

Testing the near-far connection with FIRE simulations: inferring the stellar mass function of the proto-Local Group at $z > 6$ using the fossil record of present-day galaxies

Pratik J. Gandhi ¹ ¹★† Andrew Wetzel ¹ Michael Boylan-Kolchin ¹ Robyn E. Sanderson ^{1,3,4} Alessandro Savino ¹ ⁵ Daniel R. Weisz ¹ ⁵ Erik J. Tollerud ¹ ⁶ Guochao Sun ¹ ⁷ and Claude-André Faucher-Giguère ¹

¹Department of Physics and Astronomy, University of California - Davis, One Shields Avenue, Davis, CA 95616, USA

²Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Austin, TX 78712, USA

³Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA

⁴Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA

⁵Department of Astronomy, University of California, Berkeley, Berkeley, CA, 94720, USA

⁶Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

⁷CIERA and Department of Physics and Astronomy, Northwestern University, 1800 Sherman Avenue, Evanston, IL 60201, USA

Accepted 2024 May 31. Received 2024 May 27; in original form 2023 September 19

ABSTRACT

The shape of the low-mass (faint) end of the galaxy stellar mass function (SMF) or ultraviolet luminosity function (UVLF) at $z \gtrsim 6$ is an open question for understanding which galaxies primarily drove cosmic reionization. Resolved photometry of Local Group low-mass galaxies allows us to reconstruct their star formation histories, stellar masses, and UV luminosities at early times, and this fossil record provides a powerful ‘near-far’ technique for studying the reionization-era SMF/UVLF, probing orders of magnitude lower in mass than direct *HST/JWST* observations. Using 882 low-mass ($M_{\text{star}} \lesssim 10^9 M_{\odot}$) galaxies across 11 Milky Way (MW)- and Local Group-analogue environments from the FIRE-2 cosmological baryonic zoom-in simulations, we characterize their progenitors at $z = 6$ –9, the mergers/disruption of those progenitors over time, and how well their present-day fossil record traces the high-redshift SMF. A present-day galaxy with $M_{\text{star}} \sim 10^5 M_{\odot}$ ($\sim 10^9 M_{\odot}$) had ≈ 1 (≈ 30) progenitors at $z \approx 7$, and its main progenitor comprised ≈ 100 per cent (≈ 10 per cent) of the total stellar mass of all its progenitors at $z \approx 7$. We show that although only ~ 15 per cent of the early population of low-mass galaxies survives to present day, the fossil record of surviving Local Group galaxies accurately traces the low-mass slope of the SMF at $z \sim 6$ –9. We find no obvious mass dependence to the mergers and accretion, and show that applying this reconstruction technique to just low-mass galaxies at $z = 0$ and not the MW/M31 hosts correctly recovers the slope of the SMF down to $M_{\text{star}} \sim 10^{4.5} M_{\odot}$ at $z \gtrsim 6$. Thus, we validate the ‘near-far’ approach as an unbiased tool for probing low-mass reionization-era galaxies.

Key words: galaxies: evolution – galaxies: high-redshift – Local Group – dark ages, reionization, first stars.

1 INTRODUCTION

1.1 Motivating questions

The epoch of reionization (EoR), during which the hydrogen gas in the intergalactic medium went from being neutral to ionized, was one of the most important phase transitions in the history of the Universe. The current consensus is that energetic radiation from the first star-forming galaxies predominantly drove cosmic reionization, but major questions remain about the nature of the galaxies that contributed most to the overall ionizing photon budget.

Most models of reionization argue that low- to intermediate-mass galaxies contributed more total ionizing photons than brighter, more massive galaxies, because of their larger numbers and higher ionizing photon escape fractions (e.g. Kuhlen & Faucher-Giguère 2012; Wise et al. 2014; Robertson et al. 2015; Ma et al. 2018b) (though see e.g. Naidu et al. 2020, for an example of analyses that favour more massive galaxies for driving the bulk of reionization). To address this question of whether lower mass, fainter galaxies did indeed drive a majority of the reionization process, we need to understand the shape of the galaxy stellar mass function (SMF) and rest-frame ultraviolet luminosity function (UVLF) during the EoR at $z \gtrsim 6$. A key specific question is what is the slope of the galaxy SMF/UVLF at the low-mass/faint end at $z \gtrsim 6$?

Direct *HST* observations have provided strong constraints on the UVLF at $z \sim 6$ –9 for galaxies as faint as $M_{\text{UV}} \sim -17$, and studies

* E-mail: pjgandhi@ucdavis.edu; gandhipratik1995@gmail.com

† Frontera Computational Science Fellow

that leveraged the power of gravitational lensing have provided information about systems that are approximately two to three orders of magnitude fainter (Finkelstein et al. 2015; Bouwens et al. 2017; Livermore, Finkelstein & Lotz 2017; Atek et al. 2018, among others). More recently, *JWST* is returning exquisite measurements of high-redshift galaxies, with surveys like CEERS, JADES, and NGDEEP poised to push the frontier of the reionization-era galaxy SMF/UVLF down to fainter magnitudes (see Leung et al. 2023; Pérez-González et al. 2023; Navarro-Carrera et al. 2024). However, even deep *HST/JWST* imaging is likely unable to constrain the faintest (and most numerous) of these high-redshift galaxies during the EoR – as faint as $M_{\text{UV}} \sim -3$ to -6 at $z \gtrsim 6$ – making it difficult to study these likely drivers of reionization (e.g. Boylan-Kolchin et al. 2016; Weisz & Boylan-Kolchin 2017). Direct observations become substantially more uncertain in the regime where results come exclusively from gravitational lensing ($M_{\text{UV}} \gtrsim -15$), due to systematic uncertainties in lens models and magnification maps, and sometimes due to contamination from the lensing cluster itself (e.g. Bouwens et al. 2017; Atek et al. 2018), posing another limitation on directly measuring the low-mass/faint end slope of the SMF/UVLF during the EoR.

Beyond their potentially significant contributions to reionization, we also know that faint, low-mass galaxies constitute a majority of the galaxy population in the universe at all redshifts. Low-mass galaxies are also excellent probes of various astrophysical phenomena like stellar feedback, quenching due to reionization, enrichment from PopIII stars, and the nature of dark matter (DM). However, significant questions remain about their nature and population demographics at early cosmic times because of the difficulty of directly observing such faint galaxies. This provides further motivation for studying low-mass galaxies during the EoR, to build a holistic theory of galaxy formation across a wide range of masses.

1.2 A ‘near-far’ solution

A novel alternative to direct observations for studying low-mass/faint galaxies at $z \gtrsim 6$ has emerged in recent years (Weisz, Johnson & Conroy 2014c; Boylan-Kolchin et al. 2015, 2016; Weisz & Boylan-Kolchin 2017). This ‘near-far’ technique bridges the gap between near-field *HST/JWST* observations of low-mass galaxies in the Local Group (LG) and faint galaxies in the early universe. It leverages resolved photometry and colour–magnitude diagram (CMD) modelling of low-mass galaxies ($M_{\text{star}} \lesssim 10^9 M_{\odot}$) in the LG to reconstruct their stellar masses (M_{star}), star formation histories (SFHs), and rest-frame UV luminosities at $z \gtrsim 6$ (for example Brown et al. 2014; Weisz et al. 2014a, b; Geha et al. 2015; Skillman et al. 2017; Savino et al. 2023). Using the stellar fossil record of low-mass galaxies in the LG, one can infer the low-mass (faint) end slope of the SMF/UVLF during reionization, much deeper than direct observations at $z \gtrsim 6$ can.

Crucially, the LG is the only place in the universe where we can observe and reconstruct full SFHs for galaxies down to the ultra-faint regime ($M_{\text{star}} \lesssim 10^5 M_{\odot}$) using this resolved photometry technique. *HST* has already successfully done this for Milky Way (MW)/Andromeda (M31) satellites and out to ~ 1 Mpc, and *JWST* will make this possible for galaxies down to $\sim 10^5 M_{\odot}$ out to ≈ 2 – 3 Mpc (e.g. Weisz & Boylan-Kolchin 2019, *JWST*-GO-1617, PI: K. McQuinn). Additionally, for MW/M31 satellites and galaxies closer in, SFHs reconstruction is even possible down to even lower stellar masses of $\sim 10^4 M_{\odot}$ (Brown et al. 2014; Weisz et al. 2014a, b; Savino et al. 2023). Because these low-mass galaxies are likely the descendants of the faintest, lowest mass galaxies during reionization, the LG remains the only place in which this kind of complementary

technique to direct observations for studying the earliest galaxies is possible. Additionally, even for galaxies that are faint or low-mass at high redshift but still observable by *HST/JWST*, determining their stellar masses and UV luminosities is quite tricky due to large uncertainties in techniques used for modelling their SFHs (for example). The ‘near-far’ technique therefore probes a regime of galaxy formation that is beyond the scope of current and even upcoming observations with the largest ground- and space-based observatories. Even in the worst-case scenario of how low in mass (or faint) it can probe, it still provides a strong complementary approach to studying the galaxy SMF/UVLF at high redshift against which we can compare results from direct observations. Hence, rigorously stress-testing the near-far approach to quantify all sources of uncertainty is essential, to understand just how accurate the inference of the high-redshift low-mass galaxy population using the fossil record of present-day galaxies is.

1.3 Key uncertainties in the near-far approach

Previous studies like Weisz et al. (2014c) have inferred a faint-end UVLF slope at $z \gtrsim 6$ in this manner. However, a few critical questions remain about the efficacy of this near-far reconstruction technique. The first is related to the accuracy of the CMD-based method for reconstructing SFHs and UV luminosities, which includes uncertainties in both measurements and stellar evolution models. There is also a preponderance of evidence (from both LG and high-redshift observations) for the bursty nature of the SFHs of low-mass galaxies at early cosmic times (see McQuinn et al. 2010a, b; Weisz et al. 2012; Sparre et al. 2017; Ma et al. 2018b; Emami et al. 2021; Flores Velázquez et al. 2021; Furlanetto & Mirocha 2022; Looser et al. 2023; Pallottini & Ferrara 2023; Shen et al. 2023; Sun et al. 2023; Dressler et al. 2024), and the CMD-based reconstruction method can only probe down to a limiting baseline when it comes to short duty cycles of fluctuations in UV luminosity arising from bursty star formation. This further adds uncertainty to our ability to recover the slope of the reionization-era UVLF using the fossil record of LG galaxies. In this paper, we focus solely on testing how accurately the near-far technique infers the low-mass end slope of the SMF at $z \sim 6$ – 9 , and not the UVLF. In an upcoming paper, Gandhi et al. (in preparation), we will use synthetic observations of low-mass galaxies in the FIRE simulations to do so.

If one assumes that the overall galaxy distribution in the proto-LG is representative of the global galaxy population in the universe (Boylan-Kolchin et al. 2016, showed how this should be a reasonable assumption for progenitors of present-day ultra-faint and classical dwarf spheroidals), then a second key question about the near-far technique is how well the fossil record of surviving low-mass galaxies in the LG at $z = 0$ represents the true low-mass galaxy population in the proto-LG at $z \gtrsim 6$. This is uncertain because of two effects: (a) mergers of low-mass galaxies with each other over cosmic time, and (b) the accretion/disruption of low-mass galaxies as they fall into the central MW or M31 galaxy. Since reconstructing SFHs for low-mass galaxies at $z = 0$ only tells us what their total progenitor stellar mass was at $z \gtrsim 6$ but not how many progenitor galaxies that mass was distributed among, the fossil record contains virtually no information about the mergers and disruptions that led to the low-mass galaxy population we see at present day. Thus, mergers between low-mass galaxies in the proto-LG as well as low-mass galaxies accreting on to the central MW/M31 could potentially bias the inference of the slope of SMF at high redshift. Since the nature of mergers and disruptions of low-mass galaxies depends on baryonic physics, we need to consider fully baryonic simulations to model them instead

Table 1. Properties at $z = 0$ of the FIRE-2 simulations in our sample. ‘MW-analogues’ are simulations of isolated MW-mass systems with surrounding low-mass galaxies, while ‘LG-analogues’ contain a paired MW and M31 with surrounding low-mass galaxies. We list the initial masses of star particles and gas cells under ‘Baryonic Resolution’. We measure stellar masses for the central host galaxies within a spherical volume of radius 15 kpc from the galaxies’ centres, while M_{200m} is the total mass within their virial radius, R_{200m} . For the MW-analogues, we consider all low-mass galaxies within 2 Mpc from the host, while for the LG-analogues we consider all low-mass galaxies within 2 Mpc from the geometric centre of the two hosts.

