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A B S T R A C T 
Fuzzy dark matter (FDM), comprised of ultralight ( m ∼ 10 −22 eV ) boson particles, has received significant attention as a viable 
alternative to cold dark matter (CDM), as it approximates CDM on large scales ( ! 1 Mpc) while potentially resolving some of its 
small-scale problems via kiloparsec-scale quantum interference. Ho we ver, the most basic FDM model, with one free parameter 
(the boson mass), is subject to a tension: small boson masses yield the desired cores of dwarf galaxies but underpredict structure 
in the Lyman- α forest, while large boson masses render FDM ef fecti vely identical to CDM. This Catch-22 problem may be 
alleviated by considering an axion-like particle with attractive particle self-interactions. We simulate an idealized FDM halo with 
self-interactions parametrized by an energy decay constant f ∼ 10 15 GeV related to the axion symmetry-breaking conjectured 
to solve the strong-CP problem in particle physics. We observe solitons, a hallmark of FDM, condensing within a broader halo 
envelope, and find that the density profile and soliton mass depend on self-interaction strength. We propose generalized formulae 
to extend those from previous works to include self-interactions. We also investigate a critical mass threshold predicted for 
strong interactions at which the soliton collapses into a compact, unresolved state. We find that the collapse happens quickly, 
and its effects are initially contained to the central region of the halo. 
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1  I N T RO D U C T I O N  
The particle nature of cosmological dark matter is still one of the most 
pressing unknowns in modern astrophysics. For decades, cold dark 
matter (CDM) has pre v ailed as the leading theory, stating that dark 
matter particles are non-relativistic, collisionless, and dissipationless. 
CDM, as part of the " CDM paradigm, has reproduced observations 
of the cosmic microwave background (Aghanim et al. 2020 ; Alam 
et al. 2021 ) and large-scale structure remarkably well (Schaye 
et al. 2014 ; Vogelsberger et al. 2014a , b ; Springel et al. 2017 ; 
Vogelsberger et al. 2020 ). Ho we ver, the simplest CDM simulations 
admit puzzling discrepancies with observations on the scale of dwarf 
galaxies (Bullock & Boylan-Kolchin 2017 ; Del Popolo & Le Delliou 
2017 ; Sales, Wetzel & Fattahi 2022 ). Problems actively debated in 
the literature include missing satellites (Klypin et al. 1999 ; Moore 
et al. 1999 ), density profile cores versus cusps (Flores & Primack 
1994 ; Moore 1994 ; de Blok 2010 ), dark matter haloes ‘too big to 
fail’ to produce stars (Boylan-Kolchin, Bullock & Kaplinghat 2011 ; 
Garrison-Kimmel et al. 2014 ), and o v erly div erse galaxy rotation 
curves (Oman et al. 2015 ). Even though baryonic feedback has shown 
promise to remedy many of the inconsistencies when incorporated 
into " CDM simulations, the most commonly considered CDM 
# E-mail: connor.painter@austin.utexas.edu 

particle candidates, weakly interacting massive particles (WIMPs) on 
the mass scale of GeV, have so far e v aded disco v ery (Roszkowski, 
Sessolo & Trojanowski 2018 ). Small-scale inconsistencies, along 
with non-detections of plausible particle candidates, have fuelled a 
search for alternative models. 

A popular alternative to CDM is dark matter in the form of 
ultra-light boson particles of mass m ∼ 10 −22 eV (Hu, Barkana & 
Gruzinov 2000 ; Guzm ́an & Ure ̃ na-L ́opez 2003 ; Hui et al. 2017 ; 
Mocz et al. 2019 ; Burkert 2020 ; Niemeyer 2020 ; Hui 2021 ). This 
so-called fuzzy dark matter (FDM) model approximates CDM on 
large scales (Widrow & Kaiser 1993 ; Kopp, Vattis & Skordis 2017 ), 
but small-scale structure is altered by a ‘quantum pressure’ tensor 
in the momentum equation (Schive, Chiueh & Broadhurst 2014a ). 
The dark matter clusters under self-gravity with fluid-like properties, 
and dark waves generated on the de Broglie scale λdB ≡ h 

mv ∼ kpc 
interfere to smooth o v er small-scale structure. This smoothing cuts 
off the dark matter power spectrum abo v e a certain wav enumber (Hu 
et al. 2000 ), offering a natural explanation for the missing satellites 
predicted by CDM-only simulations. FDM also naturally addresses 
the cusp-core discrepancy: haloes are characterized by cored central 
structures called solitons (Schive et al. 2014a ; Schive et al. 2014b ) 
enveloped by a broader Navarro–Frenk–White (NFW)-like power 
law drop-off in density (Navarro, Frenk & White 1996 ; Marsh & 
Pop 2015 ; Mocz et al. 2017 ). Furthermore, ultra-light bosons are 
predicted to arise naturally in many string theory models (Svrcek & 
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Witten 2006 ) and their present-day energy density in the Universe 
could be comparable to the measured dark matter density (Arvanitaki 
et al. 2010 ; Marsh 2016 ; Hui et al. 2017 ). 

These convenient properties of the FDM model have generated 
excitement and substantial investigation in the literature. In recent 
years, for example, FDM has been simulated both in high resolution 
on cosmological scales to characterize structure formation (Woo & 
Chiueh 2009 ; Mocz et al. 2019 , 2020 ; Lagu ̈e et al. 2021 ; May & 
Springel 2021 ; Nori & Baldi 2021 ; Schwabe & Niemeyer 2022 ; 
Dome et al. 2023 ; Huang, Schive & Chiueh 2023 ; Lagu ̈e et al. 2024 ; 
Shen et al. 2024 ) and on scales of individual haloes in idealized 
scenarios (Mocz et al. 2017 ; Du et al. 2018 ; Schwabe et al. 2020 ; 
Veltmaat, Schwabe & Niemeyer 2020 ; Li, Hui & Yavetz 2021 ). In the 
simplest FDM model, the shape of a cosmological soliton is related 
to its total mass and the boson mass (Schive et al. 2014a ), and some 
regions of parameter space are capable of matching observations 
of dwarf galaxies (Marsh & Pop 2015 ; Luu, Tye & Broadhurst 
2020 ; Safarzadeh & Spergel 2020 ). For a recent mini-re vie w of the 
achievements of FDM, see Matos, Ure ̃ na-L ́opez & Lee ( 2024 ). 

Ho we ver, the simple FDM model struggles to simultaneously 
reproduce the power spectrum of the Lyman- α forest and the core 
sizes of dwarf galaxies (Ir ̌si ̌c et al. 2017 ; Nori et al. 2019 ; Dome, 
Azhar & Fialkov 2024 ). Lower boson masses ( m < 1 . 1 × 10 −22 eV 
at 2 σ C.L., Marsh & Pop 2015 ) are required to yield the desired 
cores of satellite galaxies, but higher masses ( m > 2 . 0 × 10 −21 eV at 
2 σ C.L., Ir ̌si ̌c et al. 2017 ) are required to predict adequate small- 
scale structure in the Lyman- α forest. Constraints from the two 
observations leave little to no o v erlap. There is some discussion (e.g. 
Elgamal et al. 2024 ) suggesting that ‘vanilla’ FDM is still capable of 
fitting observations of both Lyman- α structure and dwarf galaxies, 
but this Catch-22 (Davies & Mocz 2020 ) is widely regarded to be 
a serious challenge. Other constraints on FDM models come from 
strong lensing (Shevchuk, Ko v etz & Zitrin 2023 ), ultraf aint dw arfs 
(Hayashi, Ferreira & Chan 2021 ; Dalal & Kravtsov 2022 ), dynamical 
friction (Foote et al. 2023 ), and cosmology (Li, Rindler-Daller & 
Shapiro 2014 ; Li, Shapiro & Rindler-Daller 2017 ). 

The Catch-22 may be alleviated by introducing a second degree 
of freedom through a scalar potential term that naturally arises if the 
FDM particle is an ultralight axion-like particle (Arvanitaki et al. 
2020 ; Mocz et al. 2023 ). Ultralight axions are natural outcomes 
of particle physics models that solve the longstanding ‘strong CP 
problem’ in quantum chromodynamics (QCD) (Peccei & Quinn 
1977 ; Weinberg 1978 ). In these models of FDM, the axion-like 
particle typically has a decay constant (or symmetry-breaking scale) 
f ∼ 10 17 GeV present in an additional scalar potential term in its 
go v erning equations. This new potential term will instigate attractive 
interparticle self-interactions (SI). These interactions are extremely 
weak, with quartic coupling m 2 /f 2 ∼ 10 −96 , but theoretical and 
numerical work suggest that they may have non-negligible impacts 
on cosmic structure at low redshift (Desjacques, Kehagias & Riotto 
2018 ; Mocz et al. 2023 ). In particular, attractive self-interactions 
introduce a critical mass scale for FDM haloes abo v e which the 
soliton collapses into an extremely compact state (Chavanis 2011 ; 
Chavanis & Delfini 2011 ), a process that may bolster small-scale 
structure enough to match observations of the Lyman- α forest (Mocz 
et al. 2023 ). 

Recent simulations have begun to characterize the extent to which 
axion-like self-interactions change FDM predictions. Amin & Mocz 
( 2019 ) carried out cosmological simulations of FDM with attrac- 
tive SI to examine soliton formation and gravitational clustering. 
Chen et al. ( 2021 ) simulated isolated clusters of FDM haloes with 
both attractive and repulsive self-interactions. Glennon & Prescod- 

Weinstein ( 2021 ) simulated idealized solitons with attractive SI, 
verifying criteria for soliton collapse and quantifying changes in 
tidal stripping time-scales. Mocz et al. ( 2023 ) used cosmological 
simulations to gauge the extent to which weak attractive self- 
interactions enhance small-scale structure in the cosmic web. Jain & 
Amin ( 2023 ) published an integrator for FDM systems with general 
self-interactions. Besides attractive self-interactions, other exten- 
sions of FDM explored in the literature include repulsive self- 
interactions (Daw oodbho y, Shapiro & Rindler-Daller 2021 ; Shapiro, 
Daw oodbho y & Rindler-Daller 2022 ), multifield FDM (Eby et al. 
2020 ; Luu et al. 2020 ; Guo et al. 2021 ; Huang et al. 2023 ; Luu 
et al. 2024 ), mixed CDM and FDM (Schwabe et al. 2020 ; Lagu ̈e 
et al. 2024 ), FDM with a large initial misalignment angle (Zhang & 
Chiueh 2017 ; Schive & Chiueh 2018 ), and vector dark matter, where 
FDM is a higher-spin field (Amin et al. 2022 ). 

