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Abstract

We analyze finite-time blowup scenarios of locally self-similar type for the inviscid generalized surface 
quasi-geostrophic equation (gSQG) in R2. Under an Lr growth assumption on the self-similar profile and its 
gradient, we identify appropriate ranges of the self-similar parameter where the profile is either identically 
zero, and hence blowup cannot occur, or its Lp asymptotic behavior can be characterized, for suitable r, p. 
Our results extend the work by Xue [38] regarding the SQG equation, and also partially recover the results 
proved by Cannone and Xue [3] concerning globally self-similar solutions of the gSQG equation.
 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and 
similar technologies.
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1. Introduction

This paper concerns the study of possible self-similar finite-time blowup scenarios for the 
generalized surface quasi-geostrophic equation (gSQG) in R2, namely
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{
θt + u · ∇θ = 0, x ∈R2, t > 0,

u = −∇⊥(−")−1+ β
2 θ, x ∈R2, t > 0,

(1.1)

where β ∈ (0, 2) is a fixed parameter, θ = θ(x, t) is an unknown scalar function, and u = u(x, t)
denotes a velocity field. The latter is given in terms of θ according to the second equation in (1.1), 
where ∇⊥ = (−∂2, ∂1), and (−")−s/2, 0 < s < 2, is the Riesz potential. From the definition of 
the Riesz potential (see e.g. [36, Section V.1]), it follows that u can also be written as

u(x, t) = CβP.V .

∫

R2

Kβ(x − y)θ(y, t)dy, (1.2)

where

Kβ(x) = x⊥

|x|2+β
, x ∈R2\{0}, (1.3)

and Cβ is a constant depending only on β .
For β = 0, equation (1.1) reduces to the vorticity formulation of the 2D incompressible Euler 

equations, a model for the evolution of inviscid and incompressible fluid flows in R2. Whereas 
for β = 1, (1.1) coincides with the surface quasi-geostrophic equation (SQG), which models the 
evolution of surface temperature or buoyancy in certain large-scale atmospheric or oceanic flows 
[22,1,28,18]. Besides its physical relevance, the SQG equation has also received considerable 
attention due to its strong analytical and physical similarities to the 3D incompressible Euler 
equations [11].

While global regularity for the 2D incompressible Euler equations is well established (see e.g. 
[24,26]), the analogous question for the SQG equation remains completely open. Namely, it is 
not currently known whether smooth solutions of the SQG equation remain smooth for all time 
or develop singularities in finite time. In light of these results (or lack thereof), the generalized 
SQG equation (1.1) was introduced in [15] to naturally investigate the global regularity issue for 
a model that suitably interpolates between the 2D incompressible Euler equations (β = 0) and 
the SQG equation (β = 1). Indeed, note from (1.1) that for β ∈ (0, 1) the velocity field u is more 
regular than at the right endpoint β = 1. The case β ∈ (1, 2), on the other hand, corresponds to a 
more singular velocity field, and was first considered in [7].

Despite several important advances, the question of global regularity or finite-time singularity 
formation also remains open for the gSQG equation, for any β ∈ (0, 2). Among the available 
results, local existence and uniqueness for the Cauchy problem associated to (1.1) in the range 
β ∈ (1, 2) was shown in [7] for any initial data in H 4, and later improved in [20] to any initial 
data in Hs , with s > 1 + β . An analogous local well-posedness result in Hs , s > 1 + β , for 
the more regular case β ∈ (0, 1] was shown in detail in [21,39]. Additionally, a global regularity 
criterion in the case β ∈ (0, 1] was obtained in [8] with respect to the norm of a given solution 
in β-Hölder spaces, which generalizes a previous regularity criterion established for the SQG in 
[11]. Specifically, [8] shows that [0, T ) is a maximal interval of existence for a solution θ of (1.1)
within the class Cσ (R2) ∩ Lq(R2), with σ > 1 and q > 1, if

lim
t→T

t∫

0

‖θ(·, s)‖Cβ (R2)ds = ∞, (1.4)
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where Cγ (R2), 0 < γ ≤ 1, denotes the space of γ -Hölder continuous functions on R2.
In addition to these analytical results, several computational studies were developed to numer-

ically investigate the possibility of finite-time singularity formation for the SQG and gSQG in 
specific scenarios. Starting with the SQG equation, [11] indicated a possible finite-time singular-
ity in the form of a hyperbolic closing saddle, a suggestion that was later contested in [27,12,10]
via further numerical tests, and eventually theoretically ruled out in [13,14]. On the other hand, in 
[33,34], analyzing an alternative scenario proposed by [29,19], the authors found numerical evi-
dence of a singularity occurring as a self-similar cascade of filament instabilities. Regarding the 
generalized SQG equation (1.1), numerical simulations were performed in [15,25,35] focusing 
on the evolution of patch-like initial data, i.e. given by the indicator function of a spatial domain 
with smooth boundary [31,32,16,7]. Their results point to substantial evidence in support of the 
development of a corner-type singularity in finite time, which is approached in a self-similar 
manner.

While a rigorous proof of the formation of such singularities is still not available, these numer-
ical studies provide a strong motivation to further investigate solutions of the gSQG equation that 
develop a finite-time singularity of self-similar type. Such solutions are defined with respect to 
the invariance of (1.1) under the following scaling transformation x, t, θ +→ λx, λ1+(t, λ1+(−βθ , 
with λ ∈ R+, ( ∈ R; i.e. if θ is a solution of (1.1), then θλ(x, t) = λ1+(−βθ(λx, λ1+(t) is 
also a solution. Specifically, we say that, for a fixed scaling parameter ( > −1, a solution θ
of (1.1) on R2 and on a time interval (0, T ) is (globally) self-similar if θ(x, t) = θλ(x, t) for all 
(x, t) ∈ R2 × (0, T ) and for all λ > 0. This is equivalent to being able to write θ as

θ(x, t) = 1

t
1+(−β

1+(

)

(
x

t
1

1+(

)
for all (x, t) ∈R2 × (0, T ), (1.5)

for some function ) :R2 →R, which is called an associated self-similar profile.
Some results on nonexistence of nontrivial globally self-similar solutions for the SQG and 

gSQG equations were obtained in [5,6] and [3], respectively, by imposing suitable assumptions 
on the profile ) and showing that ) ≡ 0 as a consequence, thus excluding the possibility of 
finite-time singularity of this type. More precisely, [5] assumed ) ∈ Lp1(R2) ∩ Lp2(R2) with 
p1, p2 ∈ [1, ∞] and p1 < p2, whereas [6] considered ) ∈ C1(R2) such that lim|x|→∞ |)(x)| =
0. Both [5] and [6] utilize a particle trajectory and back-to-labels map approach to establish 
that ) ≡ 0. In [3], the authors analyze the gSQG equation in the case β ∈ [0, 1] and obtain an 
analogous result as in [5] while relying on a different technique centered on a local Lp inequality 
satisfied by the profile ).

We also mention the recent work [17], where construction of a class of non-radial globally 
self-similar solutions with infinite energy of the gSQG in the case β ∈ (0, 1) was obtained via 
suitable perturbations of a stationary solution. See additionally [4], where the authors consider 
solutions of the SQG equation in R2 of the form θ(x1, x2, t) = x2fx1(x1, t) and construct a self-
similar solution for the one-dimensional equation satisfied by f which yields an infinite-energy 
solution for the SQG.

In this manuscript, we consider the more general case of solutions θ of (1.1) that satisfy an 
equality as in (1.5) only locally in space, namely with (x, t) ∈ Bρ(0) × (0, T ), for some ρ > 0.1

1 Note that, in contrast to the identity θ(x, t) = θλ(x, t) for all (x, t) ∈ R2 × (0, T ) and λ > 0 satisfied by θ in the 
globally self-similar case, a local version of (1.5) with x ∈ Bρ (0) implies instead that θ(x, t) = θλ(x, t) for all x ∈
Bmin{ρ,ρ/λ}(0), t ∈

(
0,min

{
T , T

λ1+(

})
, and λ > 0.
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Here, Bρ(0) denotes the ball in R2 centered at 0 and with radius ρ. In fact, since, for any x0 ∈ R2, 
θ̃(x, t) = −θ(x − x0, T − t), (x, t) ∈ R2 × (0, T ), is also a solution of (1.1) due to its spatial 
translation and time reversal symmetries, we may consider more generally solutions θ of (1.1)
that satisfy

θ(x, t) = 1

(T − t)
1+(−β

1+(

)

(
x − x0

(T − t)
1

1+(

)

for all (x, t) ∈ Bρ(x0) × (0, T ), (1.6)

for some ρ > 0 and some profile function ) :R2 →R. We refer to such θ as a locally self-similar 
solution.

It is not difficult to see that if ) ∈ Cβ(R2) then condition (1.6) is indeed consistent with the 
regularity criterion from [8] when β ∈ (0, 1]. Namely, (1.6) implies (1.4), and hence T represents 
a finite blowup time for θ in the class Cσ (R2) ∩ Lq(R2), with σ > 1 and q > 1.

Analytical results regarding locally self-similar singularity scenarios were previously obtained 
for the N -dimensional incompressible Euler equations with N ≥ 3 in [9,2,37], for the SQG 
equation in [38], and later for the 2D inviscid Boussinesq equations in [23]. In particular, the 
result obtained in [38] yields, similarly as in the earlier works [2,37], suitable conditions on the 
self-similar profile under which existence of nontrivial ) is only possible within an explicitly 
identified range of (, i.e. ) must necessarily be zero for ( outside of this range. Moreover, any 
nontrivial profile corresponding to a value of ( in this range must satisfy a certain asymptotic 
characterization of its Lp average over sufficiently large regions in the spatial domain, for some 
p > 1. As a consequence, this allows one to automatically exclude the existence of locally self-
similar solutions with decaying profiles, while also guaranteeing the aforementioned asymptotic 
characterization of the Lp average of certain non-decaying types of ).

Here, we obtain an extension of the result from [38] to the generalized SQG equation for all 
β ∈ (0, 2). Our main results are split between the cases β ∈ (0, 1] and β ∈ (1, 2), with each one 
requiring different conditions on ). Naturally, this difference is due to u being more singular for 
β ∈ (1, 2) than for β ∈ (0, 1]. At a more technical level, this is caused by the different arguments 
required for estimating the component of u in (1.2) where the integrand is restricted to the self-
similar region, see Lemma 4.1 and Lemma 4.2. For β ∈ (0, 1], this is achieved thanks to the fact 
that the kernel Kβ from (1.2) satisfies ‖Kβ ∗ f ‖Lq(Bρ(0)) ! ‖f ‖Lq(R2) for every f ∈ Lq(R2)

and 1 < q < ∞. In the case β = 1, this follows from the fact that Kβ is a Calderón-Zygmund 
operator, whereas for β ∈ (0, 1) this is a consequence of Young’s convolution inequality together 
with Kβ being integrable near the origin. On the other hand, for β ∈ (1, 2), Kβ is neither a 
Calderón-Zygmund operator nor integrable near the origin. To circumvent this issue, we write 
Kβ(x) = ∇⊥(|x|−β) and integrate by parts in (1.2), thus transferring one derivative to θ , and 
hence to ), when restricting θ to the self-similar region, see (3.9) and (3.10) below. For this 
reason, in comparison to the case β ∈ (0, 1], here we impose an additional growth assumption on 
the Lr norm of ∇) over increasing regions in the spatial domain, for suitable r , see (2.3).

