459 configurations have been used. NEMD simulations consider flow between parallel plates, due to the restrictions
 460 imposed by the utilization of periodic boundary conditions in MD simulations. Generally, the simulations involve
 461 placing liquid molecules between solid walls and applying an external force to induce unidirectional motion of the
 462 liquid particles. To create Couette flow, one wall is moved at a constant speed while the other remains stationary,^{96–}
 463 ¹⁰¹ or both walls are moved in opposite directions,^{102–106} see Figure 4. Couette flow is generally preferred for
 464 slippage and liquid-solid friction investigations due to its simplicity of implementation and the constant shear rate
 465 observed over the whole liquid domain.

467 Figure 4. NEMD methods for generating Couette flow, (a) moving walls in opposite directions and (b) moving
 468 one wall while keeping the other wall fixed.

469 Poiseuille flow simulations are used for more general purposes, such as studying the size effect on
 470 hydrodynamic slip¹⁰⁷ and the characterization of flow regimes in nanochannels.^{108,109} Unlike Couette flow, the
 471 Poiseuille flow in NEMD can be modeled in several ways. One common approach involves applying an external
 472 force to liquid particles within a defined region, often referred to as the inlet,^{110,111} and allowing the system to
 473 reach equilibrium to achieve a parabolic velocity profile, as shown in Figure 5(a). An optimization of this method
 474 proposed by Ge et al.¹¹², considers the addition of an external force to the fluid particles in region B, and then the
 475 velocity is rescaled in region C to generate a constant inlet temperature every time the fluid moves between
 476 periodic boundaries from outlet to inlet, see Figure 5(b). Another method to create a pressure-driven flow,
 477 introduced by Zhang et al.¹¹³, involves confining fluid particles with three walls; one stationary at $x = 0$ and two
 478 moving walls advancing at a constant speed perpendicular to the stationary one, illustrated in Figure 5(c). This
 479 approach successfully produces a parabolic velocity profile and a linear correlation between mean velocity and
 480 pressure drop. Lastly, Poiseuille-like flow can be generated by applying a constant force on every liquid atom in
 481 the desired direction of flow,^{107–109,114,115} see Figure 5(d). Although this method does not resemble a pressure-
 482 driven flow but a body-force-driven flow, the outcome regarding the velocity profile and shear rates are similar.¹¹⁶


483
 484 Figure 5. NEMD methods for generating a Poiseuille flow: (a) inlet-driven flow where an external force and
 485 thermostat are applied in the same finite region (based on the methodology used in Ref.^{110,111}), (b) optimized inlet-

486 force-driven flow (based on the methodology used in Ge et al.¹¹²), (c) pressure-driven flow using three walls (based
 487 on the methodology used in Zhang et al.¹¹³), and (d) driving force on each liquid particle (based on the methodology
 488 used in Ref. ^{107–109,114,115}).

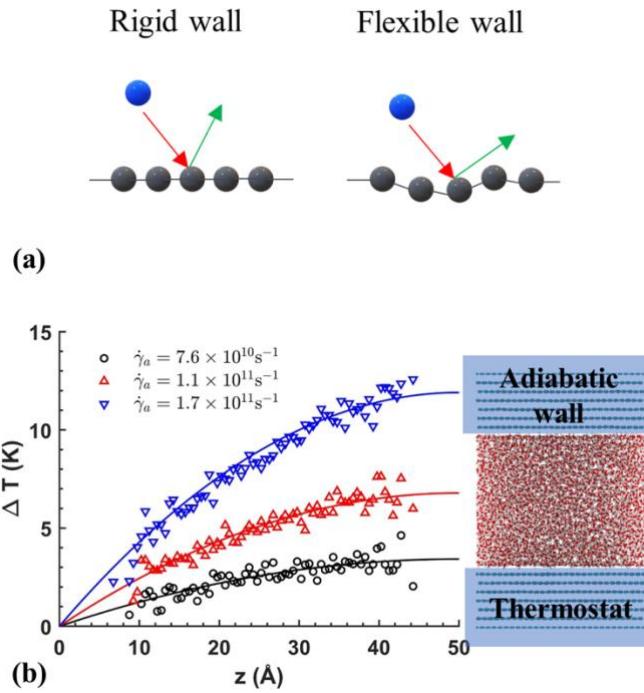
489 To calculate L_s , a velocity profile is usually needed to calculate from NEMD data. To analyze the velocity
 490 profile, the confined liquid region is divided into segments, each recording the streamwise velocity of individual
 491 atoms, see Figure 6. These velocities are then averaged across particles for each timestep and subsequently over
 492 multiple timesteps to accurately delineate the velocity profile. The resulting data is typically modeled using either
 493 a linear or parabolic fit. The slip velocity is determined by extrapolating the fluid velocity to the wall or any other
 494 characteristic length (usually one molecular diameter from the wall). Finally, the L_s is calculated as

$$495 \quad L_s = \frac{\Delta u_s}{\partial u / \partial z|_{z_0}} \quad (6)$$

496 where Δu_s is slip velocity at the interface and $\partial u / \partial z$ presents velocity calculated at the position z_0 where z
 497 corresponds to the direction perpendicular to the wall. If the observed velocity profile is plug-like, one can track
 498 the force and the slip velocity over several time steps and calculate the friction coefficient from $\lambda = F_A / u_s$, where
 499 F_A is the force acting on the solid walls per unit area and u_s is the slip velocity.¹¹⁷ L_s is calculated then as $L_s =$
 500 η / λ , here η represents the shear viscosity.

501

502 Figure 6. NEMD methodology to generate velocity profiles using discrete bins for (a) Couette flow (linear profile),
503 and (b) Poiseuille flow (parabolic profile).

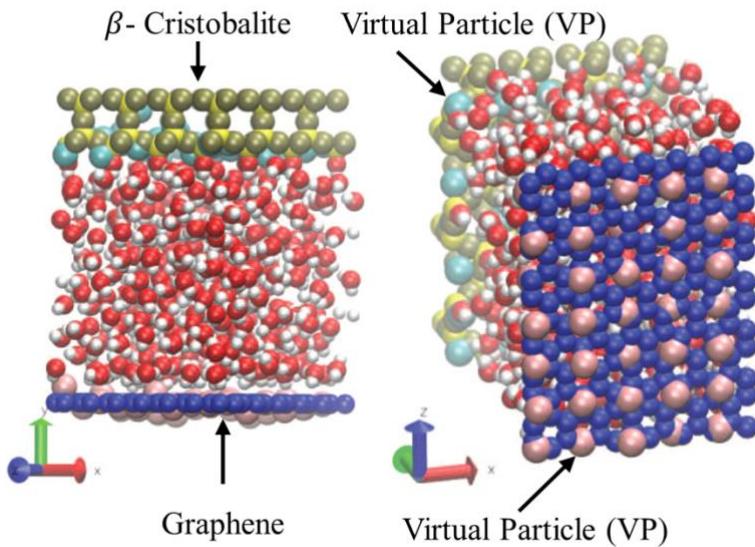

504 NEMD simulations of flow in nanochannels are intuitive for implementation and analysis. Unfortunately, the
505 high shear rates necessary to dampen the numerical noise, are significantly larger than the experimentally achieved
506 ones. Additionally, the work done by the external forces produces viscous heating in the liquid particles, which is
507 a collateral effect. To avoid this problem, many authors have applied the following methods: thermostating the
508 liquid atoms while keeping the solid atoms frozen;^{96–98,113,118,119} thermostating all particles;^{96,98,99,102} thermostating
509 the fluid particles only in the perpendicular direction of flow so that the equations in the direction of motion are
510 not affected (solid atoms are either mobile or inert);^{101,103,104,116,120–124} and thermostating only the solid atoms so
511 they can act as natural heat sinks to remove viscous heating.^{107–110,114,115,125–129} Notably, most of the earlier NEMD
512 nanochannel flow simulations employed the liquid thermostating method or all-particles-thermostating method,
513 due to the limited computational resources available at that time. Moreover, most of these investigations were
514 concerned with the calculation of L_s in uniform temperature flows. Alternatively, early works where the solid
515 thermostating method was applied were concerned with the relationship between heat dissipation and
516 hydrodynamic slip. Thus, the only manner of accounting for both phenomena was to allow viscous heating in the
517 fluid.

518 Discussion and justification of the thermostating approaches are reported in the literature. Martini et al.¹⁰⁶
519 carried out multiple simulations to investigate the hydrodynamic behavior of a nanoconfined fluid under different
520 shear rates. The main finding of this investigation was that when the liquid atoms are subjected to thermostating
521 and the solid wall atoms remain frozen, L_s increases exponentially with the shear rate; conversely, if the solid
522 atoms are thermostated and allowed to vibrate the L_s growth is bounded to a constant value at high shear rates. Ho
523 et al.⁹⁹ indicated that either thermostating the liquid or the solid was consistent with experimental conditions of
524 high and moderate heat dissipation, respectively. They also observed that the use of different thermostats on the
525 fluid did not affect the velocity profiles.

526 In a more in-depth investigation, Bernardi et al.¹³⁰ indicated that thermostating could alter the physical
527 behavior of a system, if not applied correctly to a system where inhomogeneities exist, such as in a nanoconfined

528 fluid flowing. Two scenarios were considered using a 2-D Couette flow: thermostating the fluid particles while
529 keeping inert the solid atoms and thermostating the solid atoms while allowing the liquid to heat up. The first
530 finding is that the properties of the wall affect the density profiles. If the solid walls are allowed to vibrate, the
531 liquid can slightly push the walls and make the channel effectively bigger. Moreover, thermostated fluids presented
532 unrealistic shear distribution curves, which eventually could lead to incorrect results in studies where thermal
533 properties are included. The effect of the wall atom dynamics was like that observed by Martini et al.¹⁰⁶, showing
534 that at low shear rates, the vibrating walls allowed larger slip than frozen walls. The wall dynamics effect was
535 explained by looking at the elasticity of particle collisions, using stationary walls and walls consisting of particles
536 tethered by elastic springs. Depending on the collision angle, a frozen wall particle would limit the direction of
537 motion of a liquid particle after a collision, whereas an elastic wall allows more easily a particle to move in the
538 direction of flow after a collision (see Figure 7(a) for the schematic of rigid and flexible wall types).

539 Yong and Zhang¹³¹ performed a series of MD simulations with three different thermostat setups: (i) applying
540 the thermostat only to liquid atoms, (ii) applying it to both solid and liquid atoms, and (iii) applying it solely to
541 solid atoms. They investigated the mechanical and thermal properties of the system for each configuration. Their
542 findings showed that using a thermostat on the solid walls resulted in a parabolic temperature profile, which
543 aligned with the solution of the energy equation. However, deviations from theoretical expectations occurred when
544 isothermal conditions were applied to the liquid atoms at high shear rates. Similarly, Shuvo et al.¹²⁹ applied
545 thermostating to the walls only to mimic natural cooling, reporting a parabolic temperature distribution in the
546 nanochannel consistent with the energy equation, as illustrated in Figure 7(b). It was concluded that letting the
547 system cool down through the walls as would naturally occur is preferred over direct liquid thermostating.



548

549 Figure 7. (a) Schematic of rigid and flexible wall NEMD model, redrawn from Bernardi et al.¹³⁰, (b) temperature
 550 profile obtained by Shuvo et al.¹²⁹ (adapted with permission).

551 Although the most realistic manner of performing NEMD simulations of nanofluidics is by thermostating the
 552 walls and allowing the liquid to expel the excess viscous heating through the walls, significant computational
 553 demand is inherent to this approach. If the solid walls are thermostated, it means that the equations of motion must
 554 be solved for the solid particles too. Hence, less expensive computations have been performed for sole
 555 hydrodynamic effects by keeping the solid walls inert, i.e., with no internal degrees of freedom. The drawbacks of
 556 such a conventional method were fundamentally discussed in Bernardi et al.¹³⁰ and recently De Luca et al.¹³²
 557 proposed a novel methodology for conducting physically realistic simulations without solving the dynamics of the
 558 wall. Such a new thermostating method consists of employing “ghost” particles/virtual particles with no interaction
 559 other than with the liquid and being tethered to their lattice site via an elastic spring model, see Figure 8. The wall
 560 particles are inert, while ghost particles are allowed to interact with the fluid atoms for thermostating. Although
 561 this method was proven to be efficient and did not significantly alter the dynamics of the fluid, several trial runs

562 must be conducted before finding the most appropriate configuration (number and position) of ghost atoms for a
563 particular system.