Simulation name	Type of simulation	Baryonic resolution [M_\odot]	M_{star} of host(s) [$\times 10^{10} M_\odot$] at $z = 0$	M_{200m} of host(s) [$\times 10^{12} M_\odot$] at $z = 0$	R_{200m} of host(s) [kpc] at $z = 0$	Number of low-mass galaxies ($10^{4.5} \leq M_* \leq 10^9 M_\odot$) at $z = 0$	Reference [†]
m12i	MW-analogue	7100	6.3	1.1	328	34	A
m12f	MW-analogue	7100	8.5	1.6	368	58	B
m12m	MW-analogue	7100	12.0	1.5	360	80	C
m12b	MW-analogue	7100	8.2	1.3	350	53	D
m12c	MW-analogue	7100	6.1	1.3	342	85	D
m12r	MW-analogue	7100	1.8	0.96	304	50	E
m12w	MW-analogue	7100	5.5	0.91	301	86	E
Romeo & Juliet	LG-analogue	3500	7.3 & 3.7	1.1 & 0.92	317 & 302	152	D
Romulus & Remus	LG-analogue	4000	10.0 & 4.9	1.7 & 1.0	375 & 320	141	F
Thelma & Louise	LG-analogue	4000	7.7 & 2.7	1.1 & 0.94	332 & 310	143	D

Note.[†] Simulation first introduced at this resolution in A: Wetzel et al. (2016), B: Garrison-Kimmel et al. (2017), C: Hopkins et al. (2018a), D: Garrison-Kimmel et al. (2019a), E: Samuel et al. (2020), and F: Garrison-Kimmel et al. (2019b).

of just dark-matter-only simulations or other less comprehensive techniques. In this paper, we use the FIRE-2 simulations of galaxy formation to provide a theoretical characterization of how mergers, accretion, and disruption of low-mass galaxies in the proto-LG impact the near-far reconstruction technique for studying low-mass galaxies during the EoR.

2 METHODS

2.1 FIRE-2 simulations

We use the Latte (introduced in Wetzel et al. 2016) and ELVIS on FIRE (introduced in Garrison-Kimmel et al. 2019a) suites from the FIRE-2 cosmological baryonic zoom-in simulations (Hopkins et al. 2018a) of the Feedback In Realistic Environments (FIRE) project.¹ These simulations model seven isolated MW-analogue and three paired LG-analogue galaxies along with their surrounding low-mass galaxies. The three pairs of ELVIS simulations (ELVIS) have a mass resolution of $m_{\text{baryon,ini}} = 3500\text{--}4200 M_\odot$ ($m_{\text{dm}} \approx 2 \times 10^4 M_\odot$), and the other seven isolated hosts (Latte) have $m_{\text{baryon,ini}} = 7100 M_\odot$ ($m_{\text{dm}} = 3.5 \times 10^4 M_\odot$). The host haloes have total masses $M_{200m} \approx 1\text{--}2 \times 10^{12} M_\odot$, which are within observational uncertainties of the MW’s properties.² The central galaxy stellar masses are $M_{\text{star}} \approx 10^{10\text{--}11} M_\odot$. Crucially, these simulations reproduce the SMFs, radial distance distributions, and SFHs of low-mass galaxies in the LG (Wetzel et al. 2016; Garrison-Kimmel et al. 2019a, b; Samuel et al. 2020, 2021), providing a reliable sample of 882 low-mass galaxies at $z = 0$ to work with.

Table 1 lists the FIRE-2 simulations that we use along with their properties at $z = 0$, including baryonic resolution, central host(s) stellar mass, M_{200m} , R_{200m} , and the total number of low-mass galaxies with $10^{4.5} M_\odot \leq M_{\text{star}} \leq 10^9 M_\odot$ out to 2 Mpc from the isolated hosts or 2 Mpc from the geometric centre of the paired hosts.

The FIRE-2 simulations are run using GIZMO, a Lagrangian Meshless Finite Mass (MFM) hydrodynamics code (Hopkins 2015).

Each simulation includes an implementation of fluid dynamics, star formation, and stellar feedback based on the FIRE-2 numerical prescription. FIRE-2 models the dense, multiphase interstellar medium in galaxies and incorporates physically motivated, metallicity-dependent radiative heating and cooling processes for gas. These include free-free, photoionization and recombination, Compton, photoelectric and dust collisional, cosmic ray, molecular, metal-line, and fine structure processes. They account for 11 element species (H, He, C, N, O, Ne, Mg, Si, S, Ca, Fe) across a temperature range of $10\text{--}10^{10}$ K. The simulations also include the subgrid diffusion and mixing of these elements in gas via turbulence (see Escala et al. 2018; Hopkins et al. 2018a, for further details). Additionally, the FIRE-2 simulations model the global effects of cosmic reionization on gas using a spatially uniform, redshift-dependent meta-galactic UV/X-ray background based on an update to Faucher-Giguère et al. (2009),³ which we discuss further in Section 4.2.3.

Star particles in the FIRE-2 model form out of gas that is self-gravitating, Jeans-unstable, cold ($T < 10^4$ K), dense ($n > 10^3 \text{ cm}^{-3}$), and molecular (following Krumholz & Gnedin 2011). Each star particle represents a single stellar population, assuming a Kroupa (2001) stellar initial mass function. During formation, star particles also inherit the mass and elemental abundances of their respective progenitor gas cells. In FIRE-2, star particles evolve along standard stellar population tracks from STARBURST99 v7.0 (Leitherer et al. 1999). We also include the following time-resolved stellar feedback processes: core-collapse and white-dwarf (Type Ia) supernovae, continuous mass-loss, radiation pressure, photoionization, and photoelectric heating. FIRE-2 uses rates for core-collapse supernovae from STARBURST99 (Leitherer et al. 1999) and nucleosynthetic yields from Nomoto et al. (2006). Stellar wind yields, sourced primarily from O, B, and AGB stars, are from a combination of models from van den Hoek & Groenewegen (1997), Marigo (2001), and Izzard et al. (2004), synthesized in Wiersma et al. (2009). For white-dwarf supernovae, FIRE-2 uses rates from Mannucci, Della Valle & Panagia (2006) and nucleosynthetic yields

¹<https://fire.northwestern.edu>

²‘200m’ indicates a measurement relative to 200 times the mean matter density of the Universe.

³see <https://galaxies.northwestern.edu/uvb-fg09> for details on this 2011 December update, which was designed to reionise by $z \sim 10$, as was preferred by empirical constraints at the time these simulations were run.

from Iwamoto et al. (1999). For a more detailed discussion of the implementation of supernova feedback, see Hopkins et al. (2018b).

We generate cosmological zoom-in initial conditions for each simulation at $z \approx 99$ using the MUSIC code (Hahn & Abel 2011). These initial conditions are embedded within periodic cosmological boxes of length 70 to 172 Mpc. We save 600 snapshots per simulation from $z \approx 99$ to $z = 0$, with an average spacing of $\lesssim 25$ Myr. For all simulations we assume flat Lambda cold dark matter cosmology, using parameters broadly consistent with Planck Collaboration VI (2020): $h = 0.68\text{--}0.71$, $\Omega_\Lambda = 0.69\text{--}0.734$, $\Omega_m = 0.266\text{--}0.31$, $\Omega_b = 0.0455\text{--}0.048$, $\sigma_8 = 0.801\text{--}0.82$, and $n_s = 0.961\text{--}0.97$.

2.2 Catalogues of haloes and galaxies

We identify DM haloes and sub-haloes using the ROCKSTAR 6D-phase space finder (Behroozi, Wechsler & Wu 2013), according to the radius that encloses 200 times the mean matter density (R_{200m}), and we keep those haloes and sub-haloes that have bound mass fractions > 0.4 and at least 30 dark-matter particles each. We generate a halo catalogue at each of the 600 snapshots for each simulation, using only DM particles.

We then assign star particles to each halo and sub-halo in post-processing as follows (adapted from the method in Necib et al. 2019 and Samuel et al. 2020). The assignment varies slightly for $z = 0$ versus $z \geq 6$, as described below. At $z = 0$, given each (sub)halo's radius, R_{200m} , and $v_{\text{circ},\text{max}}$ from ROCKSTAR, we first identify all star particles whose position is within $0.8 R_{200m}$ (out to a maximum radius of 30 kpc) and whose velocity is within $2 v_{\text{circ},\text{max}}$ of each (sub)halo's centre-of-mass velocity. We then keep star particles whose (a) whose positions are within $1.5 R_{90}$ (the radius that encloses 90 per cent of the mass of member star particles) of both the centre-of-mass position of member stars and the halo centre (thus ensuring the galaxy centre is coincident with the halo centre) and (b) velocities are within $2\sigma_{\text{vel,star}}$ of the centre-of-mass velocity of member stars. We then iteratively repeat (1) and (2) until M_{star} , the sum of the masses of all member star particles, converges to within 1 per cent. At $z = 0$, we keep all (sub)haloes with at least six star particles and average stellar density $> 300 M_\odot \text{kpc}^{-3}$. These criteria ensure that we distinguish true galaxies from transient alignments between subhaloes and stars in the stellar halo of a more massive galaxy such as the central MW/M31-mass host.

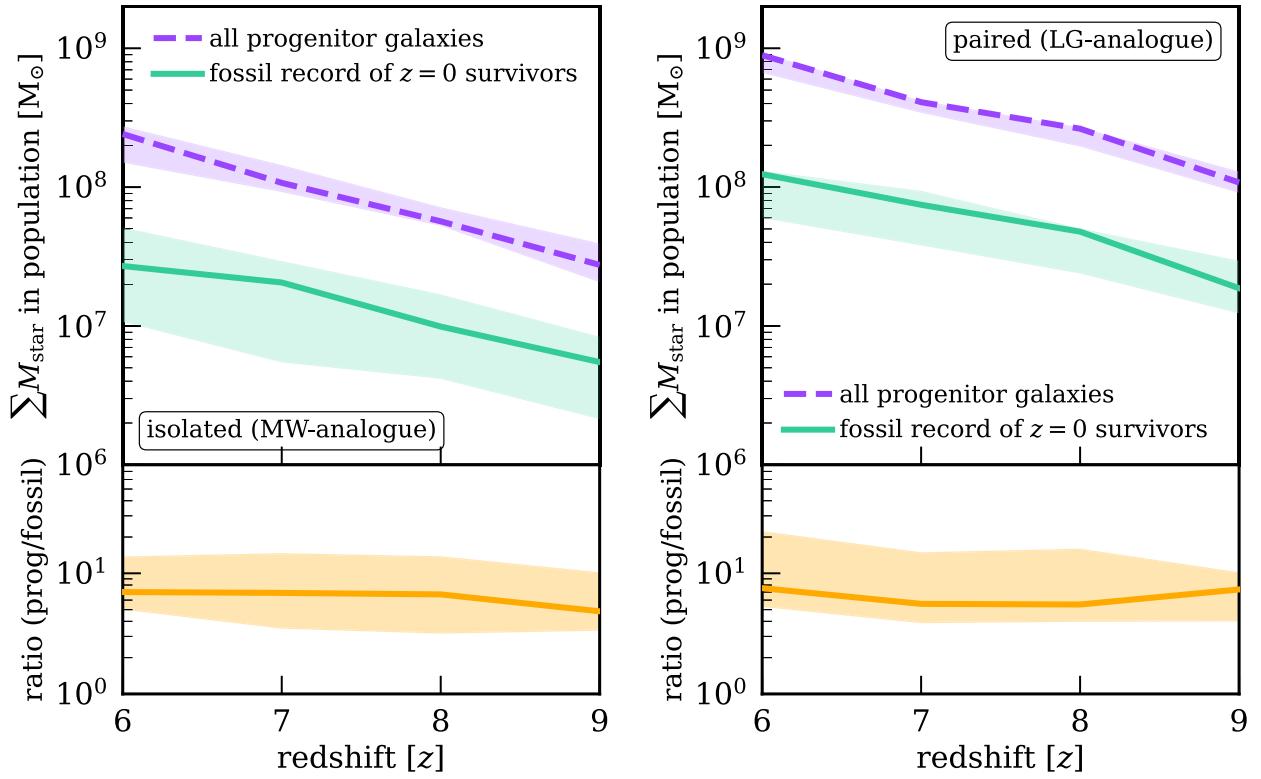
At $z \geq 6$, we use a similar approach but with different numerical parameters. The radius for including star particles is larger ($1.0 R_{200m}$ instead of $0.8 R_{200m}$), and we do not apply any cuts on velocity relative to the (sub)halo's centre-of-mass velocity. We use these parameters at high redshifts to improve the overall completeness of star particles assigned to a halo. Additionally, we keep all haloes with at least two star particles, given that we mostly only analyse galaxies at high redshift that are the progenitors of well-resolved galaxies at $z = 0$.