Additionally, we note that Theorem 2.4 partially recovers the aforementioned result estab-
lished in [3] concerning globally self-similar solutions of the gSQG equation for β ∈ (0, 1], and 
with weaker assumptions, since every globally self-similar solution is also locally self-similar. 
See Remark 2.7 below for the precise details. We also point out that the previously referenced 
result from [17] regarding the existence of a globally (hence locally) self-similar solution for 
the gSQG when β ∈ (0, 1) is not in contradiction with our results on nonexistence of nontrivial 
locally self-similar solutions, specifically as stated within Theorem 2.4 and Corollary 2.6, (i), be-
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low. Indeed, as we mentioned above, [17] presents a globally self-similar solution that possesses 
infinite energy, whereas our results concern solutions within a finite-energy class where local 
existence is established, namely θ ∈ C([0, T ); Hs(R2)) ∩ L∞(0, T ; L1(R2)), with s > 1 + β .

The remainder of this manuscript is organized as follows. In Section 2, we present the state-
ments of our main results. Their proofs are given in Section 3. Finally, in Section 4, we show two 
crucial lemmas that are used in the proofs of the main results.

2. Statements of the main results

This section collects the statements of our main results. For the reasons described in the previ-
ous section, these are split between the two different cases 1 < β < 2 and 0 < β ≤ 1 concerning 
the parameter β in the constitutive relation between u and θ in (1.1).

Throughout the manuscript, we fix the standard notation of Sobolev spaces Hs , s ∈ [0, ∞), 
and Lebesgue spaces Lp , p ∈ [1, ∞]. We also denote by C a positive constant whose value may 
change from line to line. Moreover, we write A ! B to denote that A ≤ CB for some constant 
C > 0, and A ∼ B means that both A !B and B !A hold.

2.1. The case 1 < β < 2

Theorem 2.1. Fix β ∈ (1, 2). Suppose θ ∈ C([0, T ); Hs(R2)) ∩ L∞(0, T ; L1(R2)), with s >

1 + β , is a solution to the gSQG equation (1.1) that is locally self-similar in a ball Bρ(x0) ⊂ R2, 
with scaling parameter ( > −1 and profile ) ∈ C1(R2). Fix also p ≥ 1, and suppose that for 
some r ≥ p + 1, γ1 ∈ [0, r(β − 1)), and γ0 ≥ 0 with

γ0 ≤ γ1 + r and γ0 <
(r − p)r

p

(
β − 1 − γ1

r

)
, (2.1)

it holds
∫

|y|≤L

|)(y)|rdy ! Lγ0, (2.2)

and
∫

|y|≤L

|∇)(y)|rdy ! Lγ1 (2.3)

for all L sufficiently large. Under these conditions, it follows that if ( > β + 2
p − 1 or −1 < ( <

β − 1 + 2−γ0
r then ) ≡ 0. Moreover, if ( ∈

[
β − 1 + 2−γ0

r ,β − 1 + 2
p

]
then either ) ≡ 0 or )

is a nontrivial profile and it satisfies

∫

|y|≤L

|)(y)|pdy ∼ L2−p(1+(−β) (2.4)

for all L sufficiently large.
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Remark 2.2. We note that, when γ0 = 0, a slightly stronger result can be obtained in Theo-
rem 2.1. Namely, under γ0 = 0, we have that ) ≡ 0 also in the case ( = β − 1 + 2/r . Indeed, 
in this case, condition (2.2) implies ) ∈ Lr(R2) and one can use the same argument as in the 
beginning of the proof of [3, Theorem 1.1] to prove (3.19). Since this is the only instance in the 
proof of Case 2 where the strict inequality ( < β − 1 + 2/r was required, the statement follows.

By verifying the assumptions of Theorem 2.1, we may automatically exclude self-similar 
profiles with certain asymptotic behaviors, or guarantee a characterization of the Lp norm as in 
(2.4) for possible types of blowup profiles. This is done in the following corollary.

Corollary 2.3. Fix β ∈ (1, 2). Suppose θ ∈ C([0, T ); Hs(R2)) ∩ L∞(0, T ; L1(R2)), with s >
1 + β , is a solution to the gSQG equation (1.1) that is locally self-similar in a ball Bρ(x0) ⊂ R2, 
with scaling parameter ( > −1 and profile ) ∈ C1(R2). Then, the following statements hold:

(i) If there exist some σ0 > 0 and σ1 > 0 such that |)(y)| ! |y|−σ0 and |∇)(y)| ! |y|−σ1 for 
all |y| 1 1, then ) ≡ 0 in R2.

(ii) Suppose that |)(y)| " 1 for all |y| 1 1, and that there exists a real number 0 ≤ σ1 < β −1
such that |∇)(y)| ! |y|σ1 for all |y| 1 1. Then the values of ( admitting nontrivial profiles 
belong to the interval [β − 2 − σ1, β − 1] and for each such ( the corresponding profile )
satisfies

∫

|y|≤L

|)(y)|pdy ∼ L2−p(1+(−β)

for every p ∈ [1, ∞) and for all L sufficiently large.

2.2. The case 0 < β ≤ 1

The analogous versions of Theorem 2.1 and Corollary 2.3 for the case 0 < β ≤ 1 are presented 
next.

Theorem 2.4. Fix β ∈ (0, 1]. Suppose θ ∈ C([0, T ); Hs(R2)) ∩ L∞([0, T ); L1(R2)), with s >
1 + β , is a solution to the gSQG equation (1.1) that is locally self-similar in a ball Bρ(x0) ⊂ R2, 
with scaling parameter ( > −1 and profile ) ∈ Cβ(R2). Fix also p ≥ 1, and suppose that for 
some r ≥ p + 1 and γ ∈ [0, β(r − p)), it holds

∫

|y|≤L

|)(y)|rdy ! Lγ (2.5)

for all L sufficiently large. Under these conditions, it follows that if ( > β − 1 + 2
p or −1 < ( <

β − 1 + 2−γ
r then ) ≡ 0. Moreover, if ( ∈

[
β − 1 + 2−γ

r ,β − 1 + 2
p

]
then either ) ≡ 0 or ) is 

a nontrivial profile and it satisfies
∫

|y|≤L

|)(y)|pdy ∼ L2−p(1+(−β) (2.6)
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for all L sufficiently large.

Remark 2.5. When (2.5) holds with γ = 0, then we have that ) ≡ 0 also in the case ( = β −
1 + 2/r . The justification is the same as in Remark 2.2.

Corollary 2.6. Fix β ∈ (0, 1]. Suppose θ ∈ C([0, T ); Hs(R2)) ∩ L∞(0, T ; L1(R2)), with s >

1 + β , is a locally self-similar solution to the gSQG equation that is locally self-similar in a 
ball Bρ(x0) ⊂ R2, with scaling parameter ( > −1 and profile ) ∈ Cβ(R2). Then, the following 
statements hold:

(i) If there exists some σ > 0 such that |)(y)| ! |y|−σ for all |y| 1 1, then no locally self-
similar blowup occurs, i.e., ) ≡ 0 in R2.

(ii) If there exists some σ ∈ (0, β) such that 1 ! |)(y)| ! |y|σ for all |y| 1 1, then the values 
of ( admitting nontrivial profiles belong to [β − 1 − σ, β − 1], and for each such ( the 
corresponding profile ) satisfies

∫

|y|≤L

|)(y)|pdy ∼ L2−p(1+(−β),

for every p ∈ [1, ∞) and for all L sufficiently large.

Remark 2.7. As mentioned in Section 1, Theorem 2.4 and Corollary 2.6 extend the results proved 
in [38] regarding the SQG equation (β = 1) to the generalized SQG equation for all β ∈ (0, 1].

Moreover, for β ∈ (0, 1], Theorem 2.4 partially recovers the result established in [3] concern-
ing globally self-similar solutions of the gSQG equation, with weaker assumptions, since any 
globally self-similar solution is also locally self-similar. More precisely, we recover the particu-
lar case of [3, Theorem 1.1] when p + 1 < 2/(γ − 1) and p + 1 ≤ q < 2/(γ − 1) (here p, q and 
γ are as in [3], which correspond to p, r , and 2 − β in our notation, respectively).

3. Proofs

Before turning to the proofs of our main results, let us provide a brief summary of the underly-
ing ideas. Similarly as in [3,38], our arguments rely crucially on the following local Lp equality 
satisfied by any solution θ ∈ C([0, T ); Hs(R2)) ∩ L∞(0, T ; Lp(R2)), with s > 1 + β , of (1.1). 
Namely, for fixed 0 < t1 < t2 < T and p ∈ [1, ∞),

∫

R2

|θ(x, t2)|pη(x, t2)dx −
∫

R2

|θ(x, t1)|pη(x, t1)dx

=
t2∫

t1

∫

R2

|θ(x, t)|p∂tη(x, t)dxdt +
t2∫

t1

∫

R2

|θ(x, t)|p(u · ∇)η(x, t)dxdt, (3.1)

for every smooth and compactly supported test function η on [0, ∞) ×R2, i.e. η ∈ C∞
c ([0, ∞) ×

R2, R). Its proof follows by taking a mollification θ, = ρ, ∗ θ of θ , for a standard mollifier ρ, , 
and noting that θ, satisfies the equation
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∂tθ, + (u, · ∇)θ, = (u, · ∇)θ, − ρ, ∗ [(u · ∇)θ ]. (3.2)

Then, multiplying (3.2) by θ,|θ,|p−2 ψ,(x, t) for some suitable test function ψ, such that 
suppψ, ⊆ supp θ, , and carefully taking the limit as , → 0 leads to (3.1).

The proof of Theorem 2.1 is divided into three cases, each one corresponding to one of the 
ranges of ( described in the statement. In the first two cases, corresponding to ( sufficiently large 
or sufficiently small, the goal consists in showing that

∫

|y|!L

|)(y)|pdy ! Lσ for some σ < 0. (3.3)

Clearly, taking the limit as L → ∞ then implies that ) ≡ 0. When ( is sufficiently large, (3.3)
follows directly from the local self-similarity condition, (1.6), combined with the maximum prin-
ciple satisfied by the solution θ . On the other hand, with ( small enough, an inequality as in (3.3)
is achieved by establishing a fundamental local Lp inequality from the local equality (3.1), see 
(3.20) below. This is derived by suitably employing cut-off functions to split the velocity field 
u into its restrictions to the self-similar region and the corresponding exterior. With the help of 
assumptions (2.2), (2.3), and Lemma 4.1, we then estimate the terms on the right-hand side of 
(3.20) to yield an upper bound for 

∫
|y|!L |)(y)|pdy. Next, we redo the estimates by using this 

new upper bound and bootstrap on this argument until we eventually arrive at an upper bound as 
in (3.3) with a negative power of L.

For the last and intermediate range of (, we must show that every nontrivial profile ) sat-
isfies the lower and upper bounds implied by (2.4). The upper bound is guaranteed from the 
estimate derived for the first range of (, whereas for the lower bound we proceed by contradic-
tion. Namely, assuming that such lower estimate does not hold, it follows that ) must satisfy the 
same local Lp inequality as in the second case, (3.20). Proceeding with a similar analysis from 
this case, we then arrive at the contradiction that ) ≡ 0.

