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Abstract: 11 

Computational fluid dynamics models often employ the free shear boundary condition at free surfaces, 12 
a result from the continuity of the stress and the large viscosity contrast at liquid-gas interfaces. This study 13 
leverages non-equilibrium molecular dynamics simulations to investigate the validity of the free shear 14 
boundary condition on the exposed surface of a liquid meniscus at the nanoscale, provide the first molecular 15 
level description of the water-air interface. The primary objective is elucidating the fundamental 16 
mechanisms and behaviors of fluid interactions within a capillary meniscus formed between two carbon 17 
nanotubes (CNTs) in shear-driven flow. Shear-induced flow simulations were conducted by varying the 18 
velocity of a solid slab to induce different shear rates in the adjacent water molecules. The results 19 
demonstrate, for the first time, negligible shear at the free surface, supporting the free shear assumption at 20 
the nanoscale. A force balance analysis reveals that capillary and surface tension forces dominate within 21 
the meniscus, dictating its shape and stability. Meniscus deformation was observed and primarily attributed 22 
to interatomic interactions between water molecules and CNTs, driven by a combination of short-range 23 
repulsive forces and van der Waals attractions. The minimal contribution from shear forces suggests that 24 
interatomic forces, rather than applied shear stress, are the primary drivers of the meniscus deformation. 25 
These findings offer valuable insights into fluid behavior and a sound fundamental analysis of the free shear 26 
boundary condition at the nanoscale. 27 

 28 

I. INTRODUCTION 29 

The accurate modeling of fluid behavior at the free surface (i.e., liquid-gas interfaces) is a critical aspect 30 
of computational fluid dynamics (CFD), particularly in applications involving multiphase flows and surface 31 
phenomena.1–3 Traditional CFD approaches often employ the free shear boundary condition at liquid-gas 32 
interfaces:  33 

𝑑𝑈||

𝑑𝑛
= 0, 34 

where 𝑈|| is the velocity parallel to the interface, and 𝑛 is the coordinate normal to the free surface. This 35 
boundary condition assumes that the tangential velocity of the fluid at the boundary is not influenced by 36 
the viscous shear force.4 The validity of the slip condition in Eq. (1) is based on the continuity of the stress 37 
at the interface of an unbounded liquid-gas interface:  38 

𝜌𝑙𝜐𝑙
𝑑𝑈||,𝑙

𝑑𝑛
= 𝜌𝑔𝜐𝑔

𝑑𝑈||,𝑔

𝑑𝑛
, 39 

 40 
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and the fact that the dynamic viscosity of liquids (l) is significantly larger than that of gases (g), i.e., 41 

𝜌𝑙𝜐𝑙 ≫ 𝜌𝑔𝜐𝑔 . 42 

here, 𝜌 denotes density, 𝜈 denotes kinematic viscosity, the product of the density and the kinematic viscosity 43 
gives the dynamic viscosity, the subscripts 𝑙 and 𝑔 denote liquid and gas, respectively. Since the velocity 44 
gradient on the air side is finite, Eqs. (2, 3) necessarily leads to 𝑑𝑈||,𝑙/𝑑𝑛 ≈ 0, i.e., the no-shear stress 45 
boundary condition depicted in Eq. (1). However, the force balance in Eq. (2) is valid only if the interface 46 
is unbounded. When the interface is bounded, a meniscus forms, as illustrated in Fig. 1(a). This 47 
configuration arises in contexts such as superhydrophobic surfaces,5 where air pockets are trapped between 48 
small-scale surface structures. In this scenario, fluid flow experiences less drag at the air interface, thereby 49 
reducing drag forces compared to a flat flow situation. Unlike a free interface, a meniscus can sustain a 50 
tangential force. Consider the schematic depicted in Figure 1(b), where the force balance yields  51 

𝑑𝑈||,𝑙

𝑑𝑛
≈

𝜎(cos 𝜃1−cos 𝜃2 )

𝜌𝑙𝜐𝑙𝐷
, 52 

where 𝜎 is the surface tension, 𝜃1,2 are the contact angles at the two walls, and 𝐷 is the size of the meniscus. 53 
Here, we have already neglected the viscous force on the air side, which is small, and the no shear condition 54 
no longer applies. Nonetheless, CFD models often neglect the shear stress on the meniscus,6,7 a 55 
simplification that lacks a fundamental molecular-level justification. 56 