2.3 Selecting low-mass galaxies at $z = 0$ and identifying progenitors at high redshift

We use the same selection of low-mass galaxies at $z = 0$ throughout our analysis: all galaxies with $M_{\text{star}} \geq 10^{4.5} M_\odot$, out to 2 Mpc from the centre of each isolated MW-analogue or from the geometric centre of each LG-analogue pair. We do not include the central MW/M31-mass galaxies in our sample at $z = 0$. Across our suite of simulations, this is the typical maximum distance without significant contamination from low-resolution DM particles near the outskirts of each zoom-in region. With *JWST* making it possible to resolve stellar

populations farther out in the LG than *HST* and thus extending the reach of the near-far reconstruction technique, we choose a sample of low-mass galaxies to go as far out as possible. In an upcoming paper, Gandhi et al., we will explore how our results vary with selection distance of galaxies at $z = 0$.

We then track all the star particles in our selected galaxies at $z = 0$ back to $z = 6\text{--}9$ to identify their progenitor galaxies in the simulation volume that are (a) not contaminated by low-resolution DM particles, (b) have at least two star particles, and (c) have at least one star particle ending up in our galaxy sample at $z = 0$. Therefore, in most cases the galaxy sample at $z \geq 6$ does not include galaxies that eventually formed the central MW/M31-mass galaxy; however, in some figures we do include them (we note such cases; in particular Figs 1, 2, 4, and 6), mostly when we make comparisons to the total galaxy population in the entire progenitor systems of the present-day MW/LG-analogue systems. Additionally, the ‘main progenitor’ is the one with the highest stellar mass out of all the progenitor galaxies at a given redshift that contribute at least four star particles to the specific low-mass galaxy at $z = 0$. This additional criterion of four star particles is used to avoid spurious cases in which a high-redshift galaxy that is actually a progenitor of the central MW/M31-like host, gets tagged as a progenitor of a low-mass galaxy because for some reason it contributed one star particle to it (due to either physical or numerical effects).


Of all our low-mass galaxies at $z = 0$, a small number (≈ 7 per cent) have stellar mass traceable back to $z \geq 6$ but are not associated with any progenitor halo(es). These are mainly the lowest mass galaxies whose stellar mass at $z = 0$ is close to the resolution limit of our simulations, and because we only consider high-redshift galaxies with at least two star particles, their progenitor haloes likely contain only one star particle and thus do not end up in our catalogue. For these cases, we assert that the galaxy has one progenitor at that redshift, and we assign all the stellar mass that we track back to that single progenitor.

3 RESULTS

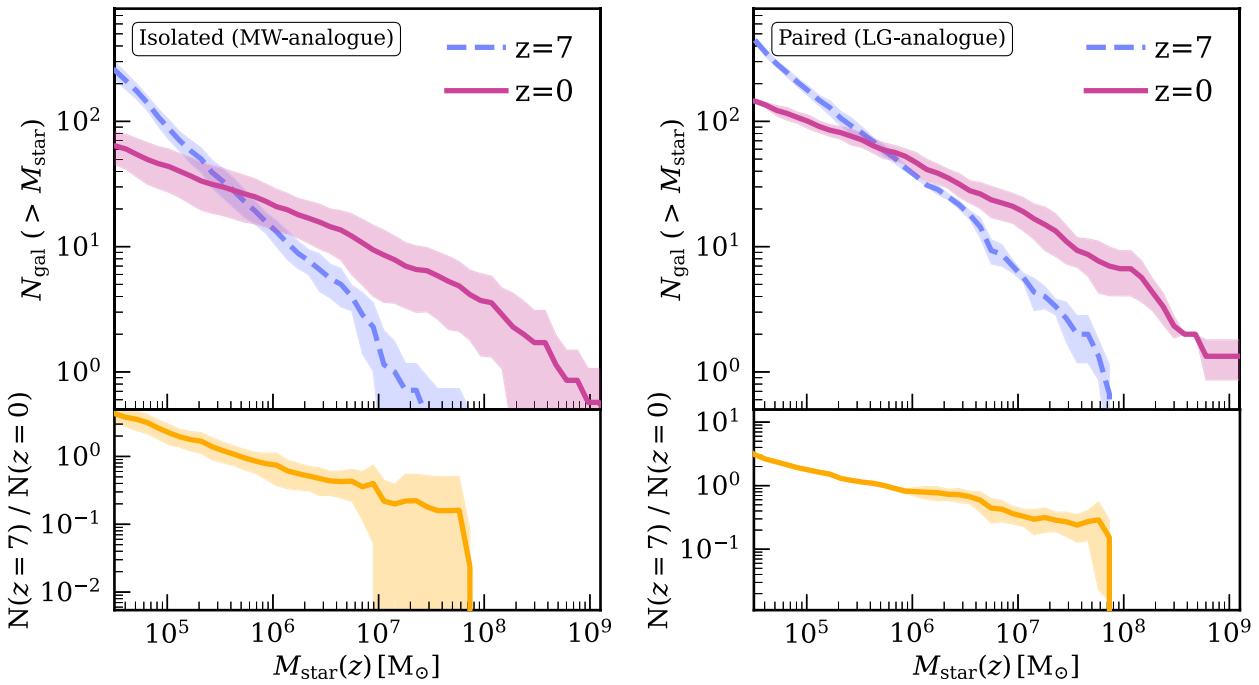
A reminder that in this paper we focus on testing the accuracy of inferring the slope of solely the reionization-era SMF (and not the UVLF) using the near-far reconstruction method. We show most of our key results in Sections 3.1, 3.2, 3.3, and 3.4 at our ‘fiducial’ redshift of $z = 7$. This is because the mid-point of the EoR – when the cosmic neutral hydrogen fraction is ≈ 0.5 – is empirically estimated to be between $z \sim 7$ and $z \sim 8$ (Planck Collaboration VI 2020). Towards the end of Section 3.4, we discuss how our key results vary (or not) from $z = 6\text{--}9$, to get a better sense of the range over a larger period during the EoR.

3.1 Total stellar mass budget at $z > 6$

Fig. 1 compares the total cumulative stellar mass across $z = 6\text{--}9$ of the entire proto-MW/LG progenitor system (including galaxies that eventually form the MW/M31), compared to the total stellar mass at those redshifts probed by the fossil record of surviving low-mass galaxies at $z = 0$. Each line shows the mean across the simulations, while each shaded region shows the 1σ simulation-to-simulation scatter. The left panels show our isolated MW-analogue simulations, while the right panels show the paired LG-analogue simulations; we separately show them because they have significantly different normalizations of the total mass on the y-axis. However, the overall results are similar: the total stellar mass in the entire proto-MW/LG progenitor system (including stars that end up in the MW/M31-mass

Figure 1. Total stellar mass in the progenitor system as a function of redshift. The line shows the mean across our simulations and the shaded region shows the 1σ simulation-to-simulation scatter. Left: trends for our isolated MW-analogue simulations. Right: same, but for the paired LG-analogue simulations. Our selection at $z = 0$ is all low-mass galaxies with $M_{\text{star}} \geq 10^{4.5} M_{\odot}$ out to 2 Mpc from an MW analogue or from the geometric centre of an LG analogue. Going back in time, we show the total stellar mass of all galaxies in the progenitor system of the present-day MW- and LG-analogue environments in purple (including galaxies that eventually form the MW/M31), and the total stellar mass from the stellar fossil record of low-mass galaxies at $z = 0$ (not including the MW/M31) in green. The sub-panel shows the ratio of the purple to the green curves: the total mass in progenitor systems was $8-10\times$ that probed by the stellar fossil record of low-mass galaxies in MW/LG environments at $z = 0$. Said differently, the total stellar mass of the progenitor systems is dominated by galaxies that eventually form the central MW/M31-mass hosts.

galaxies at $z = 0$) is $\approx 8-10\times$ the mass probed by the stellar fossil record of just the low-mass galaxies at $z = 0$. Note that in tracking back that fossil record, we consider only our sample of low-mass galaxies with $M_{\text{star}} \lesssim 10^9 M_{\odot}$ at $z = 0$, and not the fossil record of the central MW/M31-mass galaxies.


Fig. 1 (bottom sub-panels) shows that this ratio is fairly constant across redshifts, highlighting that the stellar fossil record of low-mass galaxies that survive to $z = 0$ only probes $\approx 0.1-0.125\times$ the total stellar mass of the progenitor system at $z \geq 6$. This is likely because the total stellar mass of the proto-MW/LG environment at $z \sim 6-9$ is dominated by the galaxies that eventually form the central MW/M31-mass hosts. We discuss the implications on the normalization of the inferred galaxy SMF at $z \geq 6$ in Section 3.4.

3.2 Galaxy mass functions at $z = 7$ versus $z = 0$

To provide an initial sense of how galaxy populations in MW/LG environments vary between $z = 0$ and $z = 7$, we examine the galaxy SMFs at both redshifts. At $z = 0$ we consider all low-mass galaxies (but not the central hosts) using our fiducial selection criteria out to 2 Mpc of an MW or LG analogue. At $z = 7$ we consider all galaxies in the progenitor systems, including those that eventually form the MW/M31. Fig. 2 shows the cumulative SMF at $z = 0$ versus $z = 7$ for both our isolated MW analogues and paired LG analogues. Again, the trends from both suites are similar. The bottom sub-panels show

the ratio of the SMFs at $z = 7$ to $z = 0$, with the orange line showing the mean. For the 1σ scatter (orange shaded region), we compute this ratio for each simulation then average across the suite.

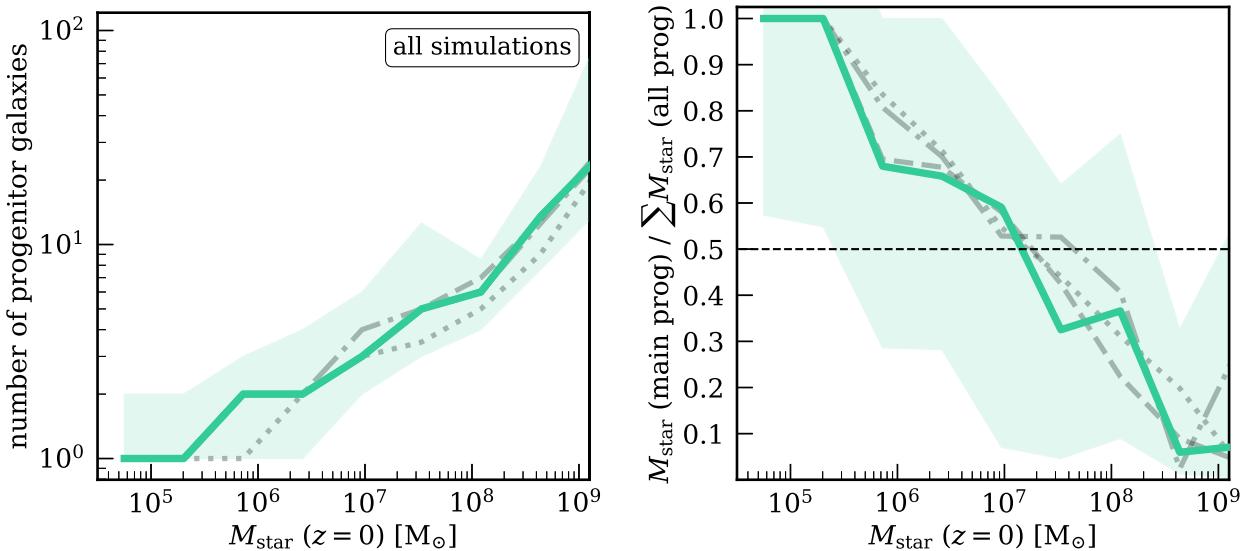
The SMF at $z = 7$ shows a key difference from the one at $z = 0$ – a steeper slope with a pivot point (where the two SMFs are equal) at $M_{\text{star}} \sim 10^{5.5} M_{\odot}$. By computing the best-fitting slopes for each simulation individually and then averaging across the suite, we find average values (almost identical in mean and median) of $\alpha(z = 7) \approx -0.85$ and $\alpha(z = 0) \approx -0.32$ for the cumulative SMFs, and $\alpha(z = 7) \approx -1.85$ and $\alpha(z = 0) \approx -1.32$ for the differential ones. This is a natural consequence of hierarchical structure formation of galaxies: low-mass galaxies in the proto-LG merge with each other to grow and can also accrete on to the central MW/M31-mass galaxy. Santistevan et al. (2020) showed, also using the FIRE-2 simulations, that the surviving low-mass galaxy population around MW-mass galaxies at $z = 0$ is a highly incomplete census of the low-mass galaxies that existed in the progenitor system that built up the MW/LG. They also showed that the redshift at which the number of galaxies at a given stellar mass peaks is lower for higher mass, which is another natural consequence of hierarchical structure formation. This hierarchical assembly, including mergers and disruptions, is precisely what might affect the inference of the high-redshift SMF/UVLF using the near-far reconstruction method (because tracking SFHs contains no information about mergers), and we characterize this effect in the rest of this paper.

