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ABSTRACT

Fuzzy dark matter (FDM), comprised of ultralight (m ~ 10722 eV) boson particles, has received significant attention as a viable
alternative to cold dark matter (CDM), as it approximates CDM on large scales (=1 Mpc) while potentially resolving some of its
small-scale problems via kiloparsec-scale quantum interference. However, the most basic FDM model, with one free parameter
(the boson mass), is subject to a tension: small boson masses yield the desired cores of dwarf galaxies but underpredict structure
in the Lyman-« forest, while large boson masses render FDM effectively identical to CDM. This Catch-22 problem may be
alleviated by considering an axion-like particle with attractive particle self-interactions. We simulate an idealized FDM halo with
self-interactions parametrized by an energy decay constant f ~ 10" GeV related to the axion symmetry-breaking conjectured
to solve the strong-CP problem in particle physics. We observe solitons, a hallmark of FDM, condensing within a broader halo
envelope, and find that the density profile and soliton mass depend on self-interaction strength. We propose generalized formulae
to extend those from previous works to include self-interactions. We also investigate a critical mass threshold predicted for
strong interactions at which the soliton collapses into a compact, unresolved state. We find that the collapse happens quickly,

and its effects are initially contained to the central region of the halo.
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1 INTRODUCTION

The particle nature of cosmological dark matter is still one of the most
pressing unknowns in modern astrophysics. For decades, cold dark
matter (CDM) has prevailed as the leading theory, stating that dark
matter particles are non-relativistic, collisionless, and dissipationless.
CDM, as part of the ACDM paradigm, has reproduced observations
of the cosmic microwave background (Aghanim et al. 2020; Alam
et al. 2021) and large-scale structure remarkably well (Schaye
et al. 2014; Vogelsberger et al. 2014a, b; Springel et al. 2017;
Vogelsberger et al. 2020). However, the simplest CDM simulations
admit puzzling discrepancies with observations on the scale of dwarf
galaxies (Bullock & Boylan-Kolchin 2017; Del Popolo & Le Delliou
2017; Sales, Wetzel & Fattahi 2022). Problems actively debated in
the literature include missing satellites (Klypin et al. 1999; Moore
et al. 1999), density profile cores versus cusps (Flores & Primack
1994; Moore 1994; de Blok 2010), dark matter haloes ‘too big to
fail’ to produce stars (Boylan-Kolchin, Bullock & Kaplinghat 2011;
Garrison-Kimmel et al. 2014), and overly diverse galaxy rotation
curves (Oman et al. 2015). Even though baryonic feedback has shown
promise to remedy many of the inconsistencies when incorporated
into ACDM simulations, the most commonly considered CDM

* E-mail: connor.painter @austin.utexas.edu

particle candidates, weakly interacting massive particles (WIMPs) on
the mass scale of GeV, have so far evaded discovery (Roszkowski,
Sessolo & Trojanowski 2018). Small-scale inconsistencies, along
with non-detections of plausible particle candidates, have fuelled a
search for alternative models.

A popular alternative to CDM is dark matter in the form of
ultra-light boson particles of mass m ~ 10722 eV (Hu, Barkana &
Gruzinov 2000; Guzman & Urefia-Lopez 2003; Hui et al. 2017;
Mocz et al. 2019; Burkert 2020; Niemeyer 2020; Hui 2021). This
so-called fuzzy dark matter (FDM) model approximates CDM on
large scales (Widrow & Kaiser 1993; Kopp, Vattis & Skordis 2017),
but small-scale structure is altered by a ‘quantum pressure’ tensor
in the momentum equation (Schive, Chiueh & Broadhurst 2014a).
The dark matter clusters under self-gravity with fluid-like properties,
and dark waves generated on the de Broglie scale Aqp = miv ~ kpc
interfere to smooth over small-scale structure. This smoothing cuts
off the dark matter power spectrum above a certain wavenumber (Hu
et al. 2000), offering a natural explanation for the missing satellites
predicted by CDM-only simulations. FDM also naturally addresses
the cusp-core discrepancy: haloes are characterized by cored central
structures called solitons (Schive et al. 2014a; Schive et al. 2014b)
enveloped by a broader Navarro—Frenk—White (NFW)-like power
law drop-off in density (Navarro, Frenk & White 1996; Marsh &
Pop 2015; Mocz et al. 2017). Furthermore, ultra-light bosons are
predicted to arise naturally in many string theory models (Svrcek &
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Witten 2006) and their present-day energy density in the Universe
could be comparable to the measured dark matter density (Arvanitaki
et al. 2010; Marsh 2016; Hui et al. 2017).

These convenient properties of the FDM model have generated
excitement and substantial investigation in the literature. In recent
years, for example, FDM has been simulated both in high resolution
on cosmological scales to characterize structure formation (Woo &
Chiueh 2009; Mocz et al. 2019, 2020; Lagué et al. 2021; May &
Springel 2021; Nori & Baldi 2021; Schwabe & Niemeyer 2022;
Dome et al. 2023; Huang, Schive & Chiueh 2023; Lagué et al. 2024;
Shen et al. 2024) and on scales of individual haloes in idealized
scenarios (Mocz et al. 2017; Du et al. 2018; Schwabe et al. 2020;
Veltmaat, Schwabe & Niemeyer 2020; Li, Hui & Yavetz 2021). In the
simplest FDM model, the shape of a cosmological soliton is related
to its total mass and the boson mass (Schive et al. 2014a), and some
regions of parameter space are capable of matching observations
of dwarf galaxies (Marsh & Pop 2015; Luu, Tye & Broadhurst
2020; Safarzadeh & Spergel 2020). For a recent mini-review of the
achievements of FDM, see Matos, Urefia-Lopez & Lee (2024).

However, the simple FDM model struggles to simultaneously
reproduce the power spectrum of the Lyman-« forest and the core
sizes of dwarf galaxies (IrSi¢ et al. 2017; Nori et al. 2019; Dome,
Azhar & Fialkov 2024). Lower boson masses (m < 1.1 x 10722 eV
at 20 C.L., Marsh & Pop 2015) are required to yield the desired
cores of satellite galaxies, but higher masses (m > 2.0 x 1072! eV at
20 C.L., IrSi¢ et al. 2017) are required to predict adequate small-
scale structure in the Lyman-o forest. Constraints from the two
observations leave little to no overlap. There is some discussion (e.g.
Elgamal et al. 2024) suggesting that ‘vanilla’ FDM is still capable of
fitting observations of both Lyman-« structure and dwarf galaxies,
but this Catch-22 (Davies & Mocz 2020) is widely regarded to be
a serious challenge. Other constraints on FDM models come from
strong lensing (Shevchuk, Kovetz & Zitrin 2023), ultrafaint dwarfs
(Hayashi, Ferreira & Chan 2021; Dalal & Kravtsov 2022), dynamical
friction (Foote et al. 2023), and cosmology (Li, Rindler-Daller &
Shapiro 2014; Li, Shapiro & Rindler-Daller 2017).

The Catch-22 may be alleviated by introducing a second degree
of freedom through a scalar potential term that naturally arises if the
FDM particle is an ultralight axion-like particle (Arvanitaki et al.
2020; Mocz et al. 2023). Ultralight axions are natural outcomes
of particle physics models that solve the longstanding ‘strong CP
problem’ in quantum chromodynamics (QCD) (Peccei & Quinn
1977; Weinberg 1978). In these models of FDM, the axion-like
particle typically has a decay constant (or symmetry-breaking scale)
f ~ 10" GeV present in an additional scalar potential term in its
governing equations. This new potential term will instigate attractive
interparticle self-interactions (SI). These interactions are extremely
weak, with quartic coupling m?/f2> ~ 107, but theoretical and
numerical work suggest that they may have non-negligible impacts
on cosmic structure at low redshift (Desjacques, Kehagias & Riotto
2018; Mocz et al. 2023). In particular, attractive self-interactions
introduce a critical mass scale for FDM haloes above which the
soliton collapses into an extremely compact state (Chavanis 2011;
Chavanis & Delfini 2011), a process that may bolster small-scale
structure enough to match observations of the Lyman-« forest (Mocz
et al. 2023).

Recent simulations have begun to characterize the extent to which
axion-like self-interactions change FDM predictions. Amin & Mocz
(2019) carried out cosmological simulations of FDM with attrac-
tive SI to examine soliton formation and gravitational clustering.
Chen et al. (2021) simulated isolated clusters of FDM haloes with
both attractive and repulsive self-interactions. Glennon & Prescod-
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Weinstein (2021) simulated idealized solitons with attractive SI,
verifying criteria for soliton collapse and quantifying changes in
tidal stripping time-scales. Mocz et al. (2023) used cosmological
simulations to gauge the extent to which weak attractive self-
interactions enhance small-scale structure in the cosmic web. Jain &
Amin (2023) published an integrator for FDM systems with general
self-interactions. Besides attractive self-interactions, other exten-
sions of FDM explored in the literature include repulsive self-
interactions (Dawoodbhoy, Shapiro & Rindler-Daller 2021; Shapiro,
Dawoodbhoy & Rindler-Daller 2022), multifield FDM (Eby et al.
2020; Luu et al. 2020; Guo et al. 2021; Huang et al. 2023; Luu
et al. 2024), mixed CDM and FDM (Schwabe et al. 2020; Lagué
et al. 2024), FDM with a large initial misalignment angle (Zhang &
Chiueh 2017; Schive & Chiueh 2018), and vector dark matter, where
FDM is a higher-spin field (Amin et al. 2022).

