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Abstract

We analyze finite-time blowup scenarios of locally self-similar type for the inviscid generalized surface
quasi-geostrophic equation (gSQG) in R2. Underan L" growth assumption on the self-similar profile and its
gradient, we identify appropriate ranges of the self-similar parameter where the profile is either identically
zero, and hence blowup cannot occur, or its LP asymptotic behavior can be characterized, for suitable r, p.
Our results extend the work by Xue [38] regarding the SQG equation, and also partially recover the results
proved by Cannone and Xue [3] concerning globally self-similar solutions of the gSQG equation.
© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and
similar technologies.
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1. Introduction

This paper concerns the study of possible self-similar finite-time blowup scenarios for the
generalized surface quasi-geostrophic equation (gSQG) in R?, namely
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0 +u-Vo=0, xeR? >0,
L —1+4 2 (1)

u=-V-(—A) 20, xeR=s t>0,

where 8 € (0, 2) is a fixed parameter, 6 = 6 (x, t) is an unknown scalar function, and u =u(x, )
denotes a velocity field. The latter is given in terms of 8 according to the second equation in (1.1),
where V4 = (=02, 01), and (—A)’S/z, 0 < s < 2, is the Riesz potential. From the definition of
the Riesz potential (see e.g. [36, Section V.1]), it follows that u can also be written as

u(x,t)=C,9P.V./Kﬂ(x—y)9(y,t)dy, (1.2)
RZ
where
+ 2
Kﬂ(x)zMTﬁ’ x € R°\{0}, (1.3)

and Cg is a constant depending only on S.

For g =0, equation (1.1) reduces to the vorticity formulation of the 2D incompressible Euler
equations, a model for the evolution of inviscid and incompressible fluid flows in R?. Whereas
for B =1, (1.1) coincides with the surface quasi-geostrophic equation (SQG), which models the
evolution of surface temperature or buoyancy in certain large-scale atmospheric or oceanic flows
[22,1,28,18]. Besides its physical relevance, the SQG equation has also received considerable
attention due to its strong analytical and physical similarities to the 3D incompressible Euler
equations [11].

While global regularity for the 2D incompressible Euler equations is well established (see e.g.
[24,26]), the analogous question for the SQG equation remains completely open. Namely, it is
not currently known whether smooth solutions of the SQG equation remain smooth for all time
or develop singularities in finite time. In light of these results (or lack thereof), the generalized
SQG equation (1.1) was introduced in [15] to naturally investigate the global regularity issue for
a model that suitably interpolates between the 2D incompressible Euler equations (8 = 0) and
the SQG equation (8 = 1). Indeed, note from (1.1) that for 8 € (0, 1) the velocity field u is more
regular than at the right endpoint 8 = 1. The case B € (1, 2), on the other hand, corresponds to a
more singular velocity field, and was first considered in [7].

Despite several important advances, the question of global regularity or finite-time singularity
formation also remains open for the gSQG equation, for any 8 € (0, 2). Among the available
results, local existence and uniqueness for the Cauchy problem associated to (1.1) in the range
B € (1,2) was shown in [7] for any initial data in H 4 and later improved in [20] to any initial
data in H®, with s > 1 4+ B. An analogous local well-posedness result in H®, s > 1 + 8, for
the more regular case 8 € (0, 1] was shown in detail in [21,39]. Additionally, a global regularity
criterion in the case 8 € (0, 1] was obtained in [8] with respect to the norm of a given solution
in B-Holder spaces, which generalizes a previous regularity criterion established for the SQG in
[11]. Specifically, [8] shows that [0, T') is a maximal interval of existence for a solution 6 of (1.1)
within the class C° (R?) N L7 (R?), with o > 1 and q>1,if

t
lim / 10+ 5) s ayds = oo, (1.4)
0
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where C” (R?), 0 < y < 1, denotes the space of y-Holder continuous functions on R?.

In addition to these analytical results, several computational studies were developed to numer-
ically investigate the possibility of finite-time singularity formation for the SQG and gSQG in
specific scenarios. Starting with the SQG equation, [11] indicated a possible finite-time singular-
ity in the form of a hyperbolic closing saddle, a suggestion that was later contested in [27,12,10]
via further numerical tests, and eventually theoretically ruled out in [13,14]. On the other hand, in
[33,34], analyzing an alternative scenario proposed by [29,19], the authors found numerical evi-
dence of a singularity occurring as a self-similar cascade of filament instabilities. Regarding the
generalized SQG equation (1.1), numerical simulations were performed in [15,25,35] focusing
on the evolution of patch-like initial data, i.e. given by the indicator function of a spatial domain
with smooth boundary [31,32,16,7]. Their results point to substantial evidence in support of the
development of a corner-type singularity in finite time, which is approached in a self-similar
manner.

While a rigorous proof of the formation of such singularities is still not available, these numer-
ical studies provide a strong motivation to further investigate solutions of the gSQG equation that
develop a finite-time singularity of self-similar type. Such solutions are defined with respect to
the invariance of (1.1) under the following scaling transformation x, 7, 6 — Ax, ey yItae=Bg
with » € R, o € R; i.e. if 6 is a solution of (1.1), then 6, (x,7) = AT Po(ux, A1Hs) is
also a solution. Specifically, we say that, for a fixed scaling parameter o« > —1, a solution 6
of (1.1) on R? and on a time interval (0, T) is (globally) self-similar if 6(x,t) = 6, (x, t) for all
(x,1) € RZ x (0, T) and for all A > 0. This is equivalent to being able to write 6 as

1
0(x,1) =~ O (Ll) for all (x,7) € R? x (0, T), (1.5)

t THa t THa

for some function ® : R2 — R, which is called an associated self-similar profile.

Some results on nonexistence of nontrivial globally self-similar solutions for the SQG and
gSQG equations were obtained in [5,6] and [3], respectively, by imposing suitable assumptions
on the profile ® and showing that ® = 0 as a consequence, thus excluding the possibility of
finite-time singularity of this type. More precisely, [5] assumed ® € LP!'(R?) N LP2(R?) with
P1, p2 €[1,00] and p; < pa, whereas [6] considered ® € Cl(Rz) such that lim |00 [O(X)| =
0. Both [5] and [6] utilize a particle trajectory and back-to-labels map approach to establish
that ® = 0. In [3], the authors analyze the gSQG equation in the case 8 € [0, 1] and obtain an
analogous result as in [5] while relying on a different technique centered on a local L? inequality
satisfied by the profile ®.

We also mention the recent work [17], where construction of a class of non-radial globally
self-similar solutions with infinite energy of the gSQG in the case 8 € (0, 1) was obtained via
suitable perturbations of a stationary solution. See additionally [4], where the authors consider
solutions of the SQG equation in R? of the form 0(x1,x2,1) = x2 fx, (x1,1) and construct a self-
similar solution for the one-dimensional equation satisfied by f which yields an infinite-energy
solution for the SQG.

In this manuscript, we consider the more general case of solutions 6 of (1.1) that satisfy an
equality as in (1.5) only locally in space, namely with (x, ) € B,(0) x (0, T'), for some p > 0.!

I Note that, in contrast to the identity 6(x,t) = 0 (x, ) for all (x,?) € R2 x (0, T) and A > O satisfied by 6 in the
globally self-similar case, a local version of (1.5) with x € B, (0) implies instead that 6(x, t) = 6, (x,¢) for all x €

Buminp.p/2) 0), € (0, min {T, Al%}) and A > 0.
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Here, B, (0) denotes the ball in R? centered at 0 and with radius p. In fact, since, for any xq € R2,
6(x,1) = —0(x —xo, T — 1), (x,1) € R2 x (0, T), is also a solution of (1.1) due to its spatial
translation and time reversal symmetries, we may consider more generally solutions 6 of (1.1)
that satisfy

X — X0

T+a—8 © ( 1
(T —t) THa (T —t)T+e

O(x,t)= ) for all (x,1) € B,(xp) x (0,7), (1.6)

for some p > 0 and some profile function ® : R> — R. We refer to such 8 as a locally self-similar
solution.