 57 

 58 
Figure 1. (a) Schematic of a meniscus in equilibrium suspended over a gap, and (b) schematic of the same 59 
meniscus but distorted under the effect of shear. 60 

 61 

The schematics in Figure 1 resemble the gas-filled gaps observed in microstructured hydrophobic 62 
surfaces (Cassie textures), which can be found in nature8,9 and mimicked through microfabrication.10 The 63 
hydrophobic nature of these patterned surfaces arises from the intermittent weak gas-liquid contact that 64 
adds or counteracts any magnitude of the solid-liquid adhesion. Consequently, Cassie textures are known 65 
for creating large hydrodynamic slip (approximating free shear) surfaces.11 However, there is still a lack of 66 
consensus on the fundamental understanding of the effective slip (alternating solid- and gas-liquid 67 
interfaces), primarily due to the local shear at the free surface.11–13 Efforts by de Gennes13 showed that slip 68 
at the gas-liquid interface is proportional to the product of the gas gap depth (t) and the liquid/gas viscosity 69 
contrast (𝜇𝑙/𝜇𝑔). For an air-water interface, the gas-liquid slip would be ~50t, which is equivalent to having 70 
a free surface boundary condition even for a gap as small as 1 nm. Hendy and Lund12 used the de Gennes 71 
expression to build an analytical model of alternating solid-liquid and free surfaces, where the gas-liquid 72 
boundary condition was parametrically assumed. More recently, Nizcaya et al.11 expanded upon the 73 
simplification of the gas cushion model (de Gennes expression) and developed a closed-form solution for 74 
predicting slip over patterned surfaces, where again, the gas-liquid interface boundary condition was 75 
assumed and never investigated at a fundamental level. 76 

The primary goal of this contribution is to provide fundamental insight into the shear effect on the free 77 
surface of a nanoscale hydrophobic capillary meniscus. This work aims to elucidate the mechanisms and 78 

(3) 

(4) 
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fluid interactions within a water capillary meniscus adjacent to shear-driven flow. To achieve this, we 79 
conducted non-equilibrium molecular dynamics (NEMD) simulations of shear-driven flow where a 80 
hydrophobic water meniscus acted as a free surface. NEMD directly solves the motions of the molecules in 81 
the system. The equation solved is F = ma, where m is the mass of any given molecule in the MD 82 
calculation, a is the acceleration, and F is the force experienced by the molecule. This provides more 83 
fundamental than a continuum level description offered by the Navier-Stokes equation as used in Oron et 84 
al.14, allowing us to directly test the validity of Eq. (1) for bounded liquid-gas interface. We confirmed that 85 
the free-shear boundary condition is a good approximation in nanoscale water menisci given (1) the 86 
observed force balance at the solid-gas-liquid interface formed by the meniscus, and (2) the relative 87 
magnitude of the observed shear force at the liquid-gas interface. 88 

 89 

II. METHODS 90 

The LAMMPS code15 was used to carry out the NEMD simulations and OVITO16 for visualization. The 91 
computational domain, illustrated in Figure 2, consisted of a water film containing 13,998 molecules having 92 
a bulk density of 1.00±0.02 g/cm3. The simulation box was periodic in the x- and z-direction, while the y-93 
direction, normal to the flow, was fixed. Two carbon nanotubes (CNTs) were immersed in the water film, 94 
forming a capillary meniscus between them. The top and bottom confining slabs were diamond-structured 95 
carbon. The bottom slab induced shear to the water molecules by applying a tangential velocity (x-direction 96 
in Figure 2), see Video1 and Video2 as multimedia available online. Consequently, the large shear 97 
velocities generate significant heating, requiring a medium to dissipate thermal energy from the system. In 98 
our simulations, a Langevin thermostat was applied to the water atoms in the y- and z-directions to remove 99 
the excess heat; thus, creating thermal sinks at 300 K in the flow orthogonal directions, while the flow 100 
direction remained unaffected. The top slab remained fixed to maintain the simulation box size. 101 

 102 
Figure 2. Computational model of the hydrophobic water meniscus. The red spheres represent oxygen 103 
atoms, the white spheres represent hydrogen atoms, and the teal spheres represent carbon atoms. The 104 
coordinate of the blue circle in the left bottom corner is (0, 1, 5) nm. Multimedia available online as Video1 105 
and Video2. 106 