564

565 Figure 8. Computational domain of water confined between graphene sheets (dark blue sphere) and β -cristobalite
566 (yellow sphere) wall with virtual particles (pink and light blue spheres). Adapted from De Luca et al.¹³³ with
567 permission. Copyright 2014, American Chemical Society.

568 **4.2 Equilibrium Molecular Dynamics (EMD)**

569 EMD simulation is employed to achieve the friction factor at the interface. These methods do not resemble
570 experimental setups as in NEMD but have the advantage of not requiring shear rates larger than those found in
571 real experiments in nanoconfined fluids. Likewise, these methods are more reliable than NEMD simulations for
572 systems with large values of slip, such as water flowing in carbon nanochannels¹²⁷, where the velocity profiles are
573 difficult to resolve. Additionally, EMD methods are limited to the low shear rate regime when a comparison with
574 NEMD is required. The calculation of the friction factor using EMD is based on the fluctuation-dissipation theory,
575 which leads to Green-Kubo-like expressions. The fluctuation-dissipation of particle forces, velocities, and their
576 cross-correlations have been used to determine the friction factor employing four principal methods that are
577 discussed herein.

578 Bocquet and Barrat¹¹⁸ proposed avoiding the arbitrariness of choosing the hydrodynamic boundary conditions
 579 by performing first-principles calculations. A “phenomenological” model of momentum transport based on the
 580 Navier-Stokes equations was formulated using a statistical mechanics approach, selecting the L_s and the
 581 hydrodynamic distance to the wall (z_{wall}) as fitting parameters. Analytical expressions for the momentum density
 582 correlation function were obtained for perfectly flat and rough walls. Molecular dynamics simulations were
 583 performed to get the “exact” values of the momentum density correlation function. Equilibrium simulations of
 584 nano-confined atomic liquids interacting through purely repulsive potentials were conducted at constant
 585 temperature and varying the size of the channels. Through parameter fitting, Bocquet and Barrat¹¹⁸ calculated L_s
 586 and z_{wall} , and found that the analytical models matched the simulation results for repulsive walls with and without
 587 corrugation. However, confinements imposed by attractive walls were not correctly described by the
 588 phenomenological model due to the presence of slip-locking. Lastly, they conducted NEMD simulations of
 589 Couette flow to prove the effectiveness of the “phenomenological” model in predicting the velocity profile. The
 590 analytical model fitted through EMD simulations accurately matched the NEMD velocity profiles.

591 Given the success of their equilibrium calculations, Bocquet and Barrat¹¹⁸ formulated a method to calculate
 592 L_s and z_{wall} as equilibrium properties using a Green-Kubo-like approach. They employed linear response theory
 593 and the Mori-Zwanzig formalism separately to derive equilibrium coefficients based on the time-dependent
 594 correlation functions of the fluid. A perturbation Hamiltonian $H[\dot{\gamma}, z_0] = \dot{\gamma} \sum_{i=1}^N (z - z_0) P_{i,x}$ was chosen to
 595 generate a Poiseuille flow in the x -direction with a fictitious shear field $\dot{\gamma}$, where $p_{i,x}$ is the momentum of particle
 596 i in the x -direction, and z_0 is the position at which the velocity profile vanishes while $v_x(z) = \dot{\gamma}(z - z_0)$ is a first-
 597 order approximation of the tangential velocity. Applying linear response theory, and having non-equilibrium
 598 friction force $\langle F_x \rangle(t)$ as the response and H as the perturbation field, the following expression was developed:

$$\begin{aligned} \langle F_x \rangle(t) &= \frac{\dot{\gamma}}{k_B T} \int_0^t ds \langle F_x(t-s) [\sigma_{xz}(0) - z_0 F_x(0)] \rangle \\ &= \frac{\dot{\gamma}}{k_B T} \int_0^t ds \langle F_x(t-s) \sigma_{xz}(0) \rangle - \frac{\dot{\gamma} z_0}{k_B T} \int_0^t ds \langle F_x(t-s) F_x(0) \rangle \end{aligned} \quad (7)$$

$$\langle F_x \rangle(t) = \frac{1}{k_B T} \int_0^t ds \langle F_x(s) F_x(0) \rangle [\dot{\gamma}(z_{wall} - z_0)] = -A\lambda\dot{\gamma}(z_0 - z_{wall})$$

599 where F_x represents the total force exerted in the x-direction on the solid wall by the liquid atoms; k_B , T, and A
 600 denote the Boltzmann constant, temperature, and the area of the wall, respectively; and the wall friction coefficient
 601 (λ) is:

$$\lambda = \frac{1}{Ak_B T} \int_0^\infty ds \langle F_x(s) F_x(0) \rangle \quad (8)$$

602

603 from which the slip length is obtained as $L_s = \eta/\lambda$.

$$z_{wall} = \frac{\int_0^\infty ds \langle F_x(s) \sigma_{xz}(0) \rangle}{\int_0^\infty ds \langle F_x(s) F_x(0) \rangle} \text{ and } \sigma_{xz} = \sum_{i=1}^N \left[\frac{P_{x,i} P_{z,i}}{m} + (F_{x,i}^{fluid} + F_{x,i}^{wall}) z_i \right] \quad (9)$$

604

605 According to Navier's friction model⁴⁶ $F_x = -\lambda A v_x(\Delta z)$, where F_x is the total tangential force exerted by the
 606 liquid on the wall and $v_x(\Delta z)$ is the tangential velocity at an equilibrium position Δz away from the wall; clearly,
 607 Bocquet and Barrat¹¹⁸ assumed that $\dot{\gamma}(z_0 - z_{wall}) = v_x(\Delta z)$ to find an expression for the friction coefficient.
 608 Petravic and Harrowell¹³⁴ indicated the incorrectness of such an assumption given that $\dot{\gamma}$ is an artificial constant
 609 field used to induce a perturbation into the system and no physical correlation exists with F_x which is the actual
 610 friction force on the wall.

611 Petravic and Harrowell¹³⁴ addressed the equilibrium perturbation issue using Doll's equations of motion.
 612 They induced a disturbance within the system by generating a relative velocity, referred to as Δv_{wall} , between the
 613 confining walls, while also considering the constraints of a heterogeneous system in a boundary-driven flow
 614 context. The system's linear response was then evaluated in the context of a small Δv_{wall} , leading to the
 615 determination of a new friction coefficient.

$$\mu_i = \lim_{\Delta v_{wall} \rightarrow 0} \frac{\langle F_{xi}(t) \rangle / A}{\Delta v_{wall}} = \frac{1}{Ak_B T} \int_0^t ds \langle F_{xi}(s) F_{xi}(0) \rangle \quad (10)$$

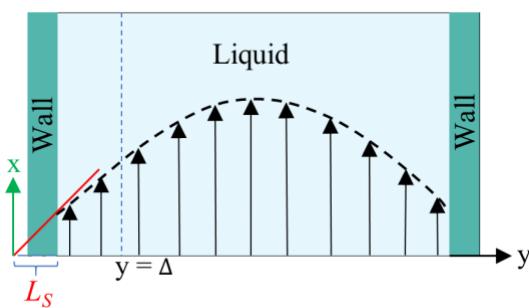
616

617 where μ_i is determined when $t \rightarrow \infty$ (statistically equilibrium stage). At this stage, $\mu_1(t) = \mu_2(t) = \mu$ (i=1, 2 reference
 618 two confining walls). Eq. (9) bears similarity to Eq. (7), with the distinction that Δv_{wall} is utilized in place of slip
 619 velocity to relate the friction force to velocity. Consequently, Eq. (9) accounts for the entire thickness of the

620 confined fluid and addresses the size-dependent friction coefficient observations noted in Petracic et al.¹³⁴ Finally,
 621 the L_s can be obtained as follows:

$$\frac{F_x/A}{\gamma_{bulk}} = \frac{F_x/A}{\Delta v_{wall}/(D + L_{s1} + L_{s2})} = \eta ; \quad \mu = \frac{\eta}{D + L_{s1} + L_{s2}} \quad (11)$$

622


623 where D represents the distance between the solid walls. Eq. (10) can be simplified when considering identical
 624 walls.

625 Hansen et al.¹²⁵ emphasized that Eq. (9) accounts for the friction of the whole system, including both the walls
 626 and the liquid, and highlighted the importance of separating the region affected by the wall from the bulk fluid to
 627 accurately determine the true wall friction. They expanded on Navier's foundational ideas, addressing the issue of
 628 wall friction by focusing on a thin layer of liquid close to the wall, see Figure 9. The analysis considers the velocity
 629 profile of a liquid confined between two walls, separated by a distance L_y , with the liquid layer defined at $y = \Delta$,
 630 and is evaluated using Newton's second law: The velocity profile of a liquid flowing between two walls separated
 631 by a distance L_y , as depicted in Figure 9. The liquid slab delimited at $y = \Delta$ is analyzed using Newton's second
 632 law:

$$m \frac{du_{slab}}{dt} = F'_x(t) + F''_x(t) + mF_e \quad (12)$$

633

634 where the mass of the liquid m , while u_{slab} denotes the slab's center-of-mass velocity. The friction force resulting
 635 from the interactions between the wall and the slab is referred to as F'_x , whereas F''_x is the friction force due to
 636 the wall-slab interactions. Lastly, F_e is an external force applied per unit mass.

637

638 Figure 9. Sketch of the system used in the friction analysis in Hansen et al.¹²⁵ Figure 9 is redrawn from Hansen et
 639 al.¹²⁵

640 The friction force F_x' was described by the following expression:

$$F_x'(t) = - \int_0^t \zeta(t-\tau) \Delta u(\tau) d\tau + F_r'(t) \quad (13)$$

641
642 where ζ is a friction kernel, $\Delta u = u_{\text{slab}} - u_{\text{wall}}$, and F_r' represents a random force that has a zero mean and is
643 uncorrelated with u_{slab} . In steady-state conditions, the friction forces are given as:

$$\langle F_x' \rangle = -\zeta \langle \Delta u \rangle \quad (14)$$

$$\langle F_x' \rangle = A\eta \langle \dot{y} \rangle = A\eta \frac{\partial u}{\partial y} \Big|_{y=\Delta} \quad (15)$$

644 where $A = L_x L_z$ is the cross-section area of the system and ζ_0 is the zero-frequency friction coefficient.¹²⁵ Hansen
645 et al.¹²⁵ calculated L_S using Eq. (11 - 14), in combination with the Couette and Poiseuille flow solutions obtained
646 with integral boundary conditions (finite liquid regions of width Δ). L_S calculated from such solutions matched the
647 expected value of $L_S = \eta/\zeta_0$ where $\zeta_0 = \zeta_0/A$ in the limit when $\Delta \rightarrow 0$. The analytical solutions were compared with
648 EMD simulations from which the friction coefficient was obtained from the Laplace transform of the velocity-
649 velocity and force-velocity autocorrelation functions (ACFs) as:

$$\tilde{C}_{uF_x}(s) = - \sum_{i=1}^n \frac{B_i \tilde{C}_{uu}(s)}{s + k_i} \quad (16)$$

650

651 where the ACFs are defined as

$$C_{uF_x}(t) = \langle u_{\text{slab}}(0) F_x'(t) \rangle \text{ and } C_{uu}(t) = \langle u_{\text{slab}}(0) u_{\text{slab}}(t) \rangle \quad (17)$$

652
653 And

$$F_x'(t) = \sum_{\substack{i \in \text{slab} \\ j \in \text{wall}}} F_{ij}(t) \text{ and } u_{\text{slab}}(t) = \frac{1}{m} \sum_{i \in \text{slab}} m_i v_{i,x}(t) \quad (18)$$

654

655 The Laplace transform of the friction kernel was obtained using a Maxwellian memory function for convenience
656 as indicated in Hansen et al.¹²⁵,

$$\zeta(t) = \sum_{i=1}^n B_i e^{-\kappa_i t} \quad (19)$$

657

658 Thus, the zero-frequency friction coefficient can be found by fitting B_i and κ_i in Eq. (18) using data from EMD
 659 simulations as:

$$\zeta_0 = \int_0^\infty \zeta(t) dt = \sum_{i=1}^n \frac{B_i}{\kappa_i} \quad (20)$$

660

661 Hansen et al.¹²⁵ discovered that the value of ζ_0 depended on Δ , requiring multiple trials to determine the
 662 appropriate Δ value. Narrow slabs failed to capture the entire wall-slab interactions, while larger slabs may
 663 introduce unnecessary bulk particles. They noted that the friction coefficient was influenced by the channel width,
 664 particularly for channels with $L_y \leq 7\sigma$ in their molecular configuration. A comparison was conducted between the
 665 L_S predicted using their EMD approach and NEMD calculations using Couette and Poiseuille flows. A remarkable
 666 agreement was found for flows with small shear rates.