Figure 2. Comparing cumulative galaxy SMFs at $z = 0$ and $z = 7$, for isolated MW-analogue simulations (left) and paired LG-analogue simulations (right). Our selection at $z = 0$ is all low-mass galaxies with $M_{\text{star}} \geq 10^{4.5} M_{\odot}$ out to 2 Mpc from an MW analogue or from the geometric centre of an LG analogue (not including the MW/M31-mass central galaxy). For the SMF at $z = 7$, however, we include all progenitor galaxies, including those that eventually merged into the MW/M31-mass galaxy. The magenta and blue curves show the mean across the simulations and the shaded regions show the 1σ simulation-to-simulation scatter. The sub-panel shows the ratio of the SMFs at $z = 7$ to $z = 0$. We compute average slopes, for the cumulative SMFs, of $\alpha(z = 7) \approx -0.85$ and $\alpha(z = 0) \approx -0.32$. The $z = 7$ slope is much steeper because there are more low-mass galaxies and the highest mass galaxies are less massive than at $z = 0$. This qualitative change in the low-mass galaxy population from $z = 7$ to 0 reflects hierarchical structure formation, including galaxies growing via mergers and low-mass galaxies getting destroyed as they accrete on to the central MW/M31-mass galaxy. Fig. A1 shows the differential version of these SMFs.

Appendix A and Fig. A1 show the differential (instead of cumulative) versions of these SMFs, with the same overall takeaways.

3.3 Progenitor galaxies at $z = 7$

3.3.1 How many high-redshift progenitors do galaxies at $z = 0$ have?


To address the question of mergers and disruption of progenitor low-mass galaxies in the proto-MW/LG, we investigate how many progenitors the present-day galaxies had at different redshifts. Fig. 3 (left panel) shows the median number of $z = 7$ progenitors that a low-mass galaxy at $z = 0$ in our entire suite of simulations has as the solid green curve, with the light green shaded region showing the 16–84th percentile scatter. We also show the median for $z = 6, 8$, and 9 ; there is qualitatively no change with redshift. For legibility, we do not show shaded regions for any redshift besides $z = 7$, because the scatter does not qualitatively change with redshift.

As Fig. 3 (left panel) shows, present-day ultra-faint galaxies with $M_{\text{star}} \sim 10^5 M_{\odot}$ have at most $\approx 1\text{--}2$ high-redshift progenitors (see also Fitts et al. 2018), while galaxies like the Large Magellanic Cloud (LMC) with $M_{\text{star}} \sim 10^9 M_{\odot}$ have $\approx 15\text{--}40$ high-redshift progenitors. Although this rise in the average number of progenitors with the present-day stellar mass of galaxies is also a natural consequence of hierarchical structure assembly, the number of progenitors at $z = 7$ rises quickly with increasing mass at $z = 0$, which SFH reconstruction does not reflect, because (on its own) it provides no information about past mergers or the number of progenitors.

3.3.2 Contribution of the main progenitor galaxy

SFH reconstruction, and therefore the near-far technique, inherently assumes that one progenitor contained all of the stellar mass at any given redshift. Since we demonstrate that galaxies at $z = 0$ can have numerous progenitors at $z \geq 6$, we investigate the importance of the single main stellar progenitor. Fig. 3 (right panel) shows, for our sample of low-mass galaxies at $z = 0$, the stellar mass of the single main progenitor relative to the total stellar mass in all progenitor galaxies at that redshift. The solid green curve shows the median at $z = 7$, with the 16–84th percentile scatter as the green shaded region. The light grey curves show the median at the other redshifts. The median trend does not show significant evolution with redshift. As with the left panel, we do not show shaded regions for the other redshifts for legibility, because there is no significant redshift variation.

The mass fraction of the main progenitor at $z = 7$ relative to the total mass in all progenitors is at almost 100 per cent for the lowest mass galaxies at $z = 0$. This makes sense, because these galaxies only have approximately one to two progenitors at $z \sim 6\text{--}9$. For LMC-like galaxies at the high-mass end ($\sim 10^9 M_{\odot}$) of our sample, the main progenitor contributed on average of 10–15 per cent of the total progenitor stellar mass at $z = 7$, likely because the total number of progenitors is much larger. Across the lower mass regime we are most interested in for near-far reconstruction ($M_{\text{star}} \lesssim 10^{6.5\text{--}7} M_{\odot}$), the single main progenitor still contributes ≥ 50 per cent of stellar mass and generally dominates the overall progenitor mass budget. This result offers confidence in the ability of SFH reconstruction and the near-far technique to infer the low-mass **slope** of the SMF at high

Figure 3. Total number of galaxy progenitors (with $M_{\text{star}} > 10^4 M_{\odot}$) at $z > 6$ (left) and the stellar mass contribution from the main stellar progenitor (right) for all low-mass galaxies within 2 Mpc of an MW or LG analogue at $z = 0$. We find no significant difference between MW- and LG-analogue environments, so we combine them here. The solid green curve shows the median across all simulations at $z = 7$, and the shaded region shows the 68 per cent simulation-to-simulation scatter. We also find little evolution across $z = 6\text{--}9$ in both the median and scatter (latter not shown). Left: the number of high-redshift progenitor galaxies increases with present-day stellar mass. Ultra-faint galaxies had only one to two progenitor galaxies (with $M_{\text{star}} > 10^4 M_{\odot}$) at $z \gtrsim 6$, while LMC-mass galaxies with $M_{\text{star}}(z = 0) \sim 10^9 M_{\odot}$ had $\sim 15\text{--}40$ progenitors. Right: the fractional contribution of the main progenitor to the overall stellar mass (from all progenitors) at a given redshift of a galaxy with a given $M_{\text{star}}(z = 0)$. This fraction decreases with present-day stellar mass: for ultra-faint galaxies today, the main progenitor contributed ≈ 100 per cent to the total progenitor stellar mass at $z \gtrsim 6$, and for LMC-mass galaxies today, the main progenitor contributed $\approx 10\text{--}15$ per cent. Thus, near-far reconstruction applied to galaxies with $M_{\text{star}}(z = 0) \lesssim 10^6 M_{\odot}$ is particularly straightforward, given that they typically had one to two progenitors. Furthermore, while more massive galaxies had a larger number of progenitors, at all masses up to $M_{\text{star}} \sim 10^7 M_{\odot}$, the typical main progenitor almost always contributes the majority ($\gtrsim 50$ per cent) of progenitor stars.

redshift, because the assumption/approximation that a single main progenitor dominated the mass budget at $z \geq 6$ is reasonable for galaxies with $M_{\text{star}}(z = 0) \lesssim 10^{6.5\text{--}7} M_{\odot}$, at least up to redshifts of $z \sim 8\text{--}9$. This result also agrees with that from Fitts et al. (2018), who showed similar trends for FIRE galaxies with present-day masses of $10^5 M_{\odot} \lesssim M_{\text{star}} \lesssim 10^7 M_{\odot}$.

3.4 How well the stellar fossil record today recovers the SMF of progenitor galaxies

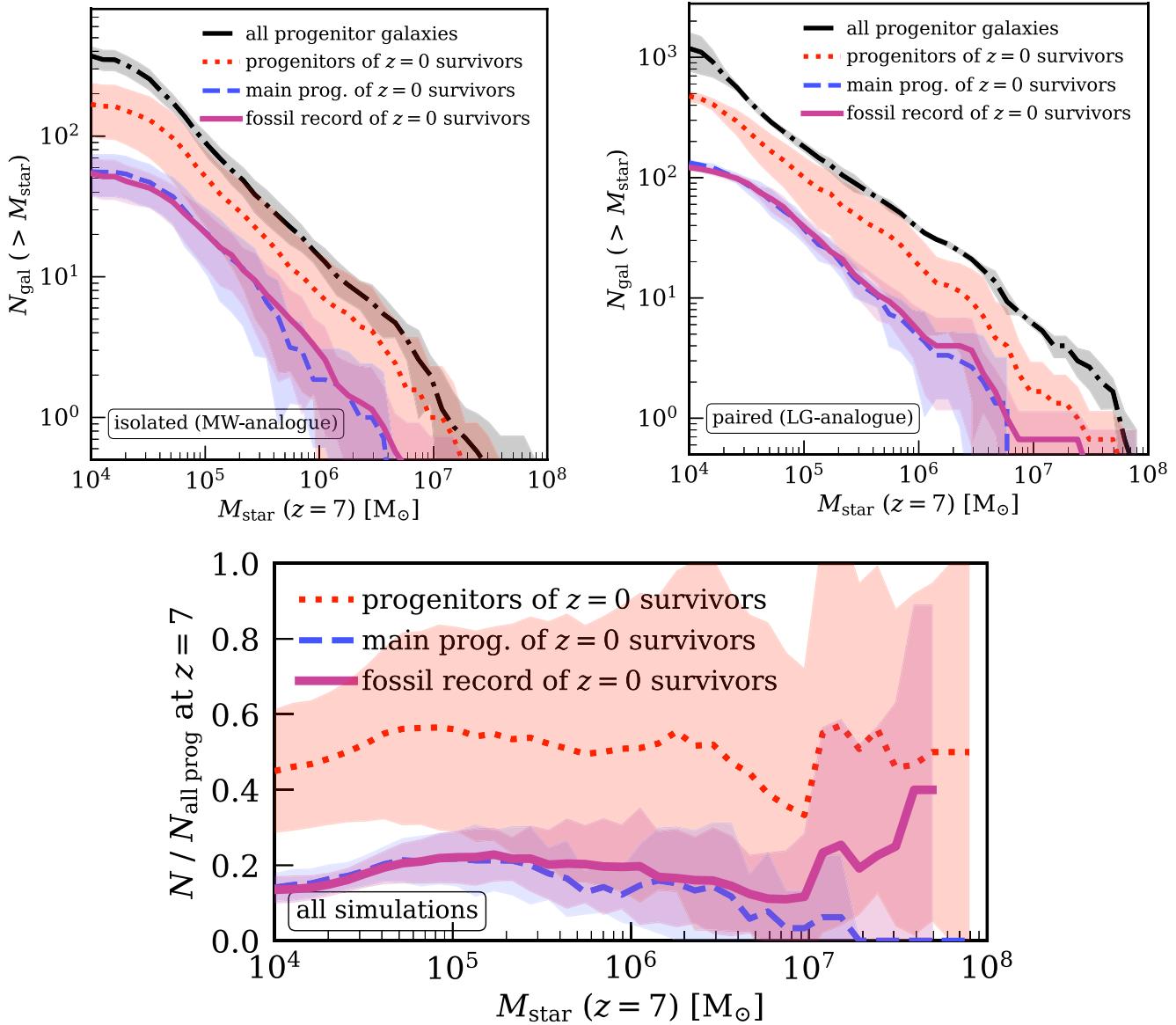

Here we present the key analysis and results of this paper: testing directly how well the near-far technique infers the slope of the SMF at the low-mass end at $z \sim 6\text{--}9$, assuming perfect CMD-based reconstruction of the SFHs of low-mass galaxies at $z = 0$. To test how well the stellar fossil record of low-mass galaxies at $z = 0$ recovers the overall SMF of the progenitor system at $z = 7$, we compare the following galaxy populations: (a) all galaxies in the progenitor system including those that eventually form (end up in) the MW/M31-mass galaxy, (b) all progenitor galaxies of surviving low-mass galaxies at $z = 0$ (except the central MW/M31-mass host), (c) main progenitor galaxies of surviving low-mass galaxies at $z = 0$, and (d) the populations probed by the stellar fossil record of surviving low-mass galaxies at $z = 0$.

Fig. 4 (upper panels) shows the cumulative SMFs for all four populations. We show this separately for the isolated MW-analogue environments and the paired LG-analogue environments, because the normalization of the total number of galaxies is quite different in the two cases, leading to different y-axis dynamic ranges. Each curve shows the mean across the simulations, while each shaded region

shows the 1σ simulation-to-simulation scatter. The overall shape of all four SMFs is qualitatively the same. The apparent flattening at the lowest masses ($\approx 10^4 M_{\odot}$) arises from the mass resolution limit of our simulations, and is not proof of a physical rollover or flattening in the SMFs.

To qualitatively compare the shapes/slopes of the SMFs, Fig. 4 (bottom panel) shows the ratios of the red, blue, and magenta curves to the black curve. We compute ratios for each simulation first and then average them across all simulations. The trends are similar for both the isolated MW-analogue and paired LG-analogue simulations, so we combine them in a single panel. All three curves in the bottom panel are fairly flat with stellar mass, although the scatter increases towards higher masses due to the smaller numbers of higher mass galaxies in our sample. The ratio of the fossil record SMF to the true SMF (magenta curve in the bottom panel) is fairly constant from $M_{\text{star}} \sim 10^4\text{--}10^{7.5} M_{\odot}$, which implies that the low-mass end slope of the SMF inferred using the stellar fossil record is similar to the slope of the ‘true’ SMF of all galaxies in proto-MW/LG-like environments at $z = 7$. This key result provides confidence in the ability of the near-far approach to recover the slope of the low-mass end of the SMF at $z \approx 7$. To provide a more quantitative demonstration of this agreement, we also discuss a comparison of the best-fitting slopes later on in this section and in Fig. 6.