It is not difficult to see that if ® € C#(R?) then condition (1.6) is indeed consistent with the
regularity criterion from [8] when 8 € (0, 1]. Namely, (1.6) implies (1.4), and hence T represents
a finite blowup time for 0 in the class C° (R?) N L7(R?), with o > 1 and q>1.

Analytical results regarding locally self-similar singularity scenarios were previously obtained
for the N-dimensional incompressible Euler equations with N > 3 in [9,2,37], for the SQG
equation in [38], and later for the 2D inviscid Boussinesq equations in [23]. In particular, the
result obtained in [38] yields, similarly as in the earlier works [2,37], suitable conditions on the
self-similar profile under which existence of nontrivial ® is only possible within an explicitly
identified range of «, i.e. ® must necessarily be zero for « outside of this range. Moreover, any
nontrivial profile corresponding to a value of « in this range must satisfy a certain asymptotic
characterization of its L? average over sufficiently large regions in the spatial domain, for some
p > 1. As a consequence, this allows one to automatically exclude the existence of locally self-
similar solutions with decaying profiles, while also guaranteeing the aforementioned asymptotic
characterization of the L? average of certain non-decaying types of ©.

Here, we obtain an extension of the result from [38] to the generalized SQG equation for all
B € (0, 2). Our main results are split between the cases 8 € (0, 1] and g € (1, 2), with each one
requiring different conditions on ®. Naturally, this difference is due to u being more singular for
B € (1,2) than for 8 € (0, 1]. At a more technical level, this is caused by the different arguments
required for estimating the component of u in (1.2) where the integrand is restricted to the self-
similar region, see Lemma 4.1 and Lemma 4.2. For 8 € (0, 1], this is achieved thanks to the fact
that the kernel Kz from (1.2) satisfies ||[Kg * fllLe(B,0) S II.fllLar2) for every f € L1(R?)
and 1 < g < o0o. In the case B = 1, this follows from the fact that Kz is a Calderén-Zygmund
operator, whereas for B € (0, 1) this is a consequence of Young’s convolution inequality together
with Kg being integrable near the origin. On the other hand, for g € (1,2), Kg is neither a
Calder6n-Zygmund operator nor integrable near the origin. To circumvent this issue, we write
Kg(x) = V-+(lx|7#) and integrate by parts in (1.2), thus transferring one derivative to 6, and
hence to ®, when restricting 6 to the self-similar region, see (3.9) and (3.10) below. For this
reason, in comparison to the case 8 € (0, 1], here we impose an additional growth assumption on
the L” norm of V® over increasing regions in the spatial domain, for suitable r, see (2.3).

Additionally, we note that Theorem 2.4 partially recovers the aforementioned result estab-
lished in [3] concerning globally self-similar solutions of the gSQG equation for 8 € (0, 1], and
with weaker assumptions, since every globally self-similar solution is also locally self-similar.
See Remark 2.7 below for the precise details. We also point out that the previously referenced
result from [17] regarding the existence of a globally (hence locally) self-similar solution for
the gSQG when 8 € (0, 1) is not in contradiction with our results on nonexistence of nontrivial
locally self-similar solutions, specifically as stated within Theorem 2.4 and Corollary 2.6, (i), be-
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low. Indeed, as we mentioned above, [17] presents a globally self-similar solution that possesses
infinite energy, whereas our results concern solutions within a finite-energy class where local
existence is established, namely 6 € C([0, T); H*(R?)) N L®°(0, T; L' (R?)), with s > 1 + B.

The remainder of this manuscript is organized as follows. In Section 2, we present the state-
ments of our main results. Their proofs are given in Section 3. Finally, in Section 4, we show two
crucial lemmas that are used in the proofs of the main results.

2. Statements of the main results

This section collects the statements of our main results. For the reasons described in the previ-
ous section, these are split between the two different cases 1 < 8 <2 and 0 < 8 < 1 concerning
the parameter § in the constitutive relation between u and 6 in (1.1).

Throughout the manuscript, we fix the standard notation of Sobolev spaces H?, s € [0, 00),
and Lebesgue spaces L?, p € [1, oo]. We also denote by C a positive constant whose value may
change from line to line. Moreover, we write A < B to denote that A < CB for some constant
C >0, and A ~ B means that both A < B and B < A hold.

2.1. Thecasel < B <2

Theorem 2.1. Fix B € (1,2). Suppose 6 € C([0, T); H*(R?)) N L>(0, T; L'(R?)), with s >
1+ B, is a solution to the gSQG equation (1.1) that is locally self-similar in a ball B,(xg) C R2,
with scaling parameter o > —1 and profile © € C'(R?). Fix also p > 1, and suppose that for
somer>p+1, v €[0,r(8—1)), and yy > 0 with

Yo<w+r and yo<w(ﬁ—1—ﬂ), 2.1
p r
it holds
lOW|"dy S L, (2.2)
[yl<L
and
/ IVO(y)|"dy S L (2.3)
[y|I<L

for all L sufficiently large. Under these conditions, it follows that if o > B + % —lor—l<a<
,8—1—}—2;—)/0 then © =0. Moreover, if o € [,B—I—I—zfr—m,ﬂ—l—i—%] then either ® =0 or ©

is a nontrivial profile and it satisfies
©()|7dy ~ 1> P 2.4)
IyI=L
for all L sufficiently large.
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Remark 2.2. We note that, when yp = 0, a slightly stronger result can be obtained in Theo-
rem 2.1. Namely, under yp = 0, we have that ® = 0 also in the case « = 8 — 1 4+ 2/r. Indeed,
in this case, condition (2.2) implies ® € L” (R?) and one can use the same argument as in the
beginning of the proof of [3, Theorem 1.1] to prove (3.19). Since this is the only instance in the
proof of Case 2 where the strict inequality o < 8 — 1 + 2/r was required, the statement follows.

By verifying the assumptions of Theorem 2.1, we may automatically exclude self-similar
profiles with certain asymptotic behaviors, or guarantee a characterization of the L” norm as in
(2.4) for possible types of blowup profiles. This is done in the following corollary.

Corollary 2.3. Fix B € (1,2). Suppose 6 € C([0, T): H*(R%)) N L>®°(0, T; LY(R?)), with s >
1+ B, is a solution to the gSQG equation (1.1) that is locally self-similar in a ball B, (x¢) C R2,
with scaling parameter a > —1 and profile ® € C' (R?). Then, the following statements hold:

(i) If there exist some o > 0 and o1 > 0 such that |©(y)| < |y| 7% and |VO(y)| < |y| % for
all |y| > 1, then ® =0 in R2.

(it) Suppose that |@(y)| 2 1 for all |y| > 1, and that there exists a real number 0 <oy < —1
such that |[VO(y)| < |y|°L forall |y| >> 1. Then the values of o admitting nontrivial profiles
belong to the interval [B —2 — o1, B — 1] and for each such « the corresponding profile ®
satisfies

/ OW)|Pdy ~ L2

lyIsL

for every p € [1, 00) and for all L sufficiently large.
2.2. Thecase 0 < B <1

The analogous versions of Theorem 2.1 and Corollary 2.3 for the case 0 < 8 < 1 are presented
next.

