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Abstract
In this paper, we seek to learn a robot policy guaranteed to satisfy state constraints. To encourage

constraint satisfaction, existing RL algorithms typically rely on Constrained Markov Decision Processes
and discourage constraint violations through reward shaping. However, such soft constraints cannot
offer verifiable safety guarantees. To address this gap, we propose POLICEd RL, a novel RL algorithm
explicitly designed to enforce affine hard constraints in closed-loop with a black-box environment. Our
key insight is to force the learned policy to be affine around the unsafe set and use this affine region
as a repulsive buffer to prevent trajectories from violating the constraint. We prove that such policies
exist and guarantee constraint satisfaction. Our proposed framework is applicable to both continuous
and discrete state-action spaces and is agnostic to the choice of the RL training algorithm. Our results
demonstrate the capacity of POLICEd RL to enforce hard constraints in robotic tasks while significantly
outperforming existing methods. Code available at https://iconlab.negarmehr.com/POLICEd-RL/

1 Introduction

While reinforcement learning (RL) [52] is widely successful [10, 44, 51], its application to safety-critical
tasks is challenging due to its lack of safety guarantees [20]. A common approach towards capturing safety in
RL is ensuring the satisfaction of safety constraints which prevent a robot from entering unsafe regions [12].
However, verifying that a learned closed-loop policy never leads to any constraint violation is in general a
nontrivial problem. To remedy this shortcoming, safe RL has mostly relied on reward shaping to penalize the
policy for constraint violations [12, 27, 37]. At a high level this approach corresponds to imposing soft safety
constraints and does not provide any guarantees of constraint satisfaction by the closed-loop system [27].
However, for many safety-critical tasks, like human-robot interaction, autonomous driving [45], or Airborn
Collision Avoidance Systems [34], such safety guarantees are paramount and require maintaining inviolable
hard constraints in closed loop with the learned policy, as illustrated with Figure 1.
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Figure 1: Illustration of closed-loop constrained RL.

In this paper, we seek to learn a robot control policy guaranteed to satisfy an affine state constraint
in a deterministic but black-box environment. The state space region where this constraint is not satisfied
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Figure 2: Schematic illustration of POLICEd RL. To prevent state s from violating an affine constraint rep-
resented by Cs ≤ d, our POLICEd policy enforces Cṡ ≤ 0 in buffer region B (blue) directly below the
unsafe area (red). The POLICEd policy (arrows in the environment) is affine inside buffer region B (delim-
ited by vertices v1, . . . , v4), which allows us to easily verify whether trajectories can violate the constraint.

corresponds to an unsafe area that must be avoided by the robot. Our key insight is to transform the state
space surrounding this unsafe area into a repulsive buffer region as shown in Figure 2. This buffer is made
repulsive by learning a policy whose actions push the robot state away from the unsafe area. To enable
analytical verification of the repulsive character of our learned policy, we constrain its outputs to be affine
over the buffer region. This key property allows to easily guarantee whether an affine constraint is satisfied.

Our proposed framework is agnostic to the choice of the RL training algorithm but relies on its con-
vergence to guarantee safety. Our method is applicable to both systems with continuous and discrete state
and action spaces. Additionally, our approach can accommodate black-box environments by using a local
measure of their nonlinearity, which can be numerically estimated. To the best of our knowledge, no other
work learns a policy in such a way that the closed-loop system is guaranteed to satisfy a hard constraint after
training.

To ensure our policy produces affine outputs over the whole buffer region, we draw from existing lit-
erature in constraining neural network outputs. While this topic has been widely investigated [2, 5, 19,
21, 35, 54], we build on the POLICE algorithm proposed in [8] to constrain our learned policy. Indeed,
POLICE is capable of ensuring that a deep neural network with continuous piecewise affine activation func-
tions produces affine outputs over a user-specified region. We build on this work and develop a paradigm
for enforcing hard constraints in RL which we call POLICEd RL.

Following this approach, we establish analytical conditions under which our learned policy guarantees
constraint satisfaction after training. A natural follow-up question arising from these conditions is whether
they are so stringent that no constraint-satisfying policy exist. To answer this crucial problem, we transform
the question of existence of such a constraint-satisfying policy into a tractable linear problem. We will then
demonstrate through a number of numerical examples how our method can be implemented. Then, using a
7DOF robotic arm, we compare the performance of our method with a number of representative baselines
and demonstrate that our method outperforms all the baselines both in terms of its constraint satisfaction as
well as its expected accumulated reward.

In this work, we focus on constraining only actuated states in an effort to lighten the complexity of our
theory. Such a setting is commonly used in a wide range of safety research such as the literature using of
control barrier functions [4, 42, 59, 64] as well as safe RL [16, 33, 41, 70]. We will provide a detailed review
of these works in Section 2.3.

In summary, our contributions in this work are as follows.

1. We introduce POLICEd RL, a novel RL framework that can guarantee satisfaction of hard constraints
by the closed-loop system composed of a black-box robot model and a trained policy.

2



2. We transform the question of existence of such a constraint-satisfying policy into a tractable linear
problem.

3. We demonstrate the efficiency of our proposed POLICEd RL at guaranteeing the safety of an in-
verted pendulum and a robotic manipulator in a number of simulations using high-fidelity MuJoCo
simulators [53].

The remainder of this work is organized as follows. In Section 2 we provide a survey of related works.
In Section 3 we describe prior work [8] upon which we build our approach. In Section 4 we introduce our
problem formulation along with our framework. In Section 5 we establish our approach and provide its
theoretical guarantees to enforce the satisfaction of affine constraints. In Section 6 we demonstrate how to
implement our proposed POLICEd RL algorithm. In Section 7 we present several numerical simulations
illustrating our approach. Finally, we conclude the paper in Section 8.

Notation: The characteristic function of a set S ⊆ Rn is denoted by 1S . The positive integer interval
from a ∈ N to b ∈ N inclusive is denoted by [[a, b]]. Uniform sampling of a variable x in a set X is denoted
by x ∼ U(X ).

2 Related works

2.1 Enforcing hard constraints on neural network outputs

First, we review the literature on enforcing hard constraints on the outputs of deep neural networks (DNNs).
Adding a post-processing layer or an extra activation function like tanh or sigmoid to a DNN can easily
bound its output. Similarly, linear constraints can be enforced by projecting DNN outputs onto a constraint
set using quadratic programming optimization layers [5]. To enforce general convex constraints, [2] devel-
oped differentiable convex optimization layers that can be incorporated into DNNs. However, evaluating
these optimization layers is computationally expensive, which led to imposing linear constraint without any
projection in [21] where the constraint is built into the DNN’s architecture. This work was recently extended
to enforce affine constraints in localized regions [8]. The main advantage of these two works [8, 21] is the
absence of computational overhead at deployment where such constrained DNNs become simple multilayer
perceptrons. To go beyond affine constraints, [19] used gradient descent along equality constraints until
inequality constraints are also satisfied. Observing that gradient descent can require numerous iterations
and suffers convergence issues prompted a more efficient method for hard convex constraint enforcement
through the offline computation of feasible sets in [54]. In a concurrent work, [35] built DNNs whose
outputs satisfy linear and quadratic constraints without solving any optimization problem in the forward
pass. All these works enforce constraints on DNN outputs only and do not consider the satisfaction of hard
constraints by a trained policy.

2.2 Constraints in reinforcement learning

The most common approach to enforce constraints in RL adopts the framework of constrained Markov deci-
sion processes (CMDPs) [3]. CMDPs encourage policies to respect constraints by penalizing the expectation
of the cumulative constraint violations [37]. Numerous variations of this framework have been developed
such as state-wise constrained MDP [68], constrained policy optimization [1], and state-wise constrained
policy optimization [70]. These approaches belong to the category of soft constraints as the policy is only
encouraged to respect the constraint and provides no satisfaction guarantees [27]. This category also en-
compasses work [42] where a control barrier transformer is trained to avoid unsafe actions, but no safety
guarantees can be derived.
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Figure 3: The three categories of constraint satisfaction with increasing guarantees of satisfaction.