667 Bocquet and Barrat¹³⁵ responded to the criticisms in the definition of their model in Bocquet et al.¹¹⁸,
 668 suggesting that the sensitivity of their interfacial friction coefficient stemmed from the specific approach taken in
 669 handling system size and time limits extending to infinity, as derived from MD simulations. To reinforce the
 670 generality of their previous model, they introduced a new formulation for the Green-Kubo relationship for the
 671 friction coefficient λ , offering a more robust and fundamental approach grounded in the general Langevin equation.
 672 This formulation was applicable to both planar and cylindrically confined fluids. In their study, Bocquet and Barrat
 673¹³⁵ defined a confined liquid system in which solid walls of a large mass M are allowed to move in the tangential
 674 direction only. In the presence of solid-liquid friction, the fluctuations in the wall velocity $U(t)$ are given by

$$M \frac{dU}{dt} = -\lambda A v_s(t) + \delta F(t) \quad (21)$$

675

676 where the slip velocity is $v_s(t) = U(t) - v_f(t)$ and $v_f(t)$ is the fluid velocity, A is the wetted area, and $\delta F(t)$ is a lateral
 677 fluctuating force. In the linear response regime, the slip velocity is related to the wall velocity

$$v_s(t) = \int_{-\infty}^{\infty} dt' \psi(t - t') U(t') \quad (22)$$

678 where ψ is a friction memory kernel with origins in the hydrodynamic shear modes in the fluid. After substituting
 679 Eq. (21) into (20), the Langevin equation was Laplace-transformed and the force correlation function
 680 $\langle F_w(t)F_w(0) \rangle$ was found

$$\phi(t) = \langle F_w(t)F_w(0) \rangle = -M^2 \frac{d^2}{dt^2} \langle U(t)U(0) \rangle \quad (23)$$

681

682 Eq. (22) is best handled in the Laplace space from which the friction coefficient was found when $\tilde{\phi}(s)$ is evaluated
 683 in the $s \rightarrow 0$ limit, yielding

$$\lambda = \frac{1}{Ak_B T} \int_0^\infty dt \langle F_w(t)F_w(0) \rangle \quad (24)$$

684

685 which is the same expression previously found in Bocquet et al.¹¹⁸ but this time using more general arguments
 686 and without the approximations involved in the first derivation.

687 Huang and Szlufarska¹²³ noted a significant concern in the discourse regarding friction coefficients derived
 688 from equilibrium calculations. They argued that the friction coefficient should be considered a local parameter
 689 rather than a bulk property. For instance, while solid-liquid friction is present in liquids moving through a carbon
 690 nanotube, achieving the thermodynamic limit in such a system, as proposed by Bocquet and Barrat.^{118,135}, is not
 691 feasible. Moreover, when dealing with heterogeneous surfaces or fluid mixtures in contact with a solid boundary,
 692 using a bulk property equation like Eq. (9) fails to capture the localized variations at the interface where friction
 693 takes place. Bocquet et al.¹³⁵ applied the general Langevin equation together with a set of sum rules to the
 694 fluctuating velocity of a wall of large mass. In a new formulation, Huang and Szlufarska¹²³ applied a mechanical
 695 perturbation Hamiltonian to individual liquid particles at the solid-liquid interface, $H = -xe^{i\omega t}$ where x is the
 696 displacement of particles parallel to the solid walls and $e^{i\omega t}$ is an external drag force with frequency ω and time t .
 697 Being u_i the drift velocity of an interfacial particle moving parallel to the solid wall, and Fourier transforming the
 698 linear correlation function, the particle mobility ϕ_i was obtained

$$\langle u_i \rangle_\omega(t) = \frac{fe^{-i\omega t}}{k_B T} \int_0^\infty \langle u_i(0)u_i(t) \rangle e^{i\omega t} dt \quad (25)$$

699

$$\phi_i(\omega) = \frac{1}{k_B T} \int_0^\infty \langle u_i(0) u_i(t) \rangle e^{i\omega t} dt \quad (26)$$

700

701 Linear response theory was applied a second time using F_i as the force exerted by the wall on a single interfacial
702 particle i yielding

$$\langle F_i \rangle_\omega(t) = \frac{f e^{-i\omega t}}{k_B T} \int_0^\infty \langle u_i(0) F_i(t) \rangle e^{i\omega t} dt \quad (27)$$

703

704 Now, by definition of the friction coefficient

$$\bar{\eta}_i = -\frac{\langle F_i \rangle_\omega(t)}{\langle u_i \rangle_\omega(t)} = \frac{\int_0^\infty \langle u_i(0) F_i(t) \rangle e^{i\omega t} dt}{\int_0^\infty \langle u_i(0) u_i(t) \rangle e^{i\omega t} dt} \quad (28)$$

705

706 where the total friction coefficient can be obtained by summing all the contributing particles and normalizing it
707 by the area of the interface

$$\lambda = \frac{1}{A k_B T \mu_i(\omega)} \sum_i \int_0^\infty \langle u_i(0) F_i(t) \rangle e^{i\omega t} dt \quad (29)$$

708

709 where the short-range nature of F_i allows us to evaluate Eq. (28) across a substantial number of liquid particles,
710 without compromising the interfacial aspects of the calculations. Huang and Szlufarska¹²³ observed difficulty in
711 achieving a well-converged value of ϕ_i due to the particles not staying sufficient time near the wall and due to the
712 sensitivity to the spatial definition of the interfacial region. This problem was solved by obtaining the right-hand
713 side terms of Eq. (28) through a Langevin formalism where single particles are analyzed. Using linear response
714 theory and after many mathematical manipulations, they obtained

$$\bar{\eta}(\omega) = \frac{1}{A k_B T [1 - \alpha(\omega)]} \sum_i \int_0^\infty \langle F_i(0) F_i(t) \rangle e^{i\omega t} dt \quad (30)$$

$$\alpha(\omega) = \frac{1}{A k_B T} \sum_i \int_0^\infty \langle F_i(0) u_i(t) \rangle e^{i\omega t} dt \quad (31)$$

715

716 where the static friction factor $\bar{\eta}(0)$ can be used to obtain $L_s = \frac{\eta}{\bar{\eta}(0)}$. Table II summarizes the EMD models for
 717 the calculation of L_s with key highlights.

718

719 Table II. Overview of theoretical analysis for computing friction factor via EMD

Source	Equations	Key Highlights
Bocquet and Barrat ¹¹⁸	$\lambda = \frac{1}{Ak_B T} \int_0^{\infty} ds \langle F_x(s) F_x(0) \rangle$	<ul style="list-style-type: none"> Utilized both linear response theory and the Mori-Zwanzig formalism independently to derive equilibrium coefficients. Introduced an artificial shear rate into the fluid using a Hamiltonian to simulate Poiseuille flow. Analyzed the ACF of the friction factor focusing on the solid atoms. Determined that the ACF should reach zero when $t \rightarrow \infty$; and calculated λ at this point
Petravic and Harrowell ¹³⁴	$\mu_i = \lim_{\Delta v_{wall} \rightarrow 0} \frac{\langle F_{xi}(t) \rangle}{A}$ $\mu_i = \frac{1}{Ak_B T} \int_0^t ds \langle F_{xi}(s) F_{xi}(0) \rangle$	<ul style="list-style-type: none"> Discovered that the ACF's integral does not reduce to zero over time but instead stabilizes at a constant value, implying a smooth decay of the force ACF. Employed a method similar to Bocquet and Barrat¹¹⁸ for calculating the friction factor, though they disagreed on the interpretation of the findings. Identified that the friction coefficient varies with system size, indicating it is not an intrinsic interfacial property.
Hansen et al. ¹²⁵	$\tilde{C}_{uF_x}(s) = - \sum_{i=1}^n \frac{B_i \tilde{C}_{uu}(s)}{s + k_i}$	<ul style="list-style-type: none"> Proposed isolating the region near the wall from the bulk to accurately determine wall friction. Developed a dynamic analysis of a thin liquid slab adjacent to the wall, correlating the friction force with the slab velocity using a memory function. Conducted the ACF analysis focusing on the interfacial liquid atoms.
Bocquet and Barrat ¹³⁵	$\lambda = \frac{1}{Ak_B T} \int_0^{\infty} dt \langle F_w(t) F_w(0) \rangle$	<ul style="list-style-type: none"> Refined their earlier model to address criticisms regarding the generality of their Green-Kubo formulation. Introduced a non-Markovian general Langevin framework to investigate perturbations in wall velocity and slip behavior.

Huang and $\bar{\eta}(\omega)$

$$\text{Szlułarska}^{123} = \frac{1}{Ak_B T [1 - \alpha(\omega)]} \sum_i \int_0^{\infty} \langle F_i(0) F_i(t) \rangle e^{i\omega t} dt$$
$$\alpha(\omega) = \frac{1}{Ak_B T} \sum_i \int_0^{\infty} \langle F_i(0) u_i(t) \rangle e^{i\omega t} dt$$

- Applied linear response theory to a system of liquid particles subjected to perturbations by a Hamiltonian.
- Assumed that particles interact independently, with interfacial interactions considered additive.
- Conducted ACF analysis on the liquid atoms.
- The model indicated that several Langevin equations are needed to explore both wall velocity and slip behavior, indicating a linear relationship between these variables.

720

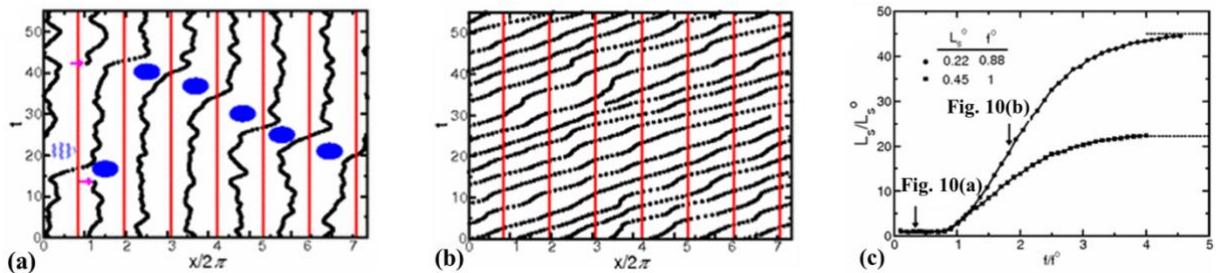
721 Bocquet and Barrat¹¹⁸ identified the deficiencies of integrating the force ACF in Eq. (7) in the limit when the
722 lag time goes to infinity. As an alternative, it was proposed to evaluate the integral only up to the point where the
723 ACF reached its first zero. A year earlier, Español and Zuñiga¹³⁶ highlighted the issues with evaluating the friction
724 factor integral from zero to arbitrary limits as indicated in Bocquet et al.¹¹⁸ The solid-liquid friction phenomenon
725 was studied using Hamilton's equation with projection operators on a Brownian particle of infinite mass
726 interacting with other particles. Complimentary EMD simulations were carried out by analyzing a fixed liquid
727 particle (infinite mass particle) interacting with several other liquid particles to prove a correlation between the
728 decay of the momentum ACF and the friction factor. The force ACF decreased fast and smoothly but the integral
729 of such was rather noisy with a tendency to decay after long simulation times. No plateau of Eq. (7) was found for
730 long simulation times, as suggested when the thermodynamic limit was reached, but approximations of the friction
731 factor could be extracted from shorter-time behaviors.

732 Español and Zuñiga¹³⁶ concluded that EMD calculations using Green-Kubo-like models are hindered by the
733 order in which the thermodynamic limit (infinite number of particles) and the infinite time limit are taken, during
734 the model formulation, since they do not commute. However, as the simulation systems get larger, it is expected
735 that the friction coefficient calculations approach the obtained results in the limits discussed. Notably, several
736 authors reported no issues with the evaluation of Eq. (7).^{36,116,117,128,134} In these investigations, significantly smooth
737 time-dependent friction factors are reported with a plateau at which point the steady state friction factor is
738 evaluated. Furthermore, consistency between EMD calculations using Eq. (7) and NEMD has been
739 reported.^{116,117,128} Liang and Kebinski¹²⁸ obtained the friction factor of argon flowing between graphene surfaces
740 and observed a steady friction factor plateau over a window of 12 ps analyzing data over 10 ns.