The purpose of this work is to provide a careful analysis of the 
interior structure of FDM haloes under attractive self-interactions 
in idealized simulations. We pay particular attention to the regime 
of weak SI, in which the soliton is noticeably influenced, but not 
so much that it exceeds the critical mass and collapses. This work 
informs the analysis of future cosmological simulations of FDM with 
attractive self-interactions that seek to break the Catch-22 . 

The rest of this paper is organized as follows: In Section 2, we 
re vie w the go v erning equations of FDM, modify them to include self- 
interactions, and solve them under spherical symmetry to formulate 
predictions for halo density profiles. In Section 3 , we describe the 
idealized halo simulations we perform to study the effects of includ- 
ing self-interactions. In Section 4 , we present analysis and trends 
between simulations with varying SI strengths. We contextualize 
and conclude the work in Sections 5 and 6 . 
2  PHYSI CAL  E QUAT I O N S  
In the non-relativistic limit, self-interacting FDM is go v erned by the 
Gross–Pitaevskii–Poisson (GPP) equations, 
i ! ( ∂ 

∂ t 
)

ψ = (− ! 2 
2 m ∇ 2 + mV − 4 π! 2 a s 

m 2 ρ

)
ψ (1) 

∇ 2 V = 4 πG ( ρ − ρ̄) , (2) 
which are equi v alent to the Schr ̈odinger equation where the potential 
is the self-potential due to self-gravity, plus a non-linear attractive 
self-interaction term (see e.g. Chavanis 2018 ). ψ is the wavefunction 
that describes the dark matter, normalized so that the dark matter 
density is ρ = | ψ | 2 . ρ̄ is the local mean dark matter density, and the 
s-scattering length a s quantifies the SI strength. It is related to axion 
symmetry-breaking scale f by 
a s = ! c 3 m 

32 πf 2 . (3) 
Other studies follow the convention that a s < 0 for attractive self- 
interactions, in which the right-hand side of equation ( 3 ) and the 
last term in equation ( 1 ) would be negated. Equations ( 1 ) and 
( 2 ) with a s = 0 are the Schr ̈odinger–Poisson equations commonly 
used to simulate FDM in the absence of self-interactions. The | ψ | 2 
term in equation ( 1 ) comes from a Taylor expansion of the non- 
relativistic limit of the instantonic axion potential equation (Peccei & 
Quinn 1977 ; Di Vecchia & Veneziano 1980 ; Witten 1980 ). In our 
simulations, the GPP equations evolve an initial mass distribution 
into a single isolated dark matter halo with a central soliton. 
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2.1 Generalized density profile 
Following Lora & Maga ̃ na ( 2014 ), the GPP equations can be solved 
numerically by assuming that ψ is spherically symmetric, 
ψ ( r, t ) = e −iγ t/ ! φ( r) , 
where φ( r) is a positive, decreasing profile of an FDM soliton. 
Substituting into equation ( 1 ) and rearranging yields 
− ! 2 

2 m 1 r ∂ 
2 

∂ r 2 ( rφ) = γφ − mV φ + 4 π! 2 a s 
m 2 φ3 

1 
r ∂ 

2 
∂ r 2 ( rV ) = 4 πGφ2 . 

Introducing dimensionless variables, 
ˆ φ = √ 

4 πG ! 
mc 2 φ ˆ V = 1 

c 2 V 
ˆ r = mc 

! r ˆ t = mc 2 
! t 

ˆ γ = 1 
mc 2 γ ˆ a s = c 2 

Gm a s 
the GPP equations take a simpler form: 
d 2 
d ̂ r 2 ( ̂ r ̂  φ) = 2 ̂ r ( ̂  V − ˆ γ ) ̂  φ − 2 ̂ r ̂  a s ̂  φ3 (4) 
d 2 
d ̂ r 2 ( ̂ r ˆ V ) = ˆ r ̂  φ2 . (5) 

For an FDM soliton, we impose r = 0 boundary conditions ∂ r ̂  φ = 
0, ∂ r ˆ V = 0, and ˆ φ = ˆ φc . For chosen values of ˆ φc and ˆ a s , there is a 
discrete number of ˆ γ values { ̂  γ0 , ˆ γ1 , ˆ γ2 , . . . } for which the solutions 
converge as r → ∞ . Each ˆ γi corresponds to a solution ˆ φi ( r), which 
has i nodes. We are interested in the ground state solution i = 0, the 
unique solution with φ( r) > 0 at all radii and finite total mass. 

We want to solve for the density profile ρ( r) = | φ( r) | 2 at various 
SI strengths in hopes of developing an approximate functional form. 
The dimensionless density profile differs from the physical profile 
by some factor φ0 /φc , where ρ0 = φ2 

0 is the physical central density 
of the FDM halo. The GPP equations admit a scaling relation that 
implies a family of solutions for any particular solution: 
{ r, φ, ρ, a s } → { ε−1 r, ε2 φ, ε4 ρ, ε−2 a s } . (6) 
In particular, a s is a scale- dependent quantity; ho we ver, the density 
profile fitting formula must ultimately be scale- independent . To 
create a suitable self-interaction strength parameter, let ˆ φc = 1 and 
ε = φ0 /φc . Define the scale-free parameter β as 
β ≡ ε2 ̂  a s = √ 

4 πG ! 
mc 2 ρ

1 / 2 
0 c 2 

Gm a s . (7) 
In terms of f and fiducial values, 
β = 0 . 238 ( ρ0 

10 10 M )kpc −3 )1 / 2 
m −1 

22 f −2 
15 (8) 

where m 22 = m/ (10 −22 eV ) and f 15 = f / (10 15 GeV ). This measure 
of SI strength is somewhat arbitrary (in the sense that we could 
have chosen any ˆ φc ), but can be conceptualized as the dimensionless 
s-scattering length ˆ a s , scaled according to equation ( 6 ) from the 
physical central density ρ0 to ˆ φc = 1. 

In the non-interacting case ( a s = 0), the density profile of a soliton 
is well-fit by the single-parameter formula 
ρsol ( r) = ρ0 

[ 
1 + 0 . 091 ( r 

r c 
)2 ] −8 

(9) 

Figure 1. Upper: Density profiles of FDM solitons with attractive self- 
interactions of varying strengths, normalized by the central density and core 
radius, as given by equation ( 11 ). Self-interactions tend to shallow out the 
profile shape relative to the non-interacting case, decreasing the density at 
all radii within r " 10 r c . Lower: The fractional change in the density profile 
relative to the non-interacting case β = 0. The greatest fractional decreases 
in density occur around r ∼ 3 . 5 r c . 
(Schive et al. 2014a ), where the core radius r c is related to the central 
density ρ0 by 
ρ0 = 1 . 9 × 10 7 m −2 

22 (kpc 
r c 

)4 M )
kpc 3 . (10) 

In the general case ( a s *= 0), we find that the ground state solutions 
of equation ( 1 ) are well-fit by a simple one-parameter extension to 
equation ( 9 ), 
ρsol ( r) = ρ0 

[ 
1 + 0 . 091 a 2 ( r 

ar c 
)2 −β/b ] −8 

(11) 
where a = 11 . 2 and b = 4 . 2 are best-fit constants to numerical 
solutions. Fig. 1 plots how equation ( 11 ) predicts that the soliton 
profile will change with β, relative to the non-interacting case β = 0. 
Based on this theoretical analysis, solitons with the same central 
density but stronger attractive self-interactions are expected to have 
shallower density profiles, with matter redistributed out of the interior 
and toward the outskirts. This fitting formula is restricted in domain 
to β < 2 b, but the SI strengths in this study are all well within this 
threshold. In fact, as we will show in Section 2.2 , solitons are likely 
to become unstable well before approaching β = 2 b. We validate 
the accuracy of equation ( 11 ) o v er the rele v ant range of SI strengths 
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in Appendix A . See appendix C of Chen et al. ( 2021 ) for another 
general soliton fitting formula. 

The self-interaction strength adds an additional degree of freedom 
to the soliton density profile, but in a physical model, it is a set 
universal constant (like the boson mass), while the central density 
parameter ρ0 varies from halo to halo. In other words, after a s and 
m parametrize the axion-like particle, ρ0 characterizes the individual 
halo. So, a s will vary between our simulations, but once it is set, ρ0 
is the only free parameter in equation ( 11 ). 

2.2 Critical mass 
Solitons under weak or zero self-interactions appear in a ‘dilute’ 
phase (Chavanis & Delfini 2011 ), in which they are well described 
by equation ( 11 ). Ho we ver, axion self-interactions introduce a critical 
mass threshold for FDM solitons (Chavanis 2011 ; Chavanis & Delfini 
2011 ; Chavanis 2016 , 2018 ) that has been confirmed and studied 
in simulations (e.g. Levko v, P anin & Tkachev 2017 ; Chen et al. 
2021 ; Glennon & Prescod-Weinstein 2021 ; Jain, Wanichwecharun- 
gruang & Thomas 2024 ), 
M crit = 1 . 012 ! √ 

Gma s (12) 
= 1 . 1 × 10 9 f 15 

m 22 M ). (13) 
If the mass of a soliton exceeds M crit , attractive self-interactions 
and gravity o v ercome the quantum pressure, leading to a rapid 
collapse. The end state of a collapsing soliton has been studied 
e xtensiv ely in recent years. In a fully general relativistic treatment 
under spherical symmetry, Helfer et al. ( 2017 ) find that the end 
state depends on the assumed axion SI strength. If f ! 0 . 4 M pl ∼
10 18 GeV, the critical mass is so high that the soliton remains 
dilute until its radius is comparable to its Schwarzschild radius, 
and the collapse leads to a black hole. Alternatively, if f " 0 . 4 M pl , 
the collapse initiates an explosion, sometimes called a ‘bosenova’, 
accompanied by the ejection of relativistic axion shells until the 
remnant mass is lower than the critical mass (Levkov et al. 2017 ). 
The soliton is either completely dispersed or observed in its dilute 
state again. Using Taylor approximations of the instantonic axion 
potential, other studies have predicted the formation of ‘compact’ 
solitons supported by higher-order repulsive terms that are orders of 
magnitude smaller and denser than their dilute progenitors (Braaten, 
Mohapatra & Zhang 2016 ; Eby et al. 2016 ). Ho we ver, it is unclear 
whether these structures are stable when the Taylor approximation 
and the non-relativistic assumption are relaxed (Visinelli et al. 
2018 ). 