The proof of Corollary 2.3 follows by choosing appropriate parameters p, r, γ0, and γ1 so that 
the assumptions of Theorem 2.1 are verified under the conditions imposed on the profile ) in 
each of the items (i) and (ii). Finally, the proofs of Theorem 2.4 and Corollary 2.6 are obtained 
under the same line of reasoning as in the previous two results. The central difference lies on the 
use of Lemma 4.2 below instead of Lemma 4.1.

3.1. Proof of Theorem 2.1

Without loss of generality, we may assume x0 = 0. The proof is divided into three different 
cases, each corresponding to a particular range for ( within the interval (−1, ∞).

Case 1. Suppose ( > β + 2
p − 1. In this case, we show that ) ≡ 0 in R2.

Fix t ∈ [0, T ) and denote L = ρ(T − t)
−1

1+( . Invoking the local self-similarity of θ , namely 
(1.6), and changing variables, it follows that

∫

|x|≤ρ

|θ(x, t)|pdx = 1

(T − t)
p(1+(−β)

1+(

∫

|x|≤ρ

∣∣∣∣∣)

(
x

(T − t)
1

1+(

)∣∣∣∣∣

p

dx
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= CLp(1+(−β)−2
∫

|y|≤L

|)(y)|pdy. (3.4)

Since s > 1, it follows by Sobolev embedding that θ(0) ∈ Hs(R2) ⊂ Lp̃(R2) for every p̃ ≥ 2. 
This implies that

‖θ(t)‖Lp̃ = ‖θ(0)‖Lp̃ for all t ∈ [0, T ) and p̃ ≥ 2, (3.5)

see e.g. [30, Theorem 3.3]. Thus, by Hölder’s inequality, it follows that for all p ∈ [1, ∞) and 
p̃ ≥ max{2, p}, we have

∫

|x|≤ρ

|θ(x, t)|pdx ≤ C‖θ(0)‖Lp̃ for all t ∈ [0, T ).

Hence, we obtain from (3.4) that
∫

|y|≤L

|)(y)|pdy ≤ CL2−p(1+(−β). (3.6)

Since 2 − p(1 + ( − β) < 0, taking the limit as t → T in (3.6), which implies L → ∞, we 
deduce that ) ≡ 0 in R2.

Case 2. Let us now suppose that −1 < ( < β − 1 + 2−γ0
r . Here we once again show that ) ≡ 0

in R2.
Take cut-off functions .ρ

4
, .ρ ∈ C∞(R2) with 0 ≤ .ρ

4
, .ρ ≤ 1, .ρ

4
≡ 1 in Bρ/8(0), .ρ

4
≡ 0

in Bc
ρ/4(0), and .ρ ≡ 1 in Bρ/2(0), .ρ ≡ 0 in Bc

ρ(0). Fix t1, t2 ∈ [0, T ). From (3.1), we have in 
particular that

∫

R2

|θ(x, t2)|p.ρ
4
(x)dx −

∫

R2

|θ(x, t1)|p.ρ
4
(x)dx =

t2∫

t1

∫

R2

(u(x, t) · ∇.ρ
4
(x))|θ(x, t)|pdx dt.

(3.7)

We proceed to analyze each term in (3.7), starting with the first two terms on the left-hand side. 
By the local self-similarity of θ , (1.6), it follows that for i = 1, 2

∫

R2

|θ(x, ti)|p.ρ
4
(x)dx = 1

(T − ti )
p(1+(−β)

1+(

∫

R2

∣∣∣∣)
(

x

(T − ti )
1

1+(

)∣∣∣∣
p

.ρ
4
(x)dx

= 1

(T − ti )
p(1+(−β)−2

1+(

∫

R2

|)(y)|p.ρ
4
(y(T − ti )

1
1+( )dy

= l
p(1+(−β)−2
i

∫

|y|≤ ρ
4 li

|)(y)|p.ρ
4
(yl−1

i )dy, (3.8)
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where li = (T − ti )
− 1

1+( , i = 1, 2.
To analyze the term in the right-hand side of (3.7), we first decompose the velocity field u into 

a term involving the self-similarity region and another one outside of it. More precisely, recalling 
(1.2) and (1.3), we have

u(x, t) = CβP.V .

∫

R2

Kβ(x − y)θ(y, t).ρ(y)dy + CβP.V .

∫

R2

Kβ(x − y)θ(y, t)(1 − .ρ(y))dy

= CβP.V .

∫

R2

(x − y)⊥

|x − y|2+β
θ(y, t).ρ(y)dy + CβP.V .

∫

R2

Kβ(x − y)θ(y, t)(1 − .ρ(y))dy

= 1
β

CβP.V .

∫

R2

∇⊥
y

(
1

|x − y|β
)

θ(y, t).ρ(y)dy

+ CβP.V .

∫

R2

Kβ(x − y)θ(y, t)(1 − .ρ(y))dy

= − 1
β

CβP.V .

∫

R2

1
|x − y|β ∇⊥θ(y, t).ρ(y)dy

− 1
β

CβP.V .

∫

R2

1
|x − y|β θ(y, t)∇⊥.ρ(y)dy

+ CβP.V .

∫

R2

Kβ(x − y)θ(y, t)(1 − .ρ(y))dy

=: u(1)(x, t) + u(2)(x, t) + u(3)(x, t), (3.9)

where the second to last equality follows by integration by parts. We now analyze each of these 
terms. By the local self-similarity of θ , (1.6), we get

u(1)(x, t) = − 1
β

CβP.V .

∫

R2

1
|x − y|β ∇⊥θ(y, t).ρ(y)dy

= − Cβ

β(T − t)
2+(−β

1+(

P.V .

∫

R2

1
|x − y|β ∇⊥)

(
y

(T − t)
1

1+(

)

.ρ(y)dy

= − Cβ

β(T − t)
(−β
1+(

P.V .

∫

R2

1

|x − (T − t)
1

1+( y|β
∇⊥)(y).ρ(y(T − t)

1
1+( )dy

= − Cβ

β(T − t)
(

1+(

P.V .

∫

R2

1

|(T − t)
−1

1+( x − y|β
∇⊥)(y).ρ(y(T − t)

1
1+( )dy

= − Cβ

β(T − t)
(

1+(

V (1)

(
x

(T − t)
1

1+(

, t

)

, (3.10)
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where

V (1)(x, t) := P.V .

∫

R2

1
|x − y|β ∇⊥)(y).ρ(y(T − t)

1
1+( )dy. (3.11)

Next, we analyze u(2)(x, t). Note that due to the presence of ∇.ρ
4
(x) in the right-hand side of 

(3.7), it suffices to consider x ∈ R2 with ρ/8 ≤ |x| ≤ ρ/4. Then, since for each such x we have 
|x − y| ≥ |y|

2 for every |y| ≥ ρ/2, it follows that

|u(2)(x, t)| ≤ C

∫

ρ
2 ≤|y|≤ρ

1
|x − y|β |θ(y, t)||∇⊥.ρ(y)|dy

≤ C

∫

|y|≥ ρ
2

|θ(y, t)|
|y|β dy

≤ C‖θ‖L∞(0,T ;L2(R2)) ≤ C‖θ(0)‖L2, (3.12)

where in the last line we applied Hölder’s inequality and (3.5) with p̃ = 2.
Finally, for the last term in (3.9), u(3)(x, t), we proceed similarly as was done for u(2)(x, t) in 

(3.12) and obtain that

|u(3)(x, t)| = Cβ

∫

|y|≥ρ/2

1
|x − y|β+1 |θ(y, t)|(1 − .ρ(y))dy

≤ C

∫

|y|≥ ρ
2

|θ(y, t)|
|y|β+1 dy ≤ C‖θ(0)‖L2 . (3.13)

From (3.10), (3.12) and (3.13), we may then estimate the term in the right-hand side of (3.7)
as

∣∣∣∣

t2∫

t1

∫

R2

|θ(x, t)|p(u(x, t) · ∇.ρ
4
(x))dx dt

∣∣∣∣

≤
t2∫

t1

∫

R2

|u1(x, t)||∇.ρ
4
(x)||θ(x, t)|pdx dt +

t2∫

t1

∫

R2

|u2(x, t)||∇.ρ
4
(x)||θ(x, t)|pdx dt

+
t2∫

t1

∫

R2

|u3(x, t)||∇.ρ
4
(x)||θ(x, t)|pdx dt

≤ C

t2∫

t1

1

(T − t)
(+p(1+(−β)

1+(

∫

R2

∣∣∣∣∣V
(1)

(
x

(T − t)
1

1+(

, t

)∣∣∣∣∣

∣∣∣∣∣)

(
x

(T − t)
1

1+(

)∣∣∣∣∣

p

|∇.ρ
4
(x)|dx dt
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+ C

t2∫

t1

1

(T − t)
p(1+(−β)

1+(

∫

R2

∣∣∣∣)

(
x

(T − t)
1

1+(

)∣∣∣∣
p

|∇.ρ
4
(x)|dx dt

≤ C

t2∫

t1

1

(T − t)
(−2+p(1+(−β)

1+(

∫

R2

|V (1) (y, t) ||)(y)|p|∇.ρ
4
(y(T − t)

1
1+( )|dy dt

+ C

t2∫

t1

1

(T − t)
p(1+(−β)−2

1+(

∫

R2

|)(y)|p|∇.ρ
4
(y(T − t)

1
1+( )|dy dt. (3.14)

In view of the support of ∇.ρ
4

, we may restrict the integrands in (3.14) to (y, t) ∈ R2 × [t1, t2]
such that ρ/8 ≤ |y|(T − t)

1
1+( ≤ ρ/4. In particular, each such y satisfies ρl1/8 ≤ |y| ≤ ρl2/4, 

where we recall that li = (T − ti )
− 1

1+( , i = 1, 2. Then, for each fixed y ∈ R2 with ρl1/8 ≤ |y| ≤
ρl2/4, we define the set

Ay :=
{
t ∈ [t1, t2] : ρ

8
1
|y| ≤ (T − t)

1
1+( ≤ ρ

4
1
|y|

}
. (3.15)

After rearrangement, it is easy to see that

Ay ⊂
[

T −
(

ρ

4|y|

)1+(

, T −
(

ρ

8|y|

)1+(
]

,

so that its length satisfies |Ay | ≤ c(,ρ/|y|1+( . Thus, denoting by 1Ay the indicator function of 
the set Ay , it follows from (3.14) that

∣∣∣∣

t2∫

t1

∫

R2

|θ(x, t)|p(u(x, t) · ∇.ρ
4
(x))dx dt

∣∣∣∣

≤ C

t2∫

t1

∫

ρ
8 l1≤|y|≤ ρ

4 l2

|V (1) (y, t) ||)(y)|p
|y|2−(−p(1+(−β)

1Ay (t)dy dt

+ C

t2∫

t1

∫

ρ
8 l1≤|y|≤ ρ

4 l2

|)(y)|p
|y|2−p(1+(−β)

1Ay (t)dy dt

≤ C

∫

ρ
8 l1≤|y|≤ ρ

4 l2

|)(y)|p
|y|2−(−p(1+(−β)

t2∫

t1

|V (1) (y, t) |1Ay (t)dt dy
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+ C