A probabilistic constraint comes with the guarantee of satisfaction with some probability threshold [12]
and hence ensures a higher level of safety than soft constraints as shown in Figure 3. For instance, [30]
derived policies having a high probability of not violating the constraints by more than a small tolerance.
Using control barrier functions, [14] guaranteed safe learning with high probability. Since unknown stochas-
tic environments prevent hard constraints enforcement, [59] proposed to learn generative model-based soft
barrier functions to encode chance constraints. Similarly, by using a safety index on an unknown environ-
ment modeled by Gaussian processes, [69, 33] established probabilistic safety guarantees.

The focus of our work is at the third safety level described in [12] and illustrated in Figure 3. This
level corresponds to inviolable hard constraints. Works [16, 47] both learned safe policies thanks to a
differentiable safety layer projecting any unsafe action onto the closest safe action. However, since these
safety layers only correct actions, a precise model of the robot dynamics model must be known, which
is typically unavailable in RL settings. This limitation is also shared by [49, 63], which require some
knowledge of the robot dynamics model to compute either backward reachable sets [49] or control barrier
functions [63]. To circumvent any knowledge of the robot dynamics model, [67] used an implicit black-box
model but is restricted to collision avoidance problems in 2D. To avoid these limitations, the Lagrangian-
based approach of [41] and the model-free approach of [64] require to a priori specify the functional form
of the safety certificate and as they approach zero violations, the cost signal for their DNN approximator
becomes sparse, for these reasons they cannot guarantee the validity of their safety certificate.

To sum up, our work differs from all these works as we enforce inviolable hard constraints on robot
trajectories in closed-loop with a learned control policy while exclusively using a black-box model of the
robot dynamics.

2.3 Relative degree of constraints

The relative degree of constraints is an important notion in safe RL deserving some introduction. The
relative degree of a constraint describes how many times a constraint needs to be differentiated before
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a control input appears in its expression. For instance, a position constraint has relative degree 1 for a
velocity-controlled robot, but relative degree 2 for an acceleration-controlled robot. The higher the relative
degree, the more inertia the constraint has and the more anticipation is required to respect it.

Control barrier functions (CBFs), one of the most common tools to enforce constraints, require con-
straints of relative degree 1 [4]. Albeit not being mentioned, the relative degree of the constraints studied in
[42] has to be 1 for its CBF theory to apply [4]. Indeed, both of the experiments of [42] consist in avoiding
obstacles with cars actuated directly by their steering angle, so their relative degree is 1. Similarly, work
[59] relies on CBF and hence assumes implicitly constraints of relative degree 1. Only recently have CBFs
been specifically extended to handle constraints of higher relative degrees with, for instance, exponential
CBFs [46], generalized CBFs [40], and high order CBFs (HOCBF) [62]. However, these CBF methods
require knowledge of the robot dynamics model, which is typically not available in RL.

Work [33] proposes to model the system dynamics as fully-actuated and affine so that all constraints are
of relative degree 1. Work [16] mentions constraints of higher relative degree through the notion of inertia,
but only address them experimentally by giving a larger margin to correct trajectories before they violate the
constraint. The paper [41] only mentions high order constraints to avoid dealing with them by excluding the
states leading to violation, i.e., when their relative degree is higher than 1 from the safe set. Similarly, [67]
uses a Lagrangian approach with state-dependent multipliers and a constraint of relative degree 2. However,
the method of [67] is designed for 2D systems with sufficient control power to effectively counter their
inertia, hence circumventing the major challenge of high relative degree constraints.

We follow the common approach of most of the safe RL literature [16, 33, 41, 42, 59, 70] and choose to
study constraints of relative degree 1 in this work.

2.4 Black-box safety with control theory

While CBFs are prevalent in safe RL [42, 48, 59, 64], other approaches backed by control theory have
also investigated safety in black-box RL. Most notably, model predictive control (MPC) is particularly well-
suited to bring safety guarantees to RL settings [29]. MPC schemes predict safe and optimal control inputs in
a receding-horizon fashion by using a model of the dynamics to anticipate their behavior [29]. Implementing
MPC for black-box systems typically requires learning either a robust [6, 18] or stochastic [39] model of the
dynamics. Then, the theory of robust [9] and stochastic control [56] can provide safety guarantees despite
the uncertainty or disturbances in the learned models [29]. Similarly to CBFs, MPC can also serve as safety
filter to enforce constraints on learned policies [29, 57]. While robust control tends to be overly conservative
in practice [58] and stochastic MPC offers limited safety guarantees [43], the main limitation of black-box
MPC is the unavoidable and notoriously computationally difficult receding-horizon optimization problem
to be solved at each time step [29].

More closely related to this work is the literature on optimal control of constrained piecewise affine
systems [15]. Indeed, nonlinear dynamics can be locally approximated as piecewise affine to develop robust
controllers with provable performance guarantees [24, 28] while enforcing linear temporal logic specifica-
tions [31]. However, these works assume knowledge of the robot dynamics.

3 Prior Work

In this section, we review prior work [8] upon which we build our approach. The POLICE algorithm [8]
utilizes the spline theory of DNNs [7] to modify the training process of a DNN by guaranteeing that the
DNN outputs are strictly affine within a user-specified region as shown in Figure 4.

More specifically, consider a DNN represented by a function fθ : Rd0 → RdL composed of L layers
of width d1, ..., dL defined as fθ := f

(L)
θL

◦ . . . ◦ f
(1)
θ1

. Let layer i ∈ [[1, L]] take the form f
(i)
θi

(x) =
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Figure 4: Classification task of orange versus purple by a learned decision boundary (red) which is required
to be affine inside the black square. POLICE [8] guarantees the DNN is affine in the region of interest.

σ
(
W (i)x + b(i)

)
, where σ is a pointwise activation function, W (i) ∈ Rdi×di−1 is a weight matrix, and

b(i) ∈ Rdi is a bias vector. The layer parameters are gathered into θi := {W (i), b(i)} while the later
parameters themselves are gathered as θ := {θ1, . . . , θL}.

The framework of [8] assumes that nonlinearities σ are continuous piecewise affine functions such as
(leaky-)ReLU, absolute value or max-pooling. This assumption is common in the field of DNN verification
[13, 60, 65, 66].

Under this assumption, fθ is a composition of affine functions W (i)x+b(i) and piecewise affine functions
σ. As a result, the DNN fθ itself is also piecewise affine. Hence, we can partition input space Rd0 into M
regions Rj , j ∈ [[1,M ]], over which fθ is affine. The nonlinearities of fθ occur at the boundaries between
regions Rj . Then,

fθ(x) =
M∑
j=1

(
Djx+ ej

)
1x∈Rj , (1)

where Dj ∈ RdL×d0 , and ej ∈ RdL are per-region slope and offset matrices, and regions Rj ⊆ Rd0 are
such that

⋃M
j=1Rj = Rd0 . These regions Rj are defined by their characteristic functions 1x∈Rj . The

formulation of (1) is discussed at length in [55], which also describes how to compute regions Rj and
matrices Dj and ej based on the parameter vector θ.

The POLICE algorithm [8] builds on this formulation to impose one user-specified polytopic region
Ruser into the partition of input space Rd0 . As a result, DNN fθ becomes affine on this specific region Ruser.
This affine region is enforced by an extra bias term bextra calculated for each layer such that the whole region
Ruser possesses the same activation pattern. Note that standard unconstrained optimization is still used to
train the DNN. Once training is over, a POLICEd DNN behaves similarly to a standard DNN as the affine
region enforcement is guaranteed by the stored bias of each layer. Thus, POLICEd DNNs have no overhead
at test time compared to standard unconstrained DNNs [8].