 107 
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The SPC/E17,18 water model was utilized for the water particles and the SHAKE19 algorithm was 108 
implemented to ensure bond rigidity. The cutoff for the pairwise interactions was set to 15 Å, while the 109 
long-range Coulombic interactions were computed using the PPPM20 algorithm with a precision of 1×10-6. 110 
The carbon atoms in each CNT were modeled using a Tersoff21 force field (FF). The solid-liquid 111 
interactions were calculated using a 12-6 Lennard-Jones (LJ) FF, and the LJ parameters for the CNT-water 112 
interface were derived using the wettability-𝐸𝑚𝑖𝑛 relationship proposed by Ramos-Alvarado22. This 113 
relationship uses LJ parameters as input and outputs a size-independent contact angle. The LJ parameters 114 
for the CNTs-water interactions were 𝜖𝐶𝑂= 0.05258 kJ/mol, 𝜎𝐶𝑂=3.19 Å, and 𝜖𝐶𝐻=0, 𝜎𝐶𝐻=0. Since we are 115 
interested in generating a hydrophobic meniscus, the LJ parameters were chosen such that a contact angle 116 
of 136o was observed. Since momentum transfer from the diamond slab to the water depends on solid-liquid 117 
affinity and liquid structuring23, the LJ parameters for the bottom slab-water were greater than the CNT-118 
water ones to ensure effective momentum transfer from the solid to the liquid. The parameters were 119 
𝜖𝐵𝑂=1.25𝜖𝐶𝑂 , and 𝜎𝐵𝑂=𝜎𝐶𝑂. Alternatively, the top diamond slab was modeled as a repulsive wall. The 120 
simulation approach involved several systematic steps. Initially, all atoms and molecules in the 121 
computational box were energy-minimized. Consecutively, and using an NVT ensemble at 300 K, the 122 
bottom slab was gradually moved upward to establish a stable meniscus between the CNTs, monitoring the 123 
bulk water density. After achieving a stable meniscus, the CNTs and water molecules were equilibrated at 124 
300 K for 1 ns using an NVT ensemble. To confirm stability and equilibration, the system was subsequently 125 
run for an additional 5 ns in the microcanonical ensemble (NVE), with continuous monitoring of 126 
temperature, pressure, and energy to ensure steadiness. Following equilibration, shear was introduced by 127 
moving the bottom slab at a constant velocity. During this stage, which lasted for 2 ns, the water molecules 128 
were thermostated as previously indicated to remove viscous heating; the CNTs were fixed in this step. 129 
After verifying the stability of temperature, pressure, and energy, the system runs a final 2 ns for data 130 
collection. During this period, atomic coordinates, velocities, and forces were recorded at intervals of 500 131 
fs. Four independent sets of simulations were performed to ensure the reliability of the results. The time 132 
step for all simulations was set to 1 fs.  133 
 134 
III. RESULTS AND DISCUSSION 135 

Figure 3 depicts the density contour 𝜌(𝑥, 𝑦) of water; the density contours were calculated by time-136 
averaging the count of liquid particles per unit volume within bins of dimension 0.32×0.27 Å2 in the x-y 137 
plane during the production run and under shear. The gas-liquid interface region was defined at the locations 138 
where 𝜌(𝑥, 𝑦) = 𝜌𝑏𝑢𝑙𝑘/2 24,25, as indicated by the black dots in the contours depicted in the right panels of 139 
Figure 3. To characterize the shape of the capillary meniscus, the interface line was fitted with a circular 140 
function, as shown in Figure 4(a). The R2 values for these circular function fits were consistently above 141 
93% for all cases, indicating a high accuracy in this representation of the meniscus shape. It is worth noting 142 
that the fluid’s shear, 𝛾̇, was calculated from the resulting linear slope of the velocity profile generated in 143 
the water molecules under the meniscus. 144 
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 145 
Figure 3. Density contours of water for (a) no-shear, (b) 𝛾̇ = 9.8 ×109 s-1 (c) 𝛾̇=12×109 s-1 (d) 𝛾̇=13 ×109 146 
s-1. The black half rings in the left panel of the figure represent CNTs. The black dots in the right panel 147 
represent the interface where 𝜌(𝑥, 𝑦) = 𝜌𝑏𝑢𝑙𝑘/2. The shear rate (𝛾̇) was obtained from the slope of the fitted 148 
velocity profile, as illustrated in Figure 5. 149 