In this study, we will only analyse solitons in their dilute states 
and in the early stages of collapse. Our fiducial values of SI strength 
( f ∼ 10 15 GeV) ensure that dilute solitons remain well within the 
non-relativistic regime, so the GPP equations suffice to go v ern the 
evolution. For the early stages of collapse, we include the next higher- 
order term in the Taylor expansion of the axion cosine potential, 
i ! ( ∂ 

∂ t 
)

ψ = (− ! 2 
2 m ∇ 2 + mV −4 π! 2 a s 

m 2 ρ+ 32 π! 4 a 2 s 
3 m 5 c 2 ρ2 )ψ. (14) 

The new ρ2 = | ψ | 4 term becomes non-negligible at very high 
densities, contributing a repulsive, stabilizing positive pressure, 
P 4 = 64 π2 a 2 s ! 4 

9 m 6 c 2 ρ3 . (15) 

This pressure will counterbalance the destabilizing pressure from the 
attractive term, 
P 2 = −2 πa s ! 2 

m 3 ρ2 , (16) 
at a very high density, 
ρeq = 9 c 2 m 3 

32 a s ! 2 π , (17) 
and abo v e this density, P 4 dominates. With this two-term approx- 
imation of the full instantonic axion potential, compact solitons 
are the expected end state of collapse (Chavanis 2018 ). Braaten 
et al. ( 2016 ) makes analytic arguments that these two terms are 
a good approximation of the full cosine potential, but testing the 
approximation through all stages of collapse is left for future 
simulations. In this work, compact solitons are not resolved at the 
grid resolution. 

We can define the regions of ρ0 –a s parameter space, where the 
soliton is expected to be stable or unstable by integrating the density 
profile given by equation ( 11 ) to get a mass and comparing to 
equation ( 12 ). In the zero SI case, β = 0, the integral can be computed 
analytically, 
M sol = ∫ ∞ 

0 4 πr 2 ρsol ( r )d r + 11 . 6 ρ0 r 3 c (18) 
= 2 . 2 × 10 8 (10 −22 eV 

m 
)2 (kpc 

r c 
)

M ) (19) 
demonstrating the unique, well-studied property that more-massive 
FDM solitons are smaller. For other values of β, equation ( 11 ) can 
be integrated numerically. The left-hand panel of Fig. 2 shows a 
heat map of M sol as a function of ρ0 (or, equi v alently, r c ) and a s (or 
f ). Contours equally spaced in log β are shown as faded grey lines. 
F or an y constant value of ρ0 , stronger self-interactions decrease the 
soliton mass as compared to its non-interacting counterpart. Fixing 
a s , increasing ρ0 increases the soliton mass up to some maximum 
value before decreasing sharply. As shown in the right-hand panel, 
the soliton mass exceeds the critical mass through a range of central 
densities and peaks at M max = 1 . 01 M crit , regardless of SI strength. 

Using equation ( 11 ), the soliton mass formula can be easily 
extended from equation ( 18 ) with an additional multiplicative factor, 
M sol = 11 . 6 ρ0 r 3 c g( β) , (20) 
where g is a smooth, monotonically decreasing function with g(0) = 
1. We do not attempt to characterize g( β) analytically, but we provide 
details in Appendix B . Dividing equation ( 20 ) by equation ( 12 ) and 
using the definition of β, it can be shown that the ratio of the soliton 
mass to the critical mass is simply a function of β, 
(

M sol 
M crit 

)2 
= 3 . 8 βg( β) 2 (21) 

Thus, the maximum of M sol /M crit occurs at the maximum of βg( β) 2 , 
which is determined to be approximately 
βmax = 0 . 687 . (22) 
If the best-fit β were to surpass this value at some point in a 
simulation, the soliton mass as calculated by integrating equation 
( 11 ) would start to decrease . More broadly, M sol > M crit within the 
range 0 . 55 < β < 0 . 84. In a simulated FDM soliton, β may slowly 
increase with ρ0 and surpass the lower bound, βcrit = 0 . 55, at which 
point it is expected to undergo the phase transition. This critical value 
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Figure 2. Left: Heatmap of soliton mass M sol for a range of central densities ρ0 and self-interaction strengths a s . Conversions to r c and f are provided on the 
opposite ax es. Ov erlaid are contours equally spaced in log M sol (dotted curv es) and contours equally spaced in log β (solid curv es). The two contours bolded 
black ( β = 0 . 55 , 0 . 84) indicate M sol = M crit and βmax = 0 . 687 (purple dashed line) delineates the maximum predicted mass M max = 1 . 01 M crit for any given 
a s . Right: M sol , normalized by the critical mass M crit , for every point in the shaded parameter space on the left-hand panel. Bounding curves are labelled by 
f 15 ≡ f / (10 15 GeV ). For any attractive SI strength, there exists a critical range of ρ0 values in which the soliton is expected to collapse. 
of β corresponds to a central density 
ρcrit = 5 . 3 × 10 10 m 2 22 f 4 15 M )

kpc 3 (23) 
or a core radius 
r crit = 0 . 138 m −1 

22 f −1 
15 kpc . (24) 

These values of βcrit , ρcrit , and r crit will serve as reference values in 
our simulation analysis. 
2.3 Fitting algorithm 
The density field of any simulation snapshot can be decomposed into 
a spherically-averaged radial profile about the soliton centre. For this 
work, we compute the density ρ at some radius r from the soliton 
centre – here defined as the densest point – by sampling the grid at a 
large number of points within a thin spherical shell [ r − ,r 

2 , r + ,r 
2 ]. 

Each point is assigned a sub-pixel coordinate value within the shell, 
and the density at that point is the density of the grid cell that encloses 
it. ρ( r) is then the average of the density at all the sampled locations. 

We are interested in measuring how self-interactions alter the dis- 
tribution of matter in the entire FDM halo, including the soliton and 
the outer envelope. We choose to fit the whole profile simultaneously 
by assuming that ρ( r) is the sum of two component profiles, ρsol ( r) 
and ρtail ( r), where ρsol is given in equation ( 11 ) and ρtail is defined 
as 
ρtail ( r) ≡ ρ0 , tail 

[ 
1 + ( r 

r c , tail 
)2 ] n ∞ / 2 

(25) 
and ρ0 , tail , r c, tail , and n ∞ are all independent free parameters. At 
r , r c, tail , ρtail is approximately a power law with index n ∞ . At 
small radii, the tail component flattens to a v oid contrib uting to the 
soliton core. A transition radius r cutoff can be defined as the radius 
at which ρsol ( r) drops below ρtail ( r) by half a dex. To correct for the 
slight curvature inherent in equation ( 25 ), we report the power-law 

slope at a radius r midtail within the outer envelope, 
n ≡ d log ρtail 

d log r = n ∞ ( r/r c, tail ) 2 
1 + ( r/r c, tail ) 2 

∣∣∣∣
r= r midtail , (26) 

where r midtail is the log-mean of r cutoff and L/ 2. In most snapshots, 
n + n ∞ . 

In the full profile fit ρ( r) = ρsol + ρtail , there are four free param- 
eters: ρ0 , sol from equation ( 11 ) (written there as ρ0 ), ρ0 , tail , r c , tail , and 
n ∞ from equation ( 25 ). Most important are the total central density 
ρ0 = ρ0 , sol + ρ0 , tail and the power-law index, n , from equation ( 26 ). 
We e v aluate the goodness of fit using a sum of squares of differences 
metric, 
δ2 = 1 

J ∑ 
j ( log ρ( r j ) − log ρfit ( r j )) 2 , (27) 

where J is the number of sampled density values. Since we can use 
this formula in any arbitrary radial interv al, we e v aluate an o v erall 
goodness of fit δ2 as well as component e v aluations δ2 

sol and δ2 
tail . 

2.4 Conser v ation of mass and energy 
The system has conserved quantities, including its total mass, 
M = ∫ ρ d 3 x, (28) 
and its total energy, 
E = ∫ ! 2 

2 m ( ∇ √ 
ρ) 2 d 3 x + ∫ 1 

2 ρv 2 d 3 x + ∫ 1 
2 ρV d 3 x (29) 

= K ρ + K v + W , (30) 
where K ρ is the gradient energy due to the quantum pressure tensor, 
K v is the classical kinetic energy, W is the potential energy, and 
v = arg ( ψ) /m is the Madelung velocity. The total (quantum) kinetic 
energy is K = K ρ + K v . Like the density ρ, each of these energy 
components can be computed at every point in space and decomposed 
into a radial profile. 
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Figure 3. Density projection of the initial snapshot of our simulations, which 
is identical across all runs. Eight bare solitons are randomly strewn throughout 
the box with random masses drawn such that the total mass in the box is 
M ∼ 3 × 10 9 M ). Box properties are listed in Table 1 . 
Table 1. Initial conditions in our simulation box, regardless of resolution or 
self-interaction parameter. A density projection of the initial box is shown in 
Fig. 3 . 
# of subhaloes 8 
L 20 kpc 
M 3 . 65 × 10 9 M )
E −3 . 38 × 10 12 M ) ( km s −2 ) 
3  IDEALIZED  H A L O  SIMULATIONS  
We numerically simulate the merging and evolution of self- 
interacting FDM haloes within a box with side length L = 20 kpc 
and periodic boundary conditions. The only physical free param- 
eter is the particle self-interaction strength, parametrized as f 15 ≡
f / (10 15 GeV ). We hold the dark matter particle mass fixed at its 
fiducial value of m = 10 −22 eV . Dark matter density is discretized 
onto grids with N 3 = 200 3 and 400 3 cells for uniform spatial 
resolutions of ,x = 0 . 10 and 0 . 05 kpc . The initial conditions are 
non-cosmological and the dynamics do not include baryonic physics; 
the evolution is entirely described by equations ( 14 ) and ( 2 ). In future 
work, the code could be modified to include cosmological initial 
conditions, gas dynamics, and star formation, as in e.g. Mocz et al. 
( 2020 ). 

Our simulations are al w ays initialized with the same density field, 
shown in Fig. 3 . To create this field, we generated eight spherically 
symmetric bare solitons with density profiles given by equation ( 9 ) 
and core radii sampled from r c / kpc ∼ U (0 . 2 , 1). The subhaloes are 
initially unrealistic in the sense that they do not have outer envelopes, 

but the gravitational merging process is disruptive enough that the 
aftermath is not sensitive to this detail. We centred the haloes on 
randomly chosen locations in the (20 kpc ) 3 box, then we initialized 
the dark matter density ρ in an N 3 grid as the sum of contributions 
from all the haloes. The wavefunction ψ is initialized and normalized 
as ψ = √ 

ρ, which is then subsequently evolved by equations ( 14 ) 
and ( 2 ). No angular momentum is imparted to the system. We provide 
some properties of the initial density field in Table 1 . 