4 Framework

Let us now introduce the framework of our problem of interest. We consider a robot of state s with deter-
ministic dynamics modeled by a continuous function f and of form

ṡ(t) = f
(
s(t), a(t)

)
, a(t) ∈ A, s(0) ∼ ρ0, (2)

where a is the action input and ρ0 is the distribution of initial states. The assumption of deterministic
dynamics is common in the literature of safe RL with hard constraints as exhibited by [16, 41, 49, 63, 64,
67, 70]. Let state space S be a compact convex polytope of Rn and admissible action set A be a compact
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convex subset of Rm. Similar assumptions are adopted by [41, 49, 63]. The state of the robot is constrained
by a single affine inequality

y(t) := Cs(t) ≤ d, for all t ≥ 0, (3)

with C ∈ R1×n and d ∈ R. The robot starts from an initial state s(0) ∼ ρ0. At every time instant
t ≥ 0, the robot observes its state s(t) ∈ S and takes an action according to its deterministic feedback
policy a(t) = µθ

(
s(t)

)
∈ A modeled by a DNN µθ parameterized by θ. Then, the robot receives a

reward R
(
s(t), a(t)

)
. Our objective is to train policy µθ to maximize the expected discounted reward over

trajectories generated by policy µθ while respecting constraint (3):

max
θ

G(µθ) := E
s0∼ρ0

∫ ∞

0
γtR

(
s(t), µθ(s(t))

)
dt s.t. (3), (4)

where γ ∈ (0, 1] is a discount factor. We emphasize that constraint (3) is a hard constraint to be respected
at all times. We can now formally define our problem of interest.

Problem 1. Given:

1. a black box continuous control system in the form of (2);

2. a compact convex polytopic state space S ⊂ Rn;

3. a compact convex admissible action set A ⊂ Rm;

4. an affine hard constraint in the form of (3);

5. a DNN policy µθ

(
s(t)

)
parameterized by θ;

our goal is to solve

θ∗ = argmax
θ

G(µθ) s.t. ṡ(t) = f
(
s(t), µθ(s(t))

)
, s(0) ∼ ρ0, Cs(t) ≤ d, for all t ≥ 0.

Our approach focuses on deterministic dynamics with no model mismatch, although it can be readily
extended to uncertain dynamics thanks to robust safe control [17]. Additionally, we consider the robot
dynamics model f to be an implicit black-box, meaning that we can evaluate f but we do not have access
to the equations or analytical form of f . This is similar to the online RL setting where f is a simulator or
where f is the actual robot.

5 Constrained Reinforcement Learning

In this section, we establish a method to solve Problem 1. To enforce the satisfaction of affine constraint
Cs ≤ d, we construct a repulsive buffer where Cṡ ≤ 0 around the constraint line Cs = d as illustrated in
Figure 2. This repulsive buffer will then guarantee that closed-loop trajectories of the robot cannot breach
the constraint. We will establish the analytical safety guarantees of our method in this section and then in
the next section, we discuss the implementation details of our approach.

5.1 Guaranteed satisfaction of hard constraints

We start by constructing a repulsive buffer in front of the constraint violation line defined by (3). Let r > 0
be the ‘radius’ of this buffer defined as

B :=
{
s ∈ S : Cs ∈ [d− r, d]

}
. (5)
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Note that any state trajectory initially verifying constraint (3), i.e., Cs(0) ≤ d, has to cross buffer B before
being able to violate the constraint. Therefore, if buffer B cannot be crossed, then constraint (3) cannot be
violated. To design a policy µθ incapable of crossing buffer B, we need the following result.

Lemma 1. Buffer B of (5) is a polytope.

Proof. By definition (5), buffer B can be written as B = C−1
(
[d−r, d]

)
∩S , where C−1

(
[d−r, d]

)
:=
{
s :

Cs ∈ [d − r, d]
}

denotes the inverse image of the interval [d − r, d]. The inverse image of a set is always
defined, even if matrix C is not invertible. Therefore, B is the intersection of affine variety C−1

(
[d− r, d]

)
and polytope S and hence B is a polytope according to result 4 of section 3.1 of [26].

Then, buffer B has a finite number N of vertices gathered in the set V
(
B
)
:=
{
v1, . . . , vN

}
.

We choose a deterministic policy modeled by a POLICEd DNN µθ : S → A. We adopt the framework
of [8] as discussed in Section 3. We assume that the activation functions of µθ are continuous piecewise
affine functions such as (leaky) ReLU, absolute value, or max-pooling. As mentioned in Section 3, this
POLICEd DNN architecture allows the user to specify a polytopic region Ruser of the state space S where
the outputs of µθ are affine. We choose Ruser = B as illustrated in Figure 2.

Following (1), the affine character of µθ over region B is equivalent to the existence of matrices Dθ ∈
Rm×n and eθ ∈ Rm such that

µθ(s) = Dθs+ eθ for all s ∈ B. (6)

Having an affine policy on B, we would like to couple it with affine robot dynamics to obtain a simple
constraint enforcement process. However, in general, robot dynamics (2) are nonlinear. We will thus use an
affine approximation of the robot dynamics inside buffer B using the following definition.

Definition 1. An approximation measure ε of dynamics (2) with respect to constraint (3) and buffer (5) is
any ε ≥ 0 for which there exists any matrices A ∈ Rn×n, B ∈ Rn×m, and c ∈ Rn such that∣∣Cf(s, a)− C(As+Ba+ c)

∣∣ ≤ ε, (7)

for all s ∈ B, and all a ∈ A.

Despite this approximation, note that we will guarantee the satisfaction of constraint (3) with actual
dynamics (2). To help us easily compute a value for ε using system identification techniques [38] like linear
least square [25], we take advantage of the following property of approximation measures.

Lemma 2. Given dynamics f of (2), constraint matrix C of (3) and buffer B of (5), any ε sufficiently large
is an approximation measure in the sense of Definition 1.

Proof. We want to prove that any ε sufficiently large is an approximation measure in the sense of Defini-
tion 1. We will first determine the infimum of all approximation measures before proving that any ε larger
than this infimum is an approximation measure.

For every matrices A ∈ Rn×n, B ∈ Rn×m, and c ∈ Rn introduce

ε∗ABc := min
{
ε :
∣∣Cf(s, a)− C(As+Ba+ c)

∣∣ ≤ ε, for all a ∈ A, and all s ∈ B
}
.

Note that the minimum in ε∗ABc exists since the function to minimize is continuous (f is assumed continuous
at (2)) and sets A and B are compact. Then, all ε∗ABc are approximation measures as they satisfy Definition 1.
Define

ε∗ := inf
{
ε∗ABc : A ∈ Rn×n, B ∈ Rn×m, c ∈ Rn

}
.

Let us now prove that the infimum of all approximation measures is ε∗, by first showing that ε∗ is their
largest lower bound. If ε is an approximation measure, then it has a triplet (A,B, c) satisfying (7). By
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definition of ε∗ABc and ε∗, we then have ε ≥ ε∗ABc ≥ ε∗. Thus, ε∗ is a lower bound to all approximation
measures.

Let α be a lower bound to all approximation measures. Since all the ε∗ABc are approximation measures,
α ≤ ε∗ABc for all A,B, c, i.e., α ≤ ε∗ by definition of ε∗. Therefore, ε∗ is the largest lower bound of all
approximation measures.

We will now show that any ε larger than ε∗ is in fact an approximation measure. Let ε > ε∗. Since ε∗ is
the infimum of all approximation measures, there exists an approximation measure α such that ε∗ ≤ α < ε.
Since α is an approximation measure, there exists a triplet (A,B, c) for which (7) holds with upper bound α.
Note that (7) also holds for this same triplet but with upper bound ε since ε > α. Then ε is an approximation
measure.

Note that intuitively, the value of ε quantifies the quality of the approximation over buffer B of possibly
nonlinear robot dynamics (2) by affine system

ṡ(t) = As(t) +Ba(t) + c, a(t) ∈ A. (8)

We will show how to guarantee satisfaction of constraint (3) by black-box environment (2) armed only with
an approximation measure ε and without knowing matrices A, B, c or dynamics f .