Theorem 2.4. Fix 8 € (0, 11. Suppose 6 € C([0, T); H*(R?)) N L>°([0, T); L' (R?)), with s >
1+ B, is a solution to the gSOG equation (1.1) that is locally self-similar in a ball B, (xo) C R2,
with scaling parameter « > —1 and profile ® € CP(R?). Fix also p > 1, and suppose that for
somer > p+1andy €[0, B(r — p)), it holds

/ ©()dy <L 2.5)
ly|I<L

for all L sufficiently large. Under these conditions, it follows that ifo > 8 — 1 + % or—1<a<

2—y _ . 2— 2 . _ Q
B — 1+ == then ©® =0. Moreover, if a € [ﬂ— 1+ ry,ﬁ— 1 +F] then either ® =0 or ® is
a nontrivial profile and it satisfies

/ O [Pdy ~ L2 PI+ah) 2.6)

IyI=L
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for all L sufficiently large.

Remark 2.5. When (2.5) holds with y = 0, then we have that ® = 0 also in the case « = 8 —
14 2/r. The justification is the same as in Remark 2.2.

Corollary 2.6. Fix g € (0, 1]. Suppose 6 € C([0,T); H*(R?)) N L*®(0, T; L' (R?)), with s >
1 + B, is a locally self-similar solution to the gSQG equation that is locally self-similar in a
ball B, (xp) C R2, with scaling parameter o > —1 and profile ® € CP(R2). Then, the following
statements hold:

(i) If there exists some o > 0 such that |@(y)| < |y|~% for all |y| > 1, then no locally self-
similar blowup occurs, i.e., ® =0 in R2.

(ii) If there exists some o € (0, B) such that 1 < |@ ()| < || forall |y| > 1, then the values
of o admitting nontrivial profiles belong to [B — 1 — o, B — 1], and for each such o the
corresponding profile © satisfies

1©(y)|Pdy ~ L2~ PUHe=h),

IyI<L
for every p € [1, 00) and for all L sufficiently large.

Remark 2.7. As mentioned in Section |, Theorem 2.4 and Corollary 2.6 extend the results proved
in [38] regarding the SQG equation (8 = 1) to the generalized SQG equation for all 8 € (0, 1].

Moreover, for 8 € (0, 1], Theorem 2.4 partially recovers the result established in [3] concern-
ing globally self-similar solutions of the gSQG equation, with weaker assumptions, since any
globally self-similar solution is also locally self-similar. More precisely, we recover the particu-
lar case of [3, Theorem 1.1]when p+1<2/(y —Dand p+1<g <2/(y — 1) (here p,q and
y are as in [3], which correspond to p, r, and 2 — § in our notation, respectively).

3. Proofs

Before turning to the proofs of our main results, let us provide a brief summary of the underly-
ing ideas. Similarly as in [3,38], our arguments rely crucially on the following local L” equality
satisfied by any solution 6 € C([0, T'); H*® (R%)) N L>®(0, T; LP(R?)), with s > 1 + S, of (1.1).
Namely, for fixed 0 < #; <, < T and p €[1, 00),

/IG(x,tz)lpn(x,tz)dx—/|9(x,t1)|”77(x,t1)dx
R2 R?

19} 9}

=//|9(x,t)|”8m(x,t)dxdt+/f|9(x,t)|”(u~V)n(x,t)dxdt, 3.1)

1 R2 1 R2

for every smooth and compactly supported test function 7 on [0, 00) x R?,i.e. n € C°([0, 00) x
R2, R). Its proof follows by taking a mollification 8, = p. * 8 of 8, for a standard mollifier p,,
and noting that 6, satisfies the equation
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010s + (Ug - V)0, = (U - V)0, — pe * [(w- V)O]. (3.2)

Then, multiplying (3.2) by 0:160:17~2 Yo (x, 1) for some suitable test function v, such that
supp ¥, C supp s, and carefully taking the limit as ¢ — 0 leads to (3.1).

The proof of Theorem 2.1 is divided into three cases, each one corresponding to one of the
ranges of « described in the statement. In the first two cases, corresponding to « sufficiently large
or sufficiently small, the goal consists in showing that

|O@()|Pdy <L° for some o < 0. (3.3)

IyISL

Clearly, taking the limit as L — oo then implies that ® = 0. When « is sufficiently large, (3.3)
follows directly from the local self-similarity condition, (1.6), combined with the maximum prin-
ciple satisfied by the solution 6. On the other hand, with « small enough, an inequality as in (3.3)
is achieved by establishing a fundamental local L? inequality from the local equality (3.1), see
(3.20) below. This is derived by suitably employing cut-off functions to split the velocity field
u into its restrictions to the self-similar region and the corresponding exterior. With the help of
assumptions (2.2), (2.3), and Lemma 4.1, we then estimate the terms on the right-hand side of
(3.20) to yield an upper bound for fl V<L |®(y)|Pdy. Next, we redo the estimates by using this
new upper bound and bootstrap on thiszrgument until we eventually arrive at an upper bound as
in (3.3) with a negative power of L.

For the last and intermediate range of «, we must show that every nontrivial profile ® sat-
isfies the lower and upper bounds implied by (2.4). The upper bound is guaranteed from the
estimate derived for the first range of o, whereas for the lower bound we proceed by contradic-
tion. Namely, assuming that such lower estimate does not hold, it follows that ® must satisfy the
same local L? inequality as in the second case, (3.20). Proceeding with a similar analysis from
this case, we then arrive at the contradiction that ® = 0.

The proof of Corollary 2.3 follows by choosing appropriate parameters p, r, o, and y; so that
the assumptions of Theorem 2.1 are verified under the conditions imposed on the profile ® in
each of the items (i) and (ii). Finally, the proofs of Theorem 2.4 and Corollary 2.6 are obtained
under the same line of reasoning as in the previous two results. The central difference lies on the
use of Lemma 4.2 below instead of Lemma 4.1.

3.1. Proof of Theorem 2.1

Without loss of generality, we may assume xo = 0. The proof is divided into three different
cases, each corresponding to a particular range for « within the interval (—1, 00).
Case 1. Suppose a > 8 + % — 1. In this case, we show that © =0 in R?.

Fix t € [0, T) and denote L = p(T — t)l%a. Invoking the local self-similarity of 6, namely
(1.6), and changing variables, it follows that
X
(T —t)THe

» 1
0(x, ) dx = W

[x|<p [x[<p

p
dx
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= CLrite=p=2 / 1O dy. (3.4)
ly|<L

Since s > 1, it follows by Sobolev embedding that #(0) € H*(R?) C L?(R?) for every p > 2.
This implies that

0@ =100l 5 forallz€[0,T) and p =2, (3.5

see e.g. [30, Theorem 3.3]. Thus, by Holder’s inequality, it follows that for all p € [1, co) and
p > max{2, p}, we have

/ 6(x,1)|Pdx < C[6(0)||,; forallse[0,T).

[x[<p

Hence, we obtain from (3.4) that

/ |©(y)|Pdy < CL>PIHa=h) (3.6)

[ylIsL

Since 2 — p(1 + o — B) < 0, taking the limit as + — T in (3.6), which implies L — oo, we
deduce that ® =0 in R?.

Case 2. Let us now suppose that —1 <o < — 1+ 2:—”0 Here we once again show that ® =0
in R2.

Take cut-off functions ¢, ¢, € C>®(R?) with 0 < $o.¢p <1, ¢p =11in B,s3(0), o =0
in B;/4(O), and ¢, =1in B,2(0), ¢, =01in B;(O). Fix t1,1, € [0, T). From (3.1), we have in
particular that

19}

[ eeregwds = [omrogmar= [ [wen-vogwioenrasa.

R2 R2 1 R2
(3.7)

We proceed to analyze each term in (3.7), starting with the first two terms on the left-hand side.
By the local self-similarity of 6, (1.6), it follows that fori = 1,2

|0<x,r,»>|f’¢>£<x>dx_—p / ‘ (L>
R/z ' (T — )" T (T — 1)

- W / ©WIPpo (¥(T —1:) ) dy
(T—f) T Ita

¢)p (x)dx

L / O 1P (31 dy. (3.8)

IyI=4h
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where [, = (T —1;)" T, i =1,2.