The total mass in subhaloes is M ∼ 3 × 10 9 M ), placing the 
merged halo in the mass range expected for haloes around dwarf 
galaxies. This halo mass is physically moti v ated and computationally 
advantageous. Dwarf galaxies are widely regarded as optimal testing 
grounds for constraining dark matter properties due to their large 
mass-to-light ratios (Bullock & Boylan-Kolchin 2017 ). Computa- 
tionally, in FDM simulations, dwarf galaxy-mass haloes are less 
intensive to simulate because their solitons are more extended relative 
to those in higher-mass haloes (see, e.g. equation ( 19 )). 

We evolve the dark matter by numerically solving equations ( 14 ) 
and ( 2 ) following the spectral method as described in Mocz et al. 
( 2017 ) and re vie wed in Appendix B . For self-interacting FDM, 
a notable consequence of the spectral method is slow integration 
after solitons collapse. This is evident in equation ( C7 ): if a soliton 
collapses into a very dense object, max | V | will grow very large, 
suppressing the time-step. Ho we ver, as we will sho w in Section 4.2 , 
artefacts of poor resolution render the post-collapse density fields 
unusable, so we do not spend large amounts of computational time 
in this regime. 

In this work, our data consists of three suites of simulations detailed 
in Table 2 . Our highest-resolution suite ( N 3 = 400 3 , ,x = 0 . 05 kpc ) 
contains six simulations spanning a range of SI strengths between 
f 15 = ∞ and 1.0. These simulations end at T = 4 Gyr after the initial 
snapshot. In addition, we analyse two suites of lower-resolution 
( N 3 = 200 3 , ,x = 0 . 10 kpc ) simulations: the first, run to an end 
time of T = 20 Gyr, provides insight into the long-term evolution of 
the halo and the second explores trends and changes when SI strength 
is smoothly increased. 

Snapshots of 400 3 complex wavefunction values, along with the 
simulation parameters and current time, are stored to disc every 
,t = 0 . 1 Gyr. All rele v ant quantities can be derived from ψ . 

Our choice of SI strengths is moti v ated by the critical threshold in 
equation ( 12 ) relative to the solitons in our dwarf galaxy-mass haloes. 
For a soliton of mass M sol ∼ 10 9 M ), SI strengths of f ∼ 10 15 GeV 
is expected to delineate the boundary between dilute and collapsed 
solitons. These self-interactions are 1 to 2 orders of magnitude 
stronger than those typically assumed in FDM cosmologies ( f ∼
0 . 5 × 10 17 GeV, Hui et al. 2017 ). In a cosmological simulation 
with m = 10 −22 eV and such high SI strengths, the relic abundance 
of dark matter would be too small without fine-tuning the initial 
misalignment angle (Zhang & Chiueh 2017 ; Schive & Chiueh 2018 ; 
Hui 2021 ). Ho we ver, our simulations are non-cosmological, and 
scaling symmetries in equation ( 6 ) ensure that our results can be 
rescaled to higher-mass haloes with weaker self-interactions. 

Table 2. All simulations used in this paper, along with their purposes. For our initial conditions, the boundary between weak and strong interactions is between 
f = 1 . 2 and 1 . 1 × 10 15 GeV. In the third suite, f 15 values are chosen to be evenly spaced in a s . 
# f 15 N ,x [kpc] ,t [Gyr] T [Gyr] Purpose 
6 { ∞ , 2 . 0 , 1 . 5 , 1 . 2 , 1 . 1 , 1 . 0 } 400 0.05 0.1 4 Highest-resolution simulations. 
4 { ∞ , 2 . 0 , 1 . 5 , 1 . 2 } 200 0.10 0.1 20 Long-term evolution. 
24 { ∞ , 5 . 8 , 4 . 1 , . . . , 1 . 2 } 200 0.10 0.1 4 Quantifying trends with SI strength. 
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Figure 4. Evolution of haloes in our simulations. Initially, the subhaloes merge together in the same way (top panels), but the end state at ∼2 Gyr depends on 
the strength of the attractive SI. The simulations diverge once the subhaloes are fully merged and solitons condense in their centres (highlighted by the inset 
panels). As SI strength increases in the weak regime, the soliton becomes more compact while remaining in a dilute state. At some critical point that delineates 
the strong-SI regime, the self-interaction becomes strong enough to initiate a collapse into an unresolved compact soliton even though M sol < M crit . 
4  RESU LTS  
Fig. 4 diagrams the general evolution of dark matter in our simu- 
lations. The top row of density projections depicts the early stages, 
before the subhaloes have fully merged together. The dynamics at 

these times are largely invariant of SI strength in the ranges we 
probed. In all cases, the subhaloes collide to produce a typical 
FDM halo with a soliton at its centre, NFW-like outer enve- 
lope, and turbulent ‘granules’ throughout the box. The simulations 
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Figure 5. Left: Measured density profiles at the end of the N = 400, f 15 = ∞ (blue), 2 (orange), 1.5 (green), and 1.2 (red) simulations. Stronger self-interactions 
increase the central density and decrease the core radius, making the soliton more compact. The outer envelope is not affected by self-interactions, except that 
it surrounds a smaller soliton. Right: Same profiles, normalized on both axes by r c and ρ0 (from best-fit models). The zero SI case is well fit by equation ( 9 ), 
but self-interactions introduce slight changes to the soliton shape that render equation ( 11 ) more accurate. Computed values of β are included for comparison 
to Fig. 1 , which shows the theoretical prediction. 
diverge after this point, represented by branches to three cate- 
gories: non-interacting, weakly interacting, and strongly interacting 
cases. 

In weakly interacting cases ( f 15 = 2 . 0 , 1 . 5 , 1 . 2), the soliton settles 
into a final state that depends on the interaction strength: stronger at- 
tractive interactions compactify the soliton to higher central densities 
and smaller radii. We examine dilute solitons in detail in Section 4.1 . 

In strongly interacting cases ( f 15 = 1 . 1 , 1 . 0), the soliton collapses 
rapidly after some length of time that depends on the interaction 
strength. The uniform spatial resolution ,x = 0 . 05 kpc is not high 
enough to resolve the post-collapse remnants. Collapsed solitons 
appear as single high-density pixels that propagate numerical in- 
accuracies throughout the simulation box. The potential increases 
steeply at this time, and the time-step criterion in equation ( C7 ) 
enforces that integration proceeds much more slowly. Since further 
evolution is inaccurate and computationally e xpensiv e, we halt these 
simulations shortly after collapse (before T = 4 Gyr ). We analyse 
the frames immediately before and after collapse in Section 4.2 . 
4.1 Weakly self-interacting haloes 
4.1.1 Density profiles 
Density profiles of self-interacting FDM haloes with dilute solitons 
reproduce the key features of FDM haloes observed in previous 

simulations: a central soliton surrounded by a power-law tail. Fig. 5 
plots the density profile measured at the end of the higher-resolution 
f 15 = ∞ (blue), 2.0 (orange), 1.5 (green), and 1.2 (red) simulations. 
In each case, the soliton is clearly visible protruding within the 
central kiloparsec. It has a cored centre, with the density falling 
off at increasingly steep rates until some transition radius r cutoff . 
At r > r cutoff , the density profile assumes an NFW-like power-law 
shape with some fluctuations due to random interference granules. 
All self-interacting FDM haloes with dilute solitons demonstrate 
these properties in our simulations. 

Fig. 5 reveals that, by the end of the simulations, self-interactions 
have caused multiple changes to the shape of the central soliton. 
The left-hand panel clearly suggests an important trend: stronger 
self-interactions make the soliton more compact . In other words, 
as we decrease f 15 , we observe that the central density increases 
and the core radius shrinks. This makes intuitive sense: the soliton 
is the densest part of the halo in which the most particle-particle 
interactions will occur. Since that interaction is attractive, the soliton 
should compress into itself more. The degree of compression should 
be directly related to the SI strength, and this is reflected by the fact 
that the central densities are (inversely) sorted by f 15 . By contrast, the 
outer envelope is unchanged by self-interactions; it has the same slope 
and amplitude at all radii exterior to r cutoff . For the smaller solitons 
in the self-interacting cases, the power la w e xtrapolates inward to a 
new, smaller cutoff radius. 
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Figure 6. Upper: Example density profile measured from the f 15 = 1 . 5 
simulation (thick black curve) performed at the highest resolution, with best- 
fit model (gold curve) and fit components (red and blue-dashed curves). The 
region interior to the grid cell length ,x = 0 . 05 kpc is shaded in grey; regions 
beyond ∼0 . 4 L = 8 kpc are subject to periodicity errors. Equation ( 11 ) fits 
the soliton profile very well, while the outer envelope is roughly a power 
law with turbulent fluctuations. Lower: Ratio of best-fit components to the 
measured profile. 

For the most part, the soliton shapes all resemble the zero- 
interaction case, but by normalizing ρ by the central density ρ0 and 
r by the core radius r c , as shown in the right-hand panel, the minute 
variations from equation ( 9 ) are e xposed. F or a given ρ0 , the density 
of self-interacting solitons falls off slightly faster than is allowed 
by equation ( 9 ), to the point that the f 15 = 1 . 2 soliton has 1 / 4 the 
‘expected’ density near the cutoff radius. Fitting equation ( 9 ) to the 
soliton component of the red curve yields a relatively poor goodness- 
of-fit value of δ2 = 0 . 0571, while equation ( 11 ) successfully predicts 
these minute changes, boasting a best-fit δ2 = 0 . 0054. As men- 
tioned in Section 2.1 , both of these formulas have only one free 
parameter. 

Fig. 6 isolates one of the density profiles in Fig. 5 ( f 15 = 1 . 5, 
the green curve) and includes the theoretical best fit as computed 
by the algorithm in Section 2.3 . The soliton and tail components of 
the fit are shown in red and blue, and their sum is plotted in gold. 
The log residuals are shown in the bottom panel. The soliton is fit 
very well by equation ( 11 ), with goodness of fit δ2 

sol = 0 . 0085. The 
(approximate) power law is a good fit for the tail, though natural 
random fluctuations increase the residuals to δ2 

tail = 0 . 024. All other 
snapshots of haloes with dilute solitons exhibit similarly excellent 
fits. 