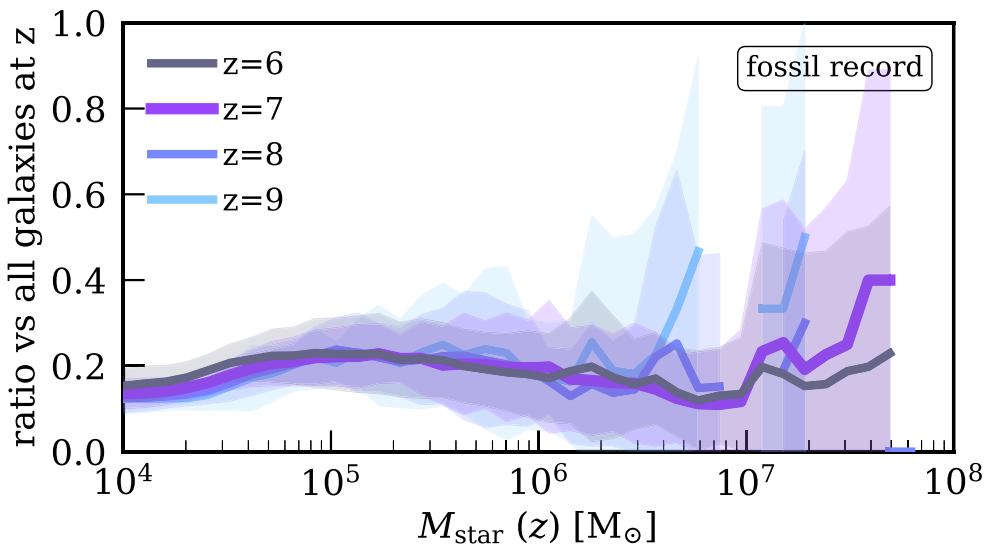

To first order, the slope/shape of the low-mass end of the SMF at high redshift is most important when considering the question of what reionization-era galaxy populations looked like, and whether low-mass galaxies were dominant in driving reionization compared to more massive ones. However, a secondary consideration is that of the normalization (total number of galaxies) of the high-redshift

Figure 4. The accuracy of near-far reconstruction of the SMF at $z=7$, using the fossil record of all low-mass galaxies at $z=0$ out to 2 Mpc from an MW- or LG-analogue, excluding the MW/M31-mass host galaxy. Top row: the cumulative SMF at $z=7$ for the following galaxy populations: (a) every galaxy in the progenitor system, including those that eventually form (end up in) the MW/M31-mass galaxy (dash-dotted black), (b) all progenitors of surviving low-mass galaxies at $z=0$ (dotted red), (c) main progenitors of surviving galaxies at $z=0$ (dashed blue), and (d) the fossil record of surviving galaxies at $z=0$, assuming that all stellar mass at $z=7$ was in a single progenitor, as one would infer from the SFH at $z=0$ (solid magenta). The curves show the mean across simulations and the shaded regions show the 1σ simulation-to-simulation scatter, for the isolated MW-analogue (left) and LG-analogue (right) environments. Bottom: ratio of each progenitor sub-population (coloured curves) to the total progenitor population (black curve). In this panel, we show results for all the simulations combined, because there is no significant difference in normalization between the MW-analogues and LG-analogues. The magenta curve shows the ‘near-far’ approach of using the SFHs from the stellar fossil record at $z=0$: while the total number of galaxies inferred at $z=7$ is only 15–20 per cent of the true number of all progenitor galaxies, the key result is that this ratio is nearly flat, which means that the ‘near-far’ approach can recover the low-mass end slope/shape in an unbiased manner. Fig. A2 shows the differential version of these SMFs and ratios, with the same takeaways.

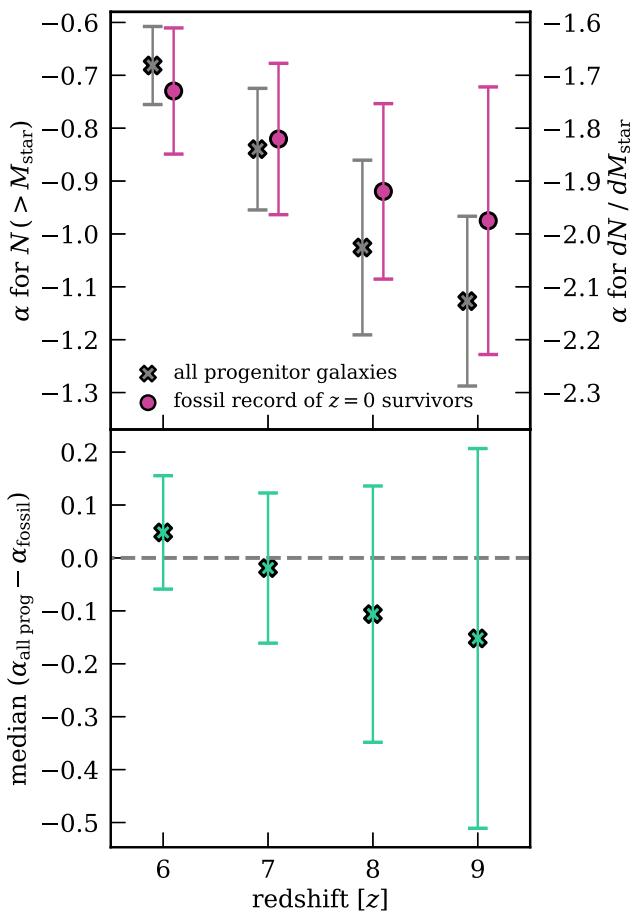
SMF, and Fig. 4 (bottom panel) shows that the stellar fossil record of galaxies at $z=0$ only recovers 15–20 per cent of the ‘true’ total number of galaxies in the proto-MW/LG progenitor system at $z=7$. This is a natural consequence of the mergers and disruption of low-mass galaxies, wherein they can merge among themselves and can also accrete on to the central MW/M31-like host galaxy. The dotted red line for all progenitors of survivors at $z=0$, in the bottom panel, suggests that ≈ 50 per cent of the number of low-mass galaxies in

the progenitor system at $z=7$ merge into the MW/M31-mass galaxy by $z=0$, and are therefore not recoverable using the fossil record of low-mass galaxies surviving at present day. However, because this accretion is fairly mass-independent as the relatively flat nature of the dotted red curve shows, it does not bias the slope of the SMF at $z=7$ inferred using the stellar fossil record of surviving low-mass galaxies at $z=0$. Finally, this bottom panel of Fig. 4 highlights the following: ≈ 50 per cent of low-mass galaxies in the proto-LG environment at

Figure 5. The same as the solid magenta curve in Fig. 4 (bottom), but showing redshifts from $z = 6$ to $z = 9$, in all cases using the SFH from the stellar fossil record of surviving galaxies at $z = 0$ to infer $M_{\text{star}}(z)$, assuming all stellar mass was in a single progenitor. We find qualitatively no change from $z = 6\text{--}9$, so the ‘near-far’ approach is robust and unbiased for recovering the slope of the SMF at the low-mass end across the likely redshift range of reionization.

$z = 7$ merge into the central host, $\approx 15\text{--}20$ per cent of them show up in the fossil record of surviving low-mass galaxies at $z = 0$, and the remaining $30\text{--}35$ per cent account for the numerous progenitors of surviving low-mass galaxies at $z = 0$, whose numbers are not traced by the fossil record.

Appendix B shows the differential (instead of cumulative) version of these SMFs, with the same overall takeaways. Furthermore, Appendix C shows the result for the fossil record curve in Fig. 4 (bottom), but for each simulation separately, instead of averaging across the entire suite. This demonstrates that this result is relatively robust for individual simulations as well, and is not simply a consequence of averaging across our suite.


We perform the same tests at $z = 6, 8$, and 9 , to study the validity of the near-far technique across a larger time period during the EoR. Fig. 5 shows how the magenta curve (ratio of the fossil record inference to the overall progenitor population) in the bottom panel of Fig. 4 behaves as a function of progenitor redshift. The mean and scatter are qualitatively the same across the entire redshift range. This suggests that SFH reconstruction and the stellar fossil record are able to recover the low-mass end slope of the SMF at $z = 6\text{--}9$ fairly accurately, while recovering $15\text{--}20$ per cent of the total number of galaxies (that is, the normalization of the SMF). The result at $z = 9$ (lightest blue curve) is the least robust, likely in part because of the smaller sample of galaxies in our simulations at such early time.

As a more quantitative comparison of slopes, Fig. 6 compares best-fitting low-mass slopes from (a) the SMFs of all galaxies in the progenitor system (black crosses; same as dash-dotted black curve in Fig. 4), and (b) the SMFs inferred from the fossil record of surviving low-mass galaxies at $z = 0$ (magenta circles; same as the solid magenta curve in Fig. 4). We measure the low-mass slope by fitting a power law to the SMF for each simulation across $M_{\text{star}} = 10^{4.5}\text{--}10^{6.5} M_{\odot}$. We choose this mass range to avoid the unphysical flattening of the SMFs at $M_{\text{star}} \lesssim 10^{4.5} M_{\odot}$ from the resolution limit of our simulations, and to avoid

the turnover at higher masses where the SMF transitions from power-law to exponential behaviour, assuming a Schechter function shape.

Fig. 6 (top) shows the best-fitting slopes for both populations versus redshift, averaged across all simulations. We show slopes fit to the cumulative SMF on the left y-axis and those independently fit to the differential SMF on the right y-axis. We find that although the agreement between the slope of the ‘true’ SMF and the SMF inferred from the fossil record (as an average across our simulations) is best at $z = 6\text{--}7$ and gets somewhat worse with increasing redshift, the median slopes still agree within 68 per cent scatter, adding further confidence to the validity of near-far technique. Additionally, we find that the SMFs steepen with increasing redshifts, with the average slopes for the cumulative SMFs going from (a) $\alpha \approx -0.68$ at $z \approx 6$ to $\alpha \approx -1.13$ at $z \approx 9$ for the SMF of all galaxies in the progenitor system, and (b) $\alpha \approx -0.73$ at $z \approx 6$ to $\alpha \approx -0.98$ at $z \approx 9$ for the SMF inferred using fossil record reconstruction. The average slopes of the corresponding differential SMFs go from (a) $\alpha \approx -1.68$ at $z \approx 6$ to $\alpha \approx -2.13$ at $z \approx 9$ for the SMF of all progenitor galaxies, and (b) $\alpha \approx -1.73$ at $z \approx 6$ to $\alpha \approx -1.98$ at $z \approx 9$ for the fossil-inferred SMF. We verify, by independently computing differential SMFs and their average slopes, that the relation $\alpha_{\text{diff}} = \alpha_{\text{cumul}} - 1$ still holds true.

Since the objective of this study is to stress-test the accuracy of the near-far technique, rather than commenting on the exact low-mass slope of the SMF at $z \gtrsim 6$, Fig. 6 (bottom) shows a more direct and self-consistent comparison, via the difference in slopes between the SMFs of the two populations at a given redshift. We compute the difference individually within each simulation first and then compute median values and 68 per cent scatter across all simulations. At $z \sim 6\text{--}7$, the median difference in slopes is ≈ 0 , with the scatter being within ≈ 15 per cent. Although the median difference increases with increasing redshift, it is still only up to ≈ 0.15 even at $z = 9$, which demonstrates the accuracy of near-far reconstruction.

Figure 6. The accuracy of history-based reconstruction of the low-mass end slopes of the SMF, at different redshifts. Top: best-fitting slopes for the SMF of all galaxies in the progenitor system (dash-dotted black curves from Fig. 4 top panels) as black crosses, versus those for the SMF derived from the fossil record (solid magenta curves from Fig. 4 top panels) as magenta circles, across $z = 6\text{--}9$. Each point shows the median value across all simulations, and the error bar shows the 68 per cent simulation-to-simulation scatter. The left y-axis shows the slope for the cumulative SMF, while the right y-axis shows the slope for the corresponding differential SMF. Finally, the grey dashed line at a difference of zero is to guide the eye. Bottom: a more direct comparison, showing the median and 68 per cent scatter of the *difference* in slope between the SMF of all galaxies and the SMF inferred from the fossil record. The difference is computed first for each simulation separately and then averaged. Both panels show good agreement within 1σ between the two slopes, especially at $z = 6$ and $z = 7$. Although the agreement is worse at higher redshifts, it is still within 1σ simulation-by-simulation scatter, and the median difference in slope remains within ≈ 0.15 up to $z = 9$.