To analyze the term in the right-hand side of (3.7), we first decompose the velocity field u into
a term involving the self-similarity region and another one outside of it. More precisely, recalling
(1.2) and (1.3), we have

u(x,t):CﬁP.V./Kﬁ(x— )Q(y,t)d)p(y)dy—l—C,gP.V.fKﬁ(x—y)@(y,t)(l —¢p(y))dy
R2

L
=CgP.V. / |( Tz)ﬂg@(y Dp(y)dy +CgP.V. /Kﬂ(x—y)G(y,t)(l—¢p(y))dy
R2

_! (!
= ﬂcﬁp.v./vy (lx_y|ﬂ>9(y,t)¢p(y)dy
R2
—|—C,3P.V./Kﬁ(x — 0O, (1 —¢p(y))dy

_ __Cﬁ Vle(y,t)%(y)dy

- —cﬁ = ﬂe(y, DV (y)dy

+ CgP.V. / Kg(x =)0y, 1)(1 = ¢p(y)dy
R2
=ulx, ) +u®x, ) +u®@x,0), (3.9)

where the second to last equality follows by integration by parts. We now analyze each of these
terms. By the local self-similarity of 9, (1.6), we get

u®(x. 1) = ——cﬁ VLe(y, D¢ (y)dy

— L / vie ( Y ) Bo()dy
,B(T—l) o lx — yI# (T — )Tz

C 1
=—7’3_P.V./ VO, (T — 1) Ta)dy

pr-nt )o@ —nrEyp
Cg 1 n 1
=_ﬁp.v./ - VO (W(T — 1) Ta)dy
BT —ntia T nEex— y)f
___ % V“)( x _t>, (3.10)
B(T —t) T+ (T —t)T+a
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where

VEO(), (y(T — 1) )dy. (3.11)

VvD(x,1):= P.V./
]RZ

1
lx — y|#

Next, we analyze u@ (x, r). Note that due to the presence of Vd)% (x) in the right-hand side of

(3.7), it suffices to consider x € R? with p/8 < |x| < p/4. Then, since for each such x we have
lx — y| = B for every |y| > p/2, it follows that

@, nl<C / 160(y, DIV, (V)Idy

S<lyl=p
16 (y, )]
IyI#

lx — y|#

<C

dy
1=

< C||9||L°°((),T;L2(R2)) =< C||9(0)||L2a (3-12)

[N

where in the last line we applied Holder’s inequality and (3.5) with p = 2.
Finally, for the last term in (3.9), u®(x, 1), we proceed similarly as was done for u®(x,1) in
(3.12) and obtain that

u® (x, 1) =Cp f

[y[=p/2

1
mlﬂy,t)l(l —¢p(y))dy

0G0
<c [ Solay <ol (3.13)

> L
[y1=5

From (3.10), (3.12) and (3.13), we may then estimate the term in the right-hand side of (3.7)
as

n
‘//|6(x,t)|p(u(x,t)~V¢g(x))dxdt

1 R2

123 n
< [ [weonvog e oraxar+ [ [uaw.oiives onecniraxar
1 R2 1 R2

4]

+//Ill3(x,t)||V¢g(X)I|9(x,t)Idedt

1 R2
X
v <71 ,t)
(T —1)T+e

4]

1
S C/ a+p(l+a—p) /
(T —1t) T R2

n

14
Vo (x)|dx dt

X
(=)
(T —1)T=
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n
+c /
(T —1)

/‘ < ; )
P (T —)Ta
n

1 1
<c / L / VO (5.0 10017 Vg (¢(T — 1)) Idy di
(T -t

(x)|dx dt

I+a

19}

1
+C/w/|®(y)|”|V¢g(y(T—t)ﬁ)ldydt. (3.14)
(T_t) 2

I+a

In view of the support of V(/)% we may restrict the integrands in (3.14) to (y, t) € R? x [11, 2]

such that p/8 < |y|(T — t)ﬁ < p/4. In particular, each such y satisfies pl/8 < |y| < pl2/4,

where we recall that [; = (T — t,-)_ﬁ, i =1, 2. Then, for each fixed y € R? with pl1/8 < |yl <
ply /4, we define the set

1

Ay =1{teln, n]:
v { Iyl

oD

1 pl
<(T —-1t)Te SZ_ . (3.15)
After rearrangement, it is easy to see that

14+a 14+
A c T_<L> ,T_(L) ,
4yl 8|yl

so that its length satisfies |Ay| < cq,p/ |y|'*. Thus, denoting by 1 A, the indicator function of
the set A, it follows from (3.14) that

5]
‘//|9(x,t)|P(u(x,t)-V¢§(x))dxdt
n R2

n
(1)
sC/ / 4 (y,t)||®(y)l”11Ay(t)dydt

|y|2—0l—l7(l+ot—/3)
noeh<lyl<4h

1©(y)|?
+C/ / |y|2 (T ra—B) ]lA),(t)dydt

noeh<lyl<fh

n
o)
<c / %/W‘” (v, ) |14, (D)dt dy
n

|y|27a7p(l+oz B)
gh=<lyl<fh
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n
oMI”
+C f W ]lAy([)dldy

gh<lyl<4h n
IVOmMIeH)P 1©(y)|?
<C / —|y|2—a—p(l+a—ﬁ)d +C / —|y|3+a_p(1+a_ﬁ)dy, (3.16)
gh<lyl<fh gh<lyl<fh
where
19}
PO (y) 1= / VO, [L4, ()dt
5l
5}
1 1
=/‘/| _Z|ﬁvi®(z)¢p(z(T—t)m)dz Tz, (t)dt. (3.17)
1 R2 Y
Plugging (3.16) into (3.7) and recalling (3.8), yields
l+a—p)-2 - —B)-2 _
10402 [lomireg oty {07 [0meg oy ‘)dy‘
R2 R2
VOmMIeH)P 1©(y)[?
<C f —|y|2_a_p(l+a_ﬂ)dy+C f —|y|3+a_p(1+a_ﬂ)dy. (3.18)
gh<lyl<fh gh<lyl<fh

Note that, by Holder’s inequality and assumption (2.2), it follows that

P
o - o ro(1=2
pep) 2/|®(y)|17¢%(y12l)dySClg(Ha P 2( / I®(y)|’dy> 507
R2 |y|§%12

< Cl§(1+a—ﬂ)+(yo—2)$.
Since, by the current assumption on «, we have (1 + o — 8) + (yo — 2)/r <0, then
15’“*"‘*‘”*2/ O Pz (yly Ndy >0 asly — oo. (3.19)
R2

Thus, denoting L := %ll and taking the limit in (3.18) as t, — T, so that [, — 0o, we obtain

70 » )
e [ teorarzc [ EO e [ 2 a

L2—p(+a—p) |y|2—ot—p(1+ot—/3) |y|3+a—p(1+o¢—ﬂ) :
lyl<L [yI=L [y|>L
(3.20)
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In what follows, we always assume that L is sufficiently large (equivalently, #; is sufficiently
close to T'), so that assumptions (2.2) and (2.3) can be applied.