4.1.2 Halo evolution 
The density profile fitting algorithm e x emplified in Fig. 6 can 
be applied to all snapshots outputted throughout each simula- 
tion to measure the essential halo quantities o v er time. Fig. 7 
sho ws the e volution of ρ0 , n , r cutoff , and δ2 derived from density 
profile fits for each of the higher-resolution f 15 = ∞ , 2 . 0 , 1 . 5, 
and 1.2 simulations. The initial subhaloes do not fully merge 
together until t merge + 0 . 7 Gyr , indicated by a grey-shaded region, 
at which point an FDM halo forms with a dilute soliton and outer 
envelope. 

The upper-left-hand panel of Fig. 7 shows that the soliton central 
densities sort themselves by f 15 after t + 1 . 5 Gyr . This reflects 
observations of the raw density profiles in Fig. 5 . Turbulence in 
the box means the evolution of ρ0 is noisy, but in all cases, a power 
law ρ0 ∝ t α increase is observed after t merge for α between 0.17 and 
0.43. Since M sol is roughly proportional to ρ1 / 4 

0 , M sol also increases 
like a power law. This phenomenon is observed in other studies and 
may be interpreted as a slow accretion of the outer envelope over 
time (Chen et al. 2021 ; Dmitriev et al. 2024 ). 

The upper-right-hand panel plots the best-fit power-law index 
to the density profile tail o v er time. Immediately after t merge , the 
slope is n + −3 . 0, but o v er time it slo wly shallo ws to n + −2 . 4 
by t = 4, independent of the SI strength. The ‘shallowing’ of the 
outer envelope is a response to mass accretion onto the soliton; 
matter is redistributing from the outer halo to the inner halo o v er 
time. 

In the lower-left-hand panel, r cutoff stabilizes after t merge at a radius 
dependent on f 15 . In fact, r cutoff /r c is invariant of f 15 , so r cutoff 
and r c scale with interaction strength in the same way. Whereas 
the core radius decreases o v er time (since it is inversely related to 
ρ0 ), the cut-off radius is observed to stay roughly constant. Thus, 
later in its evolution, the soliton extends out to higher multiples 
of r c . This interesting phenomenon is the sum of the two effects 
in the upper panels: the soliton becomes more compact as it 
accretes more mass, but the outer envelope becomes shallower and 
lower amplitude such that the cutoff radius remains roughly the 
same. 

In the lower-right-hand panel, the goodness of fit metric δ2 is 
shown to be consistently low, independent of f 15 . Further, the fits 
seem to get slightly better o v er the course of the simulation. This 
provides evidence that our ρsol + ρtail fitting algorithm, particularly 
equation ( 11 ), is a good generalization of previous density profile 
approximations of FDM haloes. 

To verify the power law increase of ρ0 and the corresponding 
shallowing of the outer envelope observed in Fig. 7 , we analyse 
a suite of four analogous simulations at an intermediate resolution 
N = 200 evolved to a much later T = 20 Gyr . Fig. 8 shows the results 
of these simulations in the same format as the top panels of Fig. 7 . 
The simple moving averages are highlighted to isolate secular trends 
and reduce noise, and 4 Gyr is marked with a vertical line to indicate 
the end of the higher-resolution runs. Notably, a collapse is observed 
in the f 15 = 1 . 2 simulation at t = 5 . 87 Gyr ; this is discussed further 
in Section 4.2 . For the others, the general increase of ρ0 and n extends 
to the simulation end at 20 Gyr. The time dependence ρ0 ( t) is still 
well fit by a single power law t α and n ( t) never levels out. This 
suggests that an equilibrium state is not reached, but rather the entire 
halo will be consumed in the asymptotic future. The dependence of 
ρ0 and n on SI strength echoes Fig. 7 : the central density clearly 
depends on interaction strength while the power-law index of the 
outer envelope does not. 
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Figure 7. Best-fit quantities o v er time for weakly self-interacting FDM haloes. The time before all subhaloes have fully merged is indicated by the shaded area. 
Upper left: The soliton central density ρ0 exhibits a clear pattern across the four SI strengths by t + 1 . 5 Gyr . Stronger self-interactions increase ρ0 and thus 
decrease r c . Upper right: The power-law index n of the outer envelope is independent of f 15 and increases slowly o v er the course of the simulation. Lower left: 
The soliton cutoff radius r cutoff decreases with stronger self-interactions, scaling in the same way as r c . Lower right: The goodness of fit does not depend on f 15 , 
oscillating around δ2 = 10 −2 . Our fitting algorithm therefore appears to be valid across the weak SI regime. 
4.1.3 Trends with self-interaction strength 
Figs 5 , 7 , and 8 suggest that weakly attractive self-interactions 
smoothly change soliton properties. To see these changes more 
clearly, we extract and fit density profiles from our suite of 24 
intermediate-resolution simulations spanning the weak SI regime. 
We continue to hold the initial configuration constant among each 
simulation; the only difference is the strength of self-interactions. 

To be clear, the way in which the soliton density profile changes 
with ρ0 and a s is already accurately quantified in equation ( 11 ). What 
we hope to glean from these simulations is how ρ0 changes with a s 
for a fixed initial mass configuration. For our initial conditions, a s 
parametrizes a particular curve ρ0 ( a s ) that traces a slice of M sol or 
β heatmaps. In this sense, M sol and β may be considered solely 
functions of a s for our simulation setup, since ρ0 is determined at 
every a s (i.e. M sol ( a s ) ≡ M sol ( ρ0 ( a s ) , a s )). Ho we ver, if our simulation 

had different initial conditions, the relationship ρ0 ( a s ) would be 
different, and thus M sol ( a s ) and β( a s ) would look different. 

The left-hand panel of Fig. 9 plots ρ0 , the one free parameter 
in the fit to the soliton density profile, as measured at the end of 
each of these 24 simulations, as well as the four higher-resolution 
simulations introduced in previous subsections. The central density 
is sampled in each simulation from a density profile averaged over 
three consecutive snapshots to mitigate random fluctuations. The 
measurements confirm the trends suggested in previous figures: 
as compared to the collisionless case, ρ0 increases smoothly with 
stronger self-interactions (and the core radius decreases according to 
equation ( 10 )). The trend is not linear in ρ0 or log ρ0 but more closely 
resembles an asymptotic or exponential increase. Near the critical SI 
strength at which our soliton collapses ( f 15 ∼ 1 . 1–1.2), the central 
density is approximately 3 times greater than in the non-interacting 
case. 
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Figure 8. Extended evolution of the haloes in Fig. 7 using lower-resolution simulations ( N = 200). These simulations reproduce the trends observed through 
the first 4 Gyr in Fig. 7 and continue them for an additional 16 Gyr. The soliton in the f 15 = 1 . 2 simulation is observed to collapse at t = 5 . 87 Gyr , when it 
reaches its highest-yet central density of ρ0 = 8 . 03 × 10 10 M ) kpc −3 . In the f 15 = ∞ , 2, and 1.5 simulations, both ρ0 and n continue their secular increase 
o v er long time-scales, potentially reaching an equilibrium state in each case. 

Figure 9. Soliton central density and mass (normalized) measured at t = 3 . 817 Gyr in simulations with various SI strengths and spatial resolutions. Included 
are N = 400 simulations (circles, same colours as previous figures) and our N = 200 suite (black triangles) evenly spaced in a s . All simulations have the same 
initial conditions. Left: The central density smoothly increases with stronger self-interactions, as suggested by the snapshots in, e.g. Fig. 5 . The trend steepens 
as the interaction strength nears the critical point at which the soliton collapses. At f 15 = 1 . 2, ρ0 is approximately 3 times higher than in the non-interacting 
case. The solid grey contours show constant values of β while the red dashed contours show constant values of M sol . β increases quickly with SI strength, but 
M sol stays approximately constant. Right: Soliton mass, normalized by the prediction from equation ( 18 ). The residual dependence on a s is roughly linear up 
until f 15 + 1 . 5, at which point the decrease steepens, presumably because the soliton is nearing its critical point. 
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Overlaid are contours of equal β and contours of equal log M sol . 
As interaction strength increases, β increases quickly since both 
multiplicative terms in equation ( 8 ) are increasing. The changes to 
M sol are a bit more complicated. From numerical integrals of equation 
( 11 ), we know that increasing a s generally decreases the soliton mass 
(see shape changes in the right-hand panel of Fig. 5 ), while increasing 
ρ0 increases M sol (typical M sol ∝ ρ1 / 4 

0 growth in FDM haloes). In 
our simulations, ρ0 increases in response to an increase in a s , so the 
resulting soliton mass is a product of two competing effects. We find 
that self-interactions increase ρ0 in such a way that M sol is nearly 
constant o v er our range of simulations, increasing only slightly from 
1.20 to 1 . 25 × 10 9 M ). 

To isolate the deviations from the typical ρ0 –M sol relation pre- 
dicted by equation ( 18 ), we can normalize the measured M sol at each 
a s by the zero-SI prediction M sol ( a s = 0) = 11 . 6 ρ0 r 3 c . The right-hand 
panel of Fig. 9 unveils a tight residual linear dependence of M sol on 
a s up to f 15 = 1 . 5. This suggests that for very weak self-interactions 
(such that M sol . M crit ), the soliton mass can be accurately predicted 
by revising equation ( 18 ) to 
M sol ( ρ0 , a s ) = 11 . 6 ρ0 r 3 c (1 − a s 

a # 
)

(31) 
with one additional constant a # characterizing the strength of the 
dependence. With our particular initial conditions, we find a # +
8 . 30 × 10 −77 cm (which corresponds to f 15 ,# + 0 . 49); the fit line 
with that slope is also plotted on the right-hand panel. Note that if 
equation ( 31 ) is true and M sol is observed to remain roughly constant 
o v er a range of a s , then ρ0 ∝ (1 − a s /a # ) −4 . After f 15 = 1 . 5, the a s 
dependence departs from linear. Presumably, this departure indicates 
that the soliton mass is nearing its critical mass and the higher-order 
ρ2 term in equation ( 14 ) is no longer negligible. 
4.1.4 Energy profiles 
As with the density, the quantum gradient energy K ρ , and classical 
kinetic energy K v can be computed at each grid cell within the 
simulation box and may be decomposed into radial profiles. This 
analysis was considered in Mocz et al. ( 2017 ) and is useful for 
determining the energy composition of different regions of the halo 
and of fers e vidence as to the forces at play and the mechanisms 
driving the halo evolution. 