We define the safe states as Ss :=
{
s ∈ S : Cs < d

}
. We only consider trajectories remaining in

state space S , which we define as τS
(
s0, a(·)

)
:=
{
s(t) : s(t) ∈ S and follows (2)

}
for all s0 ∈ S and

adequate actions a(·) ∈ A. We can now state our central result relating repulsive buffer B to trajectories τS

continuously respecting the constraints.

Theorem 1. If for some approximation measure ε, repulsion condition

Cf
(
v, µθ(v)

)
≤ −2ε, (9)

holds for all v ∈ V
(
B
)
, then τS(s0, µθ) ⊆ Ss for all s0 ∈ Ss.

Proof. The intuition behind this proof is to use (9) and approximation (7) to show that Cṡ ≤ 0 for all s ∈ B,
which in turn prevents trajectory from crossing buffer B and hence from violating the constraint.

Since ε is an approximation measure, there exists matrices A, B and c verifying (7). We can now extend
repulsion condition (9) from the vertices of buffer B to the whole set B. For v ∈ V

(
B
)
,

C
(
Av +Bµθ(v) + c

)
≤
∣∣C(Av +Bµθ(v) + c− f(v, µθ(v))

)∣∣+ Cf
(
v, µθ(v)

)
≤ ε+ Cv̇ ≤ ε− 2ε ≤ −ε, (10)

where the first inequality is a triangular inequality, the second follows from (7) and (2), and the third in-
eqaulity follows from (9). Using the fact that an affine function is uniquely determined by its values on
the vertices of a full-dimensional polytope [26], [28], we will show that (10) is also valid all over poly-
tope B and not just at its vertices V

(
B
)
. More specifically, since B is the convex hull of its vertices

{v1, . . . , vN} = V
(
B
)

[26], for all s ∈ B, there exists α1, . . . , αN ∈ R such that αk ≥ 0,
∑N

k=1 αk = 1

9



and s =
∑N

k=1 αkvk. Then, (6) yields

C
(
As+Bµθ(s) + c

)
= C

(
As+B(Dθs+ eθ) + c

)
= C(A+BDθ)s+ C(Beθ + c)

= C(A+BDθ)
N∑
k=1

αkvk + C(Beθ + c)
N∑
k=1

αk

=
N∑
k=1

αkC
(
(A+BDθ)vk +Beθ + c

)
(11)

=

N∑
k=1

αkC
(
Avk +Bµθ(vk) + c

)
≤

N∑
k=1

αk(−ε) = −ε,

where the inequality comes from (10) applied on each vertex vk. For any state s ∈ B, we have

Cṡ = Cf
(
s, µθ(s)

)
≤
∣∣C(f(s, µθ(s))−As−Bµθ(s)− c

)∣∣+ C
(
As+Bµθ(s) + c

)
≤ ε− ε ≤ 0, (12)

where we first use the triangular inequality, then (7) and (11). Having proved (12), we will now show that it
prevents all trajectories τS(s0, µθ) from exiting safe set Ss when s0 ∈ Ss.

We prove this by contradiction. Assume that trajectory τS(s0, µθ) ⊈ Ss for some s0 ∈ Ss. Since
τS(s0, µθ) ⊂ S , there exists some T > 0 such that s(T ) ∈ S\Ss. Then, by definition of Ss, y(T ) =
Cs(T ) ≥ d. Since s0 ∈ Ss, y(0) = Cs0 < d. By continuity of the function y, there exists a time t2 ∈ (0, T ]
at which y(t2) = Cs(t2) = d. Let t0 ≥ 0 be the last time at which τS(s0, µθ) entered B, so that s(t) ∈ B
for all t ∈ [t0, t2].

Note that y(t) = Cs(t) is continuously differentiable since dynamics (2) are continuous. Then, accord-
ing to the Mean Value Theorem [32], there exists t1 ∈ (t0, t2) such that ẏ(t1) =

(
y(t2)− y(t0)

)
/(t2 − t0).

By construction of t0 and t2, we have t2 − t0 > 0 and y(t2) − y(t0) > 0. Therefore, ẏ(t1) = Cṡ(t1) > 0
with s(t1) ∈ B, which contradicts (12). Therefore, all trajectories τS(·, µθ) starting in safe set Ss remain in
Ss.

Theorem 1 guarantees that trajectories remaining in S and steered by a(t) = µθ

(
s(t)

)
satisfy con-

straint (3) at all times as long as repulsion condition (9) is satisfied. This condition (9) guarantees that
trajectories cannot cross buffer B and hence cannot violate constraint (3).

Remark 1. In order to guarantee satisfaction of constraint (3) through Theorem 1, we need an approxima-
tion measure ε. In practice, we can use data-driven techniques for estimating ε. Our safety guarantees are
valid as long as our estimator ε̃ overshoots the true ε since that will help make ε̃ an approximation measure
according to Lemma 2. 1

Theorem 1 highlights the major strength of POLICEd RL: to ensure constraint satisfaction we only
need to check whether (9) holds at the vertices of B. Without POLICE, µθ would not be affine over B,
and repulsion condition (9) would need to be verified at numerous intermediary points depending on the
smoothness of µθ and the size of the buffer. Such an approach is similar to the δ-completeness guarantees
of [13, 23] and would be much more computationally intensive than our approach.

Theorem 1 and more specifically Condition (9) implicitly assume that the robot has access to v̇, the
derivative of the state, which is usually not the case in typical RL environments [11]. To address this, we

1However, in practice an excessively large value of ε will be detrimental to the learning performance of µθ since repulsion
condition (9) will become harder to enforce as ε increases.
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provide a straightforward extension of Theorem 1 to the widespread framework of discrete-time setting. We
define the discrete-time state of the robot as

sj+1 := sj + f(sj , aj)δt, (13)

for all sj ∈ S , aj ∈ A, j ∈ N, and some time step δt > 0. The discrete trajectory of policy µθ starting from
s0 ∈ S and remaining in state space S is defined as

τSd (s0, µθ) :=
(
s0, s1, . . .

)
∈ SN, (14)

such that sj+1 = sj + f(sj , µθ(sj))δt ∈ S for all j ∈ N.

Corollary 1. If for some approximation measure ε, the following discrete repulsion condition holds

C
(
sj+1 − sj

)
≤ −2εδt for all sj ∈ V

(
B
)
, (15)

with aj = µθ(sj), and buffer B is wide enough such that

max
{
C
(
sj+1 − sj

)
: sj ∈ Ss, aj = µθ(sj)

}
≤ r, (16)

then τSd (s0, µθ) ⊂ Ss for all s0 ∈ Ss.

Proof. As in the proof of Theorem 1, we take advantage of the linearity of dynamics (8) to extend (15) from
the vertices of B to the whole set B. Note that for any st ∈ V

(
B
)
, combining repulsion condition (15) with

(7) yields

C
(
Ast +Bµθ(st) + c

)
≤
∣∣C(Ast +Bµθ(st) + c

)
− Cf

(
st, µθ(st)

)∣∣+ Cf
(
st, µθ(st)

)
≤ ε+

1

δt
C
(
st+1 − st

)
≤ ε− 2εδt

1

δt
≤ −ε.

As in the proof of Theorem 1, we use the convexity of polytope B of vertices V
(
B
)

and the linearity of
approximation (8) to obtain

C
(
As+Bµθ(s) + c

)
≤ −ε, for all s ∈ B. (17)

We can now revert this inequality to the discrete dynamics. For st ∈ B,

C
st+1 − st

δt
≤
∣∣∣∣C st+1 − st

δt
− C

(
Ast +Bµθ(st) + c

)∣∣∣∣+ C
(
Ast +Bµθ(st) + c

)
≤
∣∣Cf

(
st, µθ(st)

)
− C

(
Ast +Bµθ(st) + c

)∣∣− ε ≤ ε− ε ≤ 0. (18)

Note that the first inequality follows from the triangular inequality, the second from the definition of st+1 and
(17), and the third inequality stems from (7). We will now show that (18) prevents all trajectories τSd (s0, µθ)
from exiting safe set Ss when s0 ∈ Ss.

