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ABSTRACT: We use FIRE-2 zoom simulations of Milky Way size disk galaxies to derive
easy-to-use relationships between the observed circular speed of the Galaxy at the Solar
location, v., and dark matter properties of relevance for direct detection experiments: the
dark matter density, the dark matter velocity dispersion, and the speed distribution of dark
matter particles near the Solar location. We find that both the local dark matter density
and 3D velocity dispersion follow tight power laws with v.. Using this relation together with
the observed circular speed of the Milky Way at the Solar radius, we infer the local dark
matter density and velocity dispersion near the Sun to be p = 0.42 + 0.06 GeV cm ™3 and
Osp = 280ﬂ2 kms~!. We also find that the distribution of dark matter particle speeds is well-
described by a modified Maxwellian with two shape parameters, both of which correlate with
the observed v.. We use that modified Maxwellian to predict the speed distribution of dark
matter near the Sun and find that it peaks at a most probable speed of 257 kms~! and begins
to truncate sharply above 470kms~!. This peak speed is somewhat higher than expected
from the standard halo model, and the truncation occurs well below the formal escape speed
to infinity, with fewer very-high-speed particles than assumed in the standard halo model.
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1 Introduction

Dark matter accounts for more than eighty percent of the matter in the universe [1], but has
managed to evade efforts to determine its precise makeup. Among the most popular ideas is
that dark matter is made up of as-of-yet undiscovered elementary particles of nature, and
there are significant efforts underway to directly detect new particles with the characteristics
necessary for them to be dark matter.

Weakly interacting massive particles, or WIMPs, are one of the leading candidates for
particle dark matter. While so far attempts to directly detect WIMPs have been unsuccessful,
the lack of signal provides important constraints on the allowed microphysical properties of
theoretical dark matter particles. In particular, direct detection experiments place joint limits



on the allowed mass and nucleon-interaction cross section for particle dark matter (e.g. [2-5]).
Two astrophysical assumptions are critical for deriving these constraints (see ref. [6] for a nice
discussion): 1) the local mass density of dark matter in the Earth’s vicinity, p, and 2) the
local speed distribution of dark matter particles, f(v). Moreover, the interpretation of any
future detection signal from such an experiment will rely heavily on both p and f(v). These
facts motivate considerable effort to determine local dark matter properties as accurately as
possible. Furthermore, in indirect detection, the local dark matter density is used to normalize
models for the dark matter density in the center of the Galaxy, and thus is fundamental in
determining whether a WIMP dark matter model for the Galactic Center extended gamma-ray
excess is compatible with the lack of annihilation signal from dwarf galaxies (e.g. [7, 8]).

Methods for determining the local dark matter density fall into two broad categories:
Local and Global. Local measures rely on tracers in the Solar vicinity, while Global estimates
rely on fitting a density model to measurements taken throughout the Milky Way. See ref. [9]
for a review of the various methods. We summarize fifteen estimates of p in table 1 and see
that, even among measurements that adopt similar approaches, estimates for the local density
vary more than can be explained by the quoted statistical error bars. This suggests that there
are systematic errors at play. There is also a trend for Local methods to give slightly higher
dark matter densities than Global methods, with averages of p = 0.47 4 0.11 GeV cm ™3 for
Local and p = 0.3940.10 GeV em ™3 for Global.! However, this is not an exhaustive literature
search; more work could be done to determine whether there is a true bias with a physical basis.
Ref. [10] found that assuming the Milky Way’s disk is axisymmetric and in a steady state, as
most Local measures do, can impart ~30% uncertainty. Ref. [11], which takes into account the
Galaxy’s time-varying structure and phase-space spiral, produces the lowest density estimate
of the Local measurements we highlight. It will be interesting to see whether further Local
measures that allow for time-varying structure and axi-asymmetry produce similar results.
We further note that ref. [12] adopted an approach qualitatively similar to the method we
present below, in that they rely on only the local equation of centrifugal equilibrium, not the
full rotation curve. They find a preferred density of p ~ 0.43 GeV cm ™3, which is similar to
the overall average of the studies summarized in table 1: p = 0.41 & 0.10 GeV cm 3.

For the speed distribution, the standard has been to assume a Maxwellian (Maxwell-
Boltzmann) distribution that peaks at the Milky Way’s local circular speed and truncates at
the escape speed (e.g. [24]). This assumption is often called the “standard halo model” or
SHM, usually with a circular speed of 220kms~!. There has been extensive research into
whether the SHM appropriately represents the Milky Way or even whether a Maxwellian
is the correct functional form to adopt. Investigators typically carry out this evaluation on
specific simulated galaxies, chosen from a larger pool of candidates based on how closely
they match certain properties of the Milky Way [25].

While some studies using high-resolution galaxy formation simulations have found
speed distributions consistent with Maxwellians (e.g. ref. [26]), a Maxwellian usually fails
to reproduce the shape of dark matter speed distributions as seen in modern simulations,
usually over-predicting the number of high-velocity particles [27-32]. These studies tend to

!The error bars on these averages are based on the standard deviation of the N measurements in each

group, weighted by /1 + 1/N.



Global methods

Model basis Note p/[GeVem™J]
Eilers+19 [14] Fitting the circular speed curve 0.30 £0.03
deSales+19 [13] Fitting the circular speed curve B1 0.30 +0.03
B2 0.38 £0.04
Nitschai+20 [15]  Anisotropic jeans modeling of disk stars 0.437 £0.076
Petac20 [16] Galactic mass model with circular speed as one input NFW  0.35775-020
Burkert 0.38115-929
Benito+21 [17] Fitting the circular speed curve 0.6 +0.1
Hattori+21 [18] Galactic mass model from halo stars 0.342 £ 0.007
Ou+24 [19] Fitting the circular speed curve 0.447 £ 0.004
Average 0.39 +0.10

Local methods

Model basis Note p/[GeVem™J]
Sivertsson4-18 [20] Vertical kinematics 0.467057
Buch+19 [21] Very local kinematics A stars 0.61 £0.38
G stars 0.4275%
Guo+20 [22] Vertical kinematics 0.50795%
Salomon+20 [23]  Vertical kinematics 0.37 £ 0.09
Widmark+21 [11] Time-varying structure of the local phase-space spiral 0.32+0.15
Average 0.47+0.11
Average of all above 0.41 £0.10GeVem 3
This paper 0.42 + 0.06 GeVcm—3

Table 1. Twelve of the most recent studies measuring the local dark matter density p, grouped
by Global and Local methods. The margins of error for the averages are calculated as sy/1+ 1/N
where s is the standard deviation of the measurements, and N is the number of measurements. In
deSales+19 [13], B1 and B2 refer to two different baryonic mass models.

achieve better fits with more complex models, such as generalized Maxwellian distributions,
Tsallis distributions, Eddington formulas, or various other modifications to the Maxwellian
distribution such as those developed by ref. [33] or [34]. The prevailing methodology has been
to then analyze data from dark matter direct detection experiments assuming that the speed
distribution for a specific simulated Milky Way analogue represents the Milky Way itself.