Fig. 10 shows kinetic energy profiles at the end of our weakly 
self-interacting N = 400 simulations. The main features of the 
profiles are preserved regardless of f 15 : mass and energy are most 
concentrated in the soliton with curves characteristic of FDM, and 
the curves fall off with power laws after a certain cutoff radius. 
Ho we ver, the amplitude of each quantity at low radii is dependent 
on self-interactions. Stronger self-interactions enhance both kinetic 
energy components within the soliton core radius. In the left-hand 
panel, the K v increases interior to r ∼ 0 . 5 kpc when self-interactions 
are present, and the increase is sorted by SI strength interior to 
r ∼ 0 . 1 kpc as in the density profiles. Similarly, in the right-hand 
panel, K ρ is measured to increase interior to r ∼ 0 . 3 kpc to some 
extent dependent on SI strength. In the f 15 = 1 . 2 simulation, K ρ is 
enhanced by more than an order of magnitude in the soliton centre. 
In both cases, the energy profile of the outer envelopes is invariant 
with interaction strength, further indicating that self-interactions are 
not prominent at these radii. 

Both kinetic energy components maximize at r ∼ r c and decrease 
to a local minimum at the soliton centre, regardless of interaction 
strength. 

4.2 Strongly self-interacting haloes 
In Section 4.1 , we analysed simulations with SI weak enough 
that the solitons remained dilute. Ho we v er, we observ e soliton 
collapses in three simulations with strong enough self-interactions. 
Two of these simulations are part of our higher-resolution N = 400 
suite ( f 15 = 1 . 1 and 1.0), while the other is one of our extended 
lower-resolution runs ( f 15 = 1 . 2). In all of these simulations, the 
transition happens quickly ( ,t < 10 Myr), and the collapse remnant 
is spatially unresolved ( r < 50 pc), appearing as one single dense 
pixel. After the collapse, numerical artefacts of poor resolution 
are propagated throughout the box, reducing the credibility of the 
data on the outer envelope. Ho we ver, we can analyse the frames 
immediately before and after the collapse event (Sections 4.2.1 and 
4.2.2 ) and modify the physics to artificially resolve a compact soliton 
(Section 4.2.3 ). 
4.2.1 Phase transition 
Soliton collapse is readily apparent in density projections of the 
f 15 = 1 . 1 and 1.0 simulations o v er a few select snapshots. Fig. 11 
shows a sequence of three consecutive projections from the f 15 = 1 . 1 
simulation at our highest temporal resolution of ,t = 10 Myr. In the 
left-hand panel at t = 1 . 22 Gyr, the soliton is dilute, as it has been 
since the initial configuration fully merged at t + 0 . 7 Gyr. There are 
no unusual features in the halo that indicate an imminent collapse. 
Density profile fitting reveals that the soliton is well within the critical 
regime for f 15 = 1 . 1: the central density is at its highest value 
yet ( ρ0 = 1 . 85 × 10 11 M ) kpc −3 ) and the soliton mass is almost 
exactly equal to the critical mass ( M sol + M crit = 1 . 22 × 10 9 M )). 
During the next 10 Myr (between the left and centre snapshots), 
the soliton collapses, but the collapse is halted when the soliton 
shrinks to the grid cell length. The remnant is displayed as a cross of 
five dense pixels in the centre panel. Spherical waves are observed 
to emanate from the centre at a velocity of v ∼ 10 3 km s −1 with 
various frequencies. This radiation could be a physical signature 
of a ‘bosenova’, which has a characteristic spectrum as found by 
Levkov et al. ( 2017 ). Howev er, the wav elengths are of order the 
grid cell length, so they are not fully converged. Higher resolution 
simulations are required to confirm whether these waves are physical 
or numerical artefacts of poor resolution. By t = 1 . 24 Gyr in the 
right-hand panel, the collapse remnant appears unphysically as one 
dense pixel surrounded by a small overdense cloud. The ripples 
have propagated through the periodic boundaries, distorting the 
granules and blurring vortex lines within the box (similar artefacts 
are observed by Jain et al. ( 2024 ), Appendix B). Neither the slope 
nor the amplitude of the power-law outer envelope changes during 
the collapse. Instead, the power law extends to fill the void left 
by the dilute soliton, leaving a cuspier halo profile. We stress that 
these results are not rigorous; simulations that adequately resolve 
the soliton collapse are required to thoroughly investigate the post- 
collapse halo structure. 

With the two-term approximation of the instantonic axion po- 
tential, we expect that the collapse should result in a compact 
soliton wherein the higher-order repulsive pressure in equation ( 14 ) 
counterbalances the attractive SI and gravity. Equation ( 17 ) suggests 
that the post-collapse equilibrium density of the compact soliton 
should be ρeq ∼ 3 . 7 × 10 17 M ) kpc −3 , o v er six orders of magnitude 
higher than ρ0 , pre-collapse. Extrapolating the ρ0 - r c relation in 
equation ( 10 ) to the post-collapse regime yields a compact radius 
of r = 2 . 7 pc, about 20 times finer than our best grid resolution. 
Ho we ver, there is no evidence to suggest that equation ( 10 ) can 
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Figure 10. Classical kinetic energy K v (left) and quantum gradient energy K ρ (right) profiles at the end of each N = 400 simulation with weak self-interactions. 
Similar to the trends seen in the density profiles, stronger self-interactions enhance both components of the kinetic energy around the soliton with some degree 
of dependence on the interaction strength. In the outer envelope, the slope and amplitude of kinetic energy profiles are independent of self-interactions. 

Figure 11. Soliton collapse under strong axion self-interactions ( f 15 = 1 . 1). Left: Just before collapsing, the soliton and outer envelope are typical of other 
snapshots of dilute solitons with no obvious indicators of an imminent collapse. Centre: Immediately after collapse, the soliton appears as a dense, tiny unresolved 
object with waves emanating from its centre. Right: Unphysical numerical artefacts from the unresolved soliton and collapse wavefronts blur and distort the 
outer envelope, rendering any post-collapse data unreliable. 
be extrapolated in this way. If the mass of the compact soliton 
equals the mass of its dilute progenitor, and if the compact soliton 
can be approximated to a sphere of uniform density ρeq , then the 
post-collapse radius is r ∼ (3 M sol / 4 πρeq ) 1 / 3 = 0 . 9 pc. If matter is 
radiated during collapse, then this is an upper limit. These lengths 
are about four orders of magnitude higher than the Schwarzschild 
radius of the soliton R • = 2 GM sol /c 2 = 1 . 1 × 10 −4 pc, indicating 

that the higher-order | ψ | 6 repulsive pressure may halt the collapse 
before a black hole is formed. 

Similarly, the free-fall time of the dilute soliton may give an 
order-of-magnitude estimate of the collapse time-scale. Using the 
pre-collapse central density, the free-fall time is t ff ∼ ( Gρ0 ) −1 / 2 = 
1 . 2 Myr, about 10 times finer temporal resolution than our smallest 
,t between time-steps. 
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Figure 12. Stability parameter β tracked o v er time for each of the three 
simulations in which we observed a soliton collapse. In the red shaded region, 
M sol > M crit ; the maximum M sol /M crit ratio is marked at βmax = 0 . 687, 
and the time period before all haloes fully merge together is shaded grey. 
The f 15 = 1 . 2 soliton collapses at its highest-yet value of β = 0 . 464, where 
M sol + 0 . 97 M crit , after a gradual ∼5 Gyr increase. By contrast, the f 15 = 1 . 1 
soliton collapses right on the upper boundary of the M sol > M crit region, at 
β = 0 . 844, after a steep ∼0.5 Gyr ascent. The f 15 = 1 . 0 simulation collapses 
during the final major subhalo collision; finer time-steps would be needed to 
resolve the details. 

Fig. 12 plots the dimensionless self-interaction parameter β, which 
is proportional to ρ1 / 2 

0 , o v er time for each of the f 15 = 1 . 2 , 1 . 1, 
and 1.0 simulations up to the point of collapse. The grey shaded 
region indicates the period during which merging events take place 
and the × markings and vertical dotted lines indicate the moments 
right before each phase transition occurs. In this limited set of data, 
solitons collapsed first in simulations with stronger self-interactions. 
The f 15 = 1 . 0 soliton collapsed during the last major merging event, 
before the dilute soliton had a chance to condense fully. The f 15 = 1 . 1 
soliton was dilute for a short period of ∼0.5 Gyr after merging was 
finished. The f 15 = 1 . 2 soliton was dilute for much longer, slowly 
accreting mass for ∼5 Gyr before finally collapsing. 

Notably, finer temporal sampling reveals that the central density in 
the f 15 = 1 . 1 simulation increases immediately before collapse at an 
unusually fast pace. Whereas ρ0 evolves slowly in other simulations 
with dilute solitons, in this case it violently oscillates up by a factor 
of ∼4 o v er < 200 Myr from t = 1 . 0–1.2 Gyr. This stage of evolution 
is distinct from collapse, which happens much more quickly; the 
central density briefly accelerates while the soliton is still dilute 
before reaching some threshold for collapse. We did not perform finer 
sampling of the f 15 = 1 . 2 simulation immediately before collapse; 
the time-steps remain at a default ,t = 100 Myr. 

This data indicate only a very tight range of interaction strengths 
(1 . 0 " f 15 " 1 . 5, for our halo mass) allows for a dilute soliton to 
form before collapsing at some point later in its lifetime. If f 15 is 
higher, the soliton will remain dilute forever, but if f 15 is lower, a 
collapse will occur before the soliton fully forms in a dilute state. 
Put differently, for a boson mass of m ∼ 10 −22 eV and interaction 
strength near f ∼ 10 15 GeV, the Universe would likely contain both 
dilute and compact solitons with collapses actively occurring as 
solitons accrete mass and surpass their critical threshold. If self- 

interactions are weaker, there may only be dilute solitons in the 
Universe, but if they are stronger, every halo may have undergone a 
collapse or multiple collapses. 
4.2.2 Threshold criteria for collapse 
The critical soliton mass in equation ( 12 ) offers a predictive threshold 
for soliton collapse, which we extended to other criteria in equations 
( 22 ), ( 23 ), and ( 24 ) from numerical analysis of the ground state 
solution of the GPP equations. It is of interest to examine whether 
these criteria accurately predicted collapse in our simulations. 