We assume for contradiction purposes that trajectory τSd (s0, µθ) /∈ Ss for some s0 ∈ Ss. Since
τSd (s0, µθ) ∈ S , there exists some t ∈ N such that st ∈ Ss and st+1 ∈ S\Ss. Thus, Cst < d and
Cst+1 ≥ d. Now (16) yields

C(st+1 − st) ≤ r,

since st ∈ Ss and µθ(st) ∈ A. Then, Cst ≥ Cst+1 − r ≥ d − r. Thus, st ∈ B. Since Cst < d and
Cst+1 ≥ d, we have

C
st+1 − st

δt
> 0,

which contradicts (18). Therefore, all trajectories τSd starting in safe set Ss remain in Ss.

Note that condition (16) requires the buffer to be wide enough not to be ‘jumped’ over in a single time
step by the discrete dynamics. Condition (15) makes buffer B repulsive so that discrete trajectories τSd
cannot leave safe set Ss.
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5.2 Existence conditions

While Theorem 1 and Corollary 1 provide a way to verify the satisfaction of hard constraint (3), they do not
entirely solve Problem 1. A natural remaining piece is the following existence condition.

Problem 2. Under what conditions does there exist an admissible policy µθ satisfying Theorem 1?

Indeed, if the conditions of Theorem 1 cannot be satisfied, then training µθ will fail to solve Problem 1,
which is why Problem 2 is crucial. To address this issue, we first reformulate the conditions of Theorem 1
into a tractable existence problem.

Proposition 1. Finding an admissible policy µθ satisfying Theorem 1 is equivalent to finding a matrix
Dθ ∈ Rm×n and a vector eθ ∈ Rm which satisfy the following conditions for all vertices v ∈ V

(
B
)

C
(
(A+BDθ)v +Beθ + c

)
≤ −ε, (19a)

Dθv + eθ ∈ A. (19b)

Proof. Following definition (6) of policy µθ, (19a) is equivalent to (10). Similarly, a policy µθ satisfying
Theorem 1 also verifies (10).

The only statement left to prove is the equivalence between (19b) and policy µθ being admissible over
buffer B. Admissibility is formalized as µθ(s) ∈ A for all s ∈ B, which combined with (6), trivially implies
(19b).

Conversely, assume (19b) holds and let us prove that µθ is admissible. Let s ∈ B. Since V
(
B
)
=

{v1, . . . , vN} are the vertices of convex set B, there exists α1, . . . , αN ∈ R such that αk ≥ 0,
∑N

k=1 αk = 1

and s =
∑N

k=1 αkvk. Then, (6) yields

µθ(s) = Dθs+ eθ = Dθ

(
N∑
k=1

αkvk

)
+ eθ

(
N∑
k=1

αk

)
=

N∑
k=1

αk(Dθvk + eθ).

Then, (19b) coupled with the convexity of A yields µθ(s) ∈ A for all s ∈ B, hence completing the proof.

Proposition 1 translates the feasibility of Theorem 1 into two sets of N linear conditions to verify.
Additionally, if the input set A is a polytope, (19b) can be simplified to a linear existence problem. Hence,
the question of the existence of a policy µθ satisfying Theorem 1 can be answered efficiently with linear
programming. Notice that (19a) admits plenty of solutions as long as CB ̸= 0. This observation is in fact
related to the concept of relative degree whose definition we now formalize.

Definition 2. The relative degree γ of system (2) with output (3) is the order of its input-output relationship,
i.e., γ := min

{
r ∈ N : ∂

∂a
∂ry(t)
∂tr ̸= 0

}
.

In simpler words, the relative degree is the minimal number of times output y has to be differentiated
until input a appears.

Proposition 2. If affine dynamics (8) with output (3) have a relative degree 1, then condition (19a) admits
solutions. Otherwise, (19a) admits solutions if and only if c∗v ≤ −ε where

c∗v := max
{
CAv + Cc : v ∈ V

(
B
)}

.
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Proof. Following Definition 2 with dynamics (8) and constraint (3), we calculate

∂

∂a

∂y(t)

∂t
=

∂

∂a

∂Cs(t)

∂t
=

∂

∂a
Cṡ(t) =

∂

∂a
C
(
As(t) +Ba(t) + c

)
= CB.

Then, a relative degree 1 entails CB ̸= 0, i.e., there exists j ∈ [[1,m]] such that the jth component of CB is
non-zero. Then, we choose eθ to be the zero vector of Rm except for its jth component to be −c∗v−ε

[CB]j
, so that

CBeθ = −c∗v − ε. We also choose Dθ = 0 ∈ Rm×n. Then, for all v ∈ V
(
B
)

the left-hand side of (19a)
simplifies to

CAv − c∗v − ε+ Cc ≤ c∗v − c∗v − ε = −ε,

where the first inequality comes from the definition of c∗v. Therefore, (Dθ, eθ) is a solution to (19a).
On the other hand, if dynamics (8) with output (3) have relative degree larger than 1, then CB = 0,

i.e., the policy has no direct impact on output y. In that case, (19a) simplifies to C(Av + c) ≤ −ε, i.e.,
c∗v ≤ −ε.

To check the existence of a policy satisfying Theorem 1, we cannot rely solely on the hope that the
constraint will enforce itself. Thus, in practice, we need CB ̸= 0, i.e., the relative degree of system (8) must
be 1.

Since affine system (8) is only an approximation of nominal dynamics (2), they do not necessarily have
the same relative degree. However, such a preventable discrepancy only hampers practical implementation
of Theorem 1 by rendering ε larger than necessary. Indeed, work [61] discusses how to infer the relative
degree of a black box system from first principles. Hence, affine approximation (8) can and should be
designed to match the relative degree of nominal dynamics (2) to make ε as small as possible. This reasoning
prompts the following practical consideration.

Remark 2. In practice, to find a policy satisfying Theorem 1, output (3) of system (2) needs relative degree
1.

The intuition behind Remark 2 is that the derivative of the constrained states must be actuated to allow
immediate corrective actions. A relative degree 1 is also required by CBFs [4] and by numerous works in
constrained RL [33, 41, 42, 59] as we already discussed in Section 2.3. Let us now detail the implementation
of our method.

6 Implementation

In this section, we demonstrate how our method can be implemented in a continuous 2D environment where
a point mass moves according to the following discrete-time dynamics

s(t+ δt) = s(t) + a(t)δt, (20)

with actions a(t) ∈ A := [−1, 1]2, states s(t) ∈ S := [0, 1]2 and time step δt = 0.1. We assume
dynamics (20) to be a black-box from the controller’s perspective. The reward signal is proportional to the
distance between the state and a target state located at (0.9, 0.9), as illustrated in Figure 5.

We consider the line joining states (0.4, 0.7) to (1., 0.7) to form an obstacle. We will guarantee that
trajectories do not cross this constraint line from below by placing our buffer right under it, as shown in
Figure 5. Note that a policy trained to reach the target will not cross the constraint line from above as that
would move the state away from the target as seen in Figure 5. Thus, we only need to prevent crossings
from below. The constraint is parameterized by C = [0, 1] and d = 0.7 in the notations of (3), i.e., s2 ≤ 0.7
when s1 ≥ 0.4.
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Figure 5: State space S with arrows denoting state transitions under POLICEd policy µθ for linear envi-
ronment (20). The affine buffer B (green) pushes states away from the constraint line (red) before heading
towards the target (cyan).