The purpose of this work is to provide a careful analysis of the
interior structure of FDM haloes under attractive self-interactions
in idealized simulations. We pay particular attention to the regime
of weak SI, in which the soliton is noticeably influenced, but not
so much that it exceeds the critical mass and collapses. This work
informs the analysis of future cosmological simulations of FDM with
attractive self-interactions that seek to break the Catch-22.

The rest of this paper is organized as follows: In Section 2, we
review the governing equations of FDM, modify them to include self-
interactions, and solve them under spherical symmetry to formulate
predictions for halo density profiles. In Section 3, we describe the
idealized halo simulations we perform to study the effects of includ-
ing self-interactions. In Section 4, we present analysis and trends
between simulations with varying SI strengths. We contextualize
and conclude the work in Sections 5 and 6.

2 PHYSICAL EQUATIONS

In the non-relativistic limit, self-interacting FDM is governed by the
Gross—Pitaevskii—Poisson (GPP) equations,

d B2 4mth2a,
ih <a>w= (—%Vz—ka— ”mza p)l// )
V2V = 47G(p — p), ()

which are equivalent to the Schrodinger equation where the potential
is the self-potential due to self-gravity, plus a non-linear attractive
self-interaction term (see e.g. Chavanis 2018). ¥ is the wavefunction
that describes the dark matter, normalized so that the dark matter
density is p = ||?. 5 is the local mean dark matter density, and the
s-scattering length ay quantifies the SI strength. It is related to axion
symmetry-breaking scale f by

hem

= 3ons ®

aS
Other studies follow the convention that a; < O for attractive self-
interactions, in which the right-hand side of equation (3) and the
last term in equation (1) would be negated. Equations (1) and
(2) with a; = 0 are the Schrodinger—Poisson equations commonly
used to simulate FDM in the absence of self-interactions. The ||
term in equation (1) comes from a Taylor expansion of the non-
relativistic limit of the instantonic axion potential equation (Peccei &
Quinn 1977; Di Vecchia & Veneziano 1980; Witten 1980). In our
simulations, the GPP equations evolve an initial mass distribution
into a single isolated dark matter halo with a central soliton.
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2.1 Generalized density profile

Following Lora & Magaia (2014), the GPP equations can be solved
numerically by assuming that v is spherically symmetric,

Y(r, 1) =e "),

where ¢(r) is a positive, decreasing profile of an FDM soliton.
Substituting into equation (1) and rearranging yields

K21 92 r6) = yé —mV+ 471h2a5¢}
————(@r¢) = —m — ¢’
2m r Or? 4 m?

Lo (rV) = 4nGg¢*

-—@rV)= .

r or?
Introducing dimensionless variables,
N 4AnGh N 1
b="""¢ V=5V

mc c

. mc ; mczt
F=—r = —

h h
. 1 . c?

= — as = 7(18

Y=t Gm
the GPP equations take a simpler form:
e . . N N
7 ) =27V =) — 27’ @)
e . a
V) =74 ©)

For an FDM soliton, we impose » = 0 boundary conditions a,¢3 =
0, a,V =0, and q’; = 430. For chosen values of ¢A)C and ds, there is a
discrete number of p values {7, 71, }2, . . .} for which the solutions
converge as r — 00. Each y; corresponds to a solution q3,~ (r), which
has i nodes. We are interested in the ground state solution i = 0, the
unique solution with ¢(r) > 0 at all radii and finite total mass.

We want to solve for the density profile p(r) = |¢(r)|? at various
SI strengths in hopes of developing an approximate functional form.
The dimensionless density profile differs from the physical profile
by some factor @o/¢., where py = ¢3 is the physical central density
of the FDM halo. The GPP equations admit a scaling relation that
implies a family of solutions for any particular solution:

as}. 6)

In particular, as is a scale-dependent quantity; however, the density
profile fitting formula must ultimately be scale-independent. To
create a suitable self-interaction strength parameter, let ¢, = 1 and
€ = ¢/¢.. Define the scale-free parameter g as

oA \/47'[Gh l/zi

{r.g,p,a} — {e7'r, ¢, e*p, e?

= s = s- 7
p=ea mc? Po Gma‘ ™
In terms of f and fiducial values,

L0 12

_ Y R}

B =0.238 (1010 M®kpc‘3> my, fis ®)

where my, = m/(lO_22 eV)and fi5s = f/(lOI5 GeV). This measure
of SI strength is somewhat arbitrary (in the sense that we could
have chosen any ¢.), but can be conceptualized as the dimensionless
s-scattering length ag, scaled according to equation (6) from the
physical central density oo to @, = 1.

In the non-interacting case (as = 0), the density profile of a soliton
is well-fit by the single-parameter formula

-8

2
1 +0.091 (ri) ] 9)
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Figure 1. Upper: Density profiles of FDM solitons with attractive self-
interactions of varying strengths, normalized by the central density and core
radius, as given by equation (11). Self-interactions tend to shallow out the
profile shape relative to the non-interacting case, decreasing the density at
all radii within r < 10 r.. Lower: The fractional change in the density profile
relative to the non-interacting case B = 0. The greatest fractional decreases
in density occur around r ~ 3.5r..

(Schive et al. 2014a), where the core radius r. is related to the central
density py by

10)

kpc\* M
p0=1.9><107m;22( pc) e

kpc®

re

In the general case (as # 0), we find that the ground state solutions
of equation (1) are well-fit by a simple one-parameter extension to

equation (9),
2-8/b7 78
Y
14 0.091a (—) ] (11)

are

psol(r) = Po

where a = 11.2 and b = 4.2 are best-fit constants to numerical
solutions. Fig. 1 plots how equation (11) predicts that the soliton
profile will change with , relative to the non-interacting case g = 0.
Based on this theoretical analysis, solitons with the same central
density but stronger attractive self-interactions are expected to have
shallower density profiles, with matter redistributed out of the interior
and toward the outskirts. This fitting formula is restricted in domain
to B < 2 b, but the SI strengths in this study are all well within this
threshold. In fact, as we will show in Section 2.2, solitons are likely
to become unstable well before approaching 8 = 2 b. We validate
the accuracy of equation (11) over the relevant range of SI strengths
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in Appendix A. See appendix C of Chen et al. (2021) for another
general soliton fitting formula.

The self-interaction strength adds an additional degree of freedom
to the soliton density profile, but in a physical model, it is a set
universal constant (like the boson mass), while the central density
parameter po varies from halo to halo. In other words, after a5 and
m parametrize the axion-like particle, py characterizes the individual
halo. So, as will vary between our simulations, but once it is set, ooy
is the only free parameter in equation (11).

2.2 Critical mass

Solitons under weak or zero self-interactions appear in a ‘dilute’
phase (Chavanis & Delfini 2011), in which they are well described
by equation (11). However, axion self-interactions introduce a critical
mass threshold for FDM solitons (Chavanis 2011; Chavanis & Delfini
2011; Chavanis 2016, 2018) that has been confirmed and studied
in simulations (e.g. Levkov, Panin & Tkachev 2017; Chen et al.
2021; Glennon & Prescod-Weinstein 2021; Jain, Wanichwecharun-
gruang & Thomas 2024),

1.012h

Meie = G
ma

12)

=1.1x 109fiM@. (13)
mya

If the mass of a soliton exceeds M., attractive self-interactions
and gravity overcome the quantum pressure, leading to a rapid
collapse. The end state of a collapsing soliton has been studied
extensively in recent years. In a fully general relativistic treatment
under spherical symmetry, Helfer et al. (2017) find that the end
state depends on the assumed axion SI strength. If f 2 0.4 M ~
10'8 GeV, the critical mass is so high that the soliton remains
dilute until its radius is comparable to its Schwarzschild radius,
and the collapse leads to a black hole. Alternatively, if f < 0.4 My,
the collapse initiates an explosion, sometimes called a ‘bosenova’,
accompanied by the ejection of relativistic axion shells until the
remnant mass is lower than the critical mass (Levkov et al. 2017).
The soliton is either completely dispersed or observed in its dilute
state again. Using Taylor approximations of the instantonic axion
potential, other studies have predicted the formation of ‘compact’
solitons supported by higher-order repulsive terms that are orders of
magnitude smaller and denser than their dilute progenitors (Braaten,
Mohapatra & Zhang 2016; Eby et al. 2016). However, it is unclear
whether these structures are stable when the Taylor approximation
and the non-relativistic assumption are relaxed (Visinelli et al.
2018).

In this study, we will only analyse solitons in their dilute states
and in the early stages of collapse. Our fiducial values of SI strength
(f ~ 10" GeV) ensure that dilute solitons remain well within the
non-relativistic regime, so the GPP equations suffice to govern the
evolution. For the early stages of collapse, we include the next higher-
order term in the Taylor expansion of the axion cosine potential,
ih (3) v = (_izv2+mv_4nh2asp+32ﬂh4af 2

2m m? 3mdc?

3 >¢- (14)

The new p? = ||* term becomes non-negligible at very high
densities, contributing a repulsive, stabilizing positive pressure,

64malht
4 = ———
9mOc?