In this paper we analyze twelve zoom-in simulations of Milky Way size disk galaxies from
the FIRE-2 project and attempt to develop formulaic methods that allow us to infer local
dark matter properties of the Milky Way itself. We obviate the need to choose one particular
simulated galaxy as a Milky Way analogue. Instead, we correlate the density, velocity
dispersion, and speed distribution using a sliding scale of one single, simple observable:
the local circular speed.

In the next section we provide a short overview of dark matter detection and introduce
some nomenclature. In section 3 we discuss our simulations, and in section 4 we describe
our analysis. All of our results are presented in section 5, and section 6 is reserved for

discussion and conclusions.



2 Background and nomenclature

The differential event rate for interactions between dark matter particles and a detector is

dR oo d E
P / vf () Uwg}(;}; R)
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dER N mymN

d3v, (2.1)

where p is the local dark matter density, m, is the mass of the dark matter particle, my is
the mass of the nucleus used in the detector, owny is the interaction cross section between the
nucleus and the dark matter particle, and vy is the minimum dark matter particle speed
required for the detector nucleus to recoil with energy Egr. The value of vy, is given by
(”mm)Q UMY (2.2)
c 242

Here, p is the reduced mass between the dark matter particle and the detector nucleon.

Note that for canonical leading order spin-independent DM-nucleus interactions with equal
couplings of DM to protons and neutrons, the differential cross section is inversely proportional
to the square of the WIMP’s speed (down/dERr o v~?2) [25, 35, 36]. Therefore, the differential
event rate’s dependence on velocity is entirely captured by the halo integral

* W) g, (2.3)
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VUmin

A traditional assumption for the speed distribution of dark matter particles is a

1 v?
fw) = Nog) &P <—Ug> : (2.4)

where v = |#], vy is the most-probable speed or “peak speed”, and N(vg) = 7%/} is a

Maxwellian:

normalization factor that gives [7° f (v)4mv3dv = 1. Tt is common to assume an isothermal
sphere and set the peak speed equal to the circular speed of the Milky Way at the Solar
radius: vg = v.. Alternatively, vg can be expressed in terms of the 3D velocity dispersion:

vy = 2/30‘3]). (2.5)

A slight modification of the Maxwellian assumption is to introduce a sharp truncation in
equation (2.4) above some escape speed, vesc. In this case, the normalization factor must
be modified:

2

N (vg, Vese) = 717)(2] lﬁvo erf (Uesc> — 2UVesc €XP (— vQ?)] ) (2.6)
Vo v

0

An alternative to equation (2.4) motivated by galaxy formation simulations is a parame-
terization presented by Mao et al. (2013) [33]:

Nexp(—%)(vgsc — vz)p, 0 < v < Vese @.7)

0, otherwise

flv) =

where p is a constant that is fit to simulation data. In section 5, we introduce a new model
for f(v) and tie its parameters to the circular speed. We then use the Milky Way’s observed
circular speed to determine its most likely parameters. In the appendix section C, we provide
a comparison between our model and the functional form in equation (2.7).



3 Simulations

We analyze cosmological zoom-in simulations run with the G1zM0 code [37] from the Feedback
in Realistic Environments (FIRE) project.? Specifically, we use the FIRE-2 model [38] to
implement stellar feedback and star formation. An effective feedback implementation is
important for regulating star formation, producing galaxies that are the correct mass for their
dark matter halo size, and also in enabling the formation of galaxies with disk morphologies [38—
41]. Additionally, feedback can affect galaxies’ density profiles via “feedback-induced core
formation” (e.g. [42] and references therein). Galaxy formation is also known to increase
the central dark matter velocity dispersion compared to dark-matter-only simulations [43],
thus achieving realistic galaxy masses is crucial to producing dark matter properties that are
accurate. The stellar feedback in FIRE includes stellar winds, radiation pressure, photoelectric
heating, and photoheating from ionizing radiation. Each star particle assumes a Kroupa
IMF [44], has an age determined from its formation time, and inherits its metallicity from its
parent gas particle. Within the gas particles, the simulations track 11 elemental abundances
(H, He, C, N, O, Ne, Mg, Si, S, Ca, and Fe) with sub-grid diffusion via turbulence [45-47]. The
conditions for star formation in gas are local self gravitation, sufficient density (>1000cm™=3),
Jeans instability, and molecularity (following ref. [48]).

We focus on all galaxies in the FIRE-2 suite of ref. [49] with 1) stellar mass similar to
that of the Milky Way and 2) a prominent disk component. This yields a sample of twelve,
as described in more detail below. The initialization of these galaxies follows ref. [50] using
the MusIC package [51]. Six of the twelve come from the Latte suite [52-55] and six from the
ELVIS on FIRE project [49, 55]. The former is a collection of zooms on isolated galaxies each
named with a unique letter and an “m12” prefix, for example “m12b”. The latter consists
of pairs with separations and relative velocities similar to the Milky Way-M31 pair. The
FIRE collaboration generated these ELVIS pairs to investigate the effects of being in the
Local Group. Given that Andromeda is itself Milky-Way like, both galaxies in each ELVIS
pair are included in our analysis. Each ELVIS pair comprises a single zoom, and they follow
the naming convention of famous duos.

Dark matter particle mass is 3.5 x 10* Mg, in Latte and ~ 2 x 10* Mg, in ELVIS. Gas
and star particles in Latte have initial masses of 7100 Mg while ELVIS simulations have
approximately twice the resolution at 3500 to 4000 My. Gas softening lengths are fully
adaptive down to ~ 0.5-1 pc. The star-particle softening length is ~4 pc physical. The dark
matter force softening is ~40 pc physical.