741 Tocci et al.³⁶ used *ab initio* MD and force field MD simulations to obtain the friction factor for graphene and
742 hexagonal boron nitride in contact with water. By using both sources of atomic trajectories evaluated from 50 ps
743 to 10 ns in a 1 ps time window, they obtained smooth friction coefficient integrals. Falk et al.¹¹⁷ evaluated the
744 friction factor from force ACFs evaluated over 0.4 ns with a time window of 2 ps. It was indicated that at long
745 timescales (typically nanoseconds), the integral vanishes due to the finite size of the system, but at intermediate
746 times a plateau of the integral can be observed. Additionally, they did not observe confinement dependence on the
747 friction factor. Contrariwise, Wei et al.¹¹⁶ used Eq. (7) to determine the L_S in water confined between graphitic-
748 carbon walls and observed the confinement effect on the friction coefficient after the viscosity was adjusted to the
749 confinement level. The investigation by Harrowell and Petracic¹³⁴ focused on giving a better interpretation of Eq.
750 (7) and throughout their analysis, smooth time-dependent friction coefficients were observed. On the other hand,
751 Huang and Szlufarska¹²³ observed rather fluctuating time-dependent friction coefficients.

752 Arguments supporting and disproving the properties of the original friction coefficient expression derived by
753 Bocquet and Barrat^{118,135} can be found all over the literature. The vanishing behavior of the integral in Eq. (7) has
754 been observed by some but not by others. Likewise, the confinement effect has been reported by some authors,
755 but others did not capture that in their analysis. New analytical approaches and reinterpretations of the initial model
756 have been proposed, but they have not been widely investigated. For example, only Kannam et al.^{126,127} used the
757 method, proposed by Hansen et al.¹²⁵, to study the friction between liquids and graphite surfaces obtaining
758 consistent results with NEMD simulations in the low shear rate limit. There is a notable debate surrounding the
759 EMD analysis of hydrodynamics in nanoconfined liquids, and more comprehensive studies are necessary to reach
760 definitive conclusions. The methodologies for analysis and simulation are not thoroughly detailed in existing
761 literature, and the inconsistencies observed across various studies may stem from errors in postprocessing or data
762 sampling during EMD simulations.

763

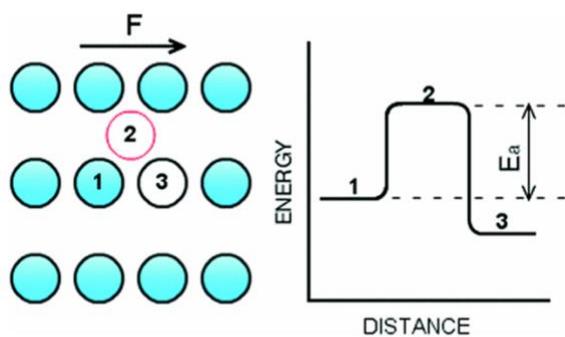

764 **5 The hydrodynamics of nanoconfined flows**

765 **5.1 Hydrodynamic slip mechanisms and molecular origins**

766 Thompson and Robbins^{98,137} made significant contributions to the understanding of the stick-slip mechanisms
767 of liquids moving past solid surfaces, examining this phenomenon from a thermodynamic standpoint rather than
768 considering it as a hydrodynamic instability. Through NEMD simulations of Couette flow, they recorded the
769 friction force, wall displacement, and structure factor over time as the wall velocity varied. Their findings revealed
770 that increasing the binding strength between solid and liquid atoms led to solid-to-liquid transitions among the
771 liquid particles at the interface. In some extreme cases, crystallization of interfacial liquid particles occurred, which
772 was then disrupted by the high shear stresses present in the Couette flow. This interplay between solid-liquid
773 binding and shear-induced disruption resulted in periodic phase transitions, thereby framing hydrodynamic slip
774 within a thermodynamic context.

775 Lichter et al.¹³⁸ proposed that liquid molecules spend sufficient time near the wall to warrant a dynamic
776 treatment of their molecular motion, based on the observed ordering of liquid particles in the direction
777 perpendicular to the wall and the mass flux towards the solid. They developed a stochastic differential-difference
778 equation for particles in the first adsorption layer near the wall, allowing for mass exchange between the bulk and
779 interfacial particles. This approach was termed the variable-density Frenkel-Kontorova model (vdFK). The vdFK
780 model was qualitatively successful in predicting the relationship between shear rate and L_s observed in NEMD
781 simulations. Moreover, the model identified two distinct slip mechanisms observed in NEMD simulations: (1) slip
782 caused by localized defect propagation, where particle exchange occurs between interfacial vacancies and the
783 bulk, and (2) simultaneous slip of large liquid regions. At low shear rates, localized defects emerge within the
784 liquid layer, with adjacent molecules quickly filling the resultant vacancies, as depicted in Figure 10(a). This defect
785 propagation is notably slow under low-shear conditions. In contrast, at high shear rates, the shear forces are
786 sufficient to induce concurrent slip across large domains of the liquid layer, see Figure 10(b). Figure 10(c) presents
787 the response of L_s to the applied force as modeled by the vdFK model, demonstrating that at low levels of force,
788 the L_s remains relatively constant. This stability is due to the sparse nature of molecular defects, which propagate
789 slowly through the liquid layer without significantly affecting the overall slip behavior. These defects do not cover
790 a substantial area, thus minimally impacting the bulk liquid behavior. However, as the force increases, a sharp
791 transition occurs due to the intensification of local defects. Ultimately, the system reaches a new plateau at higher

792 applied forces, indicating that the liquid layer moves uniformly over the solid surface. Further increases in force
 793 do not significantly impact the L_S , suggesting a saturation of mobility mechanisms at the interface.


794

795 Figure 10. Trajectories of liquid atoms predicted by the vdFK model, (a) at a low shear rate (defect propagation
 796 stage), and (b) at a high shear rate (translation of the entire first liquid layer or concurrent slip). The black solid
 797 dots represent the positions of liquid atoms at the interface. For an eye guide, the blue dots indicate the generating
 798 vacancies and filling the resultant vacancies. The vertical red solid lines illustrate the positions of seven solid
 799 atoms at the interface, (c) L_S as a function of applied force calculated from the vdFK model. L_S and force graph
 800 were normalized to collapse the low-forcing data points onto a single curve for different ground states which
 801 denotes the ratio of liquid-liquid and solid-solid spacing. The arrows in panel (c) indicate the L_S for the
 802 corresponding molecular trajectories of the panel (a) and (b). Figures 10 (a)-(c) were adapted from Licher et al.
 803 ¹³⁸ with permission.

804 Martini et al. ¹³⁹ reported defect slip (like in the vdFK model) using low shear rate NEMD simulations. In
 805 this regime, liquid particles adjacent to the solid surface hop between equilibrium sites within a potential field
 806 generated by the solid, following Arrhenius dynamics. At higher shear rates, they observed global slip, where the
 807 entire layer of liquid particles moves collectively. At the smallest wall velocity, atom movement was almost
 808 indiscernible, with minimal movement either upstream or downstream. As the wall velocity increased to
 809 intermediate levels (5 ms^{-1} and 50 ms^{-1}), atoms displayed periods of stillness interspersed with sudden downstream
 810 shifts. At 50 ms^{-1} , the behavior began to show collective trends where groups of atoms might slip simultaneously,
 811 indicating the onset of more coordinated movement. At the highest wall velocity simulated, a distinct global slip
 812 was observed where all atoms within the first liquid layer move uniformly downstream, presenting parallel
 813 trajectories that indicate a cohesive and uniform motion across the solid wall. These observations align with the

814 vdFK model. Additionally, Martini et al.¹³⁹ found a critical wall velocity for their system—a specific wall velocity
815 that demarcates the transition from defect-driven slip to this observed global slip.

816 When molecular vacancies at the interface are widely spaced during liquid slip, the movement of a single
817 atom from one equilibrium position to another happens independently. This independence allows for studying the
818 dynamics of individual atoms and the application of transition-state theory.¹³⁹ Babu and Sathian¹²⁰ utilized Eyring's
819 theory of reaction rates (transition-state theory), which models viscous flow as a chemical reaction where the
820 primary process involves molecular hopping between equilibrium positions, see Figure 11. In this context, liquid
821 molecules must surpass an energy barrier created by neighboring molecules to reach a new equilibrium position.
822 A comprehensive analytical model comprising six equations was developed, with shear viscosity and the friction
823 coefficient being the primary outputs. NEMD simulations of water confined between graphene sheets and carbon
824 nanotubes (CNTs) were conducted to directly compute the friction coefficient and estimate the activation energy
825 of the liquid molecules—an essential input for the analytical model. The model's validity is contingent upon
826 maintaining a low shear rate to ensure defect slip, as noted by Martini et al.¹³⁹ The friction coefficient predictions
827 from the analytical model generally aligned with the numerical simulations, although there were instances of
828 underestimation and overestimation for the various confinement levels studied. The authors indicated that they
829 used different driving forces, in a Poiseuille flow configuration, and varied the channel dimensions. If this process
830 is not performed carefully, very different shear rates would be produced if the driving force is kept constant while
831 the channel size varies. Additionally, Babu and Sathian¹²⁰ found size size-dependent friction coefficients for flow
832 between graphene sheets but Falk et al.¹¹⁷ reported otherwise.

833

834 Figure 11. Schematic of atom transition from one equilibrium position to another following Eyring's theory of
835 reaction rates. Adapted from Babu and Sathian¹²⁰ with permission.

836 Understanding friction at the solid-liquid interface on the nanoscale remains a significant challenge. For
837 instance, Tocci et al.¹⁴⁰ investigated the friction of water at the interfaces of graphene and hexagonal boron nitride
838 (h-BN) using *ab initio* molecular dynamics (AIMD) simulations. Notably, graphene and h-BN generated a similar
839 interfacial water structure. Furthermore, the AIMD calculations revealed nearly identical contact angles for water
840 droplets on graphene and h-BN sheets.¹⁴¹ Despite structural and wettability similarities, the calculated friction
841 coefficient on h-BN was approximately three times higher than on graphene. This significant difference was
842 attributed to the greater corrugation of the energy landscape on h-BN, determined by the differences in the
843 electronic structure of the two 2-D materials. To further investigate this phenomenon, Secchi et al.¹⁴² conducted
844 experiments on water transport inside carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs). Their
845 study revealed a significant radius-dependent slippage in CNTs, where water flow through the nanotubes exhibits
846 nearly frictionless interfaces, leading to exceptionally high flow rates. In contrast, BNNTs showed almost no
847 slippage, despite their similar crystallography to CNTs. This difference highlights the influence of subtle atomic-
848 scale interactions at the solid-liquid interface, suggesting a connection between hydrodynamic behavior and the
849 electronic properties of the confining material.

850 Recently, Kavokine et al.¹⁴³ developed a quantum theory of the solid-liquid interface and introduced a
851 new concept of quantum friction caused by the coupling of charge fluctuations in water to electronic excitations
852 in the solid surface. In this theory, the authors argued that hydrodynamic friction arises not only from the static
853 roughness of a solid surface (classical friction) but also from the interaction between water fluctuations and solid
854 electronic excitations (quantum friction). Thus, this concept could be understood from the electronic contribution
855 to the solid-liquid friction behavior. They also investigated water interactions with graphitic materials, where (i)
856 graphene, a 2-D material, exhibited very low energy excitations at very small momenta ($q \leq 0.02 \text{ \AA}^{-1}$); suggesting
857 that the electronic excitations in graphene are less likely to interact with water molecules over large distances,
858 contributing negligible quantum friction compared to classical friction. Conversely, (ii) graphite exhibits
859 unexpectedly high friction compared to graphene caused by the distinct electronic structure due to the coupling

860 between its layers; this coupling leads to the emergence of low-energy plasmon modes in graphite, which are
861 absent in single-layer graphene. These low-energy excitations, particularly the surface plasmon modes, strongly
862 interact with water molecules at the interface. In graphite, the low-energy plasmon mode has a frequency of around
863 50 meV and is polarized perpendicularly to the layers. This mode has a flat dispersion over a range of momenta,
864 meaning it can interact more effectively with the fluctuating electric fields of water molecules, particularly with
865 the Debye mode of water. The strong interaction between the graphite plasmon modes and the water Debye mode
866 leads to enhanced quantum friction at the interface. Thus, the overall friction at the interface of graphite-water is
867 higher than the graphene-water interface. Furthermore, Bui et al.¹⁴⁴ applied a classical model that adjusts the
868 dielectric properties of a solid using a simple model of charge density fluctuations in a carbon substrate. Their
869 findings showed an increase in interfacial friction consistent with recent theories of quantum friction, with friction
870 rising as the solid's dielectric spectrum features overlap with the librational and Debye modes of water.