15)
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This pressure will counterbalance the destabilizing pressure from the
attractive term,

2ma h?
= ————p’, (16)
m
at a very high density,
_ 9¢?m3 (17
P4 = Bagen

and above this density, P4 dominates. With this two-term approx-
imation of the full instantonic axion potential, compact solitons
are the expected end state of collapse (Chavanis 2018). Braaten
et al. (2016) makes analytic arguments that these two terms are
a good approximation of the full cosine potential, but testing the
approximation through all stages of collapse is left for future
simulations. In this work, compact solitons are not resolved at the
grid resolution.

We can define the regions of py—as parameter space, where the
soliton is expected to be stable or unstable by integrating the density
profile given by equation (11) to get a mass and comparing to
equation (12). In the zero SI case, B = 0, the integral can be computed
analytically,

My = / 470r% pgoy(r)dr ~ 11.6pr2 (18)
0
¢ (1072 eV g kpc
=22x10% [ ——— Mg 19)
m re

demonstrating the unique, well-studied property that more-massive
FDM solitons are smaller. For other values of 8, equation (11) can
be integrated numerically. The left-hand panel of Fig. 2 shows a
heat map of M, as a function of pq (or, equivalently, r.) and a, (or
f). Contours equally spaced in log 8 are shown as faded grey lines.
For any constant value of p, stronger self-interactions decrease the
soliton mass as compared to its non-interacting counterpart. Fixing
as, increasing pq increases the soliton mass up to some maximum
value before decreasing sharply. As shown in the right-hand panel,
the soliton mass exceeds the critical mass through a range of central
densities and peaks at M,,,x = 1.01 My, regardless of SI strength.
Using equation (11), the soliton mass formula can be easily
extended from equation (18) with an additional multiplicative factor,

My = 11.6 por? g(B), (20)

where g is a smooth, monotonically decreasing function with g(0) =
1. We do not attempt to characterize g(8) analytically, but we provide
details in Appendix B. Dividing equation (20) by equation (12) and
using the definition of B, it can be shown that the ratio of the soliton
mass to the critical mass is simply a function of 8,

M, sol > g 2
=3.8Bg(B) 21
( M crit

Thus, the maximum of My, / M., occurs at the maximum of Sg(8)?,
which is determined to be approximately

Bunax = 0.687. (22)

If the best-fit B were to surpass this value at some point in a
simulation, the soliton mass as calculated by integrating equation
(11) would start to decrease. More broadly, M, > M. within the
range 0.55 < B < 0.84. In a simulated FDM soliton, 8 may slowly
increase with py and surpass the lower bound, S = 0.55, at which
point it is expected to undergo the phase transition. This critical value
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Figure 2. Left: Heatmap of soliton mass My for a range of central densities pp and self-interaction strengths as. Conversions to r. and f are provided on the
opposite axes. Overlaid are contours equally spaced in log My, (dotted curves) and contours equally spaced in log B (solid curves). The two contours bolded
black (8 = 0.55, 0.84) indicate Mso] = Mrir and Bmax = 0.687 (purple dashed line) delineates the maximum predicted mass Mmyax = 1.01 My for any given
as. Right: Mo, normalized by the critical mass M., for every point in the shaded parameter space on the left-hand panel. Bounding curves are labelled by
f15 = f/(10'5 GeV). For any attractive SI strength, there exists a critical range of po values in which the soliton is expected to collapse.

of B corresponds to a central density

M

Perit = 5.3 x 1010 m%, £t —= (23)
kpc

or a core radius

reie = 0.138 m5;' f5' kpe. (24)

These values of Beit, Pcrit, and reqe Will serve as reference values in
our simulation analysis.

2.3 Fitting algorithm

The density field of any simulation snapshot can be decomposed into
a spherically-averaged radial profile about the soliton centre. For this
work, we compute the density p at some radius » from the soliton
centre — here defined as the densest point — by sampling the grid at a
large number of points within a thin spherical shell [r — %, r+ %].
Each point is assigned a sub-pixel coordinate value within the shell,
and the density at that point is the density of the grid cell that encloses
it. p(r) is then the average of the density at all the sampled locations.

We are interested in measuring how self-interactions alter the dis-
tribution of matter in the entire FDM halo, including the soliton and
the outer envelope. We choose to fit the whole profile simultaneously
by assuming that p(r) is the sum of two component profiles, g (7)
and pg,i(r), where pgo 1s given in equation (11) and p, is defined

as
27 Noo/2
r
1+ ( ) :| 25)
T¢ tail

and o wil, Teril, and N are all independent free parameters. At
T 3> Fenil, Pril 1S approximately a power law with index no,. At
small radii, the tail component flattens to avoid contributing to the
soliton core. A transition radius r.yof can be defined as the radius
at which py () drops below p(7) by half a dex. To correct for the
slight curvature inherent in equation (25), we report the power-law

Pil(r) = 00 ail

MNRAS 533, 2454-2472 (2024)

slope at a radius rp;ig,; Within the outer envelope,

(r/rc tail)2
o0 ; s 2
L+ (r/reain)? |, (26)

"=Imidtail

dlog pui _
dlogr

n=

where Fmigril 1S the log-mean of 7o and L /2. In most snapshots,
n~ Ny

In the full profile fit p(r) = pso1 + Puil, there are four free param-
eters: po so from equation (11) (written there as pg), 0o tils 7c.tail, and
Ny from equation (25). Most important are the total central density
£0 = Po.sol + Po.ail and the power-law index, n, from equation (26).
We evaluate the goodness of fit using a sum of squares of differences
metric,

1
8 = 7 Z(log p(rj) —log pm("j))zs @7
J

where J is the number of sampled density values. Since we can use
this formula in any arbitrary radial interval, we evaluate an overall

goodness of fit §? as well as component evaluations 82, and 82

2.4 Conservation of mass and energy

The system has conserved quantities, including its total mass,

M= /p &x, (28)

and its total energy,
E =/ﬁ(vﬁ)2 d%ﬁ/lpv2 d3x+/lpv dx 29
2m 2 2

=K, +K,+W, (30)

where K, is the gradient energy due to the quantum pressure tensor,
K, is the classical kinetic energy, W is the potential energy, and
v = arg(y)/m is the Madelung velocity. The total (quantum) kinetic
energy is K = K, + K,. Like the density p, each of these energy
components can be computed at every point in space and decomposed
into a radial profile.
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Figure 3. Density projection of the initial snapshot of our simulations, which
is identical across all runs. Eight bare solitons are randomly strewn throughout
the box with random masses drawn such that the total mass in the box is
M ~ 3 x 10° M. Box properties are listed in Table 1.

Table 1. Initial conditions in our simulation box, regardless of resolution or
self-interaction parameter. A density projection of the initial box is shown in
Fig. 3.

# of subhaloes 8

L 20 kpc

M 3.65 x 10°Mg

E —3.38 x 102Mg, (kms™2)

3 IDEALIZED HALO SIMULATIONS

We numerically simulate the merging and evolution of self-
interacting FDM haloes within a box with side length L = 20kpc
and periodic boundary conditions. The only physical free param-
eter is the particle self-interaction strength, parametrized as fis =
/(105 GeV). We hold the dark matter particle mass fixed at its
fiducial value of m = 10722 V. Dark matter density is discretized
onto grids with N3 =200° and 400° cells for uniform spatial
resolutions of Ax = 0.10 and 0.05 kpc. The initial conditions are
non-cosmological and the dynamics do not include baryonic physics;
the evolution is entirely described by equations (14) and (2). In future
work, the code could be modified to include cosmological initial
conditions, gas dynamics, and star formation, as in e.g. Mocz et al.
(2020).

Our simulations are always initialized with the same density field,
shown in Fig. 3. To create this field, we generated eight spherically
symmetric bare solitons with density profiles given by equation (9)
and core radii sampled from r./kpc ~ U(0.2, 1). The subhaloes are
initially unrealistic in the sense that they do not have outer envelopes,
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but the gravitational merging process is disruptive enough that the
aftermath is not sensitive to this detail. We centred the haloes on
randomly chosen locations in the (20 kpc)® box, then we initialized
the dark matter density p in an N* grid as the sum of contributions
from all the haloes. The wavefunction v is initialized and normalized
as ¥ = ,/p, which is then subsequently evolved by equations (14)
and (2). No angular momentum is imparted to the system. We provide
some properties of the initial density field in Table 1.

The total mass in subhaloes is M ~ 3 x 10° My, placing the
merged halo in the mass range expected for haloes around dwarf
galaxies. This halo mass is physically motivated and computationally
advantageous. Dwarf galaxies are widely regarded as optimal testing
grounds for constraining dark matter properties due to their large
mass-to-light ratios (Bullock & Boylan-Kolchin 2017). Computa-
tionally, in FDM simulations, dwarf galaxy-mass haloes are less
intensive to simulate because their solitons are more extended relative
to those in higher-mass haloes (see, e.g. equation (19)).

We evolve the dark matter by numerically solving equations (14)
and (2) following the spectral method as described in Mocz et al.
(2017) and reviewed in Appendix B. For self-interacting FDM,
a notable consequence of the spectral method is slow integration
after solitons collapse. This is evident in equation (C7): if a soliton
collapses into a very dense object, max |V| will grow very large,
suppressing the time-step. However, as we will show in Section 4.2,
artefacts of poor resolution render the post-collapse density fields
unusable, so we do not spend large amounts of computational time
in this regime.