We initially considered all fourteen simulations in ref. [49] with stellar masses similar to
that the Milky Way (1019711 Mg). Of these, we excluded two because they did not exhibit
disks of the kind needed to measure the circular velocity: m12w and m12z. We determined
that these two galaxies were not disks using 1) visual appearance,® 2) a comparison of the
ideal \/GM /Ry and the tangential component of cold gas velocity, and 3) thin-disk fraction
as defined in ref. [56]. While m12z has a rotating component, its thin-disk fraction is only
5%, and visually it does not resemble a disk. m12w, on the other hand, has a potentially

https://fire.northwestern.edu.
3http://www.tapir.caltech.edu/~phopkins/Site/animations/a-gallery-of-milky-way- /.
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acceptable thin-disk fraction of 23%; however, visually it is an SO lenticular and not a
realistic Milky Way analogue.

Note that in identifying the twelve galaxies we consider, we did not explicitly use the
merger history, though large mergers would have likely resulted in non-disk systems and
thus exclusion by our disk criterion. The Milky Way itself appears to have had a fairly
quiet merger history, with no major mergers within the last 10 Gyr. For example, the most
significant merger event in the Milky Way’s history (known as the ‘Kraken’ merger), was
a minor accretion 10.9f8:§ Gyr ago (250 dynamical times) with a halo mass ratio of only
1:7J_r§ [57]. Dark matter components from this event have long since virialized, and any
substructure created would have been washed out by the present day [53]. Similarly, the
Gaia-Enceladus (G-E) event occurred 9.1f8:§ Gyr, or ~45 dynamical times, ago. Ref. [36]
explored the effects of both including G-E in the Milky Way’s speed distribution and updating
vo and vesc With more recent estimates. They did find an effect; however, the updated values
of vg and wvese were much more significant.

With the above as context, the analysis we present below is merger-agnostic. In fact,
our method intentionally departs from the “single analogue method” of seeking a particular
simulation that appears as close as possible to the Milky Way. Instead, we attempt to use a
larger sample and make predictions based on a single observable, the local circular speed,
without any selection other than having a disk to enable a circular-speed measurement. As
with most correlations, the one we find does exhibit some noise. The variation in merger
history is one possible contributor to noise. We note that a number of the FIRE-2 disks
experienced past mergers similar to those inferred from the Milky Way [58], but dark matter
substructure does not survive, as shown in ref. [53] and our figure 1 below. A future
analysis, which would need to rely on a much larger simulation set, could potentially add
observationally-oriented constraints to provide an even tighter prediction.

4 Methods

4.1 Defining sun-like regions in the simulations

We are interested in exploring dark matter characteristics around mock Sun-like regions in
the disks of our simulated galaxies. In each simulation, the plane of the disk is defined as that
perpendicular to the aggregate angular momentum of all gas, stars, and dark matter within
10 kpc of the galaxy’s center. We find that the orientation of disk planes remains virtually
identical if we include only stars when determining the angular momentum direction.

For analysis we use particles in ring-like regions centered on mock solar radii (Ry = 8.3
kpc [59-61]) in each simulated disk. One could add a level of complexity to this study by
scaling Ry for each galaxy. However, the results below show that a fixed radius yields tight
constraints on our conclusions, which we find satisfactory. We define each galaxy’s solar ring
by first taking a spherical shell 1.5 kpc thick with a midpoint radius 8.3 kpc from the center
of the given galaxy. From there, we exclude the parts of the shell 0.5 kpc above and below
the plane of the disk. These choices for thickness and height allow the ring to be as small
as possible while still allowing appreciable particle counts.
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Figure 1. Azimuthal variation in dark matter density (left) and velocity dispersion (right) across 30
different Sun-like regions in each of our simulated galaxies. In both plots, measurements were made in
30 evenly-divided regions in each galaxy’s solar ring and then normalized by the average density (p)
or velocity dispersion (Gsp) over the full ring. Across all galaxies, the standard deviation of p(¢)/p is
4.4%, and the standard deviation of o3p(¢)/Tsp is 1.3%.

4.2 Circular speed

All the models in this study make predictions based on a sliding scale of one simple observable:
the galaxy’s observed circular rotation speed at the solar location (Ry = 8.3 kpc). In an
idealized, spherically-symmetric system, v. = v/GM/Rgy. However, in reality, the Milky Way
is a flattened disk, and material in such a disk will not rotate at this idealized speed [62]. We
determine the circular speeds of our galaxies as the average azimuthal velocity component
- q@ of gas colder than 10? K in the solar ring, where gg points in the direction of the galaxy’s
rotation. This temperature ensures that the observed gas is in circular motion, because the
implied ~16 km s~! 3D velocity dispersion is an order of magnitude smaller than v.. Note that
we find that these “observed” circular speeds end up being very close to what we would have
obtained with the idealized spherical approximation. For example, figure 11 in the appendix
plots our mock “observed” circular speeds versus the idealized spherical approximation and
shows that they obey close to a one-to-one relationship. Additionally, ref. [63] found that,
for Milky Way size galaxies in FIRE, observational methods exhibit excellent agreement
with the true rotation curve. Even the three largest m11’s have observable rotation curves
that match the true curve to within 10%. This suggests that our results will be largely
insensitive to how we define v, in the simulations.

Ultimately, our goal is to use our inferred relationships between simulated dark matter
properties and v, on the Milky Way itself. In doing so, we adopt veyw = 229 £ 7 kms™!
for the Milky Way’s rotation speed near the Sun [14]. This error bar includes systematic
uncertainties provided by ref. [14]. Even so, at 3%, it contributes little to the overall
uncertainty in our predictions, which is dominated by galaxy-to-galaxy variations.



4.3 Density and dispersion variation within disks

As discussed above, we use ring-like regions centered on mock solar locations to determine
the local density p, velocity dispersion osp, and speed distributions of dark matter particles
in each simulation. It is interesting to ask if there is any significant variation in density or
velocity dispersion as we move around the plane of the disks at fixed radii Ry.