We now further estimate each of the terms on the right-hand side of (3.20) by splitting the
integrals according to a dyadic decomposition. For the first term, we make use of Lemma 4.1
below, which yields a control on the L” norm of the function VD on a dyadic shell under
assumption (2.3). We obtain

|y|2*°‘*1’(1+0t*ﬁ)
[yI=L

oo
1 ~

=) R TR / VO o) dy

k=0

2kL<|y|<2k+1L

o0
1 ~ 2(1_p+1)
E A R X 22}
< Ck—O KLy p(Tap) / [V dy / oy'dy| @L)

y|~2kL y~2KL

o0

(4L~ QR Ly E F L)

<C)

- k[)2—a—p(+a—p)
k=0 (2FL)=empie
> 2 2

<C 2 :(2’(L)P(1+a—,3)—2—,3+3+—y1r’ + e
k=0

< CLP(1+°‘*/3)*2*/3+3+”%2+M’ G321

where in the second inequality we used that » > p + 1 and applied Holder’s inequality, and in
the last inequality we used the hypotheses that o < 8 — 1 + 2;—“’ and y; <r(B —1).

For the second term in the right-hand side of (3.20), applying again the dyadic decomposition
together with Holder’s inequality, yields

__owr 3 ! ©()I7d
|y|3te—pte—p) Y= (2K L)3+a—p(+a—p) y y
ly|=L k=0 yI~2tL

o0 1 r g .
=< C}; (2kL)3+a—p(l+o{—ﬂ)( / |®(y)| dy) (ZkL)2(1 r)

[y[~2kL

00
<C Z(ZkL)I’(1+Ot—/3)—3—a (sz)Vog (sz)Z(l—g)
k=0

o0
<C Z(z"L)P(1+a—ﬂ)—2—a+1+(yo—2)g
k=0
o—=2p

< cpprUte=p=2+l-at , (3.22)
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where weused that —1 <o < B — 1+ 2;—}'0 Combining (3.21) and (3.22) with (3.20), we deduce
that

v1=2 , =2r L =dr
r + r +CL1 ot

|©O)|Pdy < CL> P+ 7 <CL™, (3.23)

lyI<L

where

_ﬁ+

(vo—2)p 3 (3.24)
r

ao:zmax{l—a+ (71_2)4_(7/0—2)17}.

r r

Note that, if ag < 0, we conclude that ® = 0 on R2,i.e., no locally self-similar blowup occurs
and the proof is finished. Otherwise, if ag > 0, we improve the estimates in (3.21) and (3.22) by
making use of the new upper bound in (3.23). In particular, for the first term in the right-hand
side of (3.20), we leverage (3.23) via a suitable interpolation inequality. Firstly, for simplicity of
notation, we denote ¢ :=rp/(r — 1), and write the given assumptions on yp and y; in terms of g
as

05y1<r(ﬁ—1—2<1—§))+2, (3.25)

and yp € [0, y1 + r] with

0<w( —1—ﬁ). (3.26)
g—pp r
Note that % + 5 =1 and p < g <r. Then, by interpolation, we have
S 1-§
[ rewray<| [ emray| | [ oo (3.27)
lyIsL yI=L yI=L
<CcLo+1=-9m  wihs.=""9 cqo,1). (3.28)

Next, employing once again the dyadic decomposition and Holder’s inequality, we derive via
(3.23), (3.28), and Lemma 4.1 that

/ VO m1em)I? J
|y[2—a—p(+a=p) y
[y|>L
P 1
q r
o0
Scz(m)zfalfp<1+wm / 1©()|7dy / VO dy
k=0 y|~2kL y|~2KL
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o0

kyL(aod+(1-8)10) (kL +1—a—pB
=C Z QFLyz—a—p(+a—p) 2Ly @ L)~
k=0

oo
<C Z(sz)p(l+a—ﬁ)—2+ao+§(1—6)(Vo—a0)+yr_l+1_ﬁ_a0<l_s)

k=0
oo
<c Z(sz)p(1+a—ﬂ)—2+ao—a1 , (3.29)
k=0
where
ai = g(l—a>(ao—yo)+ﬂ—1—% +ao (1—§>- (3-30)

Recall from (3.21) and (3.22) that ag + p(1 + o — B) — 2 < 0. Then, to obtain a finite sum in
(3.29), it suffices to show that a; > 0.

For r = p + 1, it is not difficult to show by using the assumption (2.1) on yy that a; > ag > 0.
Now suppose that r > p + 1, so that ¢ =rp/(r — 1) < r. Firstly, assume that ap = 1 — o +
M. From (3.24), it follows that —1 <o < — 2 + 2;—}" Moreover, since 1 —§ = (¢ —
p)/(r — p), we have

=p(q_p)(ao—l/o)+,3—1—ﬂ+ G-p
q(r —p)
_rlg— p)a P(q—p)y0+ﬂ_l+2—)/1_2(q—l?) 331)
Cq(r—p) q(r—p) r q

A C el RO S St (Y (3.32)
q(r —p) r

where the inequality follows by using that r > ¢, which implies (g — p) < q(r - D).
Now, if ag =3 — f + W2 4 W0=DP then from (3.24) we have f —2+ 21 <o < f —
1+ 2;—"" Hence, from (3.31),

r(q —p) ( "1 -2 ()/0—2)17) p(g—p) 2—y1 (g—p)
ay=——"2(3 -+ + - 0+pB—1+ -2
q(r —p) P r r q(r—p)y g r q
r(q—p)< (v1—2) 2p> 2—)/1 (g —p)
=——=(3-8+—— +B8- -2
q(r —p) r q
2 — — 2— —
=(;3—1+ y1><1_r(q p)>:<ﬁ_l+ y1>p(r D _ o, (333)
r q(r—p) r q(r—p)
where we used thatr > g > pand y; <r(B—1) + 2.
Therefore, a; > 0, and it follows from (3.29) that
POmIOI? (ta—p)2t
/ yma—p(iFa=—p 7 = CLET T, (3.34)

[yI=L

281



A. Bronzi, R. Guimardes and C. Mondaini Journal of Differential Equations 415 (2025) 266-302

Similarly, since agp + p(1 + @ — ) —2 < 0 and @ > —1, we obtain for the second term in the
right-hand side of (3.20) that

oo

O(I” 1 »
/ |y|3+0‘—P(1+a—l3) dy = Z (2kL)3+oz—p(l+ot—ﬁ) |©M)I"dy
[y|I=L k=0 [y|~2kL

oo
1
<C ]; (2kL)3+e—p(+a—p)

(2kL)y®
< cLpta=p—2+a—(1+a) (3.35)

Plugging (3.34) and (3.35) into (3.20), we deduce that

1©(y)|Pdy < CLY~% 4 L%~ (+

Iyl<L
<CL% % where by :=minfa;, 1 +a} > 0. (3.36)
Again, if ap — by < 0O then the proof is finished. Otherwise, we proceed with the bootstrap

argument by now leveraging (3.36) to obtain improved estimates. To put this argument into a
more general form, suppose that

/ |©()|Pdy <CL° witho <ay.

lyIsL

From the interpolation inequality (3.27), we have

/ () idy < CLOWID) (3.37)
ly|I<L

where we recall that § = (r — q)/(r — p). Then, proceeding similarly as in (3.29) and recalling
the definition of a; in (3.30), we obtain

VO em)»
|y|2—a—p(1+a—ﬁ)
ly|=L

— 1
= C}; (2k[)2—a—p(i+a—p)

(ZkL)g(aHyo(l—S)) (sz)l—a—ﬁ+V,—1

o0
)
<C Z(sz)p(l+a—ﬁ)—2+o Lry(1-8)L+1-p+11
k=0

(o8]
< C Z(sz)P(l-‘rd—ﬂ)—z-i-ao—al-i-O'%—ao%
k=0
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< cLPUte=P~2a—a+ (o —a) (3.38)

where the last inequality follows from the fact that ag + p(1 + ¢« — 8) —2 <0, a; > 0, and
o <ap.
Next, similarly as in (3.35), we obtain for the second term in the right-hand side of (3.20) that

ewrr . Ci‘ ! 2Ly
[y prea—p(+a—p) Y= (2k )3 +a—p(+a—Fp)
NEN k=0

< CLP(1+Ol—ﬁ)—2+U—(1+Dl)’ (3.39)

where the last inequality is justified by the fact that p(1+o —f) —2+o0 <p(l4+a—p)—2+
ap <0, and o > —1. Therefore, combining (3.38) and (3.39) with (3.20), yields