In this work, our data consists of three suites of simulations detailed
in Table 2. Our highest-resolution suite (N3 = 400°, Ax = 0.05 kpc)
contains six simulations spanning a range of SI strengths between
fis = ocoand 1.0. These simulations end at T = 4 Gyr after the initial
snapshot. In addition, we analyse two suites of lower-resolution
(N3 =200%, Ax = 0.10 kpc) simulations: the first, run to an end
time of 7 = 20 Gyr, provides insight into the long-term evolution of
the halo and the second explores trends and changes when SI strength
is smoothly increased.

Snapshots of 400° complex wavefunction values, along with the
simulation parameters and current time, are stored to disc every
At = 0.1 Gyr. All relevant quantities can be derived from .

Our choice of SI strengths is motivated by the critical threshold in
equation (12) relative to the solitons in our dwarf galaxy-mass haloes.
For a soliton of mass My, ~ 10° Mg, SI strengths of f ~ 10'° GeV
is expected to delineate the boundary between dilute and collapsed
solitons. These self-interactions are 1 to 2 orders of magnitude
stronger than those typically assumed in FDM cosmologies (f ~
0.5 x 10" GeV, Hui et al. 2017). In a cosmological simulation
with m = 1072 eV and such high SI strengths, the relic abundance
of dark matter would be too small without fine-tuning the initial
misalignment angle (Zhang & Chiueh 2017; Schive & Chiueh 2018;
Hui 2021). However, our simulations are non-cosmological, and
scaling symmetries in equation (6) ensure that our results can be
rescaled to higher-mass haloes with weaker self-interactions.

Table 2. All simulations used in this paper, along with their purposes. For our initial conditions, the boundary between weak and strong interactions is between
f =1.2and 1.1 x 10" GeV. In the third suite, fi5 values are chosen to be evenly spaced in as.

# fis N Ax [kpc] At [Gyr] T [Gyr] Purpose

6 {00,2.0,1.5,1.2,1.1, 1.0} 400 0.05 0.1 4 Highest-resolution simulations.
{00,2.0,1.5,1.2} 200 0.10 0.1 20 Long-term evolution.

24 {00,5.8,4.1,...,1.2} 200 0.10 0.1 4 Quantifying trends with SI strength.

MNRAS 533, 2454-2472 (2024)
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Figure 4. Evolution of haloes in our simulations. Initially, the subhaloes merge together in the same way (top panels), but the end state at ~2 Gyr depends on
the strength of the attractive SI. The simulations diverge once the subhaloes are fully merged and solitons condense in their centres (highlighted by the inset
panels). As SI strength increases in the weak regime, the soliton becomes more compact while remaining in a dilute state. At some critical point that delineates
the strong-SI regime, the self-interaction becomes strong enough to initiate a collapse into an unresolved compact soliton even though Mo < Myit.

4 RESULTS these times are largely invariant of SI strength in the ranges we
probed. In all cases, the subhaloes collide to produce a typical
FDM halo with a soliton at its centre, NFW-like outer enve-
lope, and turbulent ‘granules’ throughout the box. The simulations

Fig. 4 diagrams the general evolution of dark matter in our simu-
lations. The top row of density projections depicts the early stages,
before the subhaloes have fully merged together. The dynamics at

MNRAS 533, 2454-2472 (2024)
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Figure 5. Left: Measured density profiles at the end of the N = 400, fi5 = oo (blue), 2 (orange), 1.5 (green), and 1.2 (red) simulations. Stronger self-interactions
increase the central density and decrease the core radius, making the soliton more compact. The outer envelope is not affected by self-interactions, except that
it surrounds a smaller soliton. Right: Same profiles, normalized on both axes by r. and py (from best-fit models). The zero SI case is well fit by equation (9),
but self-interactions introduce slight changes to the soliton shape that render equation (11) more accurate. Computed values of g are included for comparison

to Fig. 1, which shows the theoretical prediction.

diverge after this point, represented by branches to three cate-
gories: non-interacting, weakly interacting, and strongly interacting
cases.

In weakly interacting cases ( fis = 2.0, 1.5, 1.2), the soliton settles
into a final state that depends on the interaction strength: stronger at-
tractive interactions compactify the soliton to higher central densities
and smaller radii. We examine dilute solitons in detail in Section 4.1.

In strongly interacting cases ( fis = 1.1, 1.0), the soliton collapses
rapidly after some length of time that depends on the interaction
strength. The uniform spatial resolution Ax = 0.05 kpc is not high
enough to resolve the post-collapse remnants. Collapsed solitons
appear as single high-density pixels that propagate numerical in-
accuracies throughout the simulation box. The potential increases
steeply at this time, and the time-step criterion in equation (C7)
enforces that integration proceeds much more slowly. Since further
evolution is inaccurate and computationally expensive, we halt these
simulations shortly after collapse (before T = 4 Gyr). We analyse
the frames immediately before and after collapse in Section 4.2.

4.1 Weakly self-interacting haloes

4.1.1 Density profiles

Density profiles of self-interacting FDM haloes with dilute solitons
reproduce the key features of FDM haloes observed in previous

simulations: a central soliton surrounded by a power-law tail. Fig. 5
plots the density profile measured at the end of the higher-resolution
fis = oo (blue), 2.0 (orange), 1.5 (green), and 1.2 (red) simulations.
In each case, the soliton is clearly visible protruding within the
central kiloparsec. It has a cored centre, with the density falling
off at increasingly steep rates until some transition radius reyofr-
At r > regoff, the density profile assumes an NFW-like power-law
shape with some fluctuations due to random interference granules.
All self-interacting FDM haloes with dilute solitons demonstrate
these properties in our simulations.

Fig. 5 reveals that, by the end of the simulations, self-interactions
have caused multiple changes to the shape of the central soliton.
The left-hand panel clearly suggests an important trend: stronger
self-interactions make the soliton more compact. In other words,
as we decrease fi5, we observe that the central density increases
and the core radius shrinks. This makes intuitive sense: the soliton
is the densest part of the halo in which the most particle-particle
interactions will occur. Since that interaction is attractive, the soliton
should compress into itself more. The degree of compression should
be directly related to the SI strength, and this is reflected by the fact
that the central densities are (inversely) sorted by f;s. By contrast, the
outer envelope is unchanged by self-interactions; it has the same slope
and amplitude at all radii exterior to reyofr. For the smaller solitons
in the self-interacting cases, the power law extrapolates inward to a
new, smaller cutoff radius.

MNRAS 533, 2454-2472 (2024)
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Figure 6. Upper: Example density profile measured from the fi5 = 1.5
simulation (thick black curve) performed at the highest resolution, with best-
fit model (gold curve) and fit components (red and blue-dashed curves). The
region interior to the grid cell length Ax = 0.05 kpc is shaded in grey; regions
beyond ~0.4 L = 8kpc are subject to periodicity errors. Equation (11) fits
the soliton profile very well, while the outer envelope is roughly a power
law with turbulent fluctuations. Lower: Ratio of best-fit components to the
measured profile.

For the most part, the soliton shapes all resemble the zero-
interaction case, but by normalizing p by the central density py and
r by the core radius r., as shown in the right-hand panel, the minute
variations from equation (9) are exposed. For a given py, the density
of self-interacting solitons falls off slightly faster than is allowed
by equation (9), to the point that the f;s = 1.2 soliton has 1/4 the
‘expected” density near the cutoff radius. Fitting equation (9) to the
soliton component of the red curve yields a relatively poor goodness-
of-fit value of 82 = 0.0571, while equation (11) successfully predicts
these minute changes, boasting a best-fit 8 = 0.0054. As men-
tioned in Section 2.1, both of these formulas have only one free
parameter.

Fig. 6 isolates one of the density profiles in Fig. 5 (fi5 = 1.5,
the green curve) and includes the theoretical best fit as computed
by the algorithm in Section 2.3. The soliton and tail components of
the fit are shown in red and blue, and their sum is plotted in gold.
The log residuals are shown in the bottom panel. The soliton is fit
very well by equation (11), with goodness of fit 830, = 0.0085. The
(approximate) power law is a good fit for the tail, though natural
random fluctuations increase the residuals to 82, = 0.024. All other
snapshots of haloes with dilute solitons exhibit similarly excellent
fits.

MNRAS 533, 2454-2472 (2024)

4.1.2 Halo evolution

The density profile fitting algorithm exemplified in Fig. 6 can
be applied to all snapshots outputted throughout each simula-
tion to measure the essential halo quantities over time. Fig. 7
shows the evolution of pg, 7, Feuorr, and 82 derived from density
profile fits for each of the higher-resolution fj5s = 00, 2.0, 1.5,
and 1.2 simulations. The initial subhaloes do not fully merge
together until #yeree A 0.7 Gyr, indicated by a grey-shaded region,
at which point an FDM halo forms with a dilute soliton and outer
envelope.