The first step of our approach is to estimate the size of our buffer. To do so, we uniformly sample states
s(t) ∼ U(S), actions a(t) ∼ U(A), and the corresponding next states s(t + δt) from (20) to be stored in a
dataset D. With this dataset we can calculate the minimal buffer radius r following condition (16) and we
find that for this setting r = 0.1, which we can analytically verify with (20) and (16) as follows:

C
(
s(t+ δt)− s(t)

)
= s2(t+ δt)− s2(t) = δt

(
− s2(t) + a2(t)

)
≤ δt

(
− 0 + 1) = δt

Following (5) we define buffer B delimited by vertices V(B) =
{
(0.4, 0.7), (1, 0.7), (1, 0.6), (0.4, 0.6)

}
which will be provided to our algorithm to learn a POLICEd policy µθ.

The next step is to determine an approximation measure ε of the system’s nonlinearity. Since dynam-
ics (20) are linear, affine approximation (7) is exact with ε = 0.

Finally, we train the POLICEd policy µθ to ensure repulsion condition (15) holds, i.e., s2(t + δt) −
s2(t) ≤ 0 for s(t) ∈ V(B). This is illustrated by the arrows pointing down in the affine buffer of Figure 5.
As suggested in [8], once training is completed, we create a copy κθ of the POLICEd DNN µθ, where the
POLICEd extra-bias bextra (discussed at the end of Section 3) are directly embedded into the standard bias
of κθ. Thus, copy κθ is a standard DNN without overhead. We summarize the POLICEd RL process in
Algorithm 1.

Algorithm 1 POLICEd RL

Require: Environment (13), constraint (3), transition dataset
(
s, a, s′) ∼ D ⊂ S ×A× S

1: Calculate buffer radius r with (16) from dataset D
2: Determine buffer B and its vertices V(B) with (5)
3: Sample transitions (s, a, s′) ∼ D s.t. s ∈ B and use least-square approximation to get ε from (7)
4: Train the POLICEd RL agent µθ until repulsion condition (15) holds on the polytopic buffer’s vertices

V(B)
5: Copy µθ into a standard DNN κθ of identical weights and biases increased by the POLICEd extra-bias

bextra of µθ

Ensure: Trajectories τSd (s0, µθ) of (14) starting from safe state s0 ∈ Ss do not leave safe set Ss and copied
policy κθ = µθ has no inference-time overhead.
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7 Simulations

We will now test our POLICEd RL framework through more challenging realistic simulations to answer the
following questions:

Q1 Can POLICEd RL produce safer policies than a baseline?

Q2 Can POLICEd RL generate policies achieving higher rewards than a baseline, while guaranteeing
constraint satisfaction?

Q3 Can POLICEd RL be expanded to higher-dimensional systems with realistic dynamics?

7.1 Inverted pendulum experiment

We begin by testing POLICEd RL on the OpenAI inverted pendulum environment [11] which uses the
MuJoCo physics engine [53]. The inverted pendulum environment has a 4-dimensional observation space
with cart position x, pendulum angle θ, linear cart velocity ẋ, and angular velocity θ̇ as illustrated in Figure 6.
The action space is the force applied to the cart a proportional to ẍ.

Figure 6: The inverted pendulum Gym environment [11] annotated with cart position x, pendulum angle θ,
and buffer B.

We investigate different safety constraints to prevent the pendulum from falling. First, we consider
a constraint of relative degree 1 where we want to enforce θ̇(t) ≤ 0 for θ(t) ∈ [0.1, 0.2] rad to push θ
away from its upper limit θmax = 0.2 rad. With state s(t) =

(
x(t), θ(t), ẋ(t), θ̇(t)

)
, the constraint is

Cs(t) ≤ d with d = 0 and C =
[
0 0 0 1

]
. We now need to create a buffer wide enough such that it

cannot be ‘jumped’ over by the robot in a single time-step. Following (5), we build a buffer of width r as
B =

{
(x, θ, ẋ, θ̇) : x ∈ [−0.9, 0.9], θ ∈ [0.1, 0.2], ẋ ∈ [−1, 1], θ̇ ∈ [−r, 0]

}
. Buffer B stays clear off

x = ±1 since these locations cause a large state discontinuity preventing stabilization. Following step 1 of
Algorithm 1, we uniformly sample states s ∼ U

(
S
)
, actions a ∼ U

(
A
)
, corresponding next state s′ and we

use (16) to compute r ≈ 1.03 for action magnitudes |a| ≤ 1. To guarantee θ̇ ≤ 0, Theorem 1 leads us to
enforce θ̈ ≤ 0 for all states in buffer B.

We can now compute an approximation measure ε from (7). We uniformly sample states s ∼ U
(
B
)
,

actions a ∼ U
(
A
)
, we get the corresponding next state s′ and approximate ṡ ≈ (s′−s)/δt with δt = 0.02 s

which is the environment time-step. A least-square fit following (7) yields a value ε ≈ 0.7.
Note that training to satisfy a constraint is often adversarial to accomplishing the task, and thus often

causes training instability. Throughout our development process, we discovered techniques to greatly im-
prove training time and sample complexity, which are further discussed in Appendix A. For example, with
the inverted pendulum scenario, we train policy µθ by iterating over two phases. The first phase is a stan-
dard RL training where the initial state is regularly reset either around the origin or inside the affine buffer.
Once a reward threshold is met, the constraint training phase starts. The state is iteratively reset to all the
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vertices of buffer B and the trajectory is propagated for a single time step to evaluate whether repulsion
condition (15) holds. Only the experiences where (15) is not verified are added to the replay memory with
negative rewards in order to promote the respect of (15). After several rounds of these updates, the first
training phase resumes and the process begins anew until condition (15) holds everywhere on the vertices of
B and the maximal reward is achieved. We summarize this training process in Algorithm 2.

We use Proximal Policy Optimization (PPO) [50] to learn both a baseline and a POLICEd policy. The
baseline is a standard PPO policy that does not have the enforced affine buffer B of the POLICEd policy.
They both follow the same training procedure described above in the same environment where they receive
identical penalties for constraint violations. Each episode has a maximal length of 1000 time steps with a
reward of 1 if the pole is upright and 0 otherwise. The reward curves of Figure 7 show that both methods
achieve maximal reward.

Figure 7: Reward curves for the inverted pendulum (max=1000). The solid lines correspond to the average
and the shaded regions to the 95% confidence interval over 5 runs.

During training we measure the proportion of buffer B where repulsion condition (15) is satisfied and
report these proportions in Figure 8. Since the POLICEd policy achieves maximal reward while completely
satisfying repulsion condition (15) at episode 1180 it stops training, whereas Figure 8 shows that the baseline
never succeeds in enforcing (15) over the entire buffer. Moreover, the constraint training phase causes a
large drop in the baseline rewards as seen in Figure 7. Our POLICEd policy guarantees the satisfaction
of constraint θ̇ ≤ 0 by enforcing repulsion condition (15), i.e., θ̈ ≤ 0. Consequently, it guarantees that
trajectories starting from θ̇(0) < 0 will never reach any state where θ̇(t) ≥ 0.

We will now empirically evaluate the performance of POLICEd RL at ensuring satisfaction of a con-
straint of relative degree 2. Although our theory cannot provide any safety guarantees, we will show that
POLICEd RL performs better and is safer than the baseline.

We want the pendulum to maintain |θ| ≤ θmax = 0.2 rad (See Figure 6). This position constraint
is of relative degree 2 since the action (pushing the cart) only impacts directly the angular acceleration
θ̈. Our empirical evaluation consists in resetting the state of the inverted pendulum at a variety of initial
conditions

(
θ, θ̇
)
, and seeing how often policies fail to maintain |θ| ≤ 0.2 rad. Some initial conditions

cannot be stabilized since the controller does not have direct control action on θ, only on θ̇. Indeed θ(δt) =
θ0 + δt θ̇0 > 0.2 rad, if θ0 = 0.2 rad and θ̇0 > 0 not matter the control action. We present our results in
Figure 9 where we can see that the POLICEd policy stabilizes a span of initial states much larger than both
buffer B and the ones stabilized by the baseline.