871 **5.2 Solid-liquid affinity characterized via wettability and liquid structuring effects on slip**

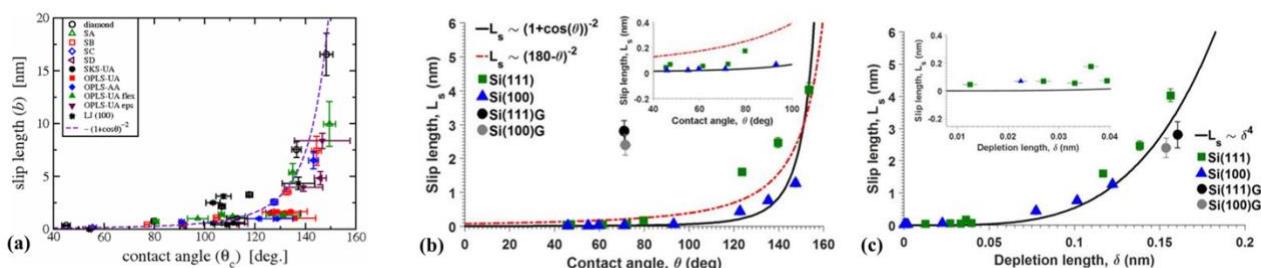
872 In nanoconfined liquids, surface effects are predominant and one of the most significant is the solid-liquid
873 affinity. A macroscopic outcome of such affinity can be characterized using the contact angle (surface wettability).
874 From an experimental point of view, it is very difficult to change the wettability of a surface; however, MD
875 simulations offer several options to do this, e.g., (i) modifying the solid-liquid atomic force field, (ii) manipulating
876 the electrostatic interactions between solid and liquid particles, (iii) varying the surface atomic density (density),
877 (iv) modifying the simulation temperature. Although these simulations are limited to atomically smooth surfaces,
878 important investigations have been conducted in this area.¹⁴⁵⁻¹⁴⁷

879 Voronov et al.^{96,97} used standard EMD simulations to determine the contact angle of simple Lennard-Jones
880 (LJ) fluid on a graphite-like solid (i.e., droplet wettability). A parametric analysis was conducted in which the
881 solid-liquid LJ parameters were independently varied to assess their effects on the calculated contact angle.
882 Increasing the value of the solid-liquid energy parameter (ϵ_{sl}) generated more hydrophilic surfaces and prompted
883 liquid particles near the wall to mimic the solid structure, as reported by Thompson et al.⁹⁸ A linear dependence
884 of the contact angle on ϵ_{sl} was found. Alternatively, the LJ length parameter (σ_{sl}) produced changes in the surface
885 energy landscape. Larger values of σ_{sl} mimicked smoother and more hydrophilic surfaces than smaller values of

886 this parameter, similar observations are reported by Zhang et al.¹²⁴ Thus, two opposite trends were found
887 depending on how the surface wettability is altered, and caution was advised for modeling slip surfaces. L_S
888 increased as the contact angle increased when one modifies ε_{sl} ; however, the L_S decreased as the contact angle
889 decreased when σ_{sl} was altered. Two different mechanisms are responsible for such behaviors, one is pertinent to
890 a binding energy effect (ε_{sl}), and the other is relevant to the surface energy landscape granularity (σ_{sl}). Hydrophilic
891 surfaces generated by smooth energy landscapes cause large slip; alternatively, hydrophilic surfaces generated by
892 strong solid-liquid affinity led to small slip. Thus, liquids can slip over hydrophilic surfaces and hydrophobic
893 surfaces can have minimum slip if the surface landscape allows for liquid particles to be trapped.

894 L_S is greatly influenced by the magnitude and type of the solid-liquid force field parameters, which define the
895 interface affinity. Previous investigations linked the L_S at various interfaces to surface wettability. In a significant
896 development, Huang et al.¹⁰³ made an important contribution by proposing a quasi-universal scaling relation that
897 suggests that L_S is a function of wettability, $L_S \sim (1+\cos\theta)^{-2}$, where θ denotes the contact angle, see Figure 12(a).
898 Ho et al.⁹⁹ challenged this relation by modifying the wettability of MgO through adjustments to its lattice constant,
899 finding that L_S increased in more hydrophilic surfaces. In a related study, Wang et al.¹⁴⁸ used MD simulations and
900 AFM experiments to determine the friction coefficient at various solid-water interfaces. Their findings revealed a
901 significant limitation of using the contact angle alone to explain variations in friction coefficients at the nanoscale.
902 Despite observing a similar contact angle, the friction coefficient increased 41 times as the surface charge increased
903 from 0e to 0.36e. This rise in friction was attributed to localized potential energy fluctuations due to charge
904 differences, which create additional energy barriers for water molecules, underscoring the limitation of wettability
905 metrics to explain friction coefficient and hydrodynamic slip in nanochannels. Wang et al.¹⁴⁹ further investigated
906 the role of ordered water molecules at the solid-liquid interface of superhydrophilic surfaces using NEMD
907 simulations. They observed that the formation of a hexagonal-like structure in the first water monolayer
908 significantly reduced friction between the monolayer and bulk water above by decreasing the number of hydrogen
909 bonds. The weakened hydrogen bonding led to smoother interlayer movement, thereby considerably reducing
910 overall friction at the interface. Supporting these observations, Xu et al.¹⁵⁰ conducted MD simulations in different
911 polygonal carbon nanotubes (CNTs), demonstrating a similar frictional reduction due to the ordering of water
912 molecules in the first monolayer.

913 These findings indicate that friction and hydrodynamic slip at the solid-liquid interface are governed by liquid
 914 structuring at the interface rather than by wettability. To quantify this phenomenon, recent investigations
 915 introduced the concept of density depletion length (δ),^{93,103,104,151} which quantifies the presence (excess/deficit) of
 916 momentum-carrying liquid molecules at the interface (see Figure 3a). The following equation can be used to
 917 calculate δ :

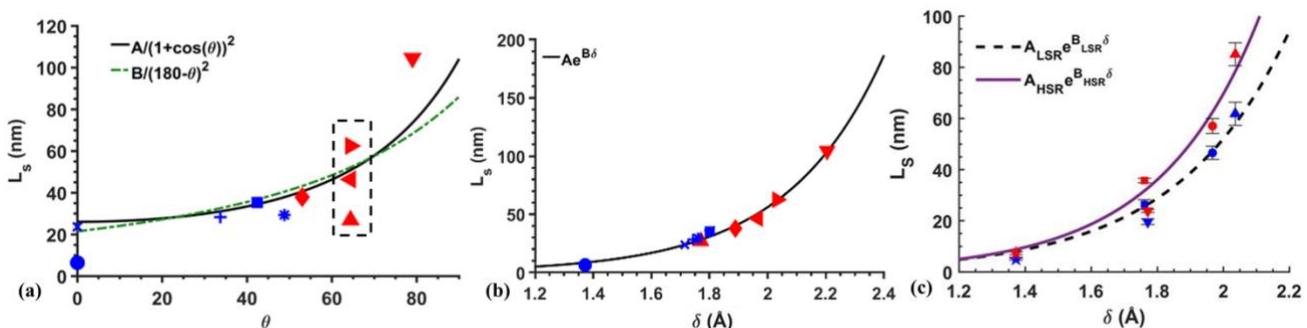

918

$$\delta = \int_0^{\infty} \left[1 - \frac{\rho_S(z)}{\rho_S^b} - \frac{\rho_L(z)}{\rho_L^b} \right] dz \quad (32)$$

919

920 where ρ_S and ρ_L represent the solid and liquid density distribution, respectively, with the superscript 'b' denoting
 921 a bulk value, which is characteristic of regions far from the interface. A lower δ value indicates a higher
 922 concentration and closer proximity of liquid particles to the solid surface, enhancing momentum transfer, while a
 923 higher δ value suggests reduced momentum carriers at the interface.

924 In addition to a quasi-universal relationship, Huang et al.¹⁰³ and Sendner et al.¹⁰⁴ reported that L_S correlates
 925 with the density depletion length as $L_S \sim \delta^4$. This scaling law is based on analyses using a mean-field theory model
 926 of wettability and a Green-Kubo-like model of slip, effectively explaining L_S behaviors across different models.
 927 However, Ramos-Alvarado et al.¹⁵¹, in their series of EMD simulations on various Si nanochannels (bare Si (100),
 928 Si (111), and graphene-coated Si, noted that the quasi-universal relationship to θ only traced the data trends with
 929 limited fidelity and broke down for graphite-coated Si surfaces, as shown in Figure 12(b). However, the scaling
 930 law of δ reliably quantified L_S across these diverse nanochannels, see Figure 12(c).


931

932 Figure 12. (a) Quasi-universal relationship, where L_S is a function of contact angle, proposed by Huang et al.
 933 Adapted from Huang et al.¹⁰³ with permission. L_S of Si and graphene-coated Si channels as a function of (b)

934 contact angle, (c) density depletion length δ . Figure 12(b)-(c) were adapted from Ramos-Alvarado et al.¹⁵¹ with
 935 permission.

936 In more detailed studies, Paniagua et al.⁹³ utilized a range of Lennard-Jones (LJ) parameters to model
 937 graphite-water interactions through EMD simulations. They reported that surface wettability was inadequate in
 938 characterizing the L_S . Despite accurately controlling the surface wettability in their MD simulations (symbols
 939 inside the rectangular box in Figure 13(a), considerable variations in L_S were observed—26.87 nm, 42.61 nm, and
 940 62.48 nm. These slip variations existed even when the contact angle, binding energy, and works of adhesion were
 941 similar across the three highlighted interfaces. This variability, driven by different friction coefficients, highlights
 942 the inadequacy of using wettability metrics alone to explain hydrodynamic slip. Conversely, as depicted in Figure
 943 13(b), δ effectively captured the variations in L_S calculated via EMD across the different interface models, where
 944 wettability metrics fell short.

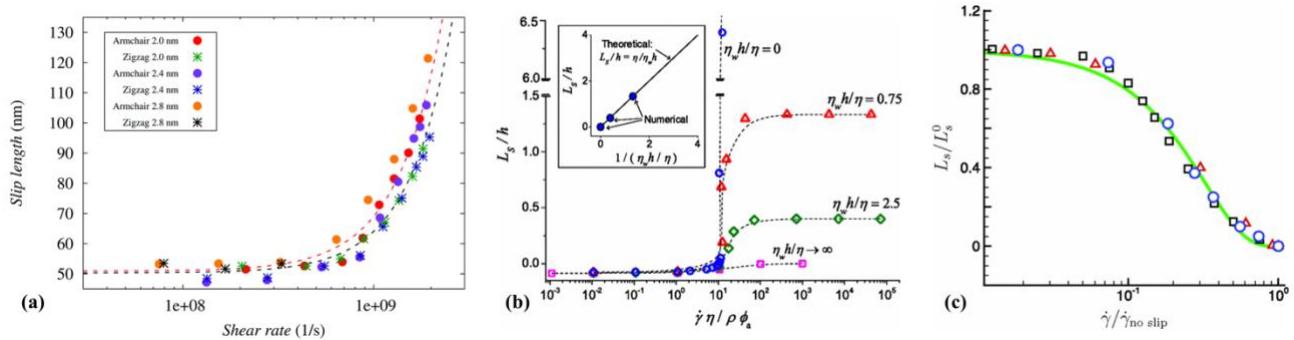
945 Furthermore, Paniagua et al.⁹³ noted that while the wettability scaling law could generally describe the
 946 behavior across most interface conditions, it failed in extreme hydrophobic or hydrophilic scenarios. To address
 947 this, they proposed an empirical exponential function ($L_S \sim e^{B\delta}$) that could effectively model L_S across all graphite-
 948 water interface conditions. Corroborating these findings, Shuwo et al.¹²⁹ conducted NEMD simulations in shear-
 949 driven flows within graphite nanochannels, confirming that the exponential function of δ also accurately describes
 950 the behavior of L_S under different shear conditions, as illustrated in Figure 13(c).