The upper-left-hand panel of Fig. 7 shows that the soliton central
densities sort themselves by fis after + &~ 1.5 Gyr. This reflects
observations of the raw density profiles in Fig. 5. Turbulence in
the box means the evolution of p, is noisy, but in all cases, a power
law pg oc t* increase is observed after #yer,. for o between 0.17 and
0.43. Since My, is roughly proportional to p(l)/4, My, also increases
like a power law. This phenomenon is observed in other studies and
may be interpreted as a slow accretion of the outer envelope over
time (Chen et al. 2021; Dmitriev et al. 2024).

The upper-right-hand panel plots the best-fit power-law index
to the density profile tail over time. Immediately after #peree, the
slope is n ~ —3.0, but over time it slowly shallows to n ~ —2.4
by ¢ = 4, independent of the SI strength. The ‘shallowing’ of the
outer envelope is a response to mass accretion onto the soliton;
matter is redistributing from the outer halo to the inner halo over
time.

In the lower-left-hand panel, 7cyofr Stabilizes after fierge at a radius
dependent on fi5. In fact, reyofe/7c 1S invariant of fis, SO Feuoft
and r. scale with interaction strength in the same way. Whereas
the core radius decreases over time (since it is inversely related to
po), the cut-off radius is observed to stay roughly constant. Thus,
later in its evolution, the soliton extends out to higher multiples
of r.. This interesting phenomenon is the sum of the two effects
in the upper panels: the soliton becomes more compact as it
accretes more mass, but the outer envelope becomes shallower and
lower amplitude such that the cutoff radius remains roughly the
same.

In the lower-right-hand panel, the goodness of fit metric 82 is
shown to be consistently low, independent of fis. Further, the fits
seem to get slightly better over the course of the simulation. This
provides evidence that our py, + o fitting algorithm, particularly
equation (11), is a good generalization of previous density profile
approximations of FDM haloes.

To verify the power law increase of py and the corresponding
shallowing of the outer envelope observed in Fig. 7, we analyse
a suite of four analogous simulations at an intermediate resolution
N = 200 evolved toamuch later T = 20 Gyr. Fig. 8 shows the results
of these simulations in the same format as the top panels of Fig. 7.
The simple moving averages are highlighted to isolate secular trends
and reduce noise, and 4 Gyr is marked with a vertical line to indicate
the end of the higher-resolution runs. Notably, a collapse is observed
in the fi5 = 1.2 simulation at # = 5.87 Gyr; this is discussed further
in Section 4.2. For the others, the general increase of py and n extends
to the simulation end at 20 Gyr. The time dependence py(?) is still
well fit by a single power law #* and n(¢) never levels out. This
suggests that an equilibrium state is not reached, but rather the entire
halo will be consumed in the asymptotic future. The dependence of
po and n on SI strength echoes Fig. 7: the central density clearly
depends on interaction strength while the power-law index of the
outer envelope does not.
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Figure 7. Best-fit quantities over time for weakly self-interacting FDM haloes. The time before all subhaloes have fully merged is indicated by the shaded area.
Upper left: The soliton central density po exhibits a clear pattern across the four SI strengths by ¢ ~ 1.5 Gyr. Stronger self-interactions increase pg and thus
decrease r.. Upper right: The power-law index n of the outer envelope is independent of fis and increases slowly over the course of the simulation. Lower left:
The soliton cutoff radius reyoff decreases with stronger self-interactions, scaling in the same way as r.. Lower right: The goodness of fit does not depend on fis,
oscillating around 82 = 10~2. Our fitting algorithm therefore appears to be valid across the weak SI regime.

4.1.3 Trends with self-interaction strength

Figs 5, 7, and 8 suggest that weakly attractive self-interactions
smoothly change soliton properties. To see these changes more
clearly, we extract and fit density profiles from our suite of 24
intermediate-resolution simulations spanning the weak SI regime.
We continue to hold the initial configuration constant among each
simulation; the only difference is the strength of self-interactions.
To be clear, the way in which the soliton density profile changes
with pg and a; is already accurately quantified in equation (11). What
we hope to glean from these simulations is how py changes with a;
for a fixed initial mass configuration. For our initial conditions, a
parametrizes a particular curve py(as) that traces a slice of M, or
B heatmaps. In this sense, My, and B may be considered solely
functions of as for our simulation setup, since py is determined at
every a (i.e. My (as) = Mo(po(as), as)). However, if our simulation

had different initial conditions, the relationship po(as) would be
different, and thus M, (as) and B(as) would look different.

The left-hand panel of Fig. 9 plots p,, the one free parameter
in the fit to the soliton density profile, as measured at the end of
each of these 24 simulations, as well as the four higher-resolution
simulations introduced in previous subsections. The central density
is sampled in each simulation from a density profile averaged over
three consecutive snapshots to mitigate random fluctuations. The
measurements confirm the trends suggested in previous figures:
as compared to the collisionless case, py increases smoothly with
stronger self-interactions (and the core radius decreases according to
equation (10)). The trend is not linear in p, or log py but more closely
resembles an asymptotic or exponential increase. Near the critical SI
strength at which our soliton collapses ( fi5 ~ 1.1-1.2), the central
density is approximately 3 times greater than in the non-interacting
case.

MNRAS 533, 2454-2472 (2024)
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Figure 8. Extended evolution of the haloes in Fig. 7 using lower-resolution simulations (N = 200). These simulations reproduce the trends observed through
the first 4 Gyr in Fig. 7 and continue them for an additional 16 Gyr. The soliton in the fj5 = 1.2 simulation is observed to collapse at = 5.87 Gyr, when it
reaches its highest-yet central density of py = 8.03 x 10! Mg kpc™>. In the fi5 = 00,2, and 1.5 simulations, both po and n continue their secular increase
over long time-scales, potentially reaching an equilibrium state in each case.
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Figure 9. Soliton central density and mass (normalized) measured at t = 3.817 Gyr in simulations with various SI strengths and spatial resolutions. Included
are N = 400 simulations (circles, same colours as previous figures) and our N = 200 suite (black triangles) evenly spaced in as. All simulations have the same
initial conditions. Left: The central density smoothly increases with stronger self-interactions, as suggested by the snapshots in, e.g. Fig. 5. The trend steepens
as the interaction strength nears the critical point at which the soliton collapses. At fi5s = 1.2, pg is approximately 3 times higher than in the non-interacting
case. The solid grey contours show constant values of g while the red dashed contours show constant values of M. B increases quickly with SI strength, but
Mo stays approximately constant. Right: Soliton mass, normalized by the prediction from equation (18). The residual dependence on a; is roughly linear up
until fi5 & 1.5, at which point the decrease steepens, presumably because the soliton is nearing its critical point.
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Overlaid are contours of equal 8 and contours of equal log M.
As interaction strength increases, f increases quickly since both
multiplicative terms in equation (8) are increasing. The changes to
M, are a bit more complicated. From numerical integrals of equation
(11), we know that increasing a, generally decreases the soliton mass
(see shape changes in the right-hand panel of Fig. 5), while increasing
po increases My, (typical M, o p(;/ 4 growth in FDM haloes). In
our simulations, py increases in response to an increase in dgs, so the
resulting soliton mass is a product of two competing effects. We find
that self-interactions increase py in such a way that My, is nearly
constant over our range of simulations, increasing only slightly from
1.20 to 1.25 x 10° M.

To isolate the deviations from the typical po—M, relation pre-
dicted by equation (18), we can normalize the measured M, at each
a, by the zero-SI prediction Mo (as = 0) = 1 1‘6p0r3. The right-hand
panel of Fig. 9 unveils a tight residual linear dependence of My, on
as up to fis = 1.5. This suggests that for very weak self-interactions
(such that M, < M), the soliton mass can be accurately predicted
by revising equation (18) to

*

Me(po. ay) = 11.6por2 (1 - “—) 31)

with one additional constant a, characterizing the strength of the
dependence. With our particular initial conditions, we find a, ~
8.30 x 10777 cm (which corresponds to fis., A 0.49); the fit line
with that slope is also plotted on the right-hand panel. Note that if
equation (31) is true and M, is observed to remain roughly constant
over a range of as, then py o (1 — as/a,)™*. After fis = 1.5, the a;
dependence departs from linear. Presumably, this departure indicates
that the soliton mass is nearing its critical mass and the higher-order
p? term in equation (14) is no longer negligible.

4.1.4 Energy profiles

As with the density, the quantum gradient energy K, and classical
kinetic energy K, can be computed at each grid cell within the
simulation box and may be decomposed into radial profiles. This
analysis was considered in Mocz et al. (2017) and is useful for
determining the energy composition of different regions of the halo
and offers evidence as to the forces at play and the mechanisms
driving the halo evolution.

Fig. 10 shows kinetic energy profiles at the end of our weakly
self-interacting N = 400 simulations. The main features of the
profiles are preserved regardless of fi5: mass and energy are most
concentrated in the soliton with curves characteristic of FDM, and
the curves fall off with power laws after a certain cutoff radius.
However, the amplitude of each quantity at low radii is dependent
on self-interactions. Stronger self-interactions enhance both kinetic
energy components within the soliton core radius. In the left-hand
panel, the K, increases interior to » ~ 0.5 kpc when self-interactions
are present, and the increase is sorted by SI strength interior to
r ~ 0.1 kpc as in the density profiles. Similarly, in the right-hand
panel, K, is measured to increase interior to » ~ 0.3 kpc to some
extent dependent on SI strength. In the fi5s = 1.2 simulation, K, is
enhanced by more than an order of magnitude in the soliton centre.
In both cases, the energy profile of the outer envelopes is invariant
with interaction strength, further indicating that self-interactions are
not prominent at these radii.