Then, POLICED RL has shown to be empirically effective in increasing the set of stabilizable initial
conditions even with constraints of high relative degree. Our results indicate that both Q1 and Q2 are
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Figure 8: Relative portion of buffer B where repulsion condition (15) is respected. The baseline never
succeeds in entirely enforcing (15) hence allowing possible constraint violations. The solid lines correspond
to the average and the shaded regions to the 95% confidence interval over 5 runs.

(a) Baseline (b) POLICEd

Figure 9: Success rates for the policies to maintain |θ| ≤ 0.2 rad for the inverted pendulum given an initial
state

(
0, θ, 0, θ̇

)
. Green: stabilized. Red: failure. The black box shows buffer B where the POLICEd policy

guarantees θ̈ ≤ 0. Position constraint |θ| ≤ 0.2 rad is of relative degree 2. Some initial conditions pictured
here cannot be stabilized since the controller does not have direct control action on θ, only on θ̇. However,
we see that our POLICEd policy maintains safety in a larger region of the state space than the baseline.

answered positively as POLICEd RL produces safer policies achieving higher rewards than our baseline in
the inverted pendulum environment.

7.2 Robotic arm

We further showcase our method on a robotic arm with 7 degrees of freedom. To implement our approach,
we rely on the high-fidelity MuJoCo simulator [53]. We developed a custom environment where the robotic
arm aims to reach a 3D target with its end-effector while avoiding an unsafe region as illustrated in Figure 10.
More specifically, we define the state space of the environment s ∈ R10 as the arm’s joint angles sjoints ∈ R7
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Figure 10: Robotic arms tasked to bring their end-effectors to the target (green) while avoiding the constraint
surface (red). The POLICEd method uses a buffer region (cyan). The arms are shown in two random
configurations.

and the X-Y-Z coordinates of the end-effector send ∈ R3. At each timestep, the policy provides a change in
joint angles a ∈ R7. The target is kept constant across all episodes. At the start of each episode, the starting
state of the arm is uniformly sampled from the joint space.

At each timestep, the robotic arm is assigned a reward function R(s, a) which is composed of four terms:
the straight line distance Rd(s) between the end-effector and the target, a bonus Rb(s, a) for reaching the
target, a penalty Rinf(a) for generating an infeasible joint state or exiting the state space, and a penalty
Runsf(s, a) for violating the constraint.

We perform an ablation study to showcase the necessity of our POLICEd method to ensure both high
rewards and constraint satisfaction. To begin, we learn a POLICEd policy using Twin Delayed DDPG
(TD3) [22], an improved version of Deep Deterministic Policy Gradient (DDPG) [36]. After training each
model, we deployed the fully-trained policy onto 500 episodes on our Safe Arm Task which is illustrated in
Figure 10. From these episodes we collected a series of metrics which we summarize in Table 1:

1. Completion %: The percentage of episodes where the policy reaches the target to evaluate task com-
pletion rate.

2. Completion % w/o Violation: The percentage of episodes where the policy reaches the target without
violating the constraint, to evaluate its safety capabilities.

3. Average Reward: The average reward earned to evaluate how efficiently the policy completes the task.

4. Average Constraint Satisfaction: The percentage of episodes where the constraint is never violated to
evaluate the safety capabilities of the policy.

We proceeded with the ablation study by training and evaluating variations of our initial policy where
we either removed our POLICE module or the reward penalties. We began by training a traditional TD3
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policy without our POLICE module and evaluating it as described. We then switched to a reward function
without Runsf and trained a TD3 policy without both the POLICE module and without the constraint viola-
tion penalties. We also trained a POLICEd policy without the penalty term in order to showcase how reward
shaping is necessary to tune the affine region of the policy to avoid the constraint region.

Models Completion %
Completion %
w/o Violation

Average reward
±95% CI

Average Constraint
Satisfaction ±95% CI

TD3 trained and
evaluated w/o penalty

100 − −11.07± 0.59 69.2± 4.1

POLICEd (ours) 93.4 93.4 −16.22± 0.68 100± 0.0

TD3 75.8 12.0 −45.20± 3.23 28.4± 3.9

CPO 2.0 2.0 −96.71± 3.45 89.9± 2.7

PPO-Barrier 100 86.2 −41.26±−2.30 86.2± 3.0

POLICEd trained
w/o penalty

48.0 41.6 −70.09± 1.22 41.6± 4.3

TD3 trained w/o penalty 99.8 48.8 −45.69± 16.61 53.4± 4.4

Table 1: Metrics comparison for different methods based on a 500 episode deployment with the fully-trained
policies on the safe arm task illustrated in Figure 10. The top row (gray) provides an upper bound on the
completion rate and maximal reward achievable as TD3 is evaluated without penalties for constraint viola-
tion (i.e. without Runsf). We compare our POLICEd method against the soft-constraint baseline CPO [1]
and the learned safety certificate baseline PPO-Barrier [64]. We also report the metrics for TD3 trained
with and without the penalty as well as our POLICEd method trained without penalty as part of our ablation
study. The bold numbers denote the highest values achieved when constraint violations are appropriately
penalized. The completion task only assess whether the target is eventually reached, even if the constraint
is not properly respected. For all metrics higher is better.

While we believe ours is the first paper to provably enforce hard constraints with black-box environ-
ments, safe RL has produced remarkable works in soft constraints and learned safety certificate methods.
As such, we also compare our approach with the soft constraint method Constrained Policy Optimization
(CPO) [1], as well as the learned control barrier function approach PPO-Barrier of [64].

As seen in Table 1, our POLICEd policy is the only algorithm to guarantee constraint satisfaction.
The soft constraint CPO [1] and the learned safety certificate PPO-Barrier [64] baselines provide better
constraint adherence than standard RL algorithms like TD3, but still fall far short of guaranteed satisfaction.
In comparison, our POLICEd approach has the highest task completion percentage without violations by a
40% margin, while also being the highest reward earning policy by nearly a margin of 3 times.

Through our ablation study, we confirm that our POLICEd approach is necessary for constraint satisfac-
tion, as seen by the poor average constraint satisfaction by the TD3 and TD3 trained without penalty policies.
Furthermore, it follows intuitively that the constraint violation penalties guide the policy to avoid the region,
a concept extensively studied in soft constraint works [1, 27]. As expected, training without penalizing
constraint violations is vastly detrimental to the performance of both the TD3 and POLICEd policies. In
the POLICEd case, the reward shaping is necessary for the policy to appropriately tune the affine region
to avoid the constraint. We can now answer questions Q1, Q2, and Q3 as the POLICEd policy achieves
highest average reward while guaranteeing constraint satisfaction even on this relatively high-dimensional,
high-fidelity robotic arm environment.
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We additionally observed that our POLICEd approach exhibited significantly greater sample efficiency
compared to our baseline methods. The POLICEd policy converged within 4000 episodes, each consist-
ing of 100 steps. In contrast, CPO frequently failed to converge even after 20,000 episodes of the same
length. While PPO-Barrier achieved convergence within 200 iterations, these iterations encompassed nu-
merous episodes of uncapped length, resulting in nearly double the number of environment samples required
compared to POLICEd. For additional details see Appendix B.2.1.