951

952 Figure 13. L_S as a function of (a) contact angle and (b) density depletion length. Adapted from Paniagua et al.⁹³
 953 with permission. Copyright 2020, American Chemical Society. (c) Shear-dependent L_S as a function of the

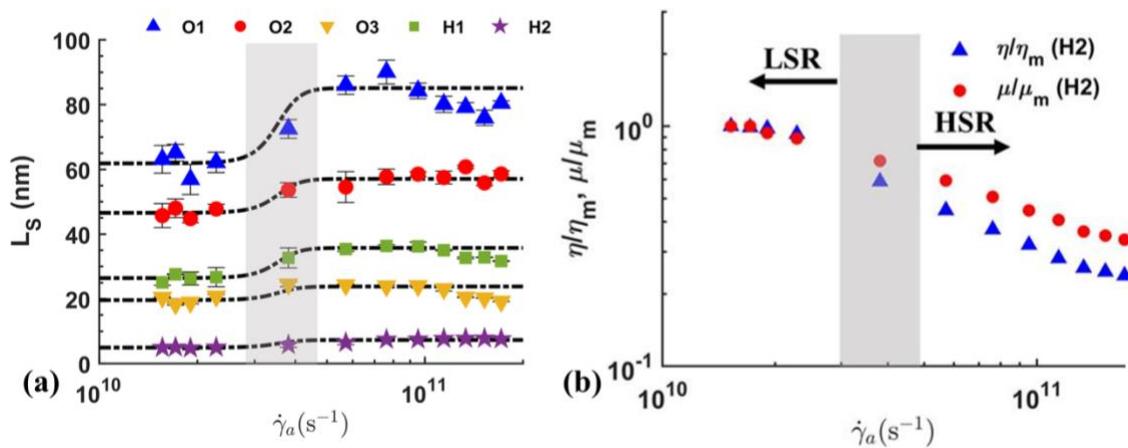
954 depletion length. The solid and dashed lines represent the averaged L_S at high and low shear rates. Adapted from
955 Shuvo et al.¹²⁹ with permission. Each symbol represents a different interface model.

956 **5.3 Shear rate effect on hydrodynamic slip**


957 Shear rate is a crucial factor in defining the boundary condition in nanoconfined liquids. The shear force on
958 liquid particles competes with the solid-liquid binding and liquid-liquid cohesive forces. Thompson and Troian¹⁰⁰
959 noted the absence of a universal boundary condition at the solid-liquid interface. Through NEMD simulations of
960 an LJ liquid, varying parameters like ε_{sl} , σ_{sl} , and solid density across different shear rates in a Couette flow model,
961 they observed that wall corrugation reduced slip as ε_{sl} . L_S remained constant over a certain shear rate range but
962 exhibited rapid growth beyond a critical shear rate γ_c . Despite the variation in shear rates, the shear viscosity
963 showed no significant change, indicating Newtonian behavior. A universal boundary condition was proposed:

964
$$L_S = L_S^0 \left(1 - \frac{\gamma}{\gamma_c}\right)^{-\alpha}$$
, where L_S^0 represents the low shear rate L_S limit and α limit and α is a fitting parameter,
965 suggesting that the Navier slip condition is just a specific case of a broader relationship.

966 The rapid increase in L_S at a critical shear rate was similarly observed in studies by Voronov et al.^{96,97} and
967 Chen et al.³³ in shear-driven MD simulations. Kannam et al.¹²⁶ investigated hydrodynamic slip for both Poiseuille
968 and Couette flows of graphite-argon, and graphite-methene systems, reporting an exponential (unbounded) growth
969 of the L_S in both flow types. The authors did not address the seemingly infinite growth of the L_S when factors such
970 as the wall friction coefficient and the fluid's viscosity pose a physical limit to solid-liquid friction. Wagemann et
971 al.¹⁵² expanded on this by examining the L_S of water within graphene nanochannels, particularly focusing on the
972 crystallographic directions—zig-zag and arm-chair. Their observations indicated an unbounded growth of L_S in
973 both directions, see Figure 14(a). The authors calculated the wall friction coefficient as a function of shear rates
974 and found that at low shear rates, the friction coefficient remained constant, indicating a stable interaction between
975 the fluid and the solid surface. However, at high shear rates, a rapid reduction in the friction coefficient was
976 observed, suggesting an unbounded growth of L_S . Notably, the authors did not investigate the rheological
977 properties of the liquid, which are crucial because L_S is a function of both fluid viscosity and wall friction
978 coefficient. Recently, Li et. al.¹⁵³ investigated the rheology of water in nanoconfined graphite walls and suggested
979 a shear thinning effect at high shear rates.


980 Conversely, Martini et al.¹³⁹ observed different regimes of slip featuring a bounded growth of L_s after a given
 981 critical shear rate, see Figure 14(b), corroborating their molecular mechanisms of slip theory. In the literature
 982 concerning the MD modeling of droplet wettability, it was reported that keeping the solid atoms rigid not only
 983 allowed to significantly reduce the computing times but also a negligible variation of the contact angle was
 984 observed.³³ Thus, several early contributions took a similar approach for their NEMD simulations of slip.^{96,97}
 985 Martini et al.¹⁰⁶ hypothesized that the unbounded growth of L_s with increasing shear rate, observed in previous
 986 simulations, was due to the use of fixed wall atoms, which overlooked momentum transfer between solid and
 987 liquid particles. To validate this, they conducted NEMD simulations of Couette flow with both fixed and flexible
 988 wall atoms. The results confirmed that rigid walls lead to unbounded L_s growth at high shear rates, whereas flexible
 989 walls exhibited a constant L_s beyond a certain shear rate threshold.

990 Pahlavan and Freund¹⁵⁴ suggested reevaluating the high shear rate limit in NEMD simulations by decoupling
 991 the effects of the wall and thermostating. Their findings indicated that the solid-liquid vibrational frequency
 992 mismatch had a negligible effect on L_s , while a reduction in L_s was attributed to the local temperature rise caused
 993 by an increasing number of solid-liquid collisions at high shear rates, see Figure 14(c). Furthermore, the reduction
 994 of L_s was also reported by Ramos-Alvarado et al.¹⁵⁵ through NEMD simulation of both Couette and Poiseuille
 995 flow.

996 Figure 14. Shear effect on slip reported through the years: (a) unbounded growth of the L_s , reproduced from Ref.¹⁵²
 997 with permission from the Royal Society of Chemistry; (b) bounded growth of the L_s , adapted from Martini et al.¹⁰⁶
 998 with permission; and (c) reduction of the L_s , adapted from Pahlavan et al.¹⁵⁴ with permission.

1000 Further detailed investigations by Shuvo et al.¹²⁹ using different interface models of graphite-water interfaces
 1001 under different shear conditions showed a bounded growth of the L_s at high shear rates, see Figure 15(a), aligning
 1002 with Martini's findings using the flexible wall model. They explored the rheology of water and the wall friction
 1003 coefficient to understand the bimodal response of L_s under varying shear conditions. They discovered that both
 1004 viscosity and friction coefficient decreased at high shear rates but remained constant at lower shear rates, see
 1005 Figure 15(b). During the transition from low to high shear rates (LSR to HSR), the friction coefficient decreased
 1006 more rapidly than the shear viscosity, until reaching a new equilibrium. As a result, the L_s was higher and constant
 1007 at higher shear rates.

1008
 1009 Figure 15. (a) The bimodal response of L_s under different shear conditions, (b) normalized viscosity and friction
 1010 coefficient in the shear-driven flow. Adapted from Shuvo et al.¹²⁹ with permission. Figure 15(a) was redrawn with
 1011 sigmoid fits using the data reported by Shuvo et al.¹²⁹

1012 As discussed in Section 4.1, NEMD simulations are pivotal in calculating the transport properties of
 1013 molecular systems by emulating experimental setups. However, achieving a good signal-to-noise ratio necessitates
 1014 applying an external perturbation that is significantly larger than those typically used in experiments. This
 1015 approach helps overcome the limitations of short simulation timescales and smaller length scales compared to
 1016 those in experimental settings, but it also presents a challenge for directly validating the simulation results.
 1017 Addressing this limitation, Maffioli et al.¹⁵⁶ developed the TTGF4LAMMPS technique, which combines direct
 1018 NEMD simulations with the Transient Time Correlation Function (TTCF). This integration facilitates the
 1019 exploration of fluid responses at shear rates achievable in experiments. TTF4 relies on the correlation between the

1020 initial rate of energy dissipation and the response of any phase variable following an external perturbation,
1021 described mathematically as:

$$\langle B(t) \rangle = B(0) + \int_0^t \langle \Omega(0)B(s) \rangle ds \quad (33)$$

1022 where $B(t)$ represents an arbitrary dynamic variable of interest, and Ω denotes the dissipation function related to
1023 the system energy changes due to external perturbations. $\langle \Omega(0)B(s) \rangle$ represents the cross-correlation between the
1024 initial dissipation and the variable at time s . In the TTGF methodology, mother and daughter trajectories are
1025 essential for analyzing system properties. Initially, a mother trajectory is established through EMD simulations,
1026 allowing the system to evolve under equilibrium conditions to provide a statistical baseline. From this, several
1027 daughter trajectories are generated at varied intervals, each inheriting initial states from the mother trajectory but
1028 experiencing specific external perturbations. These daughter trajectories are crucial for examining the system's
1029 response to these perturbations, with their transient responses averaged to determine the desired transport
1030 properties of the system with a good signal-to-noise ratio at low (realistic) shear rates.

1031 Despite the advantages of TTGF over traditional NEMD in terms of accessing experimentally relevant shear
1032 rates, its adoption remains limited, possibly due to the complexity of its implementation and the high
1033 computational demands associated with it.

1034 6. Summary and Outlook

1035 Research into fluid dynamics at the nanoscale has revealed notable deviations from continuum fluid behavior,
1036 particularly regarding the phenomenologically reported no-slip condition at the solid-liquid interface. At such
1037 scales, surface effects—such as roughness, wettability, and molecular interactions—become increasingly
1038 significant due to the dimensions being on the order of molecular mean free paths. This leads to unique properties
1039 like altered viscosity and density profiles near the interface, complicating the understanding of flow dynamics.

1040 In Section 3, experimental methodologies including SFA, AFM, and μ -PIV were introduced for the
1041 direct measurement of hydrodynamic slip length. SFA and AFM quantify the viscous drag force, which
1042 is balanced by the restorative force of the AFM cantilever based on the separation between the surface

1043 and the AFM tip. μ -PIV measures the velocity of liquid near a solid wall by tracking particle movement.
1044 Additionally, new approaches using microchannel resonators and hybrid nanochannels with varying flow
1045 resistances were presented. These techniques are highly valuable for studying nanoscale hydrodynamic
1046 phenomena at the solid-liquid interface, but they also have limitations in providing detailed information
1047 on interfacial interactions necessary to fully understand the origins of hydrodynamic slip. In Section 3.5,
1048 SFG and XRR were introduced as typical interfacial analysis techniques to study water molecules at
1049 solid surfaces. However, it remains unclear how the structural and chemical interactions of interfacial
1050 water molecules influence hydrodynamic slip behavior. These challenges have steered the field towards
1051 computational methods, where NEMD and EMD simulations play pivotal roles. NEMD simulations, which
1052 simulate shear rate effects in a manner akin to experimental setups, often require large velocity gradients to
1053 mitigate statistical noise, which can lead to unphysical conditions. On the other hand, EMD simulations focus on
1054 tracking the linear response of systems, providing a more reliable means of computing transport properties, such
1055 as interfacial friction coefficients. However, the application of Green-Kubo relations in these simulations must be
1056 handled with care to avoid introducing non-physical parameters that could skew the interpretation of nanoconfined
1057 flow characteristics.

1058 The effect of shear rate on hydrodynamic slip varies widely depending on simulation conditions, with reports
1059 of unbounded, bounded, and even reduced L_s . The unbounded L_s is often an artifact of simulations that neglect
1060 momentum transfer between solid and liquid, while reduced L_s is linked to local temperature increases due to
1061 frequent solid-liquid collisions at high shear rates. The bounded growth of L_s has been supported by MD
1062 simulations with flexible solid wall models where momentum transfer between solid and liquid is allowed,
1063 experiments, and theoretical models like the vdFK. Furthermore, EMD-computed L_s matches with NEMD results
1064 in low shear rates. A significant limitation of traditional NEMD simulations is their reliance on very large velocity
1065 gradients. The recent development of the TCFF4LAMMPS technique enables the generation of numerical data
1066 with high signal-to-noise ratios at velocity gradients that are accessible in experiments, thereby facilitating the
1067 validation of computational models with experimental findings.