Both kinetic energy components maximize at r ~ r. and decrease
to a local minimum at the soliton centre, regardless of interaction
strength.
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4.2 Strongly self-interacting haloes

In Section 4.1, we analysed simulations with SI weak enough
that the solitons remained dilute. However, we observe soliton
collapses in three simulations with strong enough self-interactions.
Two of these simulations are part of our higher-resolution N = 400
suite (fis = 1.1 and 1.0), while the other is one of our extended
lower-resolution runs (fi5s = 1.2). In all of these simulations, the
transition happens quickly (At < 10 Myr), and the collapse remnant
is spatially unresolved (r < 50pc), appearing as one single dense
pixel. After the collapse, numerical artefacts of poor resolution
are propagated throughout the box, reducing the credibility of the
data on the outer envelope. However, we can analyse the frames
immediately before and after the collapse event (Sections 4.2.1 and
4.2.2) and modify the physics to artificially resolve a compact soliton
(Section 4.2.3).

4.2.1 Phase transition

Soliton collapse is readily apparent in density projections of the
fis = 1.1 and 1.0 simulations over a few select snapshots. Fig. 11
shows a sequence of three consecutive projections from the fis = 1.1
simulation at our highest temporal resolution of Az = 10 Myr. In the
left-hand panel at r = 1.22 Gyr, the soliton is dilute, as it has been
since the initial configuration fully merged at ¢t & 0.7 Gyr. There are
no unusual features in the halo that indicate an imminent collapse.
Density profile fitting reveals that the soliton is well within the critical
regime for fijs = 1.1: the central density is at its highest value
yet (po = 1.85 x 10" Mgkpc™) and the soliton mass is almost
exactly equal to the critical mass (Mo ~ My = 1.22 x 10° Mg).
During the next 10 Myr (between the left and centre snapshots),
the soliton collapses, but the collapse is halted when the soliton
shrinks to the grid cell length. The remnant is displayed as a cross of
five dense pixels in the centre panel. Spherical waves are observed
to emanate from the centre at a velocity of v ~ 10°kms™! with
various frequencies. This radiation could be a physical signature
of a ‘bosenova’, which has a characteristic spectrum as found by
Levkov et al. (2017). However, the wavelengths are of order the
grid cell length, so they are not fully converged. Higher resolution
simulations are required to confirm whether these waves are physical
or numerical artefacts of poor resolution. By r = 1.24 Gyr in the
right-hand panel, the collapse remnant appears unphysically as one
dense pixel surrounded by a small overdense cloud. The ripples
have propagated through the periodic boundaries, distorting the
granules and blurring vortex lines within the box (similar artefacts
are observed by Jain et al. (2024), Appendix B). Neither the slope
nor the amplitude of the power-law outer envelope changes during
the collapse. Instead, the power law extends to fill the void left
by the dilute soliton, leaving a cuspier halo profile. We stress that
these results are not rigorous; simulations that adequately resolve
the soliton collapse are required to thoroughly investigate the post-
collapse halo structure.

With the two-term approximation of the instantonic axion po-
tential, we expect that the collapse should result in a compact
soliton wherein the higher-order repulsive pressure in equation (14)
counterbalances the attractive SI and gravity. Equation (17) suggests
that the post-collapse equilibrium density of the compact soliton
should be peq ~ 3.7 x 1017 Mg kpc ™3, over six orders of magnitude
higher than p,, pre-collapse. Extrapolating the po-r. relation in
equation (10) to the post-collapse regime yields a compact radius
of r = 2.7 pc, about 20 times finer than our best grid resolution.
However, there is no evidence to suggest that equation (10) can
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Figure 10. Classical kinetic energy K, (left) and quantum gradient energy K, (right) profiles at the end of each N = 400 simulation with weak self-interactions.
Similar to the trends seen in the density profiles, stronger self-interactions enhance both components of the kinetic energy around the soliton with some degree
of dependence on the interaction strength. In the outer envelope, the slope and amplitude of kinetic energy profiles are independent of self-interactions.
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Figure 11. Soliton collapse under strong axion self-interactions (fj5 = 1.1). Left: Just before collapsing, the soliton and outer envelope are typical of other
snapshots of dilute solitons with no obvious indicators of an imminent collapse. Centre: Immediately after collapse, the soliton appears as a dense, tiny unresolved
object with waves emanating from its centre. Right: Unphysical numerical artefacts from the unresolved soliton and collapse wavefronts blur and distort the

outer envelope, rendering any post-collapse data unreliable.

be extrapolated in this way. If the mass of the compact soliton
equals the mass of its dilute progenitor, and if the compact soliton
can be approximated to a sphere of uniform density p.q, then the
post-collapse radius is r ~ (3Mqo1/47tpeq)'* = 0.9 pe. If matter is
radiated during collapse, then this is an upper limit. These lengths
are about four orders of magnitude higher than the Schwarzschild
radius of the soliton R, = 2GM,,/c? = 1.1 x 10~* pc, indicating
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that the higher-order |1|® repulsive pressure may halt the collapse
before a black hole is formed.

Similarly, the free-fall time of the dilute soliton may give an
order-of-magnitude estimate of the collapse time-scale. Using the
pre-collapse central density, the free-fall time is #; ~ (G pp)~'/? =
1.2 Myr, about 10 times finer temporal resolution than our smallest
At between time-steps.
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Figure 12. Stability parameter B tracked over time for each of the three
simulations in which we observed a soliton collapse. In the red shaded region,
Mol > Mcyie; the maximum Mo/ Mic ratio is marked at S = 0.687,
and the time period before all haloes fully merge together is shaded grey.
The fi5 = 1.2 soliton collapses at its highest-yet value of § = 0.464, where
Mol = 0.97 Myt after a gradual ~5 Gyr increase. By contrast, the fi5 = 1.1
soliton collapses right on the upper boundary of the My, > M region, at
B = 0.844, after a steep ~0.5 Gyr ascent. The fij5 = 1.0 simulation collapses
during the final major subhalo collision; finer time-steps would be needed to
resolve the details.

Fig. 12 plots the dimensionless self-interaction parameter 8, which
is proportional to /O(i/z, over time for each of the fis=1.2,1.1,
and 1.0 simulations up to the point of collapse. The grey shaded
region indicates the period during which merging events take place
and the x markings and vertical dotted lines indicate the moments
right before each phase transition occurs. In this limited set of data,
solitons collapsed first in simulations with stronger self-interactions.
The fi5 = 1.0 soliton collapsed during the last major merging event,
before the dilute soliton had a chance to condense fully. The fi5s = 1.1
soliton was dilute for a short period of ~0.5 Gyr after merging was
finished. The fi5 = 1.2 soliton was dilute for much longer, slowly
accreting mass for ~5 Gyr before finally collapsing.

Notably, finer temporal sampling reveals that the central density in
the fis = 1.1 simulation increases immediately before collapse at an
unusually fast pace. Whereas py evolves slowly in other simulations
with dilute solitons, in this case it violently oscillates up by a factor
of ~4 over <200 Myr from ¢t = 1.0-1.2 Gyr. This stage of evolution
is distinct from collapse, which happens much more quickly; the
central density briefly accelerates while the soliton is still dilute
before reaching some threshold for collapse. We did not perform finer
sampling of the fi5 = 1.2 simulation immediately before collapse;
the time-steps remain at a default Az = 100 Myr.

This data indicate only a very tight range of interaction strengths
(1.0 £ fi5 < 1.5, for our halo mass) allows for a dilute soliton to
form before collapsing at some point later in its lifetime. If fis is
higher, the soliton will remain dilute forever, but if fis is lower, a
collapse will occur before the soliton fully forms in a dilute state.
Put differently, for a boson mass of m ~ 10722 eV and interaction
strength near f ~ 10'> GeV, the Universe would likely contain both
dilute and compact solitons with collapses actively occurring as
solitons accrete mass and surpass their critical threshold. If self-
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interactions are weaker, there may only be dilute solitons in the
Universe, but if they are stronger, every halo may have undergone a
collapse or multiple collapses.

4.2.2 Threshold criteria for collapse

The critical soliton mass in equation (12) offers a predictive threshold
for soliton collapse, which we extended to other criteria in equations
(22), (23), and (24) from numerical analysis of the ground state
solution of the GPP equations. It is of interest to examine whether
these criteria accurately predicted collapse in our simulations.

Fig. 12 includes corresponding M,/ M ratios on the right-hand
axis, according to equation (21). The red-shaded region indicates
the critical regime (0.55 < 8 < 0.84), where My, > M., and the
maximum predicted soliton mass is marked with a dashed purple line.
The fis = 1.1 and 1.2 simulations collapse on opposite sides of the
critical regime at quite different values of 8. The fi5 = 1.2 soliton
collapses after rising from B ~ 0.3 to 0.46 over 5 Gyr, reaching
Mo =~ 0.97 M, but never quite surpassing the critical mass. We
stress, however, that lower spatial resolution in this simulation may
instigate soliton collapse prematurely and lower temporal resolution
could mask late increases in central density. On the other hand,
the fis = 1.1 soliton ascends quickly through the critical regime
to B = 0.84. Interestingly, the quick ascent triggers close to the
lower My, = M. boundary, and the collapse occurs right on the
upper boundary. We conclude that the criteria given in equation (12)
accurately predicts soliton collapse in our simulations to within a
few per cent.