Fig. 12 includes corresponding M sol /M crit ratios on the right-hand 
axis, according to equation ( 21 ). The red-shaded region indicates 
the critical regime (0 . 55 < β < 0 . 84), where M sol > M crit , and the 
maximum predicted soliton mass is marked with a dashed purple line. 
The f 15 = 1 . 1 and 1.2 simulations collapse on opposite sides of the 
critical regime at quite different values of β. The f 15 = 1 . 2 soliton 
collapses after rising from β ∼ 0 . 3 to 0.46 o v er 5 Gyr, reaching 
M sol + 0 . 97 M crit but never quite surpassing the critical mass. We 
stress, ho we ver, that lo wer spatial resolution in this simulation may 
instigate soliton collapse prematurely and lower temporal resolution 
could mask late increases in central density. On the other hand, 
the f 15 = 1 . 1 soliton ascends quickly through the critical regime 
to β = 0 . 84. Interestingly, the quick ascent triggers close to the 
lower M sol = M crit boundary, and the collapse occurs right on the 
upper boundary. We conclude that the criteria given in equation ( 12 ) 
accurately predicts soliton collapse in our simulations to within a 
few per cent. 
4.2.3 Boosting the | ψ | 6 repulsive pressure 
To demonstrate the compact equilibrium into which the soliton may 
collapse with a resolution of ,x = 0 . 05 kpc, we artificially increase 
the higher-order stabilizing pressure term in equation ( 14 ) and 
rerun the f 15 = 1 . 1 simulation with this change. This is completely 
unphysical; the relati ve coef ficients of the first two terms in the Taylor 
expansion of the axion potential are determined by SI strength, boson 
mass, and the functional form of the potential. Ho we ver, observing 
soliton collapse under similar physics can give useful intuition for 
behaviour in the real case. 

Multiplying the higher order term by a ‘boosting’ factor B , 1 
increases the repulsive pressure and halts collapse at a lower 
equilibrium density 
ρeq , modified = ρeq 

B (32) 
and thus, a larger compact soliton radius. In the f 15 = 1 . 1 sim- 
ulation, the dilute soliton is observed to have a central density 
of ρ0 + 1 . 85 × 10 11 M ) kpc −3 , six orders of magnitude less than 
ρeq + 3 . 7 × 10 17 M ) kpc −3 . We find a boosting factor of B = 10 5 to 
be large enough to resolve the compact object while small enough 
that a collapse still initiates. 

For direct comparison, we initialize a new simulation with the t = 
1 . 08 Gyr snapshot from the default-physics f 15 = 1 . 1 simulation. 
We evolve forward for 0.8 Gyr at a finer temporal resolution of ,t = 
10 Myr. 

Fig. 13 shows a sequence of density projections analogous to 
Fig. 11 , but with the repulsive pressure boosted. The soliton 
remains dilute up through the t = 1 . 43 Gyr snapshot (left-hand 
panel; 0.21 Gyr later than with default physics) at which point the 
central density is ρ0 = 2 . 01 × 10 11 M ) kpc −3 , the mass is M sol = 
1 . 22 × 10 9 M ) and β = 0 . 88. Relative to the default f 15 = 1 . 1 
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Figure 13. Top: Soliton phase transition under artificially modified physics that lowers the post-collapse equilibrium density by five orders of magnitude. In 
this modified regime, the compact soliton is resolved to have a diameter of ∼0.3 kpc, or about 6 pixels, and persists in a stable state through the end of the 
simulation. Bottom: The density profile of the compact soliton (thick black curves, centre and right) in this modified physics simulation is not as well-fit by the 
same fitting function (equation ( 11 )) used for dilute solitons; the slope is too steep. Ho we ver, the information is still very limited, and it is unclear how these 
results extrapolate to a fully collapsed object (with unmodified physics). 
simulation, ρ0 is slightly higher, presumably because the boosted 
higher-order pressure offers a slight additional resistance against 
collapse. The phase transition occurs quickly between t = 1 . 43 
and 1.44 Gyr, leaving behind a compact soliton half the size of 
its dilute parent with an order of magnitude higher central density, 
ρ0 + 2 . 8 × 10 12 M ) kpc −3 . This is within a factor of two of the 
equilibrium density, ρeq , modified = 3 . 7 × 10 12 M ) kpc −3 as calculated 
by equation ( 32 ). Waves of radiation similar to those observed in 
Fig. 11 are observed emanating from the compact object, suggesting 
that the radiation observed in Fig. 11 is physical. The soliton remains 
stably in its compact state for the remainder of the simulation. Density 
profiles are shown in the lower panels of Fig. 13 ; the dilute soliton 
fitting formula, equation ( 11 ), struggles to fit the steep slope of the 
compact soliton at r = 0 . 08–0.2 kpc. Ho we ver, e ven in this modified 
regime, the information is very limited: the compact soliton is only 
resolved by ∼7 pixels in diameter. Furthermore, it is unclear how 
these results extrapolate to a fully collapsed object with unmodified 
physics. Ultimately, this test demonstrates that under very similar 
go v erning equations, the soliton collapses from a dilute state to a 
stable dense configuration, radiating matter waves in the process. 
5  DISCUSSION  
The simple one-parameter FDM model has likely been excluded as 
a dominant component of dark matter in the Universe because it 
is unable to reconcile extended cores in dwarf galaxy dark matter 

haloes with adequate structure observed in the Lyman- α forest. 
Ho we ver, more general models of wave dark matter may offer the 
same benefits of FDM (e.g. fewer satellite galaxies, cored haloes, 
natural production in the early universe with the correct abundance) 
while boosting small-scale po wer. Attracti ve axion self-interactions 
are one such extension, offering a critical mass scale above which the 
inner part of the dark matter halo contracts and generates structure 
on smaller scales. 

Although soliton collapse may be the key to generating small- 
scale structure in FDM models, many aspects of it remain unclear. 
In our simulations, we employ two standard approximations that 
are valid for dilute solitons: (1) the fully relativistic Klein–Gordon–
Einstein (KGE) equations are approximated in the non-relativistic 
limit by the GPP equations, equations ( 14 ) and ( 2 ), and (2) the 
full instantonic axion potential . is approximated by the first two 
terms in its Taylor expansion. Under these assumptions, the likely 
result of soliton collapse is a compact soliton, a stable, dense dark 
object wherein gravity and attractive SI are counterbalanced by the ρ2 
repulsive term in equation ( 14 ) (Chavanis 2018 ). Although Braaten 
et al. ( 2016 ) suggests that the two-term approximation accurately 
resembles V , such objects have not been found in relativistic simu- 
lations with the full potential. In spherically-symmetric simulations, 
Helfer et al. ( 2017 ) finds that soliton collapses either disperse the 
soliton or form a black hole (in very massive haloes with very low SI 
strengths f ! 10 18 GeV). In similar simulations, Levkov et al. ( 2017 ) 
elaborates that soliton collapses emit waves of relativistic axions 
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with a characteristic spectrum. Our simulations provide evidence 
that such radiation is also emitted under our approximations. In 
future work, it will be interesting to fully resolve the radiation 
and compare it to that observed in relativistic simulations. In our 
simulations, the radiation interferes with itself through the periodic 
boundaries and distorts the vortex lines in the box (Jain et al. 
( 2024 ) suggests that these effects will eventually homogenize the 
simulation box). If the ripples are physical, it may be necessary 
to simulate the outer envelope in high resolution to fully capture 
the post-collapse equilibrium configuration. We cannot study the 
effects of the radiation on the envelope here because, simultaneously, 
unphysical high-frequency modes propagate throughout the box from 
the unresolved collapse remnant. Post-collapse snapshots are thus 
highly distorted by multiple numerical artefacts. 

Observationally, the prospects for constraining FDM self- 
interactions are limited to searching for the effects of soliton col- 
lapses. Weakly attractive self-interactions change the dilute soliton 
density profile only slightly: it becomes more compact but with a less 
extended core than predicted in the simple FDM model. Currently, 
rotation curves of nearby galaxies are not measured precisely enough 
to constrain the self-interaction parameter by discerning between 
density profiles; the change is too small and only present in the inner 
parsec of the halo (the outer NFW-like envelope is not affected by 
self-interactions). 

For self-interactions strong enough to instigate soliton collapse, 
observational signatures may be present. From cosmological con- 
straints, the axion decay constant is expected to be f ∼ 10 17 GeV 
(Hui 2021 ). In a model universe with this SI strength, solitons more 
massive than M sol ∼ 10 11 M ) (by equation ( 12 )) are expected to 
have undergone at least one collapse event, corresponding to the 
haloes around the most massive galaxies and galaxy clusters. Less 
massive DM haloes, namely dwarf galaxies, would feature solitons 
in their dilute states. A slightly stronger (weaker) SI strength would 
lower (raise) the critical mass threshold. Soliton collapses have been 
proposed as possible seeds for supermassive black holes (e.g. Padilla 
et al. 2021 ) and the source of background axion radiation similar to 
gra vitational wa v e backgrounds (e.g. F ox, Weiner & Xiao 2023 ). 

In our simulations, we choose fiducial self-interaction strengths 
of f ∼ 10 15 GeV, about two orders of magnitude stronger than the 
expected values. We do this to noticeably influence and initiate 
collapses in haloes of mass M ∼ 3 × 10 9 M ), a computationally 
convenient mass scale because the solitons are relatively extended 
in the halo. Ho we ver, our results can be generalized using scaling 
relations in equation ( 6 ) to higher-mass haloes with weaker SI 
strengths. In particular, { a s , M} → { ε−2 a s , εM} . 

In our simulations, we observe the halo in snapshots before and 
during collapse. Based on pre-collapse soliton mass values, we find a 
rough agreement (within ∼3 per cent) with the critical mass formula, 
equation ( 12 ), developed in Chavanis ( 2011 ) and Chavanis & Delfini 
( 2011 ). Equation ( 12 ) assumes a static, isolated initial condition and 
should be considered an approximation for our simulations. 

Besides spatial and temporal resolution, our simulations are 
limited in that we test only one initial mass configuration. It would 
be interesting to confirm that higher or lower mass solitons still obey 
the generalized density profile, equation ( 11 ), and the critical mass 
formula, equation ( 12 ). 
6  C O N C L U S I O N  
In this work, we investigate the structure of FDM haloes evolving 
under the GPP equations with a two-term Taylor approximation of the 

axion instantonic potential. We summarize the principal observations 
from our idealized simulations as follows: 

(i) Attractive self-interactions introduce a critical mass threshold 
abo v e which the central soliton collapses from its ‘dilute’ state. Our 
simulations suggest that a stable ‘compact’ soliton is the end state 
under our two-term Taylor approximation of the full potential, but 
fully relativistic studies suggest that these objects are unlikely to be 
stable. A soliton can either collapse at the time of formation or later 
in its life by accreting matter from the outer envelope and eventually 
exceeding the critical mass. 

In the weak self-interaction regime: 
(i) Solitons formed from identical initial conditions change shape 

to some degree dependent on the particle interaction strength. 
Stronger self-interactions increase the central density ρ0 and de- 
crease the core radius r c relative to the collisionless case. The 
observed decrease in r c very nearly follows the expected r c ∝ ρ−1 / 4 

0 
dependence in equation ( 10 ), but a slight correction is observed to 
be non-negligible (see Fig. 5 ). 