In order to explore this, we divided each ring into 30 ¢ slices and calculated p(¢) and
o3p(¢) in each piece. Figure 1 shows histograms of those measurements at fixed ¢ divided by
the corresponding galaxy’s average for the whole ring. The ring’s average density is the sum
of all dark matter particle masses therein divided by the volume of the ring. Its 3D velocity
dispersion is the quadratic sum of the three velocity components’ standard deviations, again
calculating over all dark matter particles in the ring. Measures for the slices are the same
but limited to the volume of the given slice. Density variation is shown on the left of the
figure, and velocity dispersion variation on the right. The standard deviation of a ¢ slice
from the aggregate solar ring is 4.4% for p and 1.3% for o3p. This study therefore adopts
the aggregate solar ring values as its simulated measurements, so p = p, and o3p = T3p
throughout the text and in figures 2 and 3. We conservatively add the standard deviations
in quadrature to the other uncertainties in predicting the Milky Way’s local dark matter
density and velocity dispersion in what follows. Note that this level of variation is quite small
and adds an almost negligible amount to the error bar around the prediction. Moreover, the
number of dark matter particles in our twelve FIRE-2 solar rings ranges from 15,881 for m12r
to 51,785 for Romulus. With 30 slices, this implies shot noise at the ~2-4% level — not far
from the standard deviation we measure directly among density slices. This suggests that
our reported variation of 4.4% in density is a conservative upper limit.

We compared shot noise to the standard deviation of p(¢)/p to determine the optimal
number of slices. With more than ~30 slices, shot noise exceeds the standard deviation
between slices. In other words, counting statistics could be driving apparent azimuthal
variations. We decreased the number of slices in multiples of 5 until standard deviation
exceeded shot noise for all galaxies, which occurs at 30. Also note that our results do
not appreciably change if we use an extreme number of slices. Using 200 for example, the
resulting 8.9% and 3.0% standard deviations in density and dispersion remain nearly negligible
contributors to overall uncertainty in Milky Way predictions. The main contributor to said
uncertainty is galaxy-to-galaxy variation.

4.4 Defining escape speed

As discussed above, it is common to truncate an assumed dark matter particle speed
distribution above some “escape speed” vege, but knowing the precise value of the escape
speed to use is non-trivial. Even if the full potential is known, the formal escape speed
depends on the distance* a particle needs to travel in order to “escape” the region of interest
(e.g. [64, 65]).

In what follows, we take a practical approach and define the simulated escape speed to
be the value of v where the local dark matter speed distribution falls to zero. To determine

4Qualitatively, in order for a dark matter particle to “escape” the Solar region, it does not need to escape
to infinity, but just how far is not entirely clear.



the sensitivity of this measure to resolution and Poisson noise, we tested the variability of the
results by sampling only 10% of each galaxy’s particles and repeating the analysis ten times.
The standard deviation between each galaxy’s ten trials ranges from 1%~4%. Therefore,
the study’s measure of escape speed is acceptably robust. We also compare our “measured”
escape speed to the formal escape speed to infinity: vese(®) = 1/2[®|. For a given galaxy, we
calculate this at eight points in the solar ring, equidistant in azimuthal angle ¢ and take the
average of those eight values. As shown below, this categorically overshoots the measured
Vese in our simulations, which is consistent with previous findings (e.g. [65]).

4.5 Speed distribution

We employ a Markov chain Monte Carlo method of fitting speed distribution parameters,
using the package EMCEE [66]. The log-likelihood is

In £(#) = —x*(#)/2 with (4.1)
600 N b (s 2

() =y, ) =l O (4.9
=1 ?

where p, is the probability density of a dark matter particle in a given galaxy exhibiting
speed v, as determined by a histogram of 50 bins ranging from 0 kms™! to the speed of the
fastest dark matter particle in the galaxy’s solar ring. The 50 measurements from each of
the 12 FIRE-2 discs yield an aggregate of 600 data points. The predicted probability density
Po(xi, 0) = 4mv? f(2;,0) depends on 6, a vector of parameters (d, e, h, 7, k) that we optimize
for the given speed distribution f. Section 5.4 describes the parameters’ meanings. We
assume flat priors of d € [100,130] kms™ !, e € [0.8,1.2], h € [200,400] kms~!, j € [0.1,0.8],
and k € [0.010,0.045]. The feature matrix = consists of columns 1) dark matter particle
speed corresponding to the midpoints of the histogram bins and 2) circular speed at the solar
location v, = (- $>T§104K discussed in section 4.2. For a given galaxy’s entries into the
circular-speed column of the feature matrix, the same v, value is repeated 50 times. We use

Poisson errors so 0; = py(z;)/+/N; where N; is the number of particles in the given speed bin.

5 Results

5.1 Local dark matter density

Figure 2 shows the relationship between the measured “local” dark matter densities at mock
solar locations in our simulations versus the local circular speed. We find that the relationship
between density and v, is well described by a power law:

Ve @
_ 1
P = po <1OOkms_1> , (5.1)

where pg = 0.57:“8:681071\/[@ kpc™3 = 0.22J_r8:8§GeV em ™3 and o = 0.80 £ 0.19. Section A in
the appendix discusses our treatment of uncertainties in the model. The solid blue line in
figure 2 visualizes this density model, which exhibits an r? coefficient of determination of 0.65.
Note that the coefficient of determination is calculated based on log densities. The same
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Figure 2. Relationship between the local dark matter density and circular speed for our simulated
galaxies. The name of each simulated galaxy (as defined in the original FIRE-2 papers) is provided

for each respective point. The color bar maps to the total stellar mass of each galaxy for reference.

The blue line shows the best fit from equation (5.1), which yields p ~ v-8% and a log-space coefficient

of determination 72 of 0.65. The black error bars on each data point come from our measured
azimuthal deviations in local density, discussed in section 4.3. The grey band represents the lo
uncertainty around the prediction line. The red point and error bar represents our Milky Way
prediction: p(veyw) = 1.117017 10"Mg kpe =3 = 0.42 + 0.06 GeV cm ™2,

applies to the models that follow below for velocity dispersion and escape speed. The shaded
band shows the one-sigma region, and the color bar maps to stellar mass of the galaxy.