1068 Significant advancements have been made in MD simulations unveiling atomistic details of hydrodynamic
1069 slip behavior at the solid-liquid interface, yet several fundamental questions remain unresolved. The challenge lies
1070 in developing a physics-informed boundary condition that accounts for complex interfacial interactions, including
1071 surface chemistry and interfacial liquid structuring. Current research indicates that a liquid structuring parameter
1072 may play more significant roles in hydrodynamic slip than wettability metrics, a hypothesis requiring verification.
1073 Inter-particle interactions in the liquid near the solid surface cannot be fully modeled with the parameters
1074 determined from the bulk phase properties. The solid-liquid interaction right at the interaction can influence the
1075 intermolecular interaction in the next layer, which will propagate further into the liquid phase. How fast or slow
1076 this interaction decays with the distance from the surface could be another important parameter that governs (at
1077 least affects) how effectively the momentum will be transferred from the bulk liquid to the solid surface. Although
1078 indirect, such interactions could be extracted from advanced characterization methods that are sensitive to
1079 structural order or density change in the liquid phase in proximity to the solid surface. By integrating the solid-
1080 liquid interaction parameters with the boundary conditions, MD simulations will be able to predict and explain
1081 hydrodynamic slip behavior at the liquid/solid interface.

1082

1083 **Author Contributions**

1084 **Abdul Aziz Shuvo:** Data curation (experimental and numerical part, equal), Formal analysis (experimental
1085 and numerical part, equal), Investigation (experimental and numerical part, equal), Writing-original draft
1086 (experimental and numerical part, equal)

1087 **Luis E. Paniagua-Guerra:** Data curation (experimental and numerical part, equal), Formal analysis (equal),
1088 Investigation (experimental and numerical part, equal), Writing-original draft (experimental and numerical part,
1089 equal), Writing -review & editing (equal)

1090 **Juseok Choi:** Data curation (experimental part, equal), Formal analysis (experimental part, equal),
1091 Investigation (experimental part, equal), Writing-original draft (experimental part, equal)

1092 **Seong H. Kim:** Data curation (experimental part, equal), Formal analysis (experimental part, equal),
1093 Investigation (experimental part, equal), Writing -review & editing (equal), Funding acquisition (equal),
1094 Supervision (equal)

1095 **Bladimir Ramos-Alvarado:** Data curation (experimental and numerical part, equal), Formal analysis
1096 (experimental and numerical part, equal), Investigation (experimental and numerical part, equal), Writing-original
1097 draft (experimental and numerical part, equal), Writing -review & editing (equal), Funding acquisition (equal),
1098 Supervision (equal)

1099 **Conflicts of interest**

1100 There are no conflicts to declare.

1101 **Acknowledgment**

1102 This work was supported by the National Science Foundation, USA (Award number: 2241730), and by the
1103 Materials Research Institute at Penn State University through their Seed Grant Program.

1104 **References**

- 1105 1 C. L. Rice and R. Whitehead, *J Phys Chem*, 1965, **69**, 4017–4024.
- 1106 2 J. C. T. Eijkel and A. van den Berg, *Microfluid Nanofluidics*, 2005, **1**, 249–267.
- 1107 3 L. Bocquet and E. Charlaix, *Chem. Soc. Rev.*, 2010, **39**, 1073–1095.
- 1108 4 L. J. Guo, X. Cheng and C.-F. Chou, *Nano Lett*, 2004, **4**, 69–73.
- 1109 5 W. Sun, P. Qin, H. Gao, G. Li and K. Jiao, *Biosens Bioelectron*, 2010, **25**, 1264–1270.
- 1110 6 V. Sunkara, B. J. Hong and J. W. Park, *Biosens Bioelectron*, 2007, **22**, 1532–1537.
- 1111 7 P. M. Sinha, G. Valco, S. Sharma, X. Liu and M. Ferrari, *Nanotechnology*, 2004, **15**, S585–
1112 S589.
- 1113 8 R. Lopez-Salazar, S. Camacho-Leon, L. Olivares-Quiroz and J. Hernandez, *Procedia
1114 Technology*, 2012, **3**, 334–341.
- 1115 9 W.-H. Lee, C.-Y. Loo, D. Traini and P. M. Young, *Expert Opin Drug Deliv*, 2015, **12**, 1009–
1116 1026.
- 1117 10 Z. Mazibuko, Y. E. Choonara, P. Kumar, L. C. Du Toit, G. Modi, D. Naidoo and V. Pillay, *J
1118 Pharm Sci*, 2015, **104**, 1213–1229.
- 1119 11 G. Wang, W. Mao, R. Byler, K. Patel, C. Henegar, A. Alexeev and T. Sulchek, *PLoS One*, 2013,
1120 **8**, e75901.
- 1121 12 V. Soum, S. Park, A. I. Brilian, O.-S. Kwon and K. Shin, *Micromachines (Basel)*, 2019, **10**, 516.
- 1122 13 P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam and B. H. Weigl, *Nature*, 2006,
1123 **442**, 412–418.
- 1124 14 M. L. Kovarik and S. C. Jacobson, *Anal Chem*, 2009, **81**, 7133–7140.
- 1125 15 H. Daiguji, P. Yang, A. J. Szeri and A. Majumdar, *Nano Lett*, 2004, **4**, 2315–2321.

1126 16 A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S. T. Purcell and L. Bocquet,
1127 *Nature*, 2013, **494**, 455–458.

1128 17 B. E. Logan and M. Elimelech, *Nature*, 2012, **488**, 313–319.

1129 18 K.-H. Paik, Y. Liu, V. Tabard-Cossa, M. J. Waugh, D. E. Huber, J. Provine, R. T. Howe, R. W.
1130 Dutton and R. W. Davis, *ACS Nano*, 2012, **6**, 6767–6775.

1131 19 R. Fan, M. Yue, R. Karnik, A. Majumdar and P. Yang, *Phys Rev Lett*, 2005, **95**, 086607.

1132 20 R. Karnik, R. Fan, M. Yue, D. Li, P. Yang and A. Majumdar, *Nano Lett*, 2005, **5**, 943–948.

1133 21 D. Constantin and Z. S. Siwy, *Phys Rev E*, 2007, **76**, 041202.

1134 22 I. Vlassiuk and Z. S. Siwy, *Nano Lett*, 2007, **7**, 552–556.

1135 23 R. Karnik, C. Duan, K. Castelino, H. Daiguji and A. Majumdar, *Nano Lett*, 2007, **7**, 547–551.

1136 24 G. Nguyen and Z. Siwy, *Biophys J*, 2010, **98**, 602a.

1137 25 R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva and A. K. Geim, *Science (1979)*, 2012,
1138 **335**, 442–444.

1139 26 D. Mijatovic, J. C. T. Eijkel and A. van den Berg, *Lab Chip*, 2005, **5**, 492.

1140 27 B. Radha, A. Esfandiar, F. C. Wang, A. P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko,
1141 A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S. J. Haigh, I. V.
1142 Grigorieva, H. A. Wu and A. K. Geim, *Nature*, 2016, **538**, 222–225.

1143 28 D. Cohen-Tanugi and J. C. Grossman, *Nano Lett*, 2012, **12**, 3602–3608.

1144 29 D. Konatham, J. Yu, T. A. Ho and A. Striolo, *Langmuir*, 2013, **29**, 11884–11897.

1145 30 A. Aghigh, V. Alizadeh, H. Y. Wong, Md. S. Islam, N. Amin and M. Zaman, *Desalination*,
1146 2015, **365**, 389–397.

1147 31 K. A. Mahmoud, B. Mansoor, A. Mansour and M. Khraisheh, *Desalination*, 2015, **356**, 208–
1148 225.

1149 32 S. Rikhtehgaran and A. Lohrasebi, *Desalination*, 2015, **365**, 176–181.

1150 33 Y. Chen, D. Li, K. Jiang, J. Yang, X. Wang and Y. Wang, *J Chem Phys*, 2006, **125**, 084702.

1151 34 M. Sega, M. Sbragaglia, L. Biferale and S. Succi, *Soft Matter*, 2013, **9**, 8526.

1152 35 W. Song, Y. Tang, C. Qian, B. J. Kim, Y. Liao and D.-G. Yu, *The Innovation*, 2023, **4**, 100381.

1153 36 G. Tocci, L. Joly and A. Michaelides, *Nano Lett*, 2014, **14**, 6872–6877.

1154 37 J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy
1155 and O. Bakajin, *Science (1979)*, 2006, **312**, 1034–1037.

1156 38 M. Majumder, N. Chopra, R. Andrews and B. J. Hinds, *Nature*, 2005, **438**, 44–44.

1157 39 G. Hummer, J. C. Rasaiah and J. P. Noworyta, *Nature*, 2001, **414**, 188–190.

1158 40 J. A. Thomas and A. J. H. McGaughey, *Phys Rev Lett*, 2009, **102**, 184502.

1159 41 K. Wu, Z. Chen, J. Li, X. Li, J. Xu and X. Dong, *Proceedings of the National Academy of
1160 Sciences*, 2017, **114**, 3358–3363.

1161 42 J.-J. Shu, J. B. M. Teo and W. K. Chan, *Soft Matter*, 2016, **12**, 8388–8397.

1162 43 E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria and L. Bocquet, *Nature*, 2016, **537**, 210–
1163 213.

1164 44 M. Ma, F. Grey, L. Shen, M. Urbakh, S. Wu, J. Z. Liu, Y. Liu and Q. Zheng, *Nat Nanotechnol*,
1165 2015, **10**, 692–695.

1166 45 D. C. Tretheway and C. D. Meinhart, *Physics of Fluids*, 2002, **14**, L9–L12.

1167 46 P. M. Navier, *Mem. Acad. Sci.*, 1823, **6**, 389–440.

1168 47 J. N. ISRAELACHVILI and G. E. ADAMS, *Nature*, 1976, **262**, 774–776.

1169 48 O. I. Vinogradova, *J Colloid Interface Sci*, 1995, **169**, 306–312.

1170 49 D. Y. C. Chan and R. G. Horn, *J Chem Phys*, 1985, **83**, 5311–5324.

1171 50 G. Luengo, F.-J. Schmitt, R. Hill and J. Israelachvili, *Macromolecules*, 1997, **30**, 2482–2494.

1172 51 J. Baudry, E. Charlaix, A. Tonck and D. Mazuyer, *Langmuir*, 2001, **17**, 5232–5236.

1173 52 Y. Zhu and S. Granick, *Phys Rev Lett*, 2001, **87**, 096104.

1174 53 C. Cottin-Bizonne, B. Cross, A. Steinberger and E. Charlaix, *Phys Rev Lett*, 2005, **94**, 056102.

1175 54 C. Cottin-Bizonne, A. Steinberger, B. Cross, O. Raccurt and E. Charlaix, *Langmuir*, 2008, **24**, 1165–1172.

1176 55 V. S. J. Craig, C. Neto and D. R. M. Williams, *Phys Rev Lett*, 2001, **87**, 054504.

1177 56 O. I. Vinogradova, H.-J. Butt, G. E. Yakubov and F. Feuillebois, *Review of Scientific Instruments*, 2001, **72**, 2330–2339.

1178 57 O. I. Vinogradova and G. E. Yakubov, *Langmuir*, 2003, **19**, 1227–1234.

1179 58 E. Bonaccorso, M. Kappl and H.-J. Butt, *Phys Rev Lett*, 2002, **88**, 076103.

1180 59 C. D. F. Honig and W. A. Ducker, *Phys Rev Lett*, 2007, **98**, 028305.

1181 60 B. Bhushan, Y. Wang and A. Maali, *Langmuir*, 2009, **25**, 8117–8121.

1182 61 A. Maali, C. Hurth, T. Cohen-Bouhacina, G. Couturier and J.-P. Aimé, *Appl Phys Lett*, 2006, **88**, 163504.

1183 62 A. Maali, T. Cohen-Bouhacina and H. Kellay, *Appl Phys Lett*, 2008, **92**, 053101.

1184 63 H. Li, Z. Xu, C. Ma and M. Ma, *Nanoscale*, 2022, **14**, 14636–14644.

1185 64 A. Maali, Y. Wang and B. Bhushan, *Langmuir*, 2009, **25**, 12002–12005.

1186 65 C. Zhang, X. Wang, J. Jin, L. Li and J. D. Miller, *Colloids and Interfaces*, 2021, **5**, 44.

1187 66 C. D. F. Honig and W. A. Ducker, *The Journal of Physical Chemistry C*, 2007, **111**, 16300–16312.

1188 67 O. I. Vinogradova, *Langmuir*, 1995, **11**, 2213–2220.

1189 68 H. Ishida, H. Teshima, Q.-Y. Li and K. Takahashi, *International Journal of Thermofluids*, 2024, **22**, 100634.

1190 69 D. Lumma, A. Best, A. Gansen, F. Feuillebois, J. O. Rädler and O. I. Vinogradova, *Phys Rev E*, 2003, **67**, 056313.

1191 70 J. Ou and J. P. Rothstein, *Physics of Fluids*, 2005, **17**, 103606.