4 SUMMARY, CAVEATS, AND DISCUSSION

4.1 Summary of key results

(i) *Primary significance of the present-day stellar fossil record:* the fossil record of surviving low-mass galaxies in the LG at $z = 0$ probes $\approx 0.1\text{--}0.125 \times$ the total stellar mass of all galaxies in the progenitor system (including the progenitors of the MW/M31) at $z = 6\text{--}9$ (Fig. 1). Said differently, ≈ 90 per cent of the stellar mass (and ≈ 50 per cent of the number of galaxies) in the proto-MW/LG environment ends up forming (gets accreted into) the central MW/M31-like host galaxy.

(ii) *Comparing galaxy SMF at $z = 0$ and $z = 7$:* the SMF at $z = 7$ is much steeper ($\alpha_{\text{cumul}} \approx -0.85$) than at $z = 0$ ($\alpha_{\text{cumul}} \approx -0.32$). This reflects the hierarchical formation and growth of galaxies, with lower mass systems merging to form higher mass ones over cosmic time (Figs 2 and A1).

(iii) *Number of high-redshift progenitors and importance of the main progenitor:* for galaxies at $z = 0$, the average number of progenitor galaxies at $z = 7$ rises sharply with present-day stellar mass, going from approximately one to two for ultra-faint galaxies to ≈ 30 for LMC-mass galaxies. The fractional stellar mass contribution of the main progenitor to the overall mass of all progenitors at $z = 7$ drops from ≈ 100 per cent to $\approx 10\text{--}15$ per cent from the ultra-faint to the LMC-mass regimes, but the main progenitor still dominates the high-redshift population for the lower mass galaxies we are interested in at $M_{\text{star}} \lesssim 10^7 M_{\odot}$. These results are similar for galaxies in MW- and LG-analogue environments, and fairly consistent from $z = 6\text{--}9$ (Fig. 3).

(iv) *Near-far reconstruction accurately infers the slope/shape of the SMF at low masses, without significant bias, at $z \sim 6\text{--}9$:* Assuming perfect SFH reconstruction using CMD modelling and using the stellar fossil record of low-mass galaxies at $z = 0$ in MW- and LG-analogue environments, we show recovery of 15–20 per cent of the total number of all progenitor galaxies at $z \geq 6$. More importantly however, the inferred slope/shape at $z \sim 6\text{--}9$ is accurate (within 1σ) at $M_{\text{star}} \lesssim 10^{8.5} M_{\odot}$, at least down to $M_{\text{star}} \approx 10^{4.5} M_{\odot}$, the resolution limit of our simulations (Figs 4, 5, 6, A2, and A3).

4.2 Caveats

4.2.1 How representative is the proto-LG of the overall universe at $z > 6$?

We show that the stellar fossil record of low-mass galaxies in the LG at $z = 0$ provides an unbiased inference of the slope of the SMF of the LG’s progenitor system at $z \geq 6$. However, the concern remains: does the progenitor system of the LG accurately represent the overall galaxy population at high redshift? This raises the question of whether the volume of the MW/LG’s progenitor system at $z \sim 6\text{--}9$ is large enough to be typical of the global galaxy population at those epochs. Boylan-Kolchin et al. (2016) show, using the ELVIS suite of dark-matter-only cosmological zoom-in simulations (Garrison-Kimmel et al. 2014), that the proto-LG spanned a comoving volume of $\sim 350 \text{ Mpc}^3$ at $z \approx 7$; equivalent to the volume of the Hubble Ultra-Deep Field (HUDF) at those redshifts. They also showed that the DM halo mass function of the proto-LG at $z \approx 7$ agrees well with the cosmological expectation from the Sheth–Tormen mass function (Sheth, Mo & Tormen 2001).

We will further dig into this question in a future paper, Gandhi et al., using our baryonic FIRE simulations, by comparing the SMFs at $z \sim 6\text{--}9$ that we infer from our MW- and LG-analogue simulations to the SMFs from the high-redshift suite of FIRE-2 simulations (introduced in Ma et al. 2018a, 2019). In that upcoming work, we will also present a comparison of UVLFs at $z \sim 6\text{--}9$ that we did not show in this paper. Ma et al. (2018a, 2019) already benchmarked the SMFs/UVLFs from the high-redshift FIRE simulations against those from deep direct observations, and the FIRE-2 values agree well with *HST*-based SMFs/UVLFs at $z \gtrsim 6$ down to $M_{\text{star}} \sim 10^7 M_{\odot}$ and $M_{\text{UV}} \sim -12$ at $z \approx 6$. The baryonic mass resolution of these high-redshift simulations is good enough ($M_{\text{star}} \sim 100 M_{\odot}$) to provide SMFs down to $M_{\text{star}} \sim 10^3 M_{\odot}$. Thus, the FIRE high-redshift suite of simulations provides an excellent theoretical benchmark to the global, unbiased (to the extent to which deep *HST* fields are unbiased)

population of low-mass galaxies against which to compare the SMFs inferred from our suite of MW/LG-like simulations at $z = 0$.

4.2.2 Limits of resolution

The FIRE-2 MW/LG-like simulations we use have baryonic mass resolutions of 3500–7100 M_\odot , so we cannot probe galaxies with $M_{\text{star}} \lesssim 10^4 M_\odot$. At $z = 0$, our galaxies have at least six to eight star particles, which our tests show is sufficient to consider them real galaxies with reasonable SFHs (as was also demonstrated in comparisons to LG observations in Wetzel et al. 2016 and Garrison-Kimmel et al. 2019a). Although at $z \geq 6$ we adopt a lower threshold of a minimum of two star particles in order to be as complete in capturing all progenitor galaxies as possible, we believe this to be a reasonable choice given that, at a specific reionization-era redshift, our focus is on how much stellar mass each progenitor galaxy is contributing to the descendant at $z = 0$, and not so much with the specific SFH of the progenitor before the target redshift.

Additionally, we have carried out tests using a new ultra-high resolution MW-analogue simulation (Wetzel et al. in preparation) with a baryonic mass resolution of 880 M_\odot , to validate that the SFHs of these extremely low-mass galaxies with ≥ 2 star particles is reasonably consistent across different resolution levels. We plan to present these resolution tests as well as results on near-far reconstruction down to lower mass limits $M_{\text{star}} \approx 10^3$ – $10^{3.5} M_\odot$ in an upcoming paper, Gandhi et al. Finally, the high resolution ($M_{\text{star}} \sim 100 M_\odot$) of the high-redshift suite of FIRE simulations that we will be comparing against in the upcoming work (Gandhi et al. in preparation) will allow us to push this limit as well, as discussed in Section 4.2.1.

4.2.3 UV background in FIRE-2

As mentioned in Section 2.1, the FIRE-2 simulations include a meta-galactic UV/X-ray background from Faucher-Giguère et al. (2009) to model the effects of reionization on cosmic gas. This older model leads to an early timeline of reionization, with an average neutral hydrogen fraction of 0.5 by $z \approx 10$, as opposed to the measurements at $z \approx 7.8$ from state-of-the-art observations (such as Planck Collaboration XLVII 2016). Additionally, these simulations inadvertently include erroneous heating (due to cosmic rays) of neutral gas at ≤ 1000 K at $z \gtrsim 10$ (Wetzel et al. 2023). At these extremely high redshifts (before reionization occurs), this spurious cosmic ray heating reduced star formation in low-mass haloes. This is perhaps not as major of an issue, since it acts in the same direction as the too-early reionization UV/X-ray background, and it does not have an effect after reionization begins – so the comparisons we make between $z = 0$ and $z = 6$ – 9 in this paper remain self-consistent. That being said, to more comprehensively address these concerns, in future work (Gandhi et al. in preparation), we will analyse FIRE-2 simulations re-run without the spurious cosmic ray heating issue, and using an updated model for the UV background (Faucher-Giguère 2020), which leads to an average reionization time of $z \approx 7.4$. We will repeat our characterization of the near-far technique using these simulations; our initial analysis does not show any significant deviations.

4.3 Discussion

We show that by reconstructing SFHs for galaxies down to $M_{\text{star}} \sim 10^{4.5} M_\odot$ at $z = 0$, the ‘near-far’ reconstruction technique accurately

recovers the slope of the low-mass end of the galaxy SMF at $z \sim 6$ – 9 in the proto-LG. Thus, it can provide a powerful complementary approach to direct observations of low-mass galaxies at $z \geq 6$ by probing significantly lower in mass than even the deepest *HST/JWST* lensing fields.

We showed that the question of mergers and disruption of low-mass galaxies over cosmic time from the proto-LG at $z \gtrsim 6$ to the LG at $z = 0$ does *not* bias the inference of the low-mass slope of the SMF at $z \gtrsim 6$, even if it does only recover 15–20 per cent of the normalization at all masses we consider. This normalization issue consists of two effects: low-mass galaxies merging with each other and low-mass galaxies merging into (getting disrupted by) the MW/M31-mass host galaxy. We disentangled these two effects, because we show that ≈ 50 per cent of the total number of galaxies in the entire progenitor system at $z \approx 7$ end up forming the central MW/M31-mass galaxy, and that this effect is constant with respect to galaxy mass, such that it still does not affect inferences of the slope of the high-redshift SMF. Of the remaining ≈ 50 per cent of galaxies in the progenitor system at $z \approx 7$, information about 30–35 per cent of them is lost because of mergers between low-mass galaxies before $z = 0$, leaving us with recovery of 15–20 per cent of the overall total number of galaxies in the progenitor system at $z \gtrsim 6$ from the stellar fossil record of surviving low-mass galaxies at $z = 0$. Most importantly, none of these merger, disruption, and accretion effects appear to bias the inferred low-mass end slope of the reionization-era SMF in the proto-LG.

Using the stellar fossil record of low-mass galaxies at $z = 0$ in our simulations, we infer an average low-mass end slope of the SMF $\alpha_{\text{cumul}} \approx -0.73$ to -0.98 from $z \sim 6$ – 9 (that is, $\alpha_{\text{diff}} \approx -1.73$ to -1.98). In addition, the average low-mass end slope of the ‘true’ SMF for the proto-MW/LG progenitor systems in our simulations is $\alpha_{\text{diff}} \approx -1.68$ to -2.13 . Comparing this to the established values of the low-mass end slope from the literature, we find generally good agreement in most cases. Grazian et al. (2015) used deep *HST*, *Spitzer*, and VLT imaging in the CANDELS-UDS, GOODS-South, and HUDF fields to compute the SMF at $3.5 < z < 7.5$ down to $M_{\text{star}} \sim 10^8 M_\odot$. They found an average low-mass end slope of $\alpha_{\text{diff}} \approx -1.55$ over $5.5 < z < 6.5$, and $\alpha_{\text{diff}} \approx -1.88$ over $6.5 < z < 7.5$, which agree broadly with our values. Additionally, we find agreement with the average slopes from Stefanon et al. (2021), who measured SMFs from $z \sim 6$ – 10 using Lyman-break galaxies from the CANDELS and various *HST* deep fields. They measured average $\alpha_{\text{diff}} \approx -1.88$ to -2.00 down to $M_{\text{star}} \sim 10^7 M_\odot$ from $z \sim 6$ – 9 .

Additionally, we find that our median slopes (for both the ‘true’ SMFs of all galaxies in the progenitor systems, as well as the SMFs inferred from the fossil record) are broadly consistent with the inferences of the faint-end UVLF slope made by Weisz et al. (2014c, and references therein). They used the actual stellar fossil record from observations of 37 LG low-mass galaxies, and although their direct inferences are presented only up to $z \sim 5$ (with an average $\alpha_{\text{diff}} \sim -1.57$), we find that our slopes agree well with their extrapolations to $z \sim 6$ – 9 . Also, Weisz et al. (2014c) did not find any signs of a rollover in the slope down to very faint (low-mass) regimes, and neither do we (to the extent that we can probe given our simulation resolution). Note, however, that when compared to low-mass end UVLF slopes from recent *JWST* observations from CEERS, our slopes at $z \sim 9$ are somewhat shallower relative to those from Leung et al. (2023), who measure an average value of $\alpha_{\text{diff}} \approx -2.45$ down to $M_{\text{UV}} \approx -17.35$ at $z \sim 9$. A caveat here is that their study presented inferred UVLFs, while we only discuss SMFs in their paper, so a direct comparison may not be the most reliable. In an upcoming paper (Gandhi et al. in preparation), we will present

inferences of the UVLF at $z \sim 6$ –9 from our simulations, and make further, more direct comparisons with the established literature.