∫

ρ
8 l1≤|y|≤ ρ

4 l2

|)(y)|p
|y|2−p(1+(−β)

t2∫

t1

1Ay (t)dt dy

≤ C

∫

ρ
8 l1≤|y|≤ ρ

4 l2

|Ṽ (1)(y)||)(y)|p
|y|2−(−p(1+(−β)

dy + C

∫

ρ
8 l1≤|y|≤ ρ

4 l2

|)(y)|p
|y|3+(−p(1+(−β)

dy, (3.16)

where

Ṽ (1)(y) :=
t2∫

t1

|V (1)(y, t)|1Ay (t)dt

=
t2∫

t1

∣∣∣∣

∫

R2

1
|y − z|β ∇⊥)(z).ρ(z(T − t)

1
1+( )dz

∣∣∣∣1Ay (t)dt. (3.17)

Plugging (3.16) into (3.7) and recalling (3.8), yields

∣∣∣∣l
p(1+(−β)−2
2

∫

R2

|)(y)|p.ρ
4
(yl−1

2 )dy − l
p(1+(−β)−2
1

∫

R2

|)(y)|p.ρ
4
(yl−1

1 )dy

∣∣∣∣

≤ C

∫

ρ
8 l1≤|y|≤ ρ

4 l2

|Ṽ (1)(y)||)(y)|p
|y|2−(−p(1+(−β)

dy + C

∫

ρ
8 l1≤|y|≤ ρ

4 l2

|)(y)|p
|y|3+(−p(1+(−β)

dy. (3.18)

Note that, by Hölder’s inequality and assumption (2.2), it follows that

l
p(1+(−β)−2
2

∫

R2

|)(y)|p.ρ
4
(yl−1

2 )dy ≤ Cl
p(1+(−β)−2
2

( ∫

|y|≤ ρ
4 l2

|)(y)|rdy

) p
r

l
2
(
1− p

r

)

2

≤ Cl
p(1+(−β)+(γ0−2)

p
r

2 .

Since, by the current assumption on (, we have (1 + ( − β) + (γ0 − 2)/r < 0, then

l
p(1+(−β)−2
2

∫

R2

|)(y)|p.ρ
4
(yl−1

2 )dy → 0 as l2 → ∞. (3.19)

Thus, denoting L := ρ
8 l1 and taking the limit in (3.18) as t2 → T , so that l2 → ∞, we obtain

1
L2−p(1+(−β)

∫

|y|≤L

|)(y)|pdy ≤ C

∫

|y|≥L

|Ṽ (1)(y)||)(y)|p
|y|2−(−p(1+(−β)

dy + C

∫

|y|≥L

|)(y)|p
|y|3+(−p(1+(−β)

dy.

(3.20)
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In what follows, we always assume that L is sufficiently large (equivalently, t1 is sufficiently 
close to T ), so that assumptions (2.2) and (2.3) can be applied.

We now further estimate each of the terms on the right-hand side of (3.20) by splitting the 
integrals according to a dyadic decomposition. For the first term, we make use of Lemma 4.1
below, which yields a control on the Lr norm of the function Ṽ (1) on a dyadic shell under 
assumption (2.3). We obtain

∫

|y|≥L

|Ṽ (1)(y)||)(y)|p
|y|2−(−p(1+(−β)

dy

≤
∞∑

k=0

1
(2kL)2−(−p(1+(−β)

∫

2kL≤|y|≤2k+1L

|Ṽ (1)(y)||)(y)|pdy

≤ C

∞∑

k=0

1
(2kL)2−(−p(1+(−β)




∫

|y|∼2kL

|Ṽ (1)(y)|rdy





1
r



∫

|y|∼2kL

|)(y)|rdy





p
r

(2kL)
2
(

1− p+1
r

)

≤ C

∞∑

k=0

1
(2kL)2−(−p(1+(−β)

(2kL)1−(−β+ γ1
r (2kL)γ0

p
r (2kL)2− 2p

r − 2
r

≤ C

∞∑

k=0

(2kL)p(1+(−β)−2−β+3+ γ1−2
r + (γ0−2)p

r

≤ CLp(1+(−β)−2−β+3+ γ1−2
r + (γ0−2)p

r , (3.21)

where in the second inequality we used that r ≥ p + 1 and applied Hölder’s inequality, and in 
the last inequality we used the hypotheses that ( < β − 1 + 2−γ0

r and γ1 < r(β − 1).
For the second term in the right-hand side of (3.20), applying again the dyadic decomposition 

together with Hölder’s inequality, yields

∫

|y|≥L

|)(y)|p
|y|3+(−p(1+(−β)

dy ≤
∞∑

k=0

1
(2kL)3+(−p(1+(−β)

∫

|y|∼2kL

|)(y)|pdy

≤ C

∞∑

k=0

1
(2kL)3+(−p(1+(−β)

( ∫

|y|∼2kL

|)(y)|rdy

) p
r

(2kL)2
(
1− p

r

)

≤ C

∞∑

k=0

(2kL)p(1+(−β)−3−((2kL)γ0
p
r (2kL)2

(
1− p

r

)

≤ C

∞∑

k=0

(2kL)p(1+(−β)−2−(+1+(γ0−2)
p
r

≤ CLp(1+(−β)−2+1−(+ (γ0−2)p
r , (3.22)
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where we used that −1 < ( < β −1 + 2−γ0
r . Combining (3.21) and (3.22) with (3.20), we deduce 

that
∫

|y|≤L

|)(y)|pdy ≤ CL3−β+ (γ1−2)
r + (γ0−2)p

r + CL1−(+ (γ0−2)p
r ≤ CLa0 , (3.23)

where

a0 := max
{

1 − ( + (γ0 − 2)p

r
,3 − β + (γ1 − 2)

r
+ (γ0 − 2)p

r

}
. (3.24)

Note that, if a0 < 0, we conclude that ) ≡ 0 on R2, i.e., no locally self-similar blowup occurs 
and the proof is finished. Otherwise, if a0 ≥ 0, we improve the estimates in (3.21) and (3.22) by 
making use of the new upper bound in (3.23). In particular, for the first term in the right-hand 
side of (3.20), we leverage (3.23) via a suitable interpolation inequality. Firstly, for simplicity of 
notation, we denote q := rp/(r − 1), and write the given assumptions on γ0 and γ1 in terms of q
as

0 ≤ γ1 < r

(
β − 1 − 2

(
1 − p

q

))
+ 2, (3.25)

and γ0 ∈ [0, γ1 + r] with

γ0 <
(r − p)q

(q − p)p

(
β − 1−γ1

r

)
. (3.26)

Note that 1
r + p

q = 1 and p < q ≤ r . Then, by interpolation, we have

∫

|y|≤L

|)(y)|qdy ≤




∫

|y|≤L

|)(y)|pdy





/ 


∫

|y|≤L

|)(y)|rdy





1−/

(3.27)

≤ CLa0/+(1−/)γ0, with / := r − q

r − p
∈ [0,1). (3.28)

Next, employing once again the dyadic decomposition and Hölder’s inequality, we derive via 
(3.23), (3.28), and Lemma 4.1 that

∫

|y|≥L

|Ṽ (1)(y)||)(y)|p
|y|2−(−p(1+(−β)

dy

≤ C

∞∑

k=0

1
(2kL)2−(−p(1+(−β)




∫

|y|∼2kL

|)(y)|qdy





p
q




∫

|y|∼2kL

|Ṽ (1)(y)|rdy





1
r
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≤ C

∞∑

k=0

1
(2kL)2−(−p(1+(−β)

(2kL)
p
q (a0/+(1−/)γ0)(2kL)

γ1
r +1−(−β

≤ C

∞∑

k=0

(2kL)
p(1+(−β)−2+a0+ p

q (1−/)(γ0−a0)+ γ1
r +1−β−a0

(
1− p

q

)

≤ C

∞∑

k=0

(2kL)p(1+(−β)−2+a0−a1 , (3.29)

where

a1 := p

q
(1 − /)(a0 − γ0) + β − 1−γ1

r
+ a0

(
1 − p

q

)
. (3.30)

Recall from (3.21) and (3.22) that a0 + p(1 + ( − β) − 2 < 0. Then, to obtain a finite sum in 
(3.29), it suffices to show that a1 ≥ 0.

For r = p + 1, it is not difficult to show by using the assumption (2.1) on γ0 that a1 > a0 ≥ 0. 
Now suppose that r > p + 1, so that q = rp/(r − 1) < r . Firstly, assume that a0 = 1 − ( +
(γ0−2)p

r . From (3.24), it follows that −1 < ( ≤ β − 2 + 2−γ1
r . Moreover, since 1 − / = (q −

p)/(r − p), we have

a1 = p(q − p)

q(r − p)
(a0 − γ0) + β − 1−γ1

r
+ a0

(q − p)

q

= r(q − p)

q(r − p)
a0 − p(q − p)

q(r − p)
γ0 + β − 1 + 2 − γ1

r
− 2

(q − p)

q
(3.31)

= r(q − p)

q(r − p)
(−1 − () + β − 1 + 2 − γ1

r
> 0, (3.32)

where the inequality follows by using that r > q , which implies r(q − p) < q(r − p).
Now, if a0 = 3 − β + (γ1−2)

r + (γ0−2)p
r , then from (3.24) we have β − 2 + 2−γ1

r ≤ ( < β −
1 + 2−γ0

r . Hence, from (3.31),

a1 = r(q − p)

q(r − p)

(
3 − β + (γ1 − 2)

r
+ (γ0 − 2)p

r

)
− p(q − p)

q(r − p)
γ0 + β − 1 + 2 − γ1

r
− 2

(q−p)

q

= r(q − p)

q(r − p)

(
3 − β + (γ1 − 2)

r
− 2p

r

)
+ β − 1 + 2 − γ1

r
− 2

(q − p)

q

=
(

β − 1 + 2 − γ1

r

)(
1 − r(q − p)

q(r − p)

)
=

(
β − 1 + 2 − γ1

r

)
p(r − q)

q(r − p)
> 0, (3.33)

where we used that r > q > p and γ1 < r(β − 1) + 2.
Therefore, a1 > 0, and it follows from (3.29) that

∫

|y|≥L

|Ṽ (1)(y)||)(y)|p
|y|2−(−p(1+(−β)

dy ≤ CLp(1+(−β)−2+a0−a1 . (3.34)
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Similarly, since a0 + p(1 + ( − β) − 2 < 0 and ( > −1, we obtain for the second term in the 
right-hand side of (3.20) that

∫

|y|≥L

|)(y)|p
|y|3+(−p(1+(−β)

dy ≤
∞∑

k=0

1
(2kL)3+(−p(1+(−β)

∫

|y|∼2kL

|)(y)|pdy

≤ C

∞∑

k=0

1
(2kL)3+(−p(1+(−β)

(2kL)a0

≤ CLp(1+(−β)−2+a0−(1+(). (3.35)

Plugging (3.34) and (3.35) into (3.20), we deduce that

∫

|y|≤L

|)(y)|pdy ≤ CLa0−a1 + cLa0−(1+()

≤ CLa0−b0 , where b0 := min{a1,1 + (} > 0. (3.36)

Again, if a0 − b0 < 0 then the proof is finished. Otherwise, we proceed with the bootstrap 
argument by now leveraging (3.36) to obtain improved estimates. To put this argument into a 
more general form, suppose that

∫

|y|≤L

|)(y)|pdy ≤ CLσ with σ ≤ a0.