(ii) We find that the soliton density profile is accurately general- 
ized by the fitting formula in equation ( 11 ). This approximation is 
calibrated on numerical analysis of the ground state solution of the 
GPP equations and validated by our simulations. 

(iii) The soliton mass M sol is nearly constant as self-interactions 
are dialed up. Typical M sol ∝ ρ1 / 4 

0 dependence is nearly counter- 
balanced by deviations in the density profile seen in the right-hand 
panel of Fig. 5 . For very weak self-interactions ( f 15 ≥ 1 . 5), M sol can 
be approximated by equation ( 31 ), a generalization of equation ( 18 ) 
with a simple linear dependence on the s-scattering length. 

(iv) The outer envelope of the halo that surrounds the soliton is 
invariant of SI strength. Evidence suggests this lack of dependence 
extends to the strong interaction regime, as neither the slope nor 
amplitude of the outer envelope density profile appears to change 
after a soliton phase transition. 

(v) Solitons accrete matter from the outer env elope o v er time, 
growing as ρ0 ∝ t α . The logarithmic rate α positively correlates 
with SI strength: stronger SI yields faster growth. In response, the 
outer envelope becomes shallower and lower amplitude. Power law 
gro wth de viates into a runaway collapse when the critical mass is 
reached. 

In the strong self-interaction regime: 
(i) In our simulations, the collapse event is temporally unresolved 

( ,t collapse < 10 Myr) and the collapse remnant is spatially unresolved 
( r < 50 pc). Additional tests with modified physics indicate that the 
collapse will result in a compact soliton with central density close to 
the equilibrium density given in equation ( 17 ). 

(ii) The time period during which a soliton is dilute before 
collapsing depends on interaction strength. If interactions are too 
weak, the soliton will never collapse. If interactions are too strong, 
as in our f = 1 . 0 × 10 15 GeV run, the dense centre will collapse 
before a dilute soliton has a chance to form. In a very tight range 
for us 1 . 0 × 10 15 " f " 1 . 5 × 10 15 GeV, a dilute soliton can form 
before later transitioning to its compact state. 

(iii) Immediately before collapsing, a dilute soliton may undergo 
a runaway ascent in central density unlike the secular evolution 
observed when M sol is significantly less than M crit (see f = 1 . 1 ×
10 15 GeV simulation in Fig. 12 ). 

(iv) Soliton collapses in our simulations are accompanied by 
waves of axion radiation similar to that observed in fully relativistic 
simulations (Helfer et al. 2017 ; Levkov et al. 2017 ). It remains to 
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be verified that the characteristic spectrum of the radiation can be 
reproduced by non-relativistic simulations. 

Naturally predicted axion-like self-interactions with a symmetry- 
breaking scale f ∼ 10 17 GeV can significantly alter the predictions 
made from the simple FDM model. Every DM halo in the Universe 
abo v e a certain critical mass would be expected to contain a remnant 
of soliton collapse, possibly in the form of a supermassive black 
hole, which could spawn strong non-linear effects on small scales 
and remedy the Catch-22 that faces FDM. Lower-mass haloes are 
expected to retain dilute solitons, which smoothly approximate 
vanilla FDM solitons as f → ∞ . From here, the most important 
next step is to carefully simulate soliton collapse in three dimensions 
with full general relati vistic ef fects to develop a seeding formula for 
cosmological simulations. With models for soliton phase transition 
and post-collapse interactions with the host haloes, large-scale sim- 
ulations can determine whether attractive self-interactions broaden 
FDM parameter space enough to satisfy modern observations of 
both dwarf galaxies rotation curves and small-scale structure in the 
Lyman- α forest. 
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APPEN D IX  A :  A  C C U R A  C Y  O F  GENERALI ZED  
DENSITY  PROFILE  FITTING  F O R M U L A  
In equation ( 11 ), we propose a new fitting formula for dilute 
solitons under attractive self-interactions that generalizes equation 

Figure A1. Goodness of fit measurement for equation ( 11 ) using many 
values of parameters a and b. The optimal combination is a = 11 . 2 and 
b = 4 . 2, and these values are set constants throughout the entire analysis. 

Figure A2. Comparison of goodness of fit of the zero-SI formula, equation 
( 9 ) (orange), to the generalized formula, equation ( 11 ) (blue), o v er the rele v ant 
range of SI strengths. The soliton density profile changes subtly with self- 
interactions such that equation ( 11 ) yields a much more accurate description. 
The optimal ( a, b) parameter set (11.2, 4.2) is shown as the bolded curve, but 
other ( a, b) parameter sets lying along the de generac y (see Fig. A1 ) are also 
included: (10.5, 3.9) and (12.5, 4.5). 
( 9 ) originally found in Schive et al. ( 2014a ). First, we seek to 
identify the ( a, b) parameter set that best matches solutions to the 
GPP equations o v er the rele v ant range of interaction strengths. We 
do this via an optimization process, visualized in Fig. A1 . For any 
two values of a and b, the goodness of fit metric δ2 from equation 
( 27 ) can be used to compare our predictions to the GPP solutions 
across a range of β values. The total accuracy of an ( a, b) model 
is simply the sum of δ2 values o v er 0 < β < 1. In Fig. A1 , these ∑ 

δ2 accuracy values are displayed by colour for a 20 × 20 grid of 
( a, b) values. The optimal parameter set is found to be a = 11 . 2 and 
b = 4 . 2, but there is a strong de generac y between the two parameters 
( a + 4 b − 5 . 5). Increasing a tends to decrease the density o v er the 
rele v ant range of radii, while increasing b reverses the effect. In 
this sense, the functional form of equation ( 11 ) admits a family of 
well-fitting solutions to self-interacting FDM haloes. 

To demonstrate the accuracy of our fitting formula with its optimal 
( a, b) parameter set, Fig. A2 plots the residuals δ2 as a function of 
β. Also included are residual functions for the zero-SI formula, 
equation ( 9 ), and two nearly-optimal ( a, b) parameter sets that lie 
along the de generac y in Fig. A1 . While the fit using the zero-SI 
formula becomes increasingly poor as the SI strength is dialed up, 
equation ( 11 ) offers persistently great fits to the GPP solutions. The 
two other ( a, b) parameter sets shown, (10.5, 3.9) and (12.5, 4.5), 
exhibit only marginally worse residuals at high β. 
APPENDI X  B:  G E N E R A L I Z E D  S O L I TO N  MASS  
F O R M U L A  
In equation ( 20 ), we assert that the formula for the mass of dilute 
solitons under attractive self-interactions is only off by a multiplica- 
tive function g( β) from the analytic zero-SI formula, equation ( 18 ). 
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Figure B1. The residual dependence of the soliton mass on self-interaction 
parameter β after normalizing by the zero-SI case. Increasing self-interaction 
strength decreases the soliton mass relative to the zero-SI prediction. As in 
Fig. A2 , the optimal ( a, b) parameter set is represented by the bold blue curve, 
while two other well-fitting parameter sets are shown in faded blue. Changing 
parameter sets along the de generac y shown in Fig. A1 changes g( β) only very 
slightly. 
To see this, let u = r/r c so that 
M sol = ∫ ∞ 

0 4 πr 2 ρsol ( r)d r 
= 4 πρ0 r 3 c ∫ ∞ 

0 u 2 d u 
[
1 + A ( β) u B ( β) ]8 

where A ( β) = 0 . 091 a β/b and B ( β) = 2 − β/b. In this form, it is 
clear that M sol ∝ ρ0 r 3 c ∝ r −1 

c regardless of SI strength. The multi- 
plicative function g( β) is proportional to the above integral, 
g( β) = M sol ( ρ0 , β) 

M sol ( ρ0 , 0) = 4096 A (0) 3 / 2 
33 π

∫ ∞ 
0 u 2 d u 

[
1 + A ( β) u B ( β) ]8 , 

which cannot be expressed in terms of elementary functions except in 
special cases. A plot of g( β), computed with numerical integration, 
is shown in Fig. B1 for different ( a, b) parameter sets. The soliton 
mass under strong self-interactions can be less than 60 per cent of 
the mass predicted from the zero-SI formula. 
APPENDIX  C :  SP ECTRAL  M E T H O D  
To evolve and merge the haloes, we numerically solve equations 
( 14 ) and ( 2 ) following the spectral method as developed and used 
in Mocz et al. ( 2017 ). The time-steps are decomposed into a kick- 
drift-kick leapfrog-like scheme, where each ‘kick’ and ‘drift’ are 

unitary operators acting on the wavefunction. The sequence is briefly 
re vie wed here. 

Once the density ρ and wavefunction ψ are discretized onto a grid 
of dimension N 3 , the potential V can be calculated by transforming 
to Fourier space and back, 
V = ifft [ −fft [4 πG ( ρ − ρ̄) ] /k 2 ] , (C1) 
where fft [ . . . ] and ifft [ . . . ] are the Fourier transform and inverse 
Fourier transform operators, respectively, and k are the wavenumbers 
at the corresponding grid locations. The potential imparts a ‘kick’ to 
the wavefunction, half a time-step forward, 
ψ ← exp [ −i( ,t/ 2)( m/ ! ) V ] · ψ. (C2) 
This is followed by a full ‘drift’ (kinetic) step in Fourier space: 
ˆ ψ = fft [ ψ] (C3) 
ˆ ψ ← exp [−i,t( ! /m ) k 2 / 2 ] (C4) 
ψ ← ifft [ ̂  ψ ] . (C5) 
The time-step is completed with another ‘kick’ step using equation 
( C2 ), except that the interaction terms from equation ( 14 ) are 
included in the potential, 
V ← V − 4 π! 2 a s 

m 3 | ψ | 2 + 32 π! 4 a 2 s 
3 m 6 c 2 | ψ | 4 (C6) 

and the system is thus evolved from time t to t + ,t . 
The valid time-step criterion for stability and accuracy of our 

method, essentially a Courant–Friedrichs–Lewy (CFL) like condi- 
tion, is that the unitary operators in equations ( C2 ) and ( C4 ) do not 
change the phase by more than 2 π in each time-step. The time-step 
criterion of Schwabe, Niemeyer & Engels ( 2016 ), 
,t ≤ max [ m 

6 ! ( ,x) 2 , h 
m max | V | 

]
(C7) 

enforces this property, where ,x = L/N is the grid spacing. Note 
that the time-step scales as ( ,x) 2 , which adds computational cost for 
high-resolution simulations. 
This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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