Thus, we showed that although the near-far technique using low-mass galaxies in the LG is incomplete without reconstructing the entire fossil record of the MW and M31 themselves, this incompleteness has an impact only when considering the normalization of the inferred SMF at $z \gtrsim 6$. It does not affect the inference of the shape/slope of the SMF, especially at low masses. This is encouraging, because reconstructing the full archaeological record of the MW and M31 is difficult, despite the advent of chemo-dynamical methods to sort through merger and accretion histories (e.g. Cunningham et al. 2022; Horta et al. 2024). Recently, Brauer et al. (2022) showed that when studying the merger/accretion histories of the faintest, lowest mass galaxies that formed the MW’s stellar halo, even chemo-dynamical techniques are likely limited. We show that applying the near-far technique to only low-mass galaxies in the LG and not to the MW/M31 themselves is an effective approach, and that we can trust the slopes/shapes of the inferred SMF at high redshift.

Of course, all of this assumes that we can trust the accuracy of CMD-based reconstruction of the SFHs of galaxies today. One potential issue is how well one can get resolved photometry for all stars in the galaxy. *JWST* is poised to improve upon existing *HST* measurements in this regard, given its larger aperture and increased range and sensitivity in the infrared (Weisz et al. 2023). A second source of uncertainty lies in distinguishing between old stellar populations that are 1–2 Gyr apart in age, in the heterogeneity of the various stellar evolution tracks used for modelling CMDs, and in the inherent uncertainty in stellar evolution models themselves (see Gallart, Zoccali & Aparicio 2005, for a comprehensive discussion of the latter). *JWST*, again, will help with the former due to its infrared imaging capabilities, because most old stellar populations would be brightest in the infrared. In Gandhi et al. (in preparation), we will use synthetic observations of low-mass FIRE-2 galaxies to test the effects of all of these issues on the CMD-based SFH reconstruction method.

Finally, our analysis in this paper relied on a large spatial selection of low-mass galaxies at $z = 0$, out to 2 Mpc to the centres of MW- and LG-analogue environments. With the combined power of *JWST* for obtaining resolved stellar photometry out to larger distances in the LG, and the potential to detect many more extremely faint, low-mass LG galaxies via the Vera Rubin, Euclid, and Nancy Grace Roman observatories, the near-far technique should be easier to apply with a larger sample of LG galaxies in the future. In an upcoming paper, Gandhi et al., we will examine how applying near-far reconstruction out to different distances in the LG (including distance cuts closer to the MW/M31) impacts these results. Thus, we hope to make forecasts for which galaxies and regimes these observatories should target in the next 5–7 yr of near-field cosmology.

ACKNOWLEDGEMENTS

We thank Jenna Samuel, Isaiah Santistevan, Hyunsu Kong, and Yao-Yuan Mao for valuable discussions that improved this paper. PJG thanks Isabella Trierweiler for help and unwavering support, as always. PJG also thanks Postdog Theodore for the many hours of moral and emotional support, and the designers of the Star Trek LCARS⁴ for inspiring the colour scheme used in all the figures.

This analysis relied on NUMPY (Harris et al. 2020), SCIPY (Virtanen et al. 2020), ASTROPY,⁵ a community-developed core PYTHON package for Astronomy (Astropy Collaboration 2013, 2018), MATPLOTLIB, a PYTHON library for publication-quality graphics (Hunter 2007), the IPYTHON package (Perez & Granger 2007), and the publicly available packages GIZMOANALYSIS (Wetzel & Garrison-Kimmel 2020b, available at https://bitbucket.org/awetzel/gizmo_analysis), and HALOANALYSIS (Wetzel & Garrison-Kimmel 2020a, available at https://bitbucket.org/awetzel/halo_analysis); as well as NASA’s Astrophysics Data System (ADS)⁶ and the ARXIV⁷ preprint service.

PJG is grateful for support from the Texas Advanced Computing Center (TACC) via a Frontera Computational Science Fellowship. PJG and AW received support from the NSF via CAREER award AST-2045928 and grant AST-2107772; NASA ATP grants 80NSSC18K1097 and 80NSSC20K0513; HST grants GO-14734, AR-15057, AR-15809, and GO-15902 from STScI; a Scialog Award from the Heising-Simons Foundation; and a Hellman Fellowship. MBK acknowledges support from NSF CAREER award AST-1752913, NSF grants AST-1910346 and AST-2108962, NASA grant 80NSSC22K0827, and HST-AR-15809, HST-GO-15658, HST-GO-15901, HST-GO-15902, HST-AR-16159, HST-GO-16226, HST-GO-16686, HST-AR-17028, and HST-AR-17043 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. RES gratefully acknowledges support from NSF grant AST-2007232 and NASA grant 19-ATP19-0068. AS acknowledges support from HST grants GO-15902, AR-17206 and GO-17216. DRW acknowledges support from NASA through HST grants GO-15901, GO-15902, AR-16159, GO-16273, GO-16226, GO-16686, and JWST-DD-ERS-1334 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. GS is supported by a CIERA Postdoctoral Fellowship. CAFG received support from NSF through grants AST-2108230, AST-2307327, and CAREER award AST-1652522; from NASA through grants 17-ATP17-0067 and 21-ATP21-0036; from STScI through grant HST-GO-16730.016-A; and from CXO through grant TM2-23005X.

We ran simulations and performed numerical calculations using the UC Davis computer cluster Peloton, the Caltech computer cluster Wheeler, the Northwestern computer cluster Quest; XSEDE, supported by NSF grant ACI-1548562; Blue Waters, supported by the NSF; Frontera allocations FTA/Hopkins-AST21010 and AST20016, supported by the NSF and TACC; XSEDE allocations TG-AST140023 and TG-AST140064, and NASA HEC allocations SMD-16-7561, SMD-17-1204, and SMD-16-7592; Pleiades, via the NASA HEC program through the NAS Division at Ames Research Center.

DATA AVAILABILITY

The PYTHON code and data tables used to create each figure are available at https://github.com/pratikgandhi95/nearfar_paper1_protoLG. The FIRE-2 simulations are publicly available (Wetzel et al. 2023) at <http://flathub.flatironinstitute.org/fire>. Additional FIRE simulation data are available at <https://fire.northwestern.edu/data/>. A public version of the GIZMO code is available at <http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html>.

⁵<https://www.astropy.org>

⁶<https://ui.adsabs.harvard.edu>

⁷<https://www.arxiv.org>

⁴https://memory-alpha.fandom.com/wiki/Library_Computer_Access_and_Retrieval_System

REFERENCES

Astropy Collaboration, 2013, *A&A*, 558, A33

Astropy Collaboration, 2018, *AJ*, 156, 123

Atek H., Richard J., Kneib J.-P., Schaerer D., 2018, *MNRAS*, 479, 5184

Behroozi P. S., Wechsler R. H., Wu H.-Y., 2013, *ApJ*, 762, 109

Bouwens R. J., Oesch P. A., Illingworth G. D., Ellis R. S., Stefanon M., 2017, *ApJ*, 843, 129

Boylan-Kolchin M., Weisz D. R., Johnson B. D., Bullock J. S., Conroy C., Fitts A., 2015, *MNRAS*, 453, 1503

Boylan-Kolchin M., Weisz D. R., Bullock J. S., Cooper M. C., 2016, *MNRAS*, 462, L51

Brauer K., Andales H. D., Ji A. P., Frebel A., Mardini M. K., Gómez F. A., O’Shea B. W., 2022, *ApJ*, 937, 14

Brown T. M. et al., 2014, *ApJ*, 796, 91

Cunningham E. C. et al., 2022, *ApJ*, 934, 172

Dressler A. et al., 2024, *ApJ*, 964, 150

Emami N. et al., 2021, *ApJ*, 922, 217

Escala I. et al., 2018, *MNRAS*, 474, 2194

Faucher-Giguère C.-A., 2020, *MNRAS*, 493, 1614

Faucher-Giguère C.-A., Lidz A., Zaldarriaga M., Hernquist L., 2009, *ApJ*, 703, 1416

Finkelstein S. L. et al., 2015, *ApJ*, 810, 71

Fitts A. et al., 2018, *MNRAS*, 479, 319

Flores Velázquez J. A. et al., 2021, *MNRAS*, 501, 4812

Furlanetto S. R., Mirocha J., 2022, *MNRAS*, 511, 3895

Gallart C., Zoccali M., Aparicio A., 2005, *ARA&A*, 43, 387

Garrison-Kimmel S., Boylan-Kolchin M., Bullock J. S., Lee K., 2014, *MNRAS*, 438, 2578

Garrison-Kimmel S. et al., 2017, *MNRAS*, 471, 1709

Garrison-Kimmel S. et al., 2019a, *MNRAS*, 487, 1380

Garrison-Kimmel S. et al., 2019b, *MNRAS*, 489, 4574

Geha M., Weisz D., Grocholski A., Dolphin A., van der Marel R. P., Guhathakurta P., 2015, *ApJ*, 811, 114

Grazian A. et al., 2015, *A&A*, 575, A96

Hahn O., Abel T., 2011, *MNRAS*, 415, 2101

Harris C. R. et al., 2020, *Nature*, 585, 357

Hopkins P. F., 2015, *MNRAS*, 450, 53

Hopkins P. F. et al., 2018a, *MNRAS*, 477, 1578

Hopkins P. F. et al., 2018b, *MNRAS*, 480, 800

Horta D. et al., 2024, *MNRAS*, 527, 9810

Hunter J. D., 2007, *Comput. Sci. Eng.*, 9, 90

Iwamoto K., Brachwitz F., Nomoto K., Kishimoto N., Umeda H., Hix W. R., Thielemann F.-K., 1999, *ApJS*, 125, 439

Izzard R. G., Tout C. A., Karakas A. I., Pols O. R., 2004, *MNRAS*, 350, 407

Kroupa P., 2001, *MNRAS*, 322, 231

Krumholz M. R., Gnedin N. Y., 2011, *ApJ*, 729, 36

Kuhlen M., Faucher-Giguère C.-A., 2012, *MNRAS*, 423, 862

Leitherer C. et al., 1999, *ApJS*, 123, 3

Leung G. C. K. et al., 2023, *ApJ*, 954, L46

Livermore R. C., Finkelstein S. L., Lotz J. M., 2017, *ApJ*, 835, 113

Looser T. J. et al., 2023, preprint (arXiv:2306.02470)

Ma X. et al., 2018a, *MNRAS*, 477, 219

Ma X. et al., 2018b, *MNRAS*, 478, 1694

Ma X. et al., 2019, *MNRAS*, 487, 1844

Mannucci F., Della Valle M., Panagia N., 2006, *MNRAS*, 370, 773

Marigo P., 2001, *A&A*, 370, 194

McQuinn K. B. W. et al., 2010a, *ApJ*, 721, 297

McQuinn K. B. W. et al., 2010b, *ApJ*, 724, 49

Naidu R. P., Tacchella S., Mason C. A., Bose S., Oesch P. A., Conroy C., 2020, *ApJ*, 892, 109

Navarro-Carrera R., Rinaldi P., Caputi K. I., Iani E., Kokorev V., van Mierlo S. E., 2024, *ApJ*, 961, 207

Necib L., Lisanti M., Garrison-Kimmel S., Wetzel A., Sanderson R., Hopkins P. F., Faucher-Giguère C.-A., Kereš D., 2019, *ApJ*, 883, 27

Nomoto K., Tominaga N., Umeda H., Kobayashi C., Maeda K., 2006, *Nucl. Phys. A*, 777, 424

Pallottini A., Ferrara A., 2023, *A&A*, 677, L4

Perez F., Granger B. E., 2007, *Comput. Sci. Eng.*, 9, 21

Pérez-González P. G. et al., 2023, *ApJ*, 951, L1

Planck Collaboration **XLVII**, 2016, *A&A*, 596, A108

Planck Collaboration **VI**, 2020, *A&A*, 641, A6

Robertson B. E., Ellis R. S., Furlanetto S. R., Dunlop J. S., 2015, *ApJ*, 802, L19

Samuel J. et al., 2020, *MNRAS*, 491, 1471

Samuel J., Wetzel A., Chapman S., Tollerud E., Hopkins P. F., Boylan-Kolchin M., Bailin J., Faucher-Giguère C.-A., 2021, *MNRAS*, 504, 1379

Santistevan I. B., Wetzel A., El-Badry K., Bland-Hawthorn J., Boylan-Kolchin M., Bailin J., Faucher-Giguère C.-A., Benincasa S., 2020, *MNRAS*, 497, 747

Savino A. et al., 2023, *ApJ*, 956, 86

Shen X., Vogelsberger M., Boylan-Kolchin M., Tacchella S., Kannan R., 2023, *MNRAS*, 525, 3254

Sheth R. K., Mo H. J., Tormen G., 2001, *MNRAS*, 323, 1

Skillman E. D. et al., 2017, *ApJ*, 837, 102

Sparre M., Hayward C. C., Feldmann R., Faucher-Giguère C.-A., Muratov A. L., Kereš D., Hopkins P. F., 2017, *MNRAS*, 466, 88