From the interpolation inequality (3.27), we have

∫

|y|≤L

|)(y)|qdy ≤ CLσ/+γ0(1−/), (3.37)

where we recall that / = (r − q)/(r − p). Then, proceeding similarly as in (3.29) and recalling 
the definition of a1 in (3.30), we obtain

∫

|y|≥L

|Ṽ (1)(y)||)(y)|p
|y|2−(−p(1+(−β)

dy

≤ C

∞∑

k=0

1
(2kL)2−(−p(1+(−β)

(2kL)
p
q (σ/+γ0(1−/))

(2kL)1−(−β+ γ1
r

≤ C

∞∑

k=0

(2kL)
p(1+(−β)−2+σ

/p
q +γ0(1−/)

p
q +1−β+ γ1

r

≤ C

∞∑

k=0

(2kL)
p(1+(−β)−2+a0−a1+σ

/p
q −a0

/p
q
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≤ CL
p(1+(−β)−2+a0−a1+ /p

q (σ−a0), (3.38)

where the last inequality follows from the fact that a0 + p(1 + ( − β) − 2 < 0, a1 > 0, and 
σ ≤ a0.

Next, similarly as in (3.35), we obtain for the second term in the right-hand side of (3.20) that

∫

|y|≥L

|)(y)|p
|y|3+(−p(1+(−β)

dy ≤ C

∞∑

k=0

1
(2kL)3+(−p(1+(−β)

(2kL)σ

≤ CLp(1+(−β)−2+σ−(1+(), (3.39)

where the last inequality is justified by the fact that p(1 +( − β) − 2 + σ ≤ p(1 + ( − β) − 2 +
a0 < 0, and ( > −1. Therefore, combining (3.38) and (3.39) with (3.20), yields

∫

|y|≤L

|)(y)|pdy ≤ CLa0−a1+(σ−a0)/p + CLσ−(1+(), (3.40)

where

/p := /p

q
∈ [0,1).

Note that

∫

|y|≤L

|)(y)|pdy ≤
{

CLσ−(1+() if a1 − (1 + () ≥ (a0 − σ )(1 − /p), (a)
CLa0−a1+(σ−a0)/p if a1 − (1 + () < (a0 − σ )(1 − /p). (b)

(3.41)

Let us now specialize this estimate to the case σ = a0 − b0, as in (3.36), where we recall that 
b0 = min{a1, 1 + (}. Firstly, suppose b0 = a1, so that a1 ≤ 1 + (. Since /p < 1, it follows from 
(3.41b) with σ = a0 − a1 that

∫

|y|≤L

|)(y)|pdy ≤ CLa0−a1
(
1+/p

)
. (3.42)

If a0 − a1(1 + /p) < 0, then ) ≡ 0 in R2. Otherwise, i.e. if a0 − a1(1 + /p) ≥ 0, we invoke 
(3.41b) with σ = a0 − a1(1 + /p) and obtain

∫

|y|≤L

|)(y)|pdy ≤ CL
a0−a1

(
1+/p+/2

p

)

. (3.43)

Hence, repeating this process n times, for any given n ∈N , we arrive at
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∫

|y|≤L

|)(y)|pdy ≤ CLa0−a1(1+/p+/2
p+...+/n

p) = CL
a0−a1

(
1−/n+1

p
1−/p

)

. (3.44)

Observe that

1 − /n+1
p

1 − /p
→ 1

1 − /p
= q(r − p)

r(q − p)
as n → ∞. (3.45)

Moreover, recalling the definition of a1 in (3.30), and particularly (3.31), we have

a0 − a1
q(r − p)

r(q − p)

= a0 − q(r − p)

r(q − p)

[
r(q − p)

q(r − p)
a0 − p(q − p)

q(r − p)
γ0 + β − 1−γ1

r

]

= p

r

[
γ0 − q(r − p)

p(q − p)

(
β − 1−γ1

r

)]
< 0, (3.46)

where the inequality follows from (3.26). In view of (3.45) and (3.46), it follows that there exists 
n sufficiently large for which the power of L in (3.44) is negative. This implies that ) ≡ 0 in R2.

Next, let us consider the case when b0 = 1 + (, so that a1 ≥ 1 + (. We apply (3.41a)-(3.41b)
with σ = a0 − (1 + () and obtain

∫

|y|≤L

|)(y)|pdy ≤
{

CLa0−2(1+() if a1 − (1 + () ≥ (1 + ()(1 − /p), (a)
CLa0−a1−(1+()/p if a1 − (1 + () < (1 + ()(1 − /p). (b)

(3.47)

If the powers of L in both (3.47a) and (3.47b) are negative, then we conclude the proof. Other-
wise, we proceed to improve on the upper bound of 

∫
|y|≤L |)(y)|pdy again via bootstrapping. 

To this end, we start by taking m0 ∈ {1, 2, . . .} as the smallest integer such that

a1 − (1 + () < m0(1 + ()(1 − /p). (3.48)

If m0 = 1, then (3.47b) holds. On the other hand, if m0 ≥ 2 then

(m0 − 1)(1 + ()(1 − /p) ≤ a1 − (1 + (), (3.49)

and (3.47a) holds. In the latter case, we may repeat this computation (m0 − 1)-times, where at 
each kth time with k = 1, . . . , m0 − 2, we invoke (3.41a) with σ = a0 − (k + 1)(1 + (), and at 
k = m0 − 1 we invoke (3.41b) with σ = a0 − m0(1 + (). We then arrive at

∫

|y|≤L

|)(y)|pdy ≤ CLa0−b1 , where b1 := a1 + m0(1 + ()/p. (3.50)

Note that b1 ≥ a1, and that (3.50) in fact holds for all m0 ≥ 1.
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If a0 − b1 < 0, the proof is finished. Otherwise, we proceed similarly as before and apply 
(3.41a)-(3.41b) with σ = a0 − b1, which yields

∫

|y|≤L

|)(y)|pdy ≤
{

CLa0−b1−(1+() if a1 − (1 + () − b1(1 − /p) ≥ 0, (a)
CLa0−a1−b1/p if a1 − (1 + () − b1(1 − /p) < 0. (b)

(3.51)

Then, if necessary, we proceed by taking m1 ∈ {0, 1, 2, . . .} the smallest integer such that

a1 − (1 + () − b1(1 − /p) < m1(1 + ()(1 − /p).

After repeating this process m1 times, we obtain

∫

|y|≤L

|)(y)|pdy ≤ CLa0−b2, where b2 := a1 + (b1 + m1(1 + ())/p.

Here we note that b2 ≥ a1 + a1/p .
We may keep on iteratively repeating the same argument if necessary and denote by mn ∈

{0, 1, 2, . . .}, for each n ∈N , n = 2, 3, . . ., the smallest integer such that

a1 − (1 + () − bn(1 − /p) < mn(1 + ()(1 − /p)

to obtain
∫

|y|≤L

|)(y)|pdy ≤ CLa0−bn+1 , where bn+1 := a1 + (bn + mn(1 + ())/p. (3.52)

Moreover, we have

bn+1≥a1(1 + /p + . . . + /n
p).

Therefore, by the same argument from (3.44)-(3.46), we deduce that there exists n sufficiently 
large for which the power of L in (3.52) is negative, and consequently ) ≡ 0 in R2. This con-
cludes the proof of this case.

Case 3. Finally, suppose that β − 1 + 2−γ0
r ≤ ( ≤ β − 1 + 2

p . In this case, we prove that either 
) ≡ 0 in R2, or ) 3≡ 0 and (2.4) holds.

Assume ) 3≡ 0. From the proof of Case 1, and particularly (3.6), it follows that

∫

|y|≤L

|)(y)|pdy ! L2−p(1+(−β) for all L 1 1. (3.53)

Therefore, it only remains to show that
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∫

|y|≤L

|)(y)|pdy " L2−p(1+(−β) for all L 1 1. (3.54)

Suppose by contradiction that (3.54) does not hold. Then, there exists a sequence of positive 
numbers Li , i ∈N , such that Li → ∞ as i → ∞ and

1

L
2−p(1+(−β)
i

∫

|y|≤Li

|)(y)|pdy → 0 as i → ∞.

Taking l2 = 4Li/ρ and L := ρl1/8 1 1 in (3.18), it follows after taking i → ∞ that

1
L2−p(1+(−β)

∫

|y|≤L

|)(y)|pdy ≤ C

∫

|y|≥L

|Ṽ (1)(y)||)(y)|p
|y|2−(−p(1+(−β)

dy + C

∫

|y|≥L

|)(y)|p
|y|3+(−p(1+(−β)

dy.

(3.55)

We now proceed similarly as in (3.27)-(3.36). Namely, recalling the notation q := rp/(r − 1), 
we obtain by interpolation, (3.53) and assumption (2.2) that

∫

|y|≤L

|)(y)|qdy ≤




∫

|y|≤L

|)(y)|pdy





/ 


∫

|y|≤L

|)(y)|rdy





1−/

≤ CL(2−p(1+(−β))/+γ0(1−/),

where / = (r − q)/(r − p).
Proceeding analogously as in (3.29) and recalling that /p := /p/q , we estimate

∫

|y|≥L

|Ṽ (1)(y)||)(y)|p
|y|2−(−p(1+(−β)

dy

≤
∞∑

k=0

1
(2kL)2−(−p(1+(−β)




∫

|y|∼2kL

|)(y)|qdy





p
q




∫

|y|∼2kL

|Ṽ (1)(y)|rdy





1
r

≤ C

∞∑

k=0

(2kL)p(1+(−β)+(−2(2kL)
p
q (2−p(1+(−β))/+γ0

p
q (1−/)

(2kL)1−(−β+ γ1
r

≤ CL
(p(1+(−β)−2)

(
1−/p

)
+γ0

p
q (1−/)+1−β+ γ1

r , (3.56)

where in the last inequality we used that ( ≤ β − 1 + 2
p and condition (3.26).

Moreover, analogously as in (3.35), we obtain

∫

|y|≥L

|)(y)|p
|y|3+(−p(1+(−β)

dy ≤
∞∑

k=0

1
(2kL)3+(−p(1+(−β)

∫

|y|∼2kL

|)(y)|pdy

286



A. Bronzi, R. Guimarães and C. Mondaini Journal of Differential Equations 415 (2025) 266–302

≤ C

∞∑

k=0

(2kL)p(1+(−β)−3−((2kL)2−p(1+(−β) ≤ CL−(1+(),

(3.57)

where we recall that ( > −1.
Thus, from (3.55),

1
L2−p(1+(−β)

∫

|y|≤L

|)(y)|pdy ≤ CL
(p(1+(−β)−2)

(
1−/p

)
+γ0

p
q (1−/)+1−β+ γ1

r + CL−(1+().