/ |®(y)|pdy < CLa()fa1+((rfao)5,, +CLO'7(1+01)’ (340)
[y|<L
where
Sp
8§, = — [0, 1).
Py
Note that
O |Pdy < | CLT0T if a1 —(1+0) = (a —0)(1=8,), (@
; VA= cpao—a+@-ad if g) — (1+a) < (@) —0)(1—=3,). (b)
yI=L

(3.41)

Let us now specialize this estimate to the case o = ag — by, as in (3.36), where we recall that
bo =min{ay, 1 + o}. Firstly, suppose by = ay, so that a; < 1+ «. Since §, < 1, it follows from
(3.41b) with 0 = ag — a; that

/ 1O(y)|Pdy < CLO~4(1+5) (3.42)
[yIsL

If ap —a1(1 +6,) <0, then ® =0 in RZ2. Otherwise, i.e. if ag — aj (1 + dp) = 0, we invoke
(3.41b) with o = ag — a1 (1 + 6,) and obtain

_ 2
/ O Pdy < cro~ (1+9r+3). (3.43)
ly|I<L

Hence, repeating this process n times, for any given n € N, we arrive at
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1—st1
O |Pd ap—ay (148, +82+..+8%) _ ao—a;(#)
WIfdy <CL : N _cL | s
lyI<sL
Observe that
1 — gntl 1 B
P _q(r—p) asn — oo. (3.45)

1—5[; 1—5;;_”(‘1—[7)

Moreover, recalling the definition of a; in (3.30), and particularly (3.31), we have

q(r—p)
ap—a
r(g —p)
q(r —p) [r(q - D) p(q—p) )/1}
= — — —1——
ra—p lar—p® qe—p TP
_rl qr=p o, N
_r[yo p(q—p)(ﬁ : r)]<0’ (3:46)

where the inequality follows from (3.26). In view of (3.45) and (3.46), it follows that there exists
n sufficiently large for which the power of L in (3.44) is negative. This implies that ® = 0 in R?.

Next, let us consider the case when bg = 1 + «, so that a; > 1 + «. We apply (3.41a)-(3.41b)
with 0 = ag — (1 + «) and obtain

/ |®(y)|pdyS{CL“°—2“+“> if a—(+o)=(l+a)l=5,). @ ;40

cLoo—a=(+®dpyif gy — (1+a) <(1+a)(1—=6,). (b)
[yIsL

If the powers of L in both (3.47a) and (3.47b) are negative, then we conclude the proof. Other-

wise, we proceed to improve on the upper bound of fly\< . 1©(y)[Pdy again via bootstrapping.
To this end, we start by taking mq € {1, 2, ...} as the smallest integer such that

a1 — (14+a) <mo(1+a)(1—8,). (3.48)

If mg = 1, then (3.47b) holds. On the other hand, if mq > 2 then

(mo— DA +a)(1—=36p) <a;— (1 +a), (3.49)
and (3.47a) holds. In the latter case, we may repeat this computation (mq — 1)-times, where at

each kth time with k =1, ..., my — 2, we invoke (3.41a) with 0 =ag — (k + 1)(1 + «), and at
k =mgy — 1 we invoke (3.41b) with 0 = a9 — mo(1 + ). We then arrive at

/ |©O()|Pdy < CL“"*bl, where by :=aj +mo(1 + a)d,. (3.50)
[yIsL

Note that b > aj, and that (3.50) in fact holds for all mo > 1.
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If ap — b1 < 0, the proof is finished. Otherwise, we proceed similarly as before and apply
(3.41a)-(3.41b) with 0 = ap — by, which yields

CLY=b=0U+a) if gy — (1 +a) —b1(1-8,)>0, (a)

P
1O dyf{cmo—al—blép if aj—(1+a)—b(1—5,)<0. (b)
lyI<L

(3.51)

Then, if necessary, we proceed by taking m; € {0, 1, 2, ...} the smallest integer such that

aj—(I4+a)=b1(1 =6, <m(1+a)(1—35p).
After repeating this process m times, we obtain
/ |©O()|Pdy < CL™ " where by :=a; + (b1 +mi(1 +a))s,.
lyl=<L
Here we note that b, > a; + a;6,.

We may keep on iteratively repeating the same argument if necessary and denote by m,, €
{0,1,2,...},foreachn e N, n =2, 3, ..., the smallest integer such that

ar — (1 +a) —by(1=8,) <mu(1+a)(1 —8§,)

to obtain

/ |©O()|Pdy < CL“O_b"“, where by, 11 := a1 + (by +my (1 +a))d),. (3.52)
[yIsL

Moreover, we have

byp1zai(1+6,+...+ 5;)
Therefore, by the same argument from (3.44)-(3.46), we deduce that there exists n sufficiently

large for which the power of L in (3.52) is negative, and consequently ® = 0 in R?. This con-
cludes the proof of this case.

Case 3. Finally, suppose that 8 — 1 + 2—r_)/o <a<B-1+ %. In this case, we prove that either
©®=0in R?, or ® # 0 and (2.4) holds.
Assume O = 0. From the proof of Case 1, and particularly (3.6), it follows that

/ O()[Pdy < L7 PU+e=B) forall L > 1. (3.53)
[ylI=L
Therefore, it only remains to show that
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/ O |[Pdy > L>~PU+e=B) forall L > 1. (3.54)

[ylI=L

Suppose by contradiction that (3.54) does not hold. Then, there exists a sequence of positive
numbers L;, i € N, such that L; — oo as i — oo and

1
- p .
(2P p) / |®(y)|’dy — 0 asi— oo.
! IyI<Li

Taking I, =4L;/p and L := pl1/8 > 1 in (3.18), it follows after taking i — oo that

7o) p ,
' [ ewrav=c [ LI0NO0I, o [ __lo0)

L2—p(+a—p) [y[2—a—p(+a=p) |y[3+ra—p+a—p) Y-
lyl=L [yI=L [yI=L
(3.55)

We now proceed similarly as in (3.27)-(3.36). Namely, recalling the notation g :=rp/(r — 1),
we obtain by interpolation, (3.53) and assumption (2.2) that

) 1-6

/|®(y)lqdy§ /|®(y)|”dy /|®(y)l’dy < cL@PUFe=pitnd=9)
[yI=L yIsL yI=L

where § = (r —q)/(r — p).
Proceeding analogously as in (3.29) and recalling that §,, := §p/q, we estimate

VO mIem)? J
|y|27a7p(l+ot7ﬂ) y
|y|=L
2 1
o0 1 4 4
e q v r
<Y e / ©()7dy / Oy
k=0 VI2EL yI~2kL

o0
<C Z(sz)p<1+a—ﬁ)+a—z(2kL)§<2—p(1+a—ﬂ))8+m§(1—5> (kpyl-e—p+2
k=0
< cpPUHa=A=2(1=8 )+ h(1-o+1-p+7 (3.56)

where in the last inequality we used thate < — 1 + % and condition (3.26).
Moreover, analogously as in (3.35), we obtain

[e.e]

O()1” 1 )
/ |y|3te—pte—p) dy = Z (2kL)3+e—p(+a—p) M) dy
[yI=L k=0 ly|~2KL
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oo
<C Z(sz)p(l+(¥—ﬂ)—3—a (2kL)2—p(l+(X—/3) < CL—(I-HX)’
k=0
(3.57)

where we recall that o« > —1.
Thus, from (3.55),

1

L2 p(4a—p) / 10(y)|Pdy < CLPAFe=A=D(1=8) 10 fU=DHI A+ | o ~(I4e)
L2—p(+a— =

lyl<L
Note that the power of L in the first term from the right-hand side cannot be smaller than the

power of L in the second term. Indeed, since 1 —§, = ;i‘ﬁ:i;,a >B—1+ 27—”0, 1/r=1-p/q,
and yp < y1 + r, we deduce that