If we apply our model fit to the Milky Way, assuming a circular speed of ve yvw = 229 +
7 kms™!, from ref. [14], this yields

p(vertw) = 1117 1210™ M kpe ™3 (5.2)

= 0.42 + 0.06 GeV cm . (5.3)

The quoted error includes the uncertainty from the fit as well as allowance for variance
within the disk. The latter is equal to the azimuthal variation found in our simulations in
section 4.3. Interestingly, our determination of the local density is quite close to the aggregate
values in table 1. Not only does this cross-validate this study’s density result with others’; it
also supports using these select FIRE-2 galaxies for making other Milky Way predictions.
Note that one could easily adopt a different value for v pw through equation (5.1). When
making predictions around v, ~ 229kms~!, one can assume the corresponding uncertainties
are the same as those we cite.
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Figure 3. This is the same as figure 2 but now showing measured velocity dispersion versus circular

speed for each simulated galaxy. The best-fit model (equation (5.4), blue line) has o ~ v2-%! and a

log-space coefficient of determination r? of 0.90. The relationship between local dark matter velocity
dispersion and local circular speed is even tighter than that between the latter and density shown in
figure 2. The red point and error bar shows our Milky Way prediction: osp(vemw) = 280ﬂg kms™!.

5.2 Local dark matter velocity dispersion

We find that the dark matter velocity dispersion is even more tightly correlated with v,
than the density is, with

Ve v
70 =70 | [0 kms 1) >4

where o9 = 143J_r%(1) kms™!, and v = 0.81 £ 0.09, which exhibits a 0.90 r? coefficient of
determination. For the Milky Way, this yields

030 (Ve mw) = 280713 kms ™t (5.5)

Figure 3 visualizes the model and its Milky Way prediction versus the data. Similarly to
our density model, one could adopt a different MW circular speed by simply plugging their
preferred value into equation (5.4).

5.3 Escape speed

As discussed in section 4.4, we define the escape speed, vegc, as the smallest speed above which
we find no dark matter particles in the simulated local region. Figure 4 shows the relationship
between vesc measured this way and the local circular speed. The two parameters correlate as

Ve €
Vesc (Ve) = Ve,0 (100kmsl> ) (5.6)
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Figure 4. The escape speed, vgsc, versus circular speed for each simulated galaxy. Here, the escape
speed is set to be the speed of the fastest dark matter particle in the given simulation’s solar ring. The
blue line shows the power-law model from equation (5.6), vesc ~ v2:54, which has a 0.82 72 coefficient
of determination in log space. The grey band shows the 1o uncertainty around the prediction. The
red point with error bars shows our prediction for the local escape velocity near the Sun in the Milky
Way using this model: vese(vemw) = 550 £ 30km s

where ve o = 350750kms™! and & = 0.54 4 0.08. Tts predictions exhibit a 0.82 72 coefficient
of determination. Figure 4 visualizes this fit and shows our vesc(vemw) = 550 & 30 km 71
estimate for the Milky Way. As we continue to emphasize, this and the other models in
this paper are calibrated to simulation data that would not be observable in the real world
but, once fit, require only one single observable feature — the local circular speed — to
predict those non-observable features of the Milky Way.

5.4 Speed distribution

A common assumption for the dark matter speed distribution is a simple Maxwellian (equa-
tion (2.4)). Figure 5 compares the true speed distribution data for three of our galaxies
(black) to the Maxwellian assumption (red), where we have fixed the peak speed, vg, in
equation (2.4) to the local circular speed, v, as is the standard choice. We see that the
Maxwellian curve peaks at too low of a speed and has an excess high-speed tail. Even if
we truncated the Maxwellian distribution at the formal escape speed set by the potential
(dashed black line) or the escape speed calculated by our approach (section 4.4, grey dashed
line), the Maxwellian curve would still over-produce counts at high speeds. We find that
similar shape mismatches exist for all of our simulated galaxies.

While the Maxwellian curves shown in figure 5 are not best-fit Maxwellian shapes to
each galaxy, we have found that even allowing for a variable vy for each galaxy, the simple
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Figure 5. This figure shows the measured speed distribution data for three example systems in black
histograms. The red lines show the Maxwellian distributions defined by equation (2.4), which have only
one parameter, the peak speed vy. In this figure, we adopt the common assumption that peak speed
is equal to the circular speed v. measured in each galaxy. This assumption under-predicts the peak
speed. For illustrative purposes, the grey vertical dashed lines show the escape speed, vesc, the speed of
the fastest dark matter particle in a given simulation’s solar ring. The plots here also show the escape
speed based on potential, ves.(P), where we take escape distance to be infinity. Section 4.4 provides
further detail on the calculation method for ves.(®). Take notice of the difference between these two
possible cutoff speeds. If one were to cut off the distributions at the escape speeds determined by
potential, one would assume the presence of too many high-speed particles. However, even if we were
to cut the distributions at the v we measure, the Maxwellian would still give too many high-speed
particles. The green lines show best fits for each individual galaxy using the two-parameter function
given by equation (5.7). The green fits to the black data are strikingly tight and demonstrate that
this functional form can, in principle, reproduce the speed distributions accurately.

Maxwellian fit fails. As discussed in the introduction, others have found similar results and
tried to provide better descriptions of the speed distribution by employing models such as
generalized Tsallis distributions [26, 27, 32, 67] or other modifications to the Maxwellian
distribution [33, 34].

We find a good fit by introducing a speed parameter vqamp, above which each distribution

is suppressed:

1 v?
=~ - 1S amp ~ ) 5.7
fv) N (o, vamm) eXP( v%) (Vdamp — v) (5.7)
where S is the sigmoid function
1
S(Av) = (5.8)

1+ exp(—kAv)’

and k represents how strongly the sigmoid suppresses the distribution around vgamp. We
adopt k& = 0.0350 because it is the best-fit value for the final universal model at the end
of this section. The green lines in figure 5 plot this model using the best fit parameter
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Figure 6. The purple lines represent the best-fit speed distributions predicted by this study’s final
model using only the galaxy’s v., specifically using equations (5.7), (5.9), and (5.10). The grey bands
represent the uncertainty around those predictions. Table 2 provides the values of the uncertainty
band, which are the root mean squares of the deviations between the prediction and the data at a

given v/vg(ve).

set (vo, Vdamp) for each individual galaxy; it matches the data remarkably well. We find
similar success for all of the galaxies in our simulated sample. Note that these fits use the
non-observable dark matter speed distributions to directly determine (vo, vgamp). Such a fit
does not yet gauge our ability to define the best pair of parameters to use for the Milky
Way itself; however, it shows that, in principle, the model’s shape has enough flexibility to
reproduce the range of distributions we predict.