4.2.3 Boosting the |/|® repulsive pressure

To demonstrate the compact equilibrium into which the soliton may
collapse with a resolution of Ax = 0.05 kpc, we artificially increase
the higher-order stabilizing pressure term in equation (14) and
rerun the fis = 1.1 simulation with this change. This is completely
unphysical; the relative coefficients of the first two terms in the Taylor
expansion of the axion potential are determined by SI strength, boson
mass, and the functional form of the potential. However, observing
soliton collapse under similar physics can give useful intuition for
behaviour in the real case.

Multiplying the higher order term by a ‘boosting’ factor B > 1
increases the repulsive pressure and halts collapse at a lower
equilibrium density

peq

peq, modified — E (32)

and thus, a larger compact soliton radius. In the fj5s = 1.1 sim-
ulation, the dilute soliton is observed to have a central density
of po ~ 1.85 x 10" Mg kpc™, six orders of magnitude less than
Peq A 3.7 x 101"M, kpe . We find a boosting factor of B = 10° to
be large enough to resolve the compact object while small enough
that a collapse still initiates.

For direct comparison, we initialize a new simulation with the t =
1.08 Gyr snapshot from the default-physics fjs = 1.1 simulation.
‘We evolve forward for 0.8 Gyr at a finer temporal resolution of At =
10 Myr.

Fig. 13 shows a sequence of density projections analogous to
Fig. 11, but with the repulsive pressure boosted. The soliton
remains dilute up through the ¢ = 1.43 Gyr snapshot (left-hand
panel; 0.21 Gyr later than with default physics) at which point the
central density is py = 2.01 x 10! Mg kpc™>, the mass is My, =
1.22 x 10° Mg and B8 = 0.88. Relative to the default fi5 = 1.1
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Figure 13. Top: Soliton phase transition under artificially modified physics that lowers the post-collapse equilibrium density by five orders of magnitude. In
this modified regime, the compact soliton is resolved to have a diameter of ~0.3 kpc, or about 6 pixels, and persists in a stable state through the end of the
simulation. Bottom: The density profile of the compact soliton (thick black curves, centre and right) in this modified physics simulation is not as well-fit by the
same fitting function (equation (11)) used for dilute solitons; the slope is too steep. However, the information is still very limited, and it is unclear how these

results extrapolate to a fully collapsed object (with unmodified physics).

simulation, pg is slightly higher, presumably because the boosted
higher-order pressure offers a slight additional resistance against
collapse. The phase transition occurs quickly between r = 1.43
and 1.44 Gyr, leaving behind a compact soliton half the size of
its dilute parent with an order of magnitude higher central density,
o ~ 2.8 x 10'2 Mg kpe™>. This is within a factor of two of the
equilibrium density, Oeq modified = 3.7 X 10" Mg kpe~? as calculated
by equation (32). Waves of radiation similar to those observed in
Fig. 11 are observed emanating from the compact object, suggesting
that the radiation observed in Fig. 11 is physical. The soliton remains
stably in its compact state for the remainder of the simulation. Density
profiles are shown in the lower panels of Fig. 13; the dilute soliton
fitting formula, equation (11), struggles to fit the steep slope of the
compact soliton at » = 0.08-0.2 kpc. However, even in this modified
regime, the information is very limited: the compact soliton is only
resolved by ~7 pixels in diameter. Furthermore, it is unclear how
these results extrapolate to a fully collapsed object with unmodified
physics. Ultimately, this test demonstrates that under very similar
governing equations, the soliton collapses from a dilute state to a
stable dense configuration, radiating matter waves in the process.

5 DISCUSSION

The simple one-parameter FDM model has likely been excluded as
a dominant component of dark matter in the Universe because it
is unable to reconcile extended cores in dwarf galaxy dark matter
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haloes with adequate structure observed in the Lyman-o forest.
However, more general models of wave dark matter may offer the
same benefits of FDM (e.g. fewer satellite galaxies, cored haloes,
natural production in the early universe with the correct abundance)
while boosting small-scale power. Attractive axion self-interactions
are one such extension, offering a critical mass scale above which the
inner part of the dark matter halo contracts and generates structure
on smaller scales.

Although soliton collapse may be the key to generating small-
scale structure in FDM models, many aspects of it remain unclear.
In our simulations, we employ two standard approximations that
are valid for dilute solitons: (1) the fully relativistic Klein-Gordon—
Einstein (KGE) equations are approximated in the non-relativistic
limit by the GPP equations, equations (14) and (2), and (2) the
full instantonic axion potential v is approximated by the first two
terms in its Taylor expansion. Under these assumptions, the likely
result of soliton collapse is a compact soliton, a stable, dense dark
object wherein gravity and attractive SI are counterbalanced by the p?
repulsive term in equation (14) (Chavanis 2018). Although Braaten
et al. (2016) suggests that the two-term approximation accurately
resembles V, such objects have not been found in relativistic simu-
lations with the full potential. In spherically-symmetric simulations,
Helfer et al. (2017) finds that soliton collapses either disperse the
soliton or form a black hole (in very massive haloes with very low SI
strengths f > 10'® GeV). In similar simulations, Levkov et al. (2017)
elaborates that soliton collapses emit waves of relativistic axions
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with a characteristic spectrum. Our simulations provide evidence
that such radiation is also emitted under our approximations. In
future work, it will be interesting to fully resolve the radiation
and compare it to that observed in relativistic simulations. In our
simulations, the radiation interferes with itself through the periodic
boundaries and distorts the vortex lines in the box (Jain et al.
(2024) suggests that these effects will eventually homogenize the
simulation box). If the ripples are physical, it may be necessary
to simulate the outer envelope in high resolution to fully capture
the post-collapse equilibrium configuration. We cannot study the
effects of the radiation on the envelope here because, simultaneously,
unphysical high-frequency modes propagate throughout the box from
the unresolved collapse remnant. Post-collapse snapshots are thus
highly distorted by multiple numerical artefacts.

Observationally, the prospects for constraining FDM self-
interactions are limited to searching for the effects of soliton col-
lapses. Weakly attractive self-interactions change the dilute soliton
density profile only slightly: it becomes more compact but with a less
extended core than predicted in the simple FDM model. Currently,
rotation curves of nearby galaxies are not measured precisely enough
to constrain the self-interaction parameter by discerning between
density profiles; the change is too small and only present in the inner
parsec of the halo (the outer NFW-like envelope is not affected by
self-interactions).

For self-interactions strong enough to instigate soliton collapse,
observational signatures may be present. From cosmological con-
straints, the axion decay constant is expected to be f ~ 10'7 GeV
(Hui 2021). In a model universe with this SI strength, solitons more
massive than My, ~ 10! My (by equation (12)) are expected to
have undergone at least one collapse event, corresponding to the
haloes around the most massive galaxies and galaxy clusters. Less
massive DM haloes, namely dwarf galaxies, would feature solitons
in their dilute states. A slightly stronger (weaker) SI strength would
lower (raise) the critical mass threshold. Soliton collapses have been
proposed as possible seeds for supermassive black holes (e.g. Padilla
et al. 2021) and the source of background axion radiation similar to
gravitational wave backgrounds (e.g. Fox, Weiner & Xiao 2023).

In our simulations, we choose fiducial self-interaction strengths
of f ~ 105 GeV, about two orders of magnitude stronger than the
expected values. We do this to noticeably influence and initiate
collapses in haloes of mass M ~ 3 x 10° Mg, a computationally
convenient mass scale because the solitons are relatively extended
in the halo. However, our results can be generalized using scaling
relations in equation (6) to higher-mass haloes with weaker SI
strengths. In particular, {a,, M} — {€ 2a,, e M}.

In our simulations, we observe the halo in snapshots before and
during collapse. Based on pre-collapse soliton mass values, we find a
rough agreement (within ~3 per cent) with the critical mass formula,
equation (12), developed in Chavanis (2011) and Chavanis & Delfini
(2011). Equation (12) assumes a static, isolated initial condition and
should be considered an approximation for our simulations.

Besides spatial and temporal resolution, our simulations are
limited in that we test only one initial mass configuration. It would
be interesting to confirm that higher or lower mass solitons still obey
the generalized density profile, equation (11), and the critical mass
formula, equation (12).

6 CONCLUSION

In this work, we investigate the structure of FDM haloes evolving
under the GPP equations with a two-term Taylor approximation of the
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axion instantonic potential. We summarize the principal observations
from our idealized simulations as follows:

(i) Attractive self-interactions introduce a critical mass threshold
above which the central soliton collapses from its ‘dilute’ state. Our
simulations suggest that a stable ‘compact’ soliton is the end state
under our two-term Taylor approximation of the full potential, but
fully relativistic studies suggest that these objects are unlikely to be
stable. A soliton can either collapse at the time of formation or later
in its life by accreting matter from the outer envelope and eventually
exceeding the critical mass.