8 Conclusion

Summary. We proposed POLICEd RL, a novel algorithm explicitly designed to enforce hard safety con-
straints for a black-box robot in closed loop with a RL policy. Our key insight was to build a repulsive
buffer around the unsafe area with a locally affine learned policy to guarantee that trajectories never leave
the safe set. Our experiments showed that POLICEd RL can enforce hard constraints in high-dimensional,
high-fidelity robotics tasks while significantly outperforming existing methods.
Limitations. With Proposition 1, we can verify whether there exists a safe POLICEd policy. However, as
in standard RL, there are no guarantees that the training will converge to this safe policy. Moreover, in high
dimensional environments, the exponential number of vertices of buffer region B

(
2n for a box in dimension

n
)

will become computationally prohibitive. However, once trained, a POLICEd DNN is just as fast as a
standard unconstrained DNN [8]. Another difficulty arising in high-dimensional black-box environments is
the computation of ε and r following (7) and (16) respectively. Indeed, these computations require sampling
enough transition triplets to bound the environment dynamics. Finally, we would like to point out that
if the estimate of the approximation measure ε is too low, then the safety guarantees of Theorem 1 and
Corollary 1 will not hold. We would like to investigate how an upper bound of ε can be estimated for
general high-dimensional settings.
Future Directions. We are excited by our findings and believe our method is only the first step towards
enforcing hard constraints on RL policy. For future work, we plan to investigate the case of higher relative-
degree constraints by taking ideas from the works that extended CBFs to higher-relative degrees [40, 46, 62,
63]. We would like to further consider enforcing multiple constraints simultaneously. This extension would
require minimal changes to our theory but would mostly involve extending the POLICE algorithm [8] to
enforce several affine regions instead of just one as initially designed.
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A POLICEd RL training tips

During our numerous implementations we learned a few tips to help any POLICEd actor to learn a safe
policy faster. However, as in standard RL training, there are no guarantees that training will converge to a
feasible policy.

To ensure the admissibility of policy µθ, i.e., µθ(s) ∈ A for all s ∈ S , the classical approach would
be to add a final layer to the neural network constituted of a bounded function like the hyperbolic tangent
or sigmoid. However, these functions are not piecewise affine, which would invalidate the assumptions of
[8]. A clipping of the output would conserve the piecewise affine character of µθ but would modify the
partition R of (1), hence preventing the POLICE algorithm to guarantee the affine character of µθ on buffer
B. Instead, we addressed this issue by adding a large penalty to the reward function when µθ(s) /∈ A. This
approach has been very successful in all our experiments.

Another helpful trick to improve the training of a POLICEd network comes from manual curriculum
learning. We start the training with an affine buffer B of size zero. Once a reward threshold is met, we
iteratively increase the size of the buffer until it reaches the specified size. This minimizes the impact of
POLICE in slowing the learning process.

Similarly, we noticed that resetting the initial state of some trajectories inside the buffer helped the
POLICEd policy learn repulsion condition (9) or (15). We would typically reset 1 in 10 initial states inside
the buffer during training.

It is also useful to note that for an actor-critic algorithm, only the actor DNN is POLICEd, and the critic
is not modified.

We tested several different approaches for the environment behavior with respect to constraint violations.

• Penalized Constraints: when the agent violates the constraint, it is allowed to keep going but incurs a
penalty.

• Terminal Constraints: when the agent violates the constraint, the episode ends with a penalty.
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• Bouncing Constraints: when the agent tries to step into the constraint, it incurs a penalty and its state
remains at its last constraint-abiding value.

The inverted pendulum environment of Section 7.1 implements terminal constraints, while the linear envi-
ronment of Section 6 and the robotic arm environment of Section 7.2 rely on bouncing constraints.

Algorithm 2 POLICEd RL training process

Require: Environment E (13), constraint (3), reward threshold rT
1: Let Rb denote the replay buffer, µθ our policy, B our affine buffer, and U the uniform sampling function.
2: ▷ Main training loop
3: while reward < rT and (15) not satisfied on B do
4: while reward < rT do ▷ Standard RL training
5: Reset s(0) = 0 or s(0) ∼ U(B)
6: while not done do
7: Take action a(t) = µθ(s(t))
8: Get reward r(t) = R(s(t), a(t))
9: Get (s(t+ δt), respect, done) from E

10: Add
(
s(t), a(t), s(t+ δt), r(t), done

)
to Rb

11: end while
12: Update policy µθ with Rb ▷ Note: This often reduces the constraint satisfaction of the policy
13: end while
14: ▷ Constraint Training Loop
15: while (15) not satisfied on B do
16: Reset s(0) ∼ U(V(B)) ▷ Reset the initial state only on the buffer vertices
17: Take action a(0) = µθ(s(0))
18: Get reward r(t) = R(s(0), a(0))
19: Get (s(δt), respect, done) from E
20: if not respect then
21: Add

(
s(0), a(0), s(δt), r(0), done

)
to Rb

22: end if
23: Update policy µθ with Rb ▷ Note: This often reduces the reward earned by the policy
24: end while
25: end while
Ensure: Trajectories τSd (s0, µθ) of (14) starting from safe state s0 ∈ Ss do not leave safe set Ss

B Implementation Details

B.1 Safe Inverted Pendulum

In the inverted pendulum experiment, we choose to limit the buffer to x ∈ [−0.9, 0.9], whereas the cart
position x can in fact reach −1 and 1. However, when reaching these extremal positions the cart bounces
back which provokes a severe discontinuity in the velocities. Our framework can handle discontinuities
through the ε term of (7) Moreover, a safe policy must be able to stabilize the inverted pendulum without
pushing the cart to its extremal positions. For all these reasons, we decided to stop our buffer short of
x = ±1.
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B.2 Safe Robotic Arm

At each timestep k, the actions ak ∈ R7 outputted by the policy are promoted to only produce small joint
changes in each step. For the KUKA Arm, the maximum joint angles are

[±2.97,±2.09,±2.97,±2.09,±2.97,±2.09,±3.05],

and the agent incurs a penalty of 3 for choosing an action which would go outside of this range.
The target is always placed at X-Y-Z coordinates [0.5, 0.5, 0.5], the constraint is a rectangular prism re-

gion placed above the target and centered at [0.5, 0.5, 0.60] with side-lengths [0.16, 0.30, 0.06], respectively.
We choose this constraint because it prevents the robotic arm from easily reaching the target and from fully
minimizing the reward. Indeed, the optimal policy is modified by the existence of the constraint for a large
set of initial states s(0). The buffer B is larger than the constraint and surrounds it on all sides. The buffer is
centered at [0.5, 0.5, 0.62] and is also a rectangular prism with sizes [0.18, 0.32, 0.10]. These placements are
all illustrated in Figure 10. These choice of side-lengths were calculated based on the equations presented
in Section 4.

Additionally, during training, we also prevented the agent from taking actions that would violate the
constraint during training, which involves both assigning a penalty and leaving the state unchanged. This
choice was made to ensure that the episodes that involved violation did not end too quickly, as longer
episodes that did not violate the constraint might take more steps and incur more reward penalties. When
evaluating the baselines, both training with violations allowed and training without were tested, and the case
with better performance was reported.

B.2.1 Comparison with the literature

While building Table 1 we noticed several interesting facts about other approaches. We found that the
CPO [1] method becomes increasingly incapable of approaching the target. Additionally, given that the
state space is very large, it can often experience new initial states during deployment, causing it to still
violate the constraint in some cases.

Meanwhile, the PPO-Barrier [64] approach often gathers many thousands of episodes and environment
samples in its initial "iterations", allowing it to appear to train quickly (around 250,000 environment steps for
convergence). In comparison, our POLICEd approach primarily converges in around 150,000 environment
samples. We further showcase these findings in the training curves showcased in Figure 11.

27



(a) Averaged log-reward (b) Averaged percentage of constraint satisfaction

Figure 11: Reward and constraint adherence curves for the safe arm scenario. For the average reward
curve, the solid lines correspond to the reward per episode averaged and log(·) over 5 training cycles of
each method. The dashed lines are the highest average rewards achieved by each method. Meanwhile for
the constraint satisfaction, the constraint respect per episode was averaged over 5 training cycles of each
method. Note that the x-axis on both curves is in thousands of environment samples, and each curve ends
when it was considered converged. Note that CPO was trained for an average of 4 million environment steps
and has been cut off, but the reported maximum reward is over the entire dataset. 95% CI bounds were
omitted for clarity, but can be provided on request.
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