Our goal now is to determine the best pair of parameters (vg, Uqamp) to apply to the
Milky Way. Our approach is to search for a way to predict each simulated galaxy’s values
using power law models on their local circular speed:

vo=d (100 km s—1> (5:9)

and

Ve ]
amp — h - . 5.10
Vdamp (100 kms—l) (5.10)

We find d = 111.0£0.6kms™ !, e = 1.01440.007, h = 279.7+£1.9 kms~!, and j = 0.58840.007
provides a good description for our set of twelve model galaxies. We fit all these parameters,
including &, by running the Markov chain Monte Carlo package EMCEE [66] on a concatenation
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v/vg  Uncertainty v/vg  Uncertainty v/vg  Uncertainty

0.04 0.01 0.82 0.29 1.60 0.29
0.12 0.03 0.90 0.25 1.68 0.49
0.19 0.07 0.97 0.24 1.75 0.47
0.27 0.10 1.05 0.21 1.83 0.34
0.35 0.18 1.13 0.23 1.91 0.30
0.43 0.22 1.21 0.25 1.99 0.26
0.51 0.23 1.29 0.28 2.07 0.17
0.58 0.22 1.36 0.28 2.14 0.07
0.66 0.24 1.44 0.26 2.22 0.04
0.74 0.27 1.52 0.25 2.30 0.05

Table 2. Total uncertainty in 4wv?f(v) where f(v) is this study’s speed distribution model given
by equations (5.7)—(5.10). We calculate it as the root mean square of the deviations between the
prediction and the simulation data at a given v/vg(v.) and provide it above in units of 1073 km~1s.
These values yield the grey bands in figures 6 and 7.

of all simulated galaxies. In this process we find the best single value of k for the concatenation,
and this results in the adoption of £ = 0.0350+£0.0004 mentioned earlier. The individual galaxy
fits shown in green in figure 5 use the same k as the one that optimizes this universal model.

Figure 6 shows the speed distribution data for all twelve Milky Way sized FIRE-2 disks
(black histograms) and our model’s predictions based only on each galaxy’s v. (purple lines).
The grey bands represent the total uncertainty. The statistical portion thereof, related to
the error bars on the model parameters, is extraordinarily small. When plotted, its width
is hidden behind the purple prediction line in figure 6. This indicates that the majority of
the uncertainty between our model and the data is systematic. Therefore, we determine the
total uncertainty band as follows. We divide each x-axis by that galaxy’s vg(v.), given by
equation (5.9), and calculate the residuals between the purple predictions and the black data.
There are then 12 residuals, one for each galaxy, at every v/vg. The root mean square of
each set of 12 gives the total uncertainty in 47v?f(v) for a given v/vy. We provide these
numerical uncertainties in table 2. This simple model does a good job of predicting the dark
matter speed distributions in each simulated galaxy using only v,.

Figure 7 provides our prediction for the Milky Way’s local dark matter speed distribution
using v = vemw = 22947 kms~!. The implied parameters in equation (5.7) are vo(ve mw) =
257 + 8kms~! and Udamp (Ve Mw) = 455 + 8km s~!, and these generate the purple prediction
line. Given the tight margin of statistical error on the parameters d, e, h, and j, the majority
of uncertainty in vo(ve Mw) and vgamp(ve,Mw) comes from the £7 km s~! uncertainty in the
Galaxy’s circular speed [14]. That said, the grey uncertainty band in the end result, the speed
distribution, is dominated by the systematics of galaxy-to-galaxy variation. The dashed red
line shows the standard Maxwellian assumption with a sharp cutoff at the escape speed. We
use equation (5.6) to determine vesc(vemw) = 550 kms~!. Notice that the peak speed of our
model is higher than in the standard assumption, while the damping behavior of our model
pulls the high-speed tail below the Maxwellian starting around 470 kms~'. The difference
between the curves points to the benefits of using this work’s prediction for the Milky Way’s
speed distribution over the standard assumption.
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Figure 7. The purple line represents this work’s final prediction for the Milky Way’s speed distribution.
The purple band exhibits the range of results given by circular speeds in the +7kms~! error band
from ref. [14]. The grey band combines the vc yw uncertainty with the model uncertainty quantified
in table 2. The red dashed line shows a Maxwellian with peak speed equal to the local circular speed
and a sharp cutoff at the escape speed. We use equation (5.6) to determine vesc(ve mw) = 550 kms™1.

Figure 8 shows the implied halo integral (equation (2.3)) for our predicted speed dis-
tribution in the Milky Way along with the same for the standard Maxwellian assumption.
Comparing the two, the Maxwellian over-predicts the halo integral at low minimum speeds,
owing to its lower peak speed. It under-predicts in the intermediate range and returns to
an excess at the high end. Given that standard practice is to truncate the Maxwellian
at the escape speed, the dashed line in the lower panel does that for both models, using
Vese (Ve mw) = 550 km s~1, our best-fit escape speed for the Milky Way. This improves the
Maxwellian slightly at high speeds. However, the divergence remains.

6 Discussion and conclusions

We have used FIRE-2 simulations of Milky Way size disk galaxies to inform predictions of the
local dark matter density, velocity dispersion, and speed distribution near the Sun using one
observable: the circular speed near the Sun, v.. We then use our best-fit models to inform
dark matter expectations in the Milky Way using ve vw = 229 = 7km s~1, as determined by
ref. [14]. Our main results are summarized in table 3. All these parameters are crucial for

informing and interpreting dark matter direct detection experiments.

Local dark matter density. In our simulations, the local dark matter density near solar
locations is well characterized by a power law p o v, with a ~ 0.8 (equation (5.1) and
figure 2). How does this scaling compare to naive expectations? For a power-law density
profile in total mass, pyor oc 1/77, we would expect pam(Ro) o< Fv2(3 — n), where F is the
fraction of the total mass in dark matter; pgm = Fptot- In our simulations, F o 1/ vé'S if
we measure F in the solar ring; this would imply pam(Ro) o< v-7(3 — n), where the power
on v, is close to the 0.8 this study finds in the FIRE-2 simulations.

Assuming that the same model holds for the Solar location in the Milky Way, we

find p(vemw) = 0.42 £ 0.06 GeV em™3. This value is similar to those obtained by more
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Figure 8. Top: comparison of the halo integral for the Maxwellian model in red versus this study’s
model in purple. Bottom: the solid purple line shows the ratio of the halo integral using equation (5.7)
divided by that for the Maxwellian. Given that standard practice is to cut the distribution at the
escape speed, we also cut both models at vesc(ve Mw) = 550 km s~ ! and show the ratio in a dashed line.

complicated kinematic models and is remarkably close to the average of past estimates
since 2018 summarized in table 1. Another relevant comparison is to ref. [68], who find
0.39 4 0.09 GeV cm 3 using the average of 15 independent p determinations from literature
published between 2010 and 2020.