In the weak self-interaction regime:

(i) Solitons formed from identical initial conditions change shape
to some degree dependent on the particle interaction strength.
Stronger self-interactions increase the central density py and de-
crease the core radius r. relative to the collisionless case. The
observed decrease in r, very nearly follows the expected r. o< p, 1/4
dependence in equation (10), but a slight correction is observed to
be non-negligible (see Fig. 5).

(i) We find that the soliton density profile is accurately general-
ized by the fitting formula in equation (11). This approximation is
calibrated on numerical analysis of the ground state solution of the
GPP equations and validated by our simulations.

(iii) The soliton mass My, is nearly constant as self-interactions
are dialed up. Typical My, pé/ 4 dependence is nearly counter-
balanced by deviations in the density profile seen in the right-hand
panel of Fig. 5. For very weak self-interactions ( fis > 1.5), M, can
be approximated by equation (31), a generalization of equation (18)
with a simple linear dependence on the s-scattering length.

(iv) The outer envelope of the halo that surrounds the soliton is
invariant of SI strength. Evidence suggests this lack of dependence
extends to the strong interaction regime, as neither the slope nor
amplitude of the outer envelope density profile appears to change
after a soliton phase transition.

(v) Solitons accrete matter from the outer envelope over time,
growing as py « t*. The logarithmic rate « positively correlates
with SI strength: stronger SI yields faster growth. In response, the
outer envelope becomes shallower and lower amplitude. Power law
growth deviates into a runaway collapse when the critical mass is
reached.

In the strong self-interaction regime:

(i) In our simulations, the collapse event is temporally unresolved
(Ateonapse < 10 Myr) and the collapse remnant is spatially unresolved
(r < 50pc). Additional tests with modified physics indicate that the
collapse will result in a compact soliton with central density close to
the equilibrium density given in equation (17).

(ii) The time period during which a soliton is dilute before
collapsing depends on interaction strength. If interactions are too
weak, the soliton will never collapse. If interactions are too strong,
as in our f = 1.0 x 10" GeV run, the dense centre will collapse
before a dilute soliton has a chance to form. In a very tight range
for us 1.0 x 1015 < £ < 1.5 x 10" GeV, a dilute soliton can form
before later transitioning to its compact state.

(iii) Immediately before collapsing, a dilute soliton may undergo
a runaway ascent in central density unlike the secular evolution
observed when My, is significantly less than M. (see f = 1.1 x
10" GeV simulation in Fig. 12).

(iv) Soliton collapses in our simulations are accompanied by
waves of axion radiation similar to that observed in fully relativistic
simulations (Helfer et al. 2017; Levkov et al. 2017). It remains to
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be verified that the characteristic spectrum of the radiation can be
reproduced by non-relativistic simulations.

Naturally predicted axion-like self-interactions with a symmetry-
breaking scale f ~ 10'7 GeV can significantly alter the predictions
made from the simple FDM model. Every DM halo in the Universe
above a certain critical mass would be expected to contain a remnant
of soliton collapse, possibly in the form of a supermassive black
hole, which could spawn strong non-linear effects on small scales
and remedy the Catch-22 that faces FDM. Lower-mass haloes are
expected to retain dilute solitons, which smoothly approximate
vanilla FDM solitons as f — oo. From here, the most important
next step is to carefully simulate soliton collapse in three dimensions
with full general relativistic effects to develop a seeding formula for
cosmological simulations. With models for soliton phase transition
and post-collapse interactions with the host haloes, large-scale sim-
ulations can determine whether attractive self-interactions broaden
FDM parameter space enough to satisfy modern observations of
both dwarf galaxies rotation curves and small-scale structure in the
Lyman-o forest.
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APPENDIX A: ACCURACY OF GENERALIZED
DENSITY PROFILE FITTING FORMULA

In equation (11), we propose a new fitting formula for dilute
solitons under attractive self-interactions that generalizes equation

-0.5

log(X.5%)

Figure Al. Goodness of fit measurement for equation (11) using many
values of parameters @ and b. The optimal combination is ¢ = 11.2 and
b = 4.2, and these values are set constants throughout the entire analysis.
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Figure A2. Comparison of goodness of fit of the zero-SI formula, equation
(9) (orange), to the generalized formula, equation (11) (blue), over the relevant
range of SI strengths. The soliton density profile changes subtly with self-
interactions such that equation (11) yields a much more accurate description.
The optimal (a, b) parameter set (11.2, 4.2) is shown as the bolded curve, but
other (a, b) parameter sets lying along the degeneracy (see Fig. A1) are also
included: (10.5, 3.9) and (12.5, 4.5).

(9) originally found in Schive et al. (2014a). First, we seek to
identify the (a, b) parameter set that best matches solutions to the
GPP equations over the relevant range of interaction strengths. We
do this via an optimization process, visualized in Fig. Al. For any
two values of @ and b, the goodness of fit metric 52 from equation
(27) can be used to compare our predictions to the GPP solutions
across a range of B values. The total accuracy of an (a, b) model
is simply the sum of 82 values over 0 < 8 < 1. In Fig. Al, these
S~ 8% accuracy values are displayed by colour for a 20 x 20 grid of
(a, b) values. The optimal parameter set is found to be @ = 11.2 and
b = 4.2, but there is a strong degeneracy between the two parameters
(a =~ 4b — 5.5). Increasing a tends to decrease the density over the
relevant range of radii, while increasing b reverses the effect. In
this sense, the functional form of equation (11) admits a family of
well-fitting solutions to self-interacting FDM haloes.

To demonstrate the accuracy of our fitting formula with its optimal
(a, b) parameter set, Fig. A2 plots the residuals 8 as a function of
B. Also included are residual functions for the zero-SI formula,
equation (9), and two nearly-optimal (a, b) parameter sets that lie
along the degeneracy in Fig. Al. While the fit using the zero-SI
formula becomes increasingly poor as the SI strength is dialed up,
equation (11) offers persistently great fits to the GPP solutions. The
two other (a, b) parameter sets shown, (10.5, 3.9) and (12.5, 4.5),
exhibit only marginally worse residuals at high S.

APPENDIX B: GENERALIZED SOLITON MASS
FORMULA

In equation (20), we assert that the formula for the mass of dilute
solitons under attractive self-interactions is only off by a multiplica-
tive function g(B) from the analytic zero-SI formula, equation (18).
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Figure B1. The residual dependence of the soliton mass on self-interaction
parameter 8 after normalizing by the zero-SI case. Increasing self-interaction
strength decreases the soliton mass relative to the zero-SI prediction. As in
Fig. A2, the optimal (a, b) parameter set is represented by the bold blue curve,
while two other well-fitting parameter sets are shown in faded blue. Changing
parameter sets along the degeneracy shown in Fig. A1 changes g(8) only very
slightly.

To see this, let u = r/r. so that

M, = / 47Trzpsol(r)dr
0

— drp /°° u®du
= aTtPor e ——
o [14+ ABuPP)]

where A(B) = 0.091a#/* and B(B) =2 — B/b. In this form, it is
clear that My, o< pord oc r7 ! regardless of SI strength. The multi-

plicative function g(B) is proportional to the above integral,

B) = Mqoi(po, B)  4096A(0)*/* /“ u? du
s = Mi(po, 0) 337 o 1 +A(,3)u3<ﬂ>]3’

which cannot be expressed in terms of elementary functions except in
special cases. A plot of g(8), computed with numerical integration,
is shown in Fig. B1 for different (a, b) parameter sets. The soliton
mass under strong self-interactions can be less than 60 per cent of
the mass predicted from the zero-SI formula.

APPENDIX C: SPECTRAL METHOD

To evolve and merge the haloes, we numerically solve equations
(14) and (2) following the spectral method as developed and used
in Mocz et al. (2017). The time-steps are decomposed into a kick-
drift-kick leapfrog-like scheme, where each ‘kick’ and ‘drift’ are

unitary operators acting on the wavefunction. The sequence is briefly
reviewed here.

Once the density p and wavefunction v are discretized onto a grid
of dimension N3, the potential V can be calculated by transforming
to Fourier space and back,

V = ifft [-fft[4nG (p — p)] /K], (CD)

where fft[...] and ifft[...] are the Fourier transform and inverse
Fourier transform operators, respectively, and k are the wavenumbers
at the corresponding grid locations. The potential imparts a ‘kick’ to
the wavefunction, half a time-step forward,

Y < exp[—i(At/2)(m/h)V]- ¢ (823

This is followed by a full ‘drift’ (kinetic) step in Fourier space:

U = fit[y] (C3)
U < exp [—i At(h/m)k? /2] (S2))
W < ifft[i]. (C5)

The time-step is completed with another ‘kick’ step using equation
(C2), except that the interaction terms from equation (14) are
included in the potential,

32mhta?

4mthta, :
3o VI (C6)

m3

Vev- lI®+
and the system is thus evolved from time 7 to t + At.

The valid time-step criterion for stability and accuracy of our
method, essentially a Courant—Friedrichs—Lewy (CFL) like condi-
tion, is that the unitary operators in equations (C2) and (C4) do not
change the phase by more than 27t in each time-step. The time-step
criterion of Schwabe, Niemeyer & Engels (2016),

At <max | "axp, (€7)
- 6h " mmax |V|

enforces this property, where Ax = L/N is the grid spacing. Note
that the time-step scales as (Ax)2, which adds computational cost for
high-resolution simulations.

This paper has been typeset from a TeX/I&TEX file prepared by the author.
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