Stefanon M., Bouwens R. J., Labbé I., Illingworth G. D., Gonzalez V., Oesch P. A., 2021, *ApJ*, 922, 29

Sun G., Faucher-Giguère C.-A., Hayward C. C., Shen X., 2023, *MNRAS*, 526, 2665

van den Hoek L. B., Groenewegen M. A. T., 1997, *A&AS*, 123, 305

Virtanen P. et al., 2020, *Nat. Methods*, 17, 261

Weisz D. R., Boylan-Kolchin M., 2017, *MNRAS*, 469, L83

Weisz D., Boylan-Kolchin M., 2019, *BAAS*, 51, 1

Weisz D. R. et al., 2012, *ApJ*, 744, 44

Weisz D. R., Dolphin A. E., Skillman E. D., Holtzman J., Gilbert K. M., Dalcanton J. J., Williams B. F., 2014a, *ApJ*, 789, 147

Weisz D. R., Dolphin A. E., Skillman E. D., Holtzman J., Gilbert K. M., Dalcanton J. J., Williams B. F., 2014b, *ApJ*, 789, 148

Weisz D. R., Johnson B. D., Conroy C., 2014c, *ApJ*, 794, L3

Weisz D. R. et al., 2023, *ApJS*, 268, 15

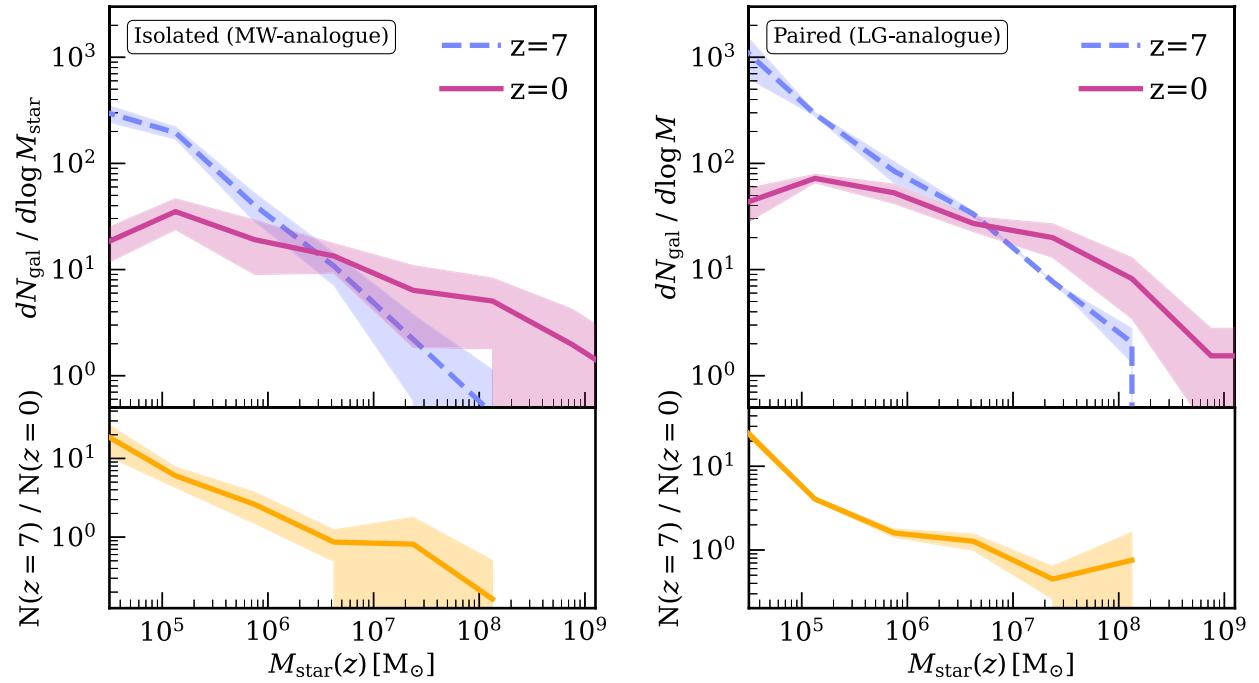
Wetzel A., Garrison-Kimmel S., 2020a, Astrophysics Source Code Library, record ascl:2002.014

Wetzel A., Garrison-Kimmel S., 2020b, Astrophysics Source Code Library, record ascl:2002.015

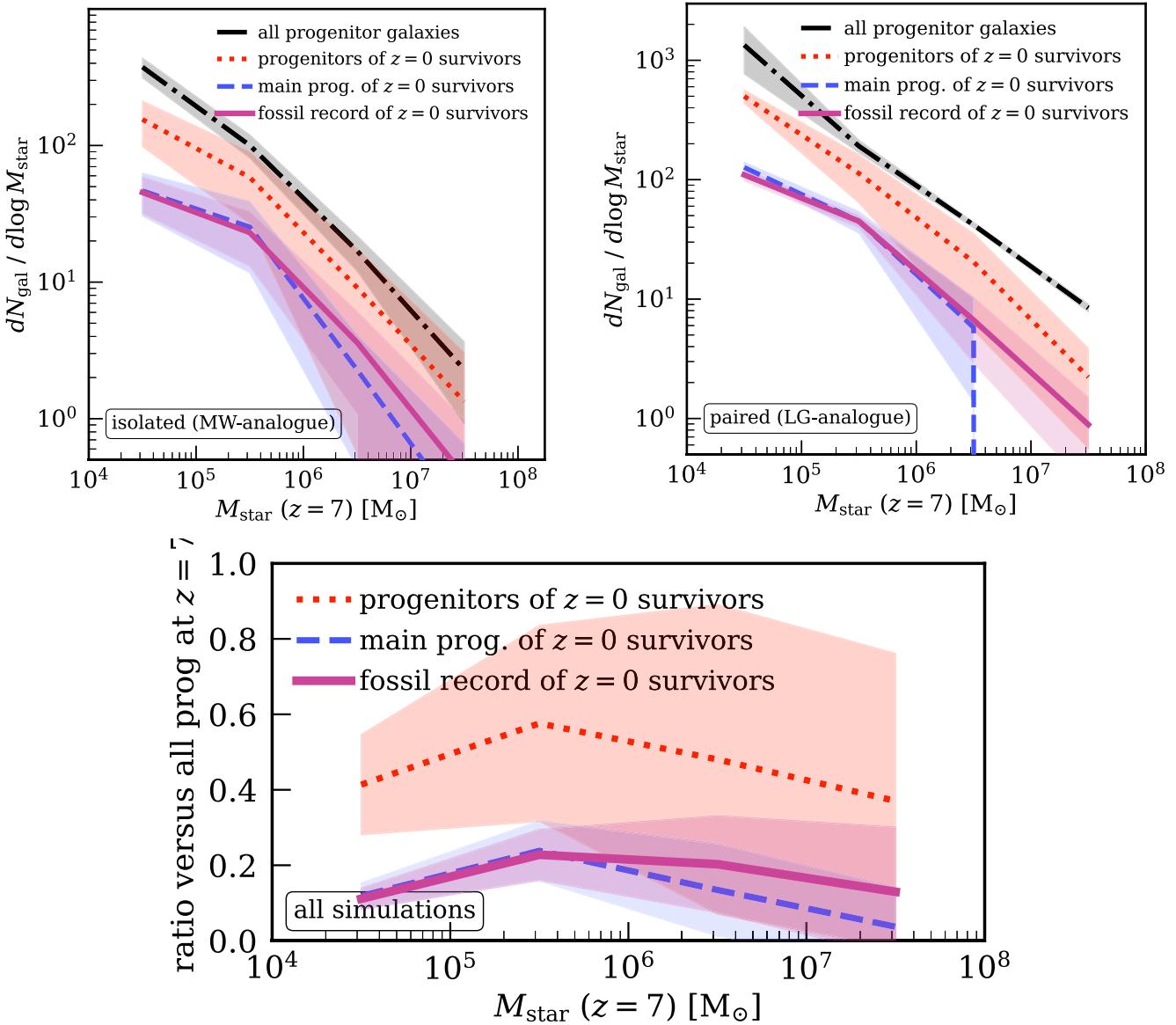
Wetzel A. R., Hopkins P. F., Kim J.-h., Faucher-Giguère C.-A., Kereš D., Quataert E., 2016, *ApJ*, 827, L23

Wetzel A. et al., 2023, *ApJS*, 265, 44

Wiersma R. P. C., Schaye J., Theuns T., Dalla Vecchia C., Tornatore L., 2009, *MNRAS*, 399, 574


Wise J. H., Demchenko V. G., Halicek M. T., Norman M. L., Turk M. J., Abel T., Smith B. D., 2014, *MNRAS*, 442, 2560

APPENDIX A: DIFFERENTIAL MASS FUNCTIONS AT $Z = 0$ AND $Z = 7$


Fig. A1 shows the differential versions of the SMF at $z = 0$ and $z = 7$, instead of the cumulative version as in Fig. 2. The same key results here are that the steepness of the SMF at $z = 7$ and the lower high-mass cut-off compared to the SMF at $z = 0$ are a natural result of galaxies growing, hierarchically through mergers, over cosmic time.

APPENDIX B: DIFFERENTIAL VERSION OF FIG. 4

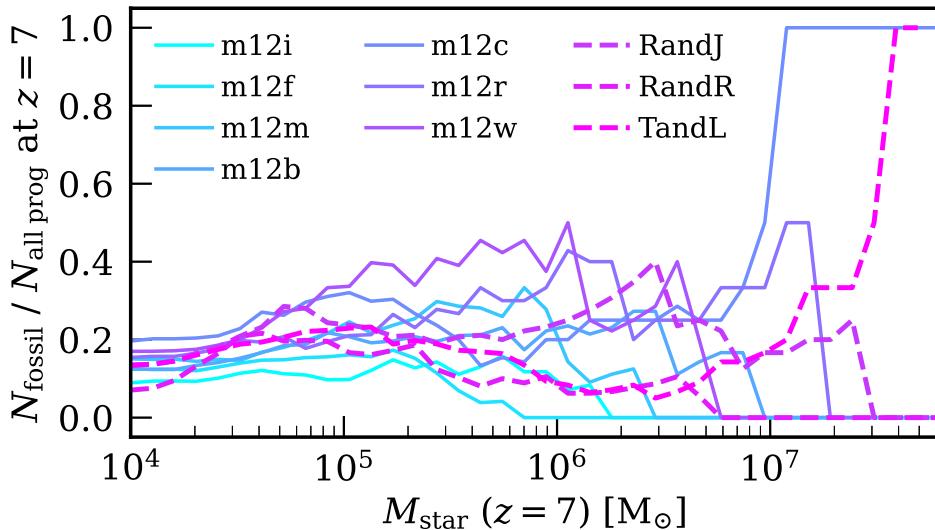

Fig. A2 shows the differential versions of the SMFs, instead of the cumulative versions as in Fig. 4. Again, the magenta curve in the bottom panel is roughly constant with stellar mass, implying that the slope of the SMF at $z = 7$ inferred from the stellar fossil record of surviving low-mass galaxies in MW/LG environments at $z = 0$ is accurate, especially at the faint end. We find a similar recovery normalization of $\approx 10\text{--}20$ per cent, as in Fig. 4.

Figure A1. Same as Fig. 2, but for the differential (instead of cumulative) SMF. Same qualitative takeaways as Fig. 2.

Figure A2. Same as Fig. 4, but for the differential (instead of cumulative) SMF. The results are consistent with those shown in Fig. 4.

Figure A3. Same as Fig. 4 (bottom), for the fossil record at $z = 7$ from surviving low-mass galaxies at $z = 0$, but showing each simulation individually. Although the normalization at $M_{\text{star}} \lesssim 10^7 M_{\odot}$ shows some variation, each curve is relatively flat, especially for the LG-like simulations (dashed). Thus, the flatness of the trend in Fig. 4 is not simply an artefact of averaging across the simulations, but it reflects the robustness of the ‘near-far’ reconstruction approach applied to an individual system.

APPENDIX C: INDIVIDUAL SIMULATIONS IN FIG. 4

Fig. A3 shows the key result from the magenta curve in Fig. 4 (bottom), except here we show each simulation individually, instead of averaging across them. Especially at low masses ($M_{\text{star}} \lesssim 10^7 M_{\odot}$), the trends are qualitatively flat for all simulations, implying that our

main result, that the slope of the inferred SMF at $z = 7$ is unbiased, still holds. At higher masses, we see divergence for some simulations, but likely because of the small number of more massive galaxies when considering each simulation separately.

This paper has been typeset from a $\text{\TeX}/\text{\LaTeX}$ file prepared by the author.