(p<1+a—ﬂ)—2>(1—ap)+yo§(1—8)+1—ﬂ+?+1+a

— — — 2
. P4 p)(z_yo)_zr(q p)+y0p(q P)+2_ﬂ+ﬂ+ﬂ_l+ Y0
q(r—p) q(r—p) q(r—p) r
2p — —
=w+1+ﬂ+2<1_£>_@=1+ﬂ_@20 (3.58)
q(r—p) r q r 7 r
Hence,
|©(y)|Pdy < cLA~PUta=h=do, (3.59)
lyI=L
where
p Y1
do:=Q2—p(l+a—p)(1-8,)— yog(l =8 —1+p-"->0. (3.60)

If2— p(14+a — B) —dy < 0 then (3.59) implies that ® = 0 in R?, which yields a contradiction
and finishes the proof. Otherwise, for 2 — p(1 +«a — ) — dp > 0, we repeat the above argument
by using now the improved estimate (3.59). This gives

/ 10()|9dy < CL2-PU+a=pNé—dod+(1-d)n 3.61)
lyl=L
and
1
T2 p(Tap) / |©()IPdy

lylIsL

o
< C Z(ZkL)p(1+a—,3)+(¥—2(2kL)é‘p(2_p(1+a_ﬂ))_d05p+y05(1_8)+1_a_ﬁ+yr—1
k=0
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o0
+ C Z(sz)p(l+a—,5)—3—0t (2kL)2—p(l+(X—/3)—d0
k=0

o0 o

< C Z(2kL)(P(1+a_ﬁ)_2)(l_5p)+1/05(1_5)+1_/3+V71_d05p +C Z(ZkL)*(LHJt)fdQ
k=0 k=0

S CL7d0(1+8P) + CL*(1+01)7(1() S CL7d0(1+8P),

where we used that 0 < dp < 1 4 «, according to (3.58), (3.60). Thus,

/ 1O |Pdy < C 2 pU+a=p)—do(1+3,)

IyI=L

We may repeat this process for as many » times, n € N, as necessary, to obtain that

5n+l
/ 1©()|Pdy < CL2POFa=B—do(-+8p+53+.+5}) _ CLz p+a—p)- dO( =5 ) (3.62)
[yI=L
n+1
As before, note that —2— 1 5 1_1 = Z((; ﬁ ; as n — oo. Additionally, from the definition of dy
in (3.60) and cond1t10n (3 26), we have
r —
2 pta—p)—d =P
r(q —p)
q(r —p) rq —p) plg—p) Yi
=2—p(l+a— ﬂ)——[(z—p(wa—ﬁ)) - 1+p-=
r(q—p) q(r—p) q(r—p) r
_P VO_M<5—1—ﬂ) <0. (3.63)
r rg—p) r

Therefore, we may take n sufficiently large for which the power of L in (3.62) is negative. This
implies that ® = 0 in R?, which is a contradiction with our starting assumption that ® = 0 in
R2. This concludes the proof.

3.2. Proof of Corollary 2.3

We start with the proof of (i). Let M be a positive constant such that |@(y)| < |y~ and

[VO(y)| < |y|~® for all |y| > M. Thus, since ® € C'(R?), it follows that for all L > 0 and

r >max{l, 1},Wehave

oy’ 0]
r r 1
1©OM)|'dy < O dy + |y|mody§C,

lyl=L lylsM lyl=M

and
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1
IVO()|"dy < IVO)|"dy + dy<C
||t

[yI=L lyl=M yl=M

Let p; := max{l, U% 0_1} Then, the assumptions of Theorem 2.1 are satisfied with

the following parameter choices: p = p1, r = p1 + 1, yo = 0, and y; = 0. Consequently,
the values of « that admit a nontrivial corresponding profile ® belong to the interval

[,3 1+ p1+1,,3 -1+ %] On the other hand, note that the assumptions of Theorem 2.1

are also satisfied with p =p; +k, r=p; +k+ 1, » =0, and y; =0, for any k > 0.
This implies that the values of o admitting nontrivial profiles must also belong to the inter-

val [,8 14+ o +k+1 ,B— p12+k] for any k£ > 0. In particular, for k > 2, we obtain that
o€ [,3 1+ p|+k+1 ,B— p12+k] N [/3 —14 #, B—1+ %] = (). Therefore, we con-

clude that ® =0 in R?.

We proceed to prove (ii). Let M > 0 such that [VO(y)| < |y|°! for all |y| > M, and fix any
p € [1,00). Choose r > p + 1 sufficiently large such that r > (2 + Bp)/(B — 1 — o1). Observe
that, forall L > 1,

/|V®(y)|rdy§ / IVo)I"dy + / IyI?"dy

[yI=L [yI=M M<|y|<L
<C / dy + L% / dy <CL°" 2, (3.64)
lyl=M M<|y|<L

where we used that © € C! (Rz). Then, it follows by Sobolev embedding that

[ |®(y)|rdy§CL(Ul+l)r+2

[yI=L

Therefore, the assumptions of Theorem 2.1 are satisfied by setting y| = o1r + 2 and yp =
(o1 + D)r +2 =y 4 r. It follows that the values of @ admitting nontrivial profiles belong to the

interval [,8 —2—01,B—1+ %] and the corresponding profile satisfies

C L7 Preh < / ©()|Pdy < CoL> PIHe=P forall L 1, (3.65)

lyIsL

for some positive constants C, C3. On the other hand, since |©(y)| = 1 for |y| > 1, it follows
that

|©(y)|Pdy > CL*>  for L>> 1. (3.66)
lyl<L

Combining the upper bound in (3.65) with (3.66), we must have 1 + « — 8 < 0, which implies
that the values of o admitting nontrivial profiles in fact belong to [8 — 2 — o1, 8 — 1]. This
completes the proof.
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3.3. Proof of Theorem 2.4

The proof of Theorem 2.4 follows similar ideas from the proof of Theorem 2.1. Thus, we will
keep the presentation here shorter and refer to the analogous calculations above as needed, while
expanding on the main differences. As in Theorem 2.1, the proof is divided into three different
cases, each corresponding to a particular range for o within the interval (—1, co). Without loss
of generality, we assume again that xo = 0.

The first case is when o > 8 + % — 1, and the proof is identical to Case | above. The sec-
ond case is when —1 <a < g — 1+ 2—77/’ and as in Case 2 we will start from the local L?
equality (3.7) and estimate each of its terms. The difference lies at the estimate of u due to bet-
ter integrability properties of the kernel Kg when g € (0, 1], in comparison to when 8 € (1, 2).
Namely, as pointed out in Section 1, Kg is integrable near the origin for 0 < 8 < 1, and is a
Calderén-Zygmund operator for 8 = 1. Then, taking as before a cut-off function ¢, € C* R?)
with0 < ¢, <1,¢,=1in B,/3(0),and ¢, =0in B;’ (0), we proceed similarly as in [38, Section
2] by decomposing u into a term involving the self-similarity region and another one outside of
it:

ll(x,t)=C/3P-V-/Kﬁ(x—Y)Q(y,t)¢p(y)dy+C,3P.V./Kﬁ(x—)’)Q(y,l)(l —¢p(¥))dy
R2 R2

=aP 0, ) +aP(x,0). (3.67)