Local dark matter velocity dispersion. We find that the 3D velocity dispersion of dark
matter near mock solar locations in our simulations follows a power law given by equation (5.4)
(see figure 3). Note that the best-fit power-law is slightly flatter than linear; o oc v?, with
~v =~ (0.8. This is different than what is expected in an isothermal sphere model, where the
3D velocity dispersion is linear with circular speed as o3p = 1/3/2v.. However, this scaling
is only a special case. Even with an isotropic velocity dispersion (8 = 0), the spherical
Jeans equation tells us that v2 oc I'0?, where I' = —dIn pg/dInr is the log-slope of the
dark matter density profile. It would unsurprising if I' varied systematically with v, such
that ¢ and v. were not linearly proportional.

Assuming equation (5.4) holds for the Milky Way we find o3p (ve mw) = 280ﬂg kms~1.
This happens to be very close to m%Mw for our adopted Milky Way circular speed,
though for much larger or smaller circular speeds, our model would give different results.

Local escape speed. Conventional escape-speed estimates depend on an assumption for the
escape distance and have recently ranged anywhere from ~445 to ~580 kms~! [64, 65, 69, 70].
Rather than choosing a distance, we measure the escape speed in solar regions in our
simulations as the speed above which no particles are found. With this choice, the escape
speed in our simulations is well characterized by a power-law, vese o vZ, with € ~ 0.5
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Parameter Best estimate Units

p(veMw) 0.42 4 0.06 GeVem ™3
1117947 10"Mg kpe =3

osp(venw) 280713 kms™!

Vesc(Vemw) 550 £ 30 kms~!

00 (Ve w) 257+8 kms™!

Vdamp (Vemw)” 455 £ 8 kms~!

* Shape parameters for our model of the speed
distribution defined in equation (5.7)

Table 3. Final results for the Milky Way.

(equation (5.6) and figure 4). Assuming this holds for the Solar location in the Milky Way
we find vese(vemw) = 550 £ 30 km s—L.

Speed distribution. We find that the distribution of dark matter particle speeds is well-
described by a modified Maxwellian (equation (5.7)) with two shape parameters, both of
which correlate with the observed v.. We use that modified Maxwellian to predict the speed
distribution of dark matter near the Sun and find that it peaks at a most probable speed
of 257kms~! and begins to truncate sharply above 470kms~!. (See figure 7.) This peak
speed is somewhat higher than expected from the standard halo model, and the truncation
occurs well below the formal escape speed to infinity, with fewer very-high-speed particles
than is often assumed. The best fit parameters are given in table 3.

This study’s major contribution to the local dark matter speed distribution discussion
is our methodology for predicting the Milky Way’s parameter values, which slide higher or
lower based on the assumed local circular speed of the Galaxy. While we have presented a
functional form that works particularly well, others could apply our methodology to other
functions. In fact, we do just that for the Mao parameterization in the appendix section C.

One potential subject for further exploration is the effect of Magellanic Clouds and
merger-induced streams on local dark matter speed distributions. For example, simulations
have shown that both the Sagittarius dwarf [71] and LMC [72-74] could boost the Milky
Way’s high-speed tail. There is opportunity to extend an analysis like the one given here to
included simulated systems with LMC-size objects and extended streams to more accurately
predict the high-speed tail of dark matter particles.
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A Fitting procedure and defining uncertainties

This study develops models for predicting local dark matter density, velocity dispersion,
and escape speed based on circular-speed power laws. It achieves this by performing linear
regressions on the logarithms of both the target variable and circular speed. Each model
has a band of uncertainty around its prediction curve. The band has two components: the
standard error of the regression and the standard error of the mean. The former is

where N is the number of data points, and e; is the difference between data point ¢ and
the model’s prediction for that point. The latter captures the increasing uncertainty in the
prediction with increasing distance from the average circular speed. It is

Sre (logve — logwv,)?
Smean(l0g ve) = \/ﬁg 1+ var(logve) (A.2)
where
N T——\2
V(1 ci — 1 c
var(log ve) = Li (ogvjv %8 V) : (A.3)

The standard error of a given prediction is then spreq(logve) = \/ 524 + Stean(logve). From
here, the final uncertainty band around a given prediction is

5log band (log Uc) = Cerit Spred(log Uc) (A4)
~ 0.42 spred (log ve) (A.5)

where t4t is the critical two-tailed t-value assuming 68% confidence and N — 2 degrees of
freedom. Keep in mind that diogband (logve) applies to the prediction line in log space. The
transformation from the logarithmic error band to linear is

5band(vc) — ilOIOgyialogband(vC) F 9. (AG)

For our Milky Way prediction, it is also necessary to propagate the dv. vw = 7km s~! sys-
tematic uncertainty in circular speed from ref. [14] and the dpqata/Pdata = 4.4%, 0 data/Tdata =
1.3% uncertainties in this study’s density and dispersion data points, which stem from possible
variations across the Solar ring discussed in section 4.3. Therefore, the final uncertainty is

dy \? 0Ydata ?
Synw = \/5§and(vc) + 00w (dfj) v (y;tt> 4D

where y is one of p, o3p, or vesc. Note that we do not evaluate intra-ring variations in escape
speed, so we effectively assume 0vese/Vesc = O.
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Figure 9. Characterization of the anisotropy of dark matter velocity dispersion over our suite of
simulations. The left panel shows the anisotropy parameters in cylindrical coordinates, defined in
equations (B.1)—(B.3). On the right we show the ratio of velocity dispersion components. In most
cases the radial dispersion is slightly larger than the other two components, and o4 is larger than o.
In only one case (Thelma) is the z-component of dispersion larger than the ¢ component. Overall,
anisotropy is low, with 5 < 0.2 for the majority of galaxies in the left panel. Additionally, dispersion
ratios in the right panel are all approximately between 0.8 and 1.