Note that the power of L in the first term from the right-hand side cannot be smaller than the 
power of L in the second term. Indeed, since 1 − /p = r(q−p)

q(r−p) , ( ≥ β −1 + 2−γ0
r , 1/r = 1 −p/q , 

and γ0 ≤ γ1 + r , we deduce that

(p(1 + ( − β) − 2)
(
1 − /p

)
+ γ0

p

q
(1 − /) + 1 − β + γ1

r
+ 1 + (

≥ p(q − p)

q(r − p)
(2 − γ0) − 2

r(q − p)

q(r − p)
+ γ0

p(q − p)

q(r − p)
+ 2 − β + γ1

r
+ β − 1 + 2 − γ0

r

= 2(p − r)(q − p)

q(r − p)
+ 1 + γ1

r
+ 2

(
1 − p

q

)
− γ0

r
= 1 + γ1

r
− γ0

r
≥ 0. (3.58)

Hence,

∫

|y|≤L

|)(y)|pdy ≤ CL2−p(1+(−β)−d0 , (3.59)

where

d0 := (2 − p(1 + ( − β))
(
1 − /p

)
− γ0

p

q
(1 − /) − 1 + β−γ1

r
> 0. (3.60)

If 2 − p(1 + ( − β) − d0 < 0 then (3.59) implies that ) ≡ 0 in R2, which yields a contradiction 
and finishes the proof. Otherwise, for 2 − p(1 + ( − β) − d0 ≥ 0, we repeat the above argument 
by using now the improved estimate (3.59). This gives

∫

|y|≤L

|)(y)|qdy ≤ CL(2−p(1+(−β))/−d0/+(1−/)γ0 (3.61)

and

1
L2−p(1+(−β)

∫

|y|≤L

|)(y)|pdy

≤ C

∞∑

k=0

(2kL)p(1+(−β)+(−2(2kL)
/p(2−p(1+(−β))−d0/p+γ0

p
q (1−/)+1−(−β+ γ1

r

287



A. Bronzi, R. Guimarães and C. Mondaini Journal of Differential Equations 415 (2025) 266–302

+ C

∞∑

k=0

(2kL)p(1+(−β)−3−((2kL)2−p(1+(−β)−d0

≤ C

∞∑

k=0

(2kL)
(p(1+(−β)−2)

(
1−/p

)
+γ0

p
q (1−/)+1−β+ γ1

r −d0/p + C

∞∑

k=0

(2kL)−(1+()−d0

≤ CL−d0(1+/p) + CL−(1+()−d0 ≤ CL−d0(1+/p),

where we used that 0 < d0 ≤ 1 + (, according to (3.58), (3.60). Thus,

∫

|y|≤L

|)(y)|pdy ≤ CL2−p(1+(−β)−d0(1+/p).

We may repeat this process for as many n times, n ∈N , as necessary, to obtain that

∫

|y|≤L

|)(y)|pdy ≤ CL2−p(1+(−β)−d0(1+/p+/2
p+...+/n

p) = CL
2−p(1+(−β)−d0

(
1−/n+1

p
1−/p

)

. (3.62)

As before, note that 
1−/n+1

p

1−/p
→ 1

1−/p
= q(r−p)

r(q−p) as n → ∞. Additionally, from the definition of d0

in (3.60) and condition (3.26), we have

2 − p(1 + ( − β) − d0
q(r − p)

r(q − p)

= 2 − p(1 + ( − β) − q(r − p)

r(q − p)

[
(2 − p(1 + ( − β))

r(q − p)

q(r − p)
− γ0

p(q − p)

q(r − p)
− 1 + β−γ1

r

]

= p

r

[
γ0 − q(r − p)

p(q − p)

(
β − 1−γ1

r

)]
< 0. (3.63)

Therefore, we may take n sufficiently large for which the power of L in (3.62) is negative. This 
implies that ) ≡ 0 in R2, which is a contradiction with our starting assumption that ) 3≡ 0 in 
R2. This concludes the proof.

3.2. Proof of Corollary 2.3

We start with the proof of (i). Let M be a positive constant such that |)(y)| ! |y|−σ0 and 
|∇)(y)| ! |y|−σ1 for all |y| ≥ M . Thus, since ) ∈ C1(R2), it follows that for all L > 0 and 
r > max

{
2
σ0

, 2
σ1

}
, we have

∫

|y|≤L

|)(y)|rdy ≤
∫

|y|≤M

|)(y)|rdy +
∫

|y|≥M

1
|y|rσ0

dy ≤ C,

and
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∫

|y|≤L

|∇)(y)|rdy ≤
∫

|y|≤M

|∇)(y)|rdy +
∫

|y|≥M

1
|y|rσ1

dy ≤ C.

Let p1 := max
{

1, 2
σ0

, 2
σ1

}
. Then, the assumptions of Theorem 2.1 are satisfied with 

the following parameter choices: p = p1, r = p1 + 1, γ0 = 0, and γ1 = 0. Consequently, 
the values of ( that admit a nontrivial corresponding profile ) belong to the interval [
β − 1 + 2

p1+1 ,β − 1 + 2
p1

]
. On the other hand, note that the assumptions of Theorem 2.1

are also satisfied with p = p1 + k, r = p1 + k + 1, γ0 = 0, and γ1 = 0, for any k > 0. 
This implies that the values of ( admitting nontrivial profiles must also belong to the inter-
val 

[
β − 1 + 2

p1+k+1 ,β − 1 + 2
p1+k

]
for any k > 0. In particular, for k ≥ 2, we obtain that 

( ∈
[
β − 1 + 2

p1+k+1 ,β − 1 + 2
p1+k

]
∩

[
β − 1 + 2

p1+1 ,β − 1 + 2
p1

]
= ∅. Therefore, we con-

clude that ) ≡ 0 in R2.
We proceed to prove (ii). Let M > 0 such that |∇)(y)| ! |y|σ1 for all |y| ≥ M , and fix any 

p ∈ [1, ∞). Choose r ≥ p + 1 sufficiently large such that r > (2 + βp)/(β − 1 − σ1). Observe 
that, for all L 1 1,

∫

|y|≤L

|∇)(y)|rdy ≤
∫

|y|≤M

|∇)(y)|rdy +
∫

M≤|y|≤L

|y|σ1rdy

≤ C

∫

|y|≤M

dy + Lσ1r

∫

M≤|y|≤L

dy ≤ CLσ1r+2, (3.64)

where we used that ) ∈ C1(R2). Then, it follows by Sobolev embedding that
∫

|y|≤L

|)(y)|rdy ≤ CL(σ1+1)r+2.

Therefore, the assumptions of Theorem 2.1 are satisfied by setting γ1 = σ1r + 2 and γ0 =
(σ1 + 1)r + 2 = γ1 + r . It follows that the values of ( admitting nontrivial profiles belong to the 
interval 

[
β − 2 − σ1,β − 1 + 2

p

]
and the corresponding profile satisfies

C1L
2−p(1+(−β) ≤

∫

|y|≤L

|)(y)|pdy ≤ C2L
2−p(1+(−β) for all L 1 1, (3.65)

for some positive constants C1, C2. On the other hand, since |)(y)| " 1 for |y| 1 1, it follows 
that

∫

|y|≤L

|)(y)|pdy ≥ CL2 for L 1 1. (3.66)

Combining the upper bound in (3.65) with (3.66), we must have 1 + ( − β ≤ 0, which implies 
that the values of ( admitting nontrivial profiles in fact belong to [β − 2 − σ1, β − 1]. This 
completes the proof.
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3.3. Proof of Theorem 2.4

The proof of Theorem 2.4 follows similar ideas from the proof of Theorem 2.1. Thus, we will 
keep the presentation here shorter and refer to the analogous calculations above as needed, while 
expanding on the main differences. As in Theorem 2.1, the proof is divided into three different 
cases, each corresponding to a particular range for ( within the interval (−1, ∞). Without loss 
of generality, we assume again that x0 = 0.

The first case is when ( > β + 2
p − 1, and the proof is identical to Case 1 above. The sec-

ond case is when −1 < ( < β − 1 + 2−γ
r , and as in Case 2 we will start from the local Lp

equality (3.7) and estimate each of its terms. The difference lies at the estimate of u due to bet-
ter integrability properties of the kernel Kβ when β ∈ (0, 1], in comparison to when β ∈ (1, 2). 
Namely, as pointed out in Section 1, Kβ is integrable near the origin for 0 < β < 1, and is a 
Calderón-Zygmund operator for β = 1. Then, taking as before a cut-off function .ρ ∈ C∞(R2)

with 0 ≤ .ρ ≤ 1, .ρ ≡ 1 in Bρ/2(0), and .ρ ≡ 0 in Bc
ρ(0), we proceed similarly as in [38, Section 

2] by decomposing u into a term involving the self-similarity region and another one outside of 
it:

u(x, t) = CβP.V .

∫

R2

Kβ(x − y)θ(y, t).ρ(y)dy + CβP.V .

∫

R2

Kβ(x − y)θ(y, t)(1 − .ρ(y))dy

=: ũ(1)(x, t) + ũ(2)(x, t). (3.67)

By the local self-similarity of θ , analogously to (3.10), we can rewrite ũ(1) as

ũ(1)(x, t) = Cβ

(T − t)
(

1+(

U(1)

(
x

(T − t)
1

1+(

, t

)
,

where

U(1)(x, t) := P.V .

∫

R2

Kβ(x − y))(y).ρ(y(T − t)
1

1+( )dy.

Note that ũ(2) has the same expression as u(3) defined in (3.9). Since Kβ is square integrable in 
any region that does not contain the origin, for any β > 0, then, for ρ/8 ≤ |x| ≤ ρ/4, we obtain 
as in (3.13) that

|ũ(2)(x, t)| ≤ Cβ‖θ(0)‖L2 . (3.68)

Proceeding with an analogous computation as in (3.14)-(3.16), it follows that the right-hand side 
of (3.7) can be estimated by

∣∣∣∣

t2∫

t1

∫

R2

|θ(x, t)|p(u(x, t) · ∇.ρ
4
(x))dx dt

∣∣∣∣
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≤ C

∫

ρ
8 l1≤|y|≤ ρ

4 l2

|Ũ (1)(y)||)(y)|p
|y|2−(−p(1+(−β)

dy + C

∫

ρ
8 l1≤|y|≤ ρ

4 l2

|)(y)|p
|y|3+(−p(1+(−β)

dy, (3.69)

where

Ũ (1)(y) =
t2∫

t1

∣∣∣∣∣∣∣
P.V .

∫

R2

Kβ(y − z))(z).ρ(z(T − t)
1

1+( )dz

∣∣∣∣∣∣∣
1Ay (t)dt,

and 1Ay is the indicator function of the set Ay defined in (3.15). Plugging this back into (3.7)
and recalling that

∫

R2

|θ(x, ti)|p.ρ
4
(x)dx = l

p(1+(−β)−2
i

∫

|y|≤ ρ
4 li

|)(y)|p.ρ
4
(yl−1

i )dy,

where li = (T − ti )
− 1

1+( , i = 1, 2, we obtain that

∣∣∣∣l
p(1+(−β)−2
2

∫

R2

|)(y)|p.ρ
4
(yl−1

2 )dy − l
p(1+(−β)−2
1

∫

R2

|)(y)|p.ρ
4
(yl−1

1 )dy

∣∣∣∣

≤ C

∫

ρ
8 l1≤|y|≤ ρ

4 l2

|Ũ (1)(y)||)(y)|p
|y|2−(−p(1+(−β)

dy + C

∫

ρ
8 l1≤|y|≤ ρ

4 l2

|)(y)|p
|y|3+(−p(1+(−β)

dy. (3.70)

Reproducing the same steps as in (3.19)-(3.20), we obtain

1
L2−p(1+(−β)

∫

|y|≤L

|)(y)|pdy ≤ C

∫

|y|≥L

|Ũ (1)(y)||)(y)|p
|y|2−(−p(1+(−β)

dy + C

∫

|y|≥L

|)(y)|p
|y|3+(−p(1+(−β)

dy.