1192 71 P. Joseph and P. Tabeling, *Phys Rev E*, 2005, **71**, 035303.

1193 72 J. F. Collis, S. Olcum, D. Chakraborty, S. R. Manalis and J. E. Sader, *Nano Lett*, 2021, **21**, 4959–4965.

1194 73 Q. Xie, M. A. Alibakhshi, S. Jiao, Z. Xu, M. Hempel, J. Kong, H. G. Park and C. Duan, *Nat Nanotechnol*, 2018, **13**, 238–245.

1195 74 B. Radha, A. Esfandiar, F. C. Wang, A. P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S. J. Haigh, I. V. Grigorieva, H. A. Wu and A. K. Geim, *Nature*, 2016, **538**, 222–225.

1196 75 J. Ping and A. T. C. Johnson, *Appl Phys Lett*, 2016, **109**, 013103.

1197 76 A. Ambrosi, C. K. Chua, A. Bonanni and M. Pumera, *Chem Rev*, 2014, **114**, 7150–7188.

1198 77 V. P. Zhdanov and B. Kasemo, *Chem Phys Lett*, 2011, **513**, 124–126.

1199 78 Q. Du, E. Freysz and Y. R. Shen, *Phys Rev Lett*, 1994, **72**, 238–241.

1200 79 Y. R. Shen and V. Ostroverkhov, *Chem Rev*, 2006, **106**, 1140–1154.

1201 80 F. Wei, S. Urashima, S. Nihonyanagi and T. Tahara, *J Am Chem Soc*, 2023, **145**, 8833–8846.

1202 81 A. T. Celebi, M. Barisik and A. Beskok, *Journal of Chemical Physics*, 2017, **147**, 164311.

1203 82 A. T. Celebi, M. Barisik and A. Beskok, *Microfluid Nanofluidics*, 2018, **22**, 7.

1204 83 X. Geng, M. Yu, W. Zhang, Q. Liu, X. Yu and Y. Lu, *Sci Rep*, 2019, **9**, 18957.

1205 84 Y. Xie, L. Fu, T. Niehaus and L. Joly, *Phys Rev Lett*, 2020, **125**, 014501.

1206 85 M. Rezaei, A. R. Azimian and A. R. Pishevar, *Physical Chemistry Chemical Physics*, 2018, **20**, 30365–30375.

1207 86 Y. Wang, F. Tang, X. Yu, T. Ohto, Y. Nagata and M. Bonn, *Angewandte Chemie International Edition*, 2024, **63**, e202319503.

1208 87 M. Masuduzzaman, C. Bakli, M. Barisik and B. Kim, *Small*, 2024, 2404397.

1209 88 M. Masuduzzaman and B. Kim, *Physics of Fluids*, 2024, **36**, 062003.

1210 89 M. Masuduzzaman and B. H. Kim, *Langmuir*, 2022, **38**, 7244–7255.

1223 90 P. Ma, Y. Liu, X. Sang, J. Tan, S. Ye, L. Ma and Y. Tian, *J Colloid Interface Sci*, 2022, **626**,
1224 324–333.

1225 91 M. Mezger, H. Reichert, S. Schöder, J. Okasinski, H. Schröder, H. Dosch, D. Palms, J. Ralston
1226 and V. Honkimäki, *Proceedings of the National Academy of Sciences*, 2006, **103**, 18401–18404.

1227 92 L. Wang, C. Zhao, M. H. G. Duits, F. Mugele and I. Siretanu, *Sens Actuators B Chem*, 2015,
1228 **210**, 649–655.

1229 93 L. E. Paniagua-Guerra, C. U. Gonzalez-Valle and B. Ramos-Alvarado, *Langmuir*, 2020, **36**,
1230 14772–14781.

1231 94 M. Mezger, B. M. Ocko, H. Reichert and M. Deutsch, *Proceedings of the National Academy of
1232 Sciences*, 2013, **110**, 3733–3737.

1233 95 K. E. Karim, M. Barisik, C. Bakli and B. H. Kim, *Physical Chemistry Chemical Physics*, 2024,
1234 26, 19069–19082.

1235 96 R. S. Voronov, D. V. Papavassiliou and L. L. Lee, *J Chem Phys*, 2006, **124**, 204701.

1236 97 R. S. Voronov, D. V. Papavassiliou and L. L. Lee, *Chem Phys Lett*, 2007, **441**, 273–276.

1237 98 P. A. Thompson and M. O. Robbins, *Phys Rev A (Coll Park)*, 1990, **41**, 6830–6837.

1238 99 T. A. Ho, D. V. Papavassiliou, L. L. Lee and A. Striolo, *Proceedings of the National Academy
1239 of Sciences*, 2011, **108**, 16170–16175.

1240 100 P. A. Thompson and S. M. Troian, *Nature*, 1997, **389**, 360–362.

1241 101 H. Zhang, Z. Zhang, Y. Zheng and H. Ye, *Phys Rev E*, 2010, **81**, 066303.

1242 102 R. Khare, P. Kebelinski and A. Yethiraj, *Int J Heat Mass Transf*, 2006, **49**, 3401–3407.

1243 103 D. M. Huang, C. Sendner, D. Horinek, R. R. Netz and L. Bocquet, *Phys Rev Lett*, 2008, **101**,
1244 226101.

1245 104 C. Sendner, D. Horinek, L. Bocquet and R. R. Netz, *Langmuir*, 2009, **25**, 10768–10781.

1246 105 J. Xu and Y. Li, *Int J Heat Mass Transf*, 2007, **50**, 2571–2581.

1247 106 A. Martini, H.-Y. Hsu, N. A. Patankar and S. Lichter, *Phys Rev Lett*, 2008, **100**, 206001.

1248 107 C. Liu and Z. Li, *AIP Adv*, 2011, **1**, 032108.

1249 108 C. Liu and Z. Li, *Phys Rev E*, 2009, **80**, 036302.

1250 109 C. Liu and Z. Li, *J Chem Phys*, 2010, **132**, 024507.

1251 110 G. Nagayama and P. Cheng, *Int J Heat Mass Transf*, 2004, **47**, 501–513.

1252 111 G. Nagayama, T. Tsuruta and P. Cheng, *Int J Heat Mass Transf*, 2006, **49**, 4437–4443.

1253 112 S. Ge, Y. Gu and M. Chen, *Mol Phys*, 2015, **113**, 703–710.

1254 113 Z. Zhang, H. Zhang and H. Ye, *Appl Phys Lett*, 2009, **95**, 154101.

1255 114 Z. Li, *Phys Rev E*, 2009, **79**, 026312.

1256 115 A. E. Giannopoulos, F. Sofos, T. E. Karakasidis and A. Liakopoulos, *Int J Heat Mass Transf*,
1257 2012, **55**, 5087–5092.

1258 116 N. Wei, X. Peng and Z. Xu, *Phys Rev E*, 2014, **89**, 012113.

1259 117 K. Falk, F. Sedlmeier, L. Joly, R. R. Netz and L. Bocquet, *Nano Lett*, 2010, **10**, 4067–4073.

1260 118 L. Bocquet and J.-L. Barrat, *Phys Rev E*, 1994, **49**, 3079–3092.

1261 119 J. A. Thomas and A. J. H. McGaughey, *Nano Lett*, 2008, **8**, 2788–2793.

1262 120 J. S. Babu and S. P. Sathian, *Phys Rev E*, 2012, **85**, 051205.

1263 121 J.-L. Barrat and L. Bocquet, *Faraday Discuss*, 1999, **112**, 119–128.

1264 122 J.-L. Barrat and L. Bocquet, *Phys Rev Lett*, 1999, **82**, 4671–4674.

1265 123 K. Huang and I. Szlufarska, *Phys Rev E*, 2014, **89**, 032119.

1266 124 H. Zhang, Z. Zhang and H. Ye, *Microfluid Nanofluidics*, 2012, **12**, 107–115.

1267 125 J. S. Hansen, B. D. Todd and P. J. Daivis, *Phys Rev E*, 2011, **84**, 016313.

1268 126 S. K. Kannam, B. D. Todd, J. S. Hansen and P. J. Daivis, *J Chem Phys*, 2011, **135**, 144701.

1269 127 S. Kumar Kannam, B. D. Todd, J. S. Hansen and P. J. Daivis, *J Chem Phys*, 2012, **136**, 024705.

1270 128 Z. Liang and P. Kebelinski, *J Chem Phys*, 2015, **142**, 134701.

1271 129 A. A. Shuvo, L. E. Paniagua-Guerra, X. Yang and B. Ramos-Alvarado, *J Chem Phys*, 2024, 1272 **160**, 194704.

1273 130 S. Bernardi, B. D. Todd and D. J. Searles, *J Chem Phys*, 2010, **132**, 244706.

1274 131 X. Yong and L. T. Zhang, *J Chem Phys*, 2013, **138**, 084503.

1275 132 S. De Luca, B. D. Todd, J. S. Hansen and P. J. Daivis, *J Chem Phys*, 2014, **140**, 054502.

1276 133 S. De Luca, B. D. Todd, J. S. Hansen and P. J. Daivis, *Langmuir*, 2014, **30**, 3095–3109.

1277 134 J. Petracic and P. Harrowell, *J Chem Phys*, 2007, **127**, 174706.

1278 135 L. Bocquet and J.-L. Barrat, *J Chem Phys*, 2013, **139**, 044704.

1279 136 P. Espa  ol and I. Z  niga, *J Chem Phys*, 1993, **98**, 574–580.

1280 137 P. A. Thompson and M. O. Robbins, *Science (1979)*, 1990, **250**, 792–794.

1281 138 S. Lichter, A. Roxin and S. Mandre, *Phys Rev Lett*, 2004, **93**, 086001.

1282 139 A. MARTINI, A. ROXIN, R. Q. SNURR, Q. WANG and S. LICHTER, *J Fluid Mech*, 2008, 1283 **600**, 257–269.

1284 140 G. Tocci, L. Joly and A. Michaelides, *Nano Lett*, 2014, **14**, 6872–6877.

1285 141 H. Li and X. C. Zeng, *ACS Nano*, 2012, **6**, 2401–2409.

1286 142 E. Secchi, S. Marbach, A. Nigu  s, D. Stein, A. Siria and L. Bocquet, *Nature*, 2016, **537**, 210– 1287 213.

1288 143 N. Kavokine, M. L. Bocquet and L. Bocquet, *Nature*, 2022, **602**, 84–90.

1289 144 A. T. Bui, F. L. Thiemann, A. Michaelides and S. J. Cox, *Nano Lett*, 2023, **23**, 580–587.

1290 145 F. Taherian, V. Marcon, N. F. A. van der Vegt and F. Leroy, *Langmuir*, 2013, **29**, 1457–1465.

1291 146 C.-J. Shih, Q. H. Wang, S. Lin, K.-C. Park, Z. Jin, M. S. Strano and D. Blankschtein, *Phys Rev Lett*, 1292 2012, **109**, 176101.

1293 147 T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu and P. Koumoutsakos, *J Phys Chem B*, 1294 2003, **107**, 1345–1352.

1295 148 C. Wang, H. Yang, X. Wang, C. Qi, M. Qu, N. Sheng, R. Wan, Y. Tu and G. Shi, *Commun Chem*, 2020, **3**, 27.

1296 149 C. Wang, B. Wen, Y. Tu, R. Wan and H. Fang, *The Journal of Physical Chemistry C*, 2015, 1297 **119**, 11679–11684.

1298 150 X. Xu, Z. Li, Y. Zhang, C. Wang, J. Zhao and N. Wei, *Carbon N Y*, 2024, **228**, 119402.

1300 151 B. Ramos-Alvarado, S. Kumar and G. P. Peterson, *Appl Phys Lett*, 2016, **108**, 074105.

1301 152 E. Wagemann, E. Oyarzua, J. H. Walther and H. A. Zambrano, *Physical Chemistry Chemical 1302 Physics*, 2017, **19**, 8646–8652.

1303 153 F. Li, I. A. Korotkin and S. A. Karabasov, *Langmuir*, 2020, **36**, 5633–5646.

1304 154 A. Alizadeh Pahlavan and J. B. Freund, *Phys Rev E*, 2011, **83**, 021602.

1305 155 B. Ramos-Alvarado, S. Kumar and G. P. Peterson, *Phys Rev E*, 2016, **93**, 023101.

1306 156 L. Maffioli, J. P. Ewen, E. R. Smith, S. Varghese, P. J. Daivis, D. Dini and B. D. Todd, *Comput 1307 Phys Commun*, 2024, **300**, 109205.

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319