 6 

The capillary meniscus deformed under shear, as illustrated in Figure 4(a). This deformation is caused 150 
by the complex interplay of repulsive and attractive forces at the molecular level. The movement of water 151 
atoms is primarily driven by the applied shear, causing a bias in the way that the water molecules interact 152 
with the CNTs. This resulted in an asymmetric deformation of the meniscus under shear, which can be 153 
explained by the variation of the parameters of the circular function, (x-xc)2+(y-yc)2=r2, used to fit the liquid-154 
gas interface. The fitting parameters listed in Table 1 provide quantitative evidence of the meniscus 155 
deformation. As the shear rate increases, the values of yc generally decrease, indicating a lowering of the 156 
meniscus height. This trend is consistent with the visual observations in Figure 4(a), where higher shear 157 
rates correspond to a flattened meniscus. Additionally, the radius of curvature r tends to increase with higher 158 
shear rates, suggesting that the meniscus flattens. The shift in xc and yc demonstrates that the centroid of the 159 
meniscus moves from left to right (shear direction) with increasing shear rates. This change results in 160 
different slope angles at the edges, further confirming the influence of shear on the meniscus shape. 161 

  162 
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Figure 4. (a) The fitted capillary menisci for all shear rates from the density contour where 𝜌(𝑥, 𝑦) = 𝜌𝑏𝑢𝑙𝑘/2. 163 
(b) Free body diagram of the meniscus, see Video3 (multimedia available online) for a visualization of 164 
water molecules within the control volume. (c)Variation of slope angles on both sides of the capillary 165 
meniscus with shear rates. 166 

 167 

Table 1. Fitting parameters for the meniscus shape, (x - xc)2 + (y - yc)2 = r2.  168 

v (m s-1) 𝛾̇ (s-1) xc (Å) yc (Å) r (Å) 

0 0 81.74±0.19 34.51±3.02 40.66±2.66 

300 9.8 × 109 84.24±0.17 20.59±3.54 50.76±3.01 

500 12 × 109  85.45±0.40 18.25±4.23 52.47±4.06 

700 13 × 109  85.27±0.99 21.02±4.29 49.87±3.83 

 169 

To further investigate the effect of shear on the capillary meniscus, we analyzed the forces on the 170 
meniscus dome. Figure 4(b) illustrates a free-body diagram showing the various forces acting on the 171 
meniscus. See Video3 (multimedia available online) for a dynamic visualization of the water molecules 172 
forming the meniscus. Figure 4(c) depicts the slope angles (𝜃𝑙) and (𝜃𝑟) of the meniscus under different  𝛾̇. 173 
It is observed that as the shear rate increases, the slope angle 𝜃𝑙 on the left side remains relatively constant, 174 
while 𝜃𝑟 on the right side decreases significantly. This behavior indicates a more pronounced deformation 175 
on the right side of the meniscus in the shear-driven flow. The fitting parameters in Table 1 further support 176 
these observations, where the centroid of the meniscus shifted towards the right, in the direction of flow, 177 
and the radius of curvature r increases, suggesting a spreading of the meniscus. In the free-body diagram, 178 
(Fxl) and (Fxr) represent the lateral forces on the left and right sides of the meniscus, respectively, while 179 
(Fyl) and (Fyr) represent the vertical forces. These forces are the horizontal and vertical components of the 180 
surface tension force (T=𝜎𝑆𝑃𝐶/𝐸Lz) acting on the meniscus, where 𝜎𝑆𝑃𝐶/𝐸  and Lz are the surface tension of 181 
water and the length of the CNT, respectively. Vo et al.26 reported 𝜎𝑆𝑃𝐶/𝐸  = 72.06 mN/m for the SPC/E 182 
water model, which we adopted for this study. The capillary force (Fc) was calculated from the capillary 183 
pressure (Pc=𝜎𝑆𝑃𝐶/𝐸𝜅), where 𝜅 is the inverse of the radius of curvature. Table 2 summarizes the lateral 184 
force calculations and Table 3 details the normal forces, all normalized by T. The force balance analysis 185 
revealed that capillary and surface tension forces dominate near the free surface, while the shear force is 186 
comparatively smaller, reaching a maximum of approximately 6% of the surface tension force, as indicated 187 
in Table 2. Now, if the meniscus shear force is compared against the shear force in the bulk of the fluid, it 188 
represents approximately 2.8%. These calculations agree with the macroscopic view of the free shear 189 
boundary condition at the free surfaces. Similarly, the sum of the normal surface tension components 190 
matches the capillary force calculated in Table 3, further confirming the adequacy of the formulated force 191 
analysis and the circular fit used to represent the meniscus interface. 192 