(3.71)

Next, proceeding analogously to (3.21)-(3.22) and invoking the upper estimate on the Lr norm 
of Ũ (1) on a dyadic shell provided by Lemma 4.2, we get that for L sufficiently large

∫

|y|≤L

|)(y)|pdy ≤ CL
(p+1)(γ−2)

r −β+2 + CL1−(+ (γ−2)p
r ≤ CLã0 , (3.72)

where

ã0 := 1 − ( + p(γ − 2)

r
. (3.73)

Clearly, if ã0 < 0 then ) ≡ 0 in R2 and the proof is finished. Otherwise, if ã0 ≥ 0, we use the 
new upper bound (3.72) to improve the estimates of the terms on the right-hand side of (3.71).
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By interpolation as in (3.28) with q = p + 1, we have

∫

|y|≤L

|)(y)|p+1dy ≤ CLã0/+(1−/)γ , with / := r − p − 1
r − p

∈ [0,1). (3.74)

Next, by applying the dyadic decomposition once again and also Hölder’s inequality, we ob-
tain from (3.73), (3.74), and Lemma 4.2 that the first term in the right-hand side of (3.71) can be 
estimated as

∫

|y|≥L

|Ũ (1)(y)||)(y)|p
|y|2−(−p(1+(−β)

dy

≤
∞∑

k=0

1
(2kL)2−(−p(1+(−β)




∫

|y|∼2kL

|)(y)|p+1dy





p
p+1




∫

|y|∼2kL

|Ũ (1)(y)|p+1dy





1
p+1

≤
∞∑

k=0

1
(2kL)2−(−p(1+(−β)

(2kL)
p

p+1 (ã0/+γ (1−/))
(2kL)

1
p+1 (ã0/+γ (1−/)−(p+1)((+β))

≤
∞∑

k=0

(2kL)p(1+(−β)−2+(+ã0/+γ (1−/)−(−β

≤
∞∑

k=0

(2kL)p(1+(−β)−2+ã0+(γ−ã0)(1−/)−β

≤
∞∑

k=0

(2kL)p(1+(−β)−2+ã0−ã1 , (3.75)

where

ã1 := (ã0 − γ )(1 − /) + β. (3.76)

Here we note a relevant difference between the estimate in (3.75) and the analogous one done for 
the case 1 < β < 2 in Theorem 2.1, namely (3.29). Specifically, since Lemma 4.2 only requires an 
assumption on ), when invoking Hölder’s inequality we can apply the Lq norm with q = p + 1
on Ũ (1) and thus also make use of the new bound (3.72) in estimating this factor via (3.74) and 
(4.7)-(4.9), in addition to the first factor involving the Lq = Lp+1 norm of ). By contrast, in 
(3.29) we apply the Lr norm on Ṽ (1) rather than Lq with q = rp/(r − 1) since the assumption 
in Lemma 4.1 involves ∇), for which we obtain no further estimate besides the one provided in 
assumption (2.3). Clearly, a similar difference in the estimates applies throughout the remaining 
of this bootstrapping procedure.

Now observe that since −1 < ( < β − 1 + 2−γ
r and ã0 = 1 − ( + p(γ−2)

r , then ã0 + p(1 +
( − β) − 2 < 0. Thus, to ensure that the sum in (3.75) is finite, it suffices to prove that ã1 ≥ 0. 
Recalling that 1 − / = 1

r−p and invoking once again the assumption that ( < β − 1 + 2−γ
r , we 

obtain
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ã1 = (ã0 − γ )(1 − /) + β

=
(

1 − ( + p(γ − 2)

r
− γ

)
1

r − p
+ β

>

(
1 − β + 1 − (2 − γ )

r
+ p(γ − 2)

r
− γ

)
1

r − p
+ β

=
(

(p + 1 − r)(γ − 2)

r
− β

)
1

r − p
+ β

= r − p − 1
r − p

(
2 − γ

r
+ β

)
≥ 0, (3.77)

where in the last inequality we used the assumptions that r ≥ p + 1 and γ < β(r − p) < βr + 2. 
Therefore, we conclude from (3.75) that

∫

|y|≥L

|Ũ (1)(y)||)(y)|p
|y|2−(−p(1+(−β)

dy ≤ CLp(1+(−β)−2+ã0−ã1 . (3.78)

For the second term in the right-hand side of (3.71), invoking (3.72) and recalling that ã0 +p(1 +
( − β) − 2 < 0 and −1 < (, we estimate

∫

|y|≥L

|)(y)|p
|y|3+(−p(1+(−β)

dy ≤
∞∑

k=0

1
(2kL)3+(−p(1+(−β)

∫

|y|∼2kL

|)(y)|pdy

≤ C

∞∑

k=0

1
(2kL)3+(−p(1+(−β)

(2kL)ã0

≤ CLp(1+(−β)−2+ã0−(1+(). (3.79)

Plugging (3.78) and (3.79) into (3.71), we deduce that

∫

|y|≤L

|)(y)|pdy ≤ CLã0−b̃0 , where b̃0 := min{ã1,1 + (} > 0, (3.80)

with ã1 > 0 as given in (3.76).
Now, analogously to (3.40), let us obtain a more general form of an estimate of the profile to 

help us proceed with the bootstrapping strategy. Namely, suppose that

∫

|y|≤L

|)(y)|pdy ≤ CLσ , with σ ≤ ã0.

Then, proceeding similarly as in (3.74)-(3.75) and (3.79), cf. (3.37)-(3.40), it is not difficult to 
arrive at
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∫

|y|≤L

|)(y)|pdy ≤ CLã0−ã1+(σ−ã0)/ + CLσ−(1+(). (3.81)

Hence,

∫

|y|≤L

|)(y)|pdy ≤
{

CLσ−(1+() if ã1 − (1 + () ≥ (ã0 − σ )(1 − /), (a)
CLã0−ã1+(σ−ã0)/ if ã1 − (1 + () < (ã0 − σ )(1 − /). (b)

(3.82)

Next, we specialize this estimate to the case σ = ã0 − b̃0, in view of (3.80). Firstly, suppose 
b̃0 = ã1, so that ã1 ≤ 1 + (. Then, invoking (3.81) with σ = ã0 − ã1 yields

∫

|y|≤L

|)(y)|pdy ≤ CLã0−ã1(1+/) + CLã0−ã1−(1+(). (3.83)

Since ã1 ≥ 1 + (> 0, and / ∈ [0, 1), then ã1/ < ã1 ≤ 1 + (. It thus follows that

∫

|y|≤L

|)(y)|pdy ≤ CLã0−ã1(1+/).

We now proceed similarly as in the case b0 = a1 in the proof of Theorem 2.1. Namely, we may 
repeat this process n times, for any given n ∈ N , where at each kth time, k ∈ {1, . . . , n}, we set 
σ = ã0 − ã1(1 + / + . . . + /k), and arrive at

∫

|y|≤L

|)(y)|pdy ≤ CLã0−ã1(1+/+...+/n). (3.84)

Note that 1 + /+ . . .+ /n → 1
1−/ = r −p as n → ∞. Moreover, recalling that ã1 = (ã0 −γ )(1 −

/) + β , we have

ã0 − ã1(r − p) = ã0 − (ã0 − γ )(1 − /)(r − p) − β(r − p)

= γ − β(r − p) < 0, (3.85)

where we used the assumption that γ < β(r −p). Hence, it follows that there exists n sufficiently 
large such that ã0 − ã1(1 +/+ . . .+/n) < 0. For such n, we thus conclude from (3.84) that ) ≡ 0
in R2.

For the other case, b̃0 = 1 + (, where 1 + ( ≤ ã1, we proceed similarly to the case b0 = 1 +(

in the proof of Theorem 2.1. We invoke (3.81) with σ = ã0 − (1 + () to obtain

∫

|y|≤L

|)(y)|pdy ≤
{

CLã0−2(1+() if ã1−(1 + () ≥ (1 + ()(1 − /), (a)
CLã0−ã1−(1+()/ if ã1−(1 + () < (1 + ()(1 − /). (b)

(3.86)

The proof is over if the powers of L in both (3.86a) and (3.86b) are negative. Otherwise, we may 
repeat the same process as in (3.48)-(3.52) and obtain, for each n ∈N , a number b̃n+1 such that
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∫

|y|≤L

|)(y)|pdy ≤ Lã0−b̃n+1 ,

and with

b̃n+1 ≥ ã1(1 + / + . . . + /n).

Therefore, by proceeding similarly to (3.84) and (3.85), we infer that there exists n ∈ N suffi-
ciently large such that ã0 − ã1(1 + / + . . . + /n) < 0, which implies that ) ≡ 0 and concludes 
the proof of this case.

Finally, for the case β −1 + 2−γ
r ≤ ( ≤ β −1 + 2

p we replicate the argument by contradiction 
employed in Case 3. Namely, we assume that ) 3≡ 0 and, given that the upper bound in (2.6) is 
valid, we assume that the lower bound in (2.6) does not hold. Then, analogously to (3.55), we 
obtain

1
L2−p(1+(−β)

∫

|y|≤L

|)(y)|pdy ≤ C

∫

|y|≥L

|Ũ (1)(y)||)(y)|p
|y|2−(−p(1+(−β)

dy + C

∫

|y|≥L

|)(y)|p
|y|3+(−p(1+(−β)

dy.

(3.87)

This estimate will be repeatedly used in conjunction with (3.74) and Lemma 4.2 to improve 
the upper bound of 

∫
|y|≤L |)(y)|pdy. To present this in a more organized manner, assume that

∫

|y|≤L

|)(y)|pdy ≤ CLσ with σ ≤ 2 − p(1 + ( − β).

Then, based on estimates similar to (3.74)-(3.79), cf. (3.37)-(3.39), we obtain from (3.87) the 
following general estimate

∫

|y|≤L

|)(y)|pdy ≤ CLD−d̃0+(σ−D)/ + CLσ−(1+(), (3.88)

where

D := 2 − p(1 + ( − β) and d̃0 := (D − γ )(1 − /) + β > 0. (3.89)

In view of (3.6), we first apply (3.88) with σ = D, and arrive at
∫

|y|≤L

|)(y)|pdy ≤ CLD−d̃0 + CLD−(1+(). (3.90)

From (3.89) and the assumption that ( ≥ β − 1 + 2−γ
r , it follows that d̃0 ≤ 1 + (. Thus,

∫

|y|≤L

|)(y)|pdy ≤ CLD−d̃0 .
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Next, applying (3.88) with σ = D − d̃0, we obtain that

∫

|y|≤L

|)(y)|pdy ≤ CLD−d̃0(1+/) + CLD−d̃0−(1+(). (3.91)

Since / ∈ [0, 1) and d̃0 > 0, then d̃0/ < d̃0 ≤ 1 + (, and consequently

∫

|y|≤L

|)(y)|pdy ≤ CLD−d̃0(1+/).