B  Velocity dispersion anisotropy

Figure 9 summarizes the anisotropy of the local dark matter velocity dispersions in cylindrical
coordinates ¢, z, and r. On the left we show the anisotropy parameters, defined as

(B.1)
fo=1-"% (B.2)

B,=1-22. (B.3)

Positive values correspond to particles moving faster radially than vertically and azimuthally,
while negative values convey the opposite. Overall anisotropy is low for FIRE disks; the
majority have 8 < 0.2, and only Louise is higher than 0.3. Looking at specific components,
azimuthal and radial dispersions tend to match more closely than vertical and radial, as
represented by the lower cyan and higher orange bars. The right panel directly shows the
ratio of the velocity dispersion components. For most galaxies, the radial dispersion is slightly
larger than the other two components, and the z dispersion is the smallest. One interesting
outlier is Romulus, which has a slightly larger ¢ velocity dispersion than radial velocity
dispersion. Though some level of velocity dispersion anisotropy does exist, the ratios are
all close to unity at ~0.8-1.
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Figure 10. The purple curves show the final model that this study recommends, given by equa-
tions (5.7)—(5.10). The grey curve shows a straightforward implementation of the Mao parameterization
with the peak speed equal to the “observed” circular speed of each galaxy. Specifically, it shows equa-
tion (2.7) with parameters (vo, Vesc, ) = (Ve, Vesc(vc), 1.961), where equation (5.6) provides vesc(vc)
and p = 1.961 minimizes the SSE between the model and the data for the aggregate of all twelve galaxies.
The cyan curve is an implementation of the Mao parameterization that allows both ves. and vy to vary
using best-fit power laws on v.. Using equation (5.6) to determine wveg. is the same as in the standard
implementation; however, we also predict vy with equation (C.1) as opposed to the standard vy = v,
assumption. To be precise, our full Mao implementation uses (vg, Vesc, P) = (V) (Ve), Vesc(ve), 2.633),
where p = 2.633 minimizes the aggregate SSE. Each panel shows the root mean square errors of the
three models versus the black histogram data, in units of 1073km~'s. The vy = v, version of the
Mao model performs surprisingly well, but our model offers an improvement; quantitatively, it is
the most accurate of the three models shown. The root mean squared error for the aggregate of all
twelve galaxies is RMS(5.7) = 0.26 x 1073 for equation (5.7), RMSyao = 0.28 x 102 for Mao with
our method, and RMSy,, = 0.34 x 1073 km~!s for Mao with vy = v,.

C Using the Mao speed distribution

Note that, in the past, studies have evaluated the best-fit Mao [33] shape parameters
(equation (2.7)) for individual simulated galaxies (e.g. [28, 29, 32]), but have not gone beyond
implying that the best parameters for the Milky Way lie somewhere in the range of parameter
values found for those simulations. In this work have aimed to provide models that can
be applied to the Milky Way using the observed value of v.. In this section we do so for
the Mao parameterizaton.
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Figure 10 shows the dark matter speed distributions for each of our galaxies (black
histograms) compared to best-fit models using the Mao parameterization defined by equa-
tion (2.7), along with our preferred model. We first evaluate the predictive strength of the
Mao parameterization by using vy = v. and escape speed given by equation (5.6). For the
third parameter, p, we make the simplifying assumption that one value should work well for
all galaxies. We use MCMC to find the best-fit value of p = 1.961 4 0.004. This version of
Mao performs well. Even so, our model given by equations (5.7)—(5.10) does a little better in
most cases. It provides a ~25% improvement from Mao with vy = v, and p = 1.961 judged
by the root-mean-squared error of the aggregate of the predicted distributions, pushing it
from RMSpao = 0.34 x 103 km ™' s down to RMSs5.7 = 0.26 x 103 km™'s.

Furthermore, this study can improve the Mao implementation by predicting the best value
for vy with a methodology similar to our model. In this, which we call our implementation
of the Mao parameterization,

/ / Ve ¢
_ 1
vo=d (100kms_1> ’ (C.1)
d' =40.670Tkms™!, and ¢ = 3.10 & 0.04. Additionally, the best fit value for p is

p=2.633+0.011. (C.2)

This framework performs very well, as shown by the cyan line in figure 10, although our
preferred model tends to perform slightly better; the root mean square error for our imple-
mentation of Mao across the aggregate of all twelve galaxies is RMSyfao = 0.28 x 1073 km™!s.
Although we do prefer the model described by equations (5.7)—(5.10) given its higher perfor-
mance, the results here show that if one’s preference is to use Mao, one could achieve almost
as accurate results by implementing our methods of determining vesc(v.) with equation (5.6)
and predicting vg for Mao using equation (C.1).

The MCMC methodology for these two implementations of the Mao model is similar
to that which this study uses to fit our preferred model, described in section 4.5. For the
Mao optimizations, we substitute equation (2.7) for f and use the appropriate parameter
vector 6, assuming flat priors. For the standard vy = v. Mao model, we use p € [1,5]. For
our implementation of Mao, d € [10,130]kms™!, e € [0.8,5], and p € [1,5].

D Circular speed metric

For completeness we provide figure 11, which plots this study’s observable proxy for circular
speed, v, = (U - q3>T§104K, versus the spherical ideal \/GM/Ry. The two exhibit a near
one-to-one relationship, with only a 4% scatter. Therefore, this study’s results are likely
insensitive to the choice of whether to use the ideal or observable circular speed.

E Halo integrals

Figure 12 compares halo integral performance for our model in purple verses a Maxwellian in
red. The Maxwellian’s halo integral tends to exhibit an excess at low speeds while falling too
low in the intermediate range. Our model’s integral provides better agreement with the data.
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ve = (U~ (;AS>T§104K) in our simulations to a spherical idealization of the circular speed /GM/Ry.
The one-to-one line on this scatter plot has a 0.96 72 coefficient of determination. This suggests that
the detailed choice of how we measure or characterize v. in the simulations is probably not crucial to
the success of our power-law characterizations in the paper.
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Figure 12. The purple lines represent the halo integrals for this work’s speed-distribution model
given by equations (5.7) through (5.10). The red lines represent that given by the simple Maxwellian.
The grey lines represent a standard implementation of the Mao model, where vy = v, and we use our
method of predicting the escape speed with equation (5.6). The truncation-strength p takes the best fit
value of 1.961. The cyan lines show Mao but using this study’s method of predicting the peak speed with
equation (C.1) and predicting the escape speed with equation (5.6). p takes the best-fit value of 2.633.
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