 193 

 194 

 195 

 196 

 197 
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 198 

Table 2. Lateral forces, normalized by the surface tension force (T). 199 

v(ms-1) 𝛾̇ (𝑠−1) 𝐹𝑥𝑙 𝐹𝑥𝑟 𝐹𝑠ℎ𝑒𝑎𝑟  

0 0 -0.89±0.02 0.89±0.02 0 

300 9.8 × 109 -0.91 ±0.01 0.95±0.01 -0.04±0.01 

500 12 × 109 -0.90±0.01 0.96±0.01 -0.06±0.01 

700 13 × 109 -0.89±0.02 0.95±0.01 -0.06±0.01 

 200 

Table 3. Normal forces normalized by the surface tension force (T). 201 

v(ms-1) 𝛾̇ (𝑠−1) 𝐹𝑦𝑙  𝐹𝑦𝑟 𝐹𝑦𝑙 + 𝐹𝑦𝑟 𝐹𝑐 

0 0 -0.46±0.03 -0.46±0.03 -0.93±0.06 0.96±0.07 

300 9.8 × 109 -0.42±0.02 -0.32±0.02 -0.74±0.04 0.76±0.05 

500 12 × 109 -0.43±0.01 -0.29±0.03 -0.72±0.06 0.74±0.06 

700 13 × 109 -0.45±0.03 -0.30±0.04 -0.76±0.06 0.78±0.06 

 202 

For a better visualization of the shear effect near the free surface, we examined the velocity profile in 203 
the region below the meniscus. The front view of the computational model in Figure 5 illustrates the domain 204 
where the shear velocity was calculated using discrete bins of thickness 3 Å, and the resulting velocity 205 
profiles from the bottom (wall imparting a tangential velocity, y = 1 nm) to the edge of the meniscus (6 nm 206 
< y < 7 nm). The smallest and largest shear conditions are depicted in Figure 5, and the slopes of the lines 207 
used to fit the data represent 𝛾̇. It is evident from the data that there is no significant shear at the location of 208 
the capillary meniscus, illustrated by the yellow-shaded region in the inset of the right-side panel of Figure 209 
5; where the notorious slope of the lines representing the water’s velocity profiles transition to steeper 210 
profiles (aligned with the y-axis in Figure 5) near the liquid-gas interface. These observations align with 211 
the conventional microscopic free shear boundary condition at the free surface and the small calculation of 212 
shear forces detailed in Table 2. 213 
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 214 
Figure 5. (Left panel) The water velocity profile was calculated within the blue-shaded region. (Right panel) 215 
Velocity profiles are calculated for extreme shear rates. The yellow-shaded region in the inset indicates the 216 
location of the capillary meniscus. The results demonstrate that there is negligible shear near the free 217 
surface, as illustrated by the steep velocity profiles near the meniscus. 218 

 219 

CONCLUSIONS 220 

We investigated the effect of shear flow near the free surface of a capillary meniscus using NEMD 221 
simulations, providing a molecular level description of the water-air interface for the first time. The force 222 
balance analysis indicated that capillary and surface tension forces are the primary determinants of the 223 
meniscus shape and stability. The shear force contribution was minimal, reaching a maximum of 224 
approximately 2.8% of the shear in the bulk of the fluid. The meniscus interface fitting parameters revealed 225 
that as the shear rate increases, the meniscus flattens while its centroid shifts towards the direction of flow. 226 
Moreover, the water velocity profiles confirmed that there is no significant shear at the location of the 227 
capillary meniscus (liquid-gas interface). These observations are consistent with the traditional free-shear 228 
boundary conditions used in computational fluid dynamics and represent the first molecule-level evidence 229 
for the no stress condition at the water-air interface. 230 
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