Hence, repeating this process n times, for any given n ∈N , we arrive at

∫

|y|≤L

|)(y)|pdy ≤ CLD−d̃0(1+/+...+/n). (3.92)

Since 1 + / + . . . + /n → 1
1−/ = r − p as n → ∞ and γ < β(r − p), we obtain that

D − d̃0(r − p) = D − [(D − γ )(1 − /) + β](r − p) = γ − β(r − p) < 0.

Therefore, there exists n sufficiently large such that the power of L in (3.92) is negative. This 
implies that ) ≡ 0 in R2, which is a contradiction with our initial assumption that ) 3≡ 0 in R2. 
This concludes the proof.

3.4. Proof of Corollary 2.6

We follow a similar proof as in Corollary 2.3 and make the appropriate modifications. As 
such, to prove (i), we first take M to be a positive constant such that |)(y)| ! |y|−σ for all 
|y| ≥ M . Since ) ∈ Cβ(R2), we obtain that for all L > 0 and r > 2

σ

∫

|y|≤L

|)(y)|rdy ≤
∫

|y|≤M

|)(y)|rdy +
∫

|y|≥M

1
|y|rσ dy ≤ C.

Then, denoting p1 := max
{
1, 2

σ

}
, it follows that the assumptions of Theorem 2.4 are satisfied 

with p = p1, r = p1 + 1 and γ = 0. As a consequence, the values of ( admitting nontrivial 
profiles ) must belong to the interval 

[
β − 1 + 2

p1+1 ,β − 1 + 2
p1

]
. Moreover, since the assump-

tions of Theorem 2.4 are also verified with p = p1 + k, r = p1 + k + 1 and γ = 0, for any k > 0, 
then such ( must also belong to 

[
β − 1 + 2

p1+k+1 ,β − 1 + 2
p1+k

]
for any k > 0. Taking k ≥ 2, 

it follows that ( ∈
[
β − 1 + 2

p1+k+1 ,β − 1 + 2
p1+k

]
∩

[
β − 1 + 2

p1+1 ,β − 1 + 2
p1

]
= ∅, and we 

deduce that ) ≡ 0 in R2, as desired.
Regarding item (ii), let us now consider M > 0 such that |)(y)| ! |y|σ for all |y| ≥ M , and 

fix an arbitrary p ∈ [1, ∞) and r ≥ p + 1. Similarly as in (3.64), we have that for L 1 1

296



A. Bronzi, R. Guimarães and C. Mondaini Journal of Differential Equations 415 (2025) 266–302

∫

|y|≤L

|)(y)|rdy ≤
∫

|y|≤M

|)(y)|rdy +
∫

M≤|y|≤L

|y|rσ dy ≤ CLσ r+2, (3.93)

where we again used the fact that ) is a continuous function in R2 to bound the first integral. 
Choosing r sufficiently large such that r > (2 +βp)/(β−σ ), so that σ r+2 < β(r−p), it follows 
that the assumptions of Theorem 2.4 are satisfied with any fixed p ≥ 1, such choice of r , and γ =
σ r + 2. Thus, the values of ( admitting nontrivial profiles ) in this case belong to the interval 
[β − 1 − σ, β − 1 + 2

p ], and the corresponding nontrivial ) satisfies (2.6). But since |)(y)| " 1
for |y| 1 1, then we may argue as in (3.66) to deduce that in fact ( ∈ [β − 1 − σ, β − 1], which 
concludes the proof.

4. Auxiliary results

In the following result, Lemma 4.1, we prove the upper bound for the function Ṽ (1) given in 
(3.17) that was used at various steps in the proof of Theorem 2.1 regarding the case β ∈ (1, 2). 
Specifically, this lemma shows that the growth assumption (2.3) on the Lr norm of the gradient 
of the profile, ∇), yields an upper bound on the Lr norm of Ṽ (1) over a certain annulus in R2. 
The subsequent Lemma 4.2 shows an analogous result in the case β ∈ (0, 1] by relying instead 
on assumption (2.2) on ), which was used in the proof of Theorem 2.4.

Let us recall the definition of the set Ay given in (3.15), namely

Ay :=
{
t ∈ [t1, t2] : ρ

8
1
|y| ≤ (T − t)

1
1+( ≤ ρ

4
1
|y|

}

=
{
t ∈ [t1, t2] : T − (ρ/4)1+(

|y|1+(
≤ t ≤ T − (ρ/8)1+(

|y|1+(

}
, (4.1)

for fixed y ∈ R2 \ {0} and 0 < t1 < t2 < T .

Lemma 4.1. Let β ∈ (1, 2) and ) ∈ C1(R2). Suppose that for some r ∈ [1, ∞) and γ ∈ R, it 
holds

∫

|y|≤L

|∇)|rdy ! Lγ for all L 1 1. (4.2)

Then, the function Ṽ (1) defined by

Ṽ (1)(y) =
t2∫

t1

∣∣∣∣

∫

R2

1
|y − z|β ∇⊥)(z).ρ(z(T − t)

1
1+( )dz

∣∣∣∣1Ay (t)dt, (4.3)

with 0 < t1 < t2 < T and Ay as given in (4.1), satisfies the following estimate

∫

L≤|y|≤2L

|Ṽ (1)(y)|rdy ! Lγ+r(1−(−β) for all L 1 1. (4.4)
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Proof. Denote the kernel from (4.3) by

Kβ(y) = 1
|y|β , y ∈ R2\{0}.

From the definitions of Ṽ (1) and Ay , we have




∫

L≤|y|≤2L

|Ṽ (1)(y)|rdy





1
r

=




∫

L≤|y|≤2L




t2∫

t1

∣∣∣∣∣∣∣

∫

R2

Kβ(y − z)∇⊥)(z).ρ(z(T − t)
1

1+( )dz

∣∣∣∣∣∣∣
1Ay (t)dt





r

dy





1
r

≤





∫

L≤|y|≤2L





T − (ρ/8)1+(

|y|1+(∫

T − (ρ/4)1+(

|y|1+(

∣∣∣∣∣∣∣

∫

R2

Kβ(y − z)∇⊥)(z).ρ(z(T − t)
1

1+( )dz

∣∣∣∣∣∣∣
dt





r

dy





1
r

=





∫

L≤|y|≤2L





T − (ρ/8)1+(

|y|1+(∫

T − (ρ/4)1+(

|y|1+(

∣∣∣∣∣∣∣

∫

R2

Kβ(y − z)1B18L(0)(y − z)∇⊥)(z).ρ(z(T − t)
1

1+( )dz

∣∣∣∣∣∣∣
dt





r

dy





1
r

,

(4.5)

where as before B18L(0) denotes the ball of radius 18L centered at the origin, and we used that for 
|y| ≤ 2L, |z| ≤ ρ(T − t)−

1
1+( and t ≤ T − (ρ/8

|y| )1+( , it holds that |y −z| ≤ 2L +ρ(T − t)−
1

1+( ≤
2L + 8|y| ≤ 18L.

Applying Minkowski and Young’s convolution inequality, we obtain

( ∫

L≤|y|≤2L

|Ṽ (1)(y)|rdy

) 1
r

≤
T −(

ρ/16
L )1+(∫

T −(
ρ/8
L )1+(

( ∫

L≤|y|≤2L

∣∣∣∣

∫

R2

Kβ(y − z)1B18L(0)(y − z)∇⊥)(z).ρ((T − t)
1

1+( z)dz

∣∣∣∣
r

dy

) 1
r

dt

≤
T −(

ρ/16
L )1+(∫

T −(
ρ/4
L )1+(

(∫

R2

|[(Kβ1B18L(0)) ∗ ((∇⊥).ρ((·)(T − t)
1

1+( ))](y)|rdy

) 1
r

dt
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≤
T −(

ρ/16
L )1+(∫

T −(
ρ/4
L )1+(

||Kβ1B18L(0)||L1(R2)||∇⊥).ρ((·)(T − t)
1

1+( )||Lr (R2)dt

≤
T −(

ρ/16
L )1+(∫

T −(
ρ/4
L )1+(

( ∫

|y|≤18L

1
|y|β dy

)( ∫

|y|≤ρ(T −t)
− 1

1+(

|∇⊥)(y)|rdy

) 1
r

dt

≤
( ∫

|y|≤18L

1
|y|β dy

) T −(
ρ/16

L )1+(∫

T −(
ρ/4
L )1+(

( ∫

|y|≤16L

|∇)(y)|rdy

) 1
r

dt. (4.6)

Since β ∈ (1, 2), then 
∫
|y|!L |y|−βdy ! L2−β . Moreover, invoking assumption (4.2), it fol-

lows that for all L sufficiently large

( ∫

L≤|y|≤2L

|Ṽ (1)(y)|rdy

) 1
r

! L2−β

T −(
ρ/16

L )1+(∫

T −(
ρ/4
L )1+(

L
γ
r dt ! L

γ
r +1−(−β ,

which proves (4.4). !

Lemma 4.2. Let β ∈ (0, 1] and ) ∈ Cβ(R2). Suppose that for some r ∈ [1, ∞) and γ ∈ R, it 
holds

∫

|y|≤L

|)(y)|rdy ! Lγ , for all L 1 1. (4.7)

Then, the function Ũ (1) defined by

Ũ (1)(y) =
t2∫

t1

P.V .

∫

R2

∣∣∣∣
(y − z)⊥

|y − z|2+β
)(z).ρ(z(T − t)

1
1+( )dz

∣∣∣∣1Ay (t)dt (4.8)

where 0 < t1 < t2 < T , satisfies the following estimate

∫

L≤|y|≤2L

|Ũ (1)(y)|rdy ! Lγ−r((+β), for all L 1 1. (4.9)

Proof. Let us first assume that β ∈ (0, 1). Note that, in this case, the kernel Kβ(x) =
y⊥|y|−(2+β), y ∈R2 \ {0}, from (4.8) is integrable near the origin. Namely,
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∫

|y|!L

|Kβ(y)|dy ≤
∫

|y|!L

1
|y|1+β

dy ! L1−β . (4.10)

We may thus apply similar arguments as in the proof of Lemma 4.1 to arrive at

( ∫

L≤|y|≤2L

|Ũ (1)(y)|rdy

) 1
r

≤
( ∫

|y|≤18L

1
|y|1+β

dy

) T −
(

ρ/16
L

)1+(

∫

T −
(

ρ/4
L

)1+(

( ∫

|y|≤16L

|)(z)|rdz

) 1
r

dt.

Thus, it follows from (4.10) and assumption (4.7) that

( ∫

L≤|y|≤2L

|Ũ (1)(y)|rdy

) 1
r

! L1−β

T −
(

ρ/16
L

)1+(

∫

T −
(

ρ/4
L

)1+(

L
γ
r dt ! L

γ
r −(−β ,

as desired.
The proof for the case β = 1 was done in [38, Lemma 2.2]. Here we note that (4.10) no 

longer holds. However, in this case the kernel Kβ is a Calderón-Zygmund operator, and hence 
‖Kβ ∗f ‖Lq(R2) ! ‖f ‖Lq(R2) for any f ∈ Lq(R2) and 1 < q < ∞. Replacing the use of Young’s 
convolution inequality in (4.6) with this property, one may then proceed with analogous argu-
ments and conclude (4.9). !
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