By the local self-similarity of 6, analogously to (3.10), we can rewrite a(!) as

c
D, = —P U“>< al ,t>,
(T —1)T+a (T -1y

where
U (x,1):= P.V. / Kp(x — »)O$, (3(T — 1) 77 )dy.
RZ

Note that i® has the same expression as u® defined in (3.9). Since K g 1s square integrable in
any region that does not contain the origin, for any 8 > 0, then, for p/8 < |x| < p/4, we obtain
as in (3.13) that

0@ (x, 1] < Csll00)]| 2. (3.68)

Proceeding with an analogous computation as in (3.14)-(3.16), it follows that the right-hand side
of (3.7) can be estimated by

4]
‘//|9(x,t)|p(u(x,t)~V¢§(x))dxdt
11 R2
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T WIOMI” B
<C / Wdy +C Wdy’ (3.69)

gh<lyl<4h gh<lyl<fh
where

19}

z7<‘>(y)=/ P.V./K,g(y—z)®(z)¢p(z(T—t)ﬁ)dz 1a, ()t
1 R?2

and 14, is the indicator function of the set Ay defined in (3.15). Plugging this back into (3.7)
and recalling that

[ ooy max =P [ jemire oy,
R2

lyl<%li

where [; = (T — t,')fﬁ, i =1, 2, we obtain that

e f OWIPps (yly Hdy — 1 1T / I@(y)|p¢g(ylfl)dy‘
R2 R2

O WMe)IP CIS]k
=C / [y Pe—p(ta—p) dy+C / [yt p(rap) dy. (3.70)

gh<lyl<fh gh=<lyl<4b

Reproducing the same steps as in (3.19)-(3.20), we obtain

gm p »
L [ eorazc [ 1TIOIO08,, o [ _1o0)

1.2—p(i+a—B) [y[2—a—p(+a—F) y|3ra—p(i+a—p) dy.
lyl<L [yI=L lyl=L

3.71)

Next, proceeding analogously to (3.21)-(3.22) and invoking the upper estimate on the L" norm
of UM on a dyadic shell provided by Lemma 4.2, we get that for L sufficiently large

(P+tH(y-2) =2)p

/ () [Pdy < CLEBE2—p+2 4 cp1-a+ S22 _ oy, (3.72)

IyI=L

where

-2
a+p(7/ )_
r

ap:=1- (3.73)

Clearly, if agp < 0 then ® =0 in R? and the proof is finished. Otherwise, if ag > 0, we use the
new upper bound (3.72) to improve the estimates of the terms on the right-hand side of (3.71).
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By interpolation as in (3.28) with ¢ = p + 1, we have

r—p—1

O()[P T dy < CL+1=9Y  ith § := €[0,1). (3.74)

lyl=L
Next, by applying the dyadic decomposition once again and also Holder’s inequality, we ob-

tain from (3.73), (3.74), and Lemma 4.2 that the first term in the right-hand side of (3.71) can be
estimated as

/ 1TDWO()]?

|y|2—a—pl+a=p)

ly|=L
P 1
- P P
1 ~
<Y ST [ 1ewirtiay J R
k=0 VINEL YINEL
= 1 k7 52 @0d+y (1=8)) nk 1+ 5 God+y (1=8)—(p+1)(a+B))
k=0
o0
< Z(zkL)p(1+ot—;‘3)—2+ot+&08+y(l—5)—0:—/3
k=0
o
< 3 @k =2k (1=0)=f
k=0
o0
S Z(sz)p(1+Oé—/3)_2+dO_dl , (375)
k=0
where
ay:= (@ —y)a-=48-+8. (3.76)

Here we note a relevant difference between the estimate in (3.75) and the analogous one done for
the case 1 < 8 < 2 in Theorem 2.1, namely (3.29). Specifically, since Lemma 4.2 only requires an
assumption on ®, when invoking Holder’s inequality we can apply the LY norm withg = p + 1
on UM and thus also make use of the new bound (3.72) in estimating this factor via (3.74) and
(4.7)-(4.9), in addition to the first factor involving the LY = LP*! norm of ®. By contrast, in
(3.29) we apply the L" norm on VO rather than L4 with q =rp/(r — 1) since the assumption
in Lemma 4.1 involves V®, for which we obtain no further estimate besides the one provided in
assumption (2.3). Clearly, a similar difference in the estimates applies throughout the remaining
of this bootstrapping procedure.

Now observe that since —1 <o < — 1+ Z_Ty andag=1—o + @, then ag + p(1 +
o — B) — 2 < 0. Thus, to ensure that the sum in (3.75) is finite, it suffices to prove that a; > 0.
Recalling that 1 — § = ﬁ and invoking once again the assumption that < § — 1 + Z:V, we
obtain
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ay=(ap—y)(1-8+p
:(l—a+w—y) L1

r r—p
><1_ﬂ+1_(2—y)+p(y—2)_y> 1 LB
r r r—p
=<(p+1—r><y—2>_ﬁ> Ly
r r—p
:r_p_1<2_y+ﬁ)20, (3.77)
r—p r

where in the last inequality we used the assumptions that r > p+ 1 and y < B(r — p) < Br +2.
Therefore, we conclude from (3.75) that

1TOmIOG)P (L ) 2o i
lyI>L

For the second term in the right-hand side of (3.71), invoking (3.72) and recalling that ag + p(1 +
o—B)—2<0and —1 < «, we estimate

o0

©(|? 1 ,
/ |y|3te—pt+e—p) dy < Z (2k )3 +e—p(+a—p) / @1 dy
lyI=L k=0 ly|~2KL
o0 1 B
<Ccy kL)
k7 y34+a—p(1+a—p)
k=0 (2 L) b o=f
< cLPUHe=F)=2+ao—(l+a) (3.79)
Plugging (3.78) and (3.79) into (3.71), we deduce that
1O |Pdy < CL[’O_Z;“, where by := min{d;, 1 + o} > 0, (3.80)

[yI=L
with a; > 0 as given in (3.76).

Now, analogously to (3.40), let us obtain a more general form of an estimate of the profile to
help us proceed with the bootstrapping strategy. Namely, suppose that

/ |©(y)|Pdy < CL°, witho <ap.
IyI=L

Then, proceeding similarly as in (3.74)-(3.75) and (3.79), cf. (3.37)-(3.40), it is not difficult to
arrive at
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/ |®(y)|pdySCLE{()*&]‘F(U*(IO)s_’_CLU*(I‘F(X). (3.81)
lyl=L
Hence,
cro-(te if a—(1+a)>(@—0)1-3), (@
P N . N ju )
| eG)) dyf{CL“Oﬂ’Hr(a_aoﬁs if @ —(14+a)<@—o)1-235). (b) (3:82)
yl=L

_ Next, we specialize this estimate to the case o = ap — by, in view of (3.80). Firstly, suppose
by = ay, so that a; < 1 + «. Then, invoking (3.81) with o = ag — a; yields

/ 1©(y)|[Pdy < CLA~00+8) 4 cpdo—a—(+a) (3.83)

lylsL

Since a; > 14+ a>0,and § € [0, 1), then a6 < a; <1 + «. It thus follows that

/ O |Pdy < CL—a1(148)

lylI=L

We now proceed similarly as in the case by = a; in the proof of Theorem 2.1. Namely, we may
repeat this process n times, for any given n € N, where at each kth time, k € {1, ..., n}, we set
o=adyp—a (14+8+...4+ 8%, and arrive at

1©(y)|Pdy < € LA0—@1(H5+.+57) (3.84)

lyIsL

Notethat 1 +86+...4+ 8" — ﬁ =r — p as n — 00. Moreover, recalling that a; = (ap— y)(1 —
8) + B, we have

Go—ar(r — p) =do — (@ — y)(1 = 8)(r — p) — Br — p)
=y =B —p) <0, (3.85)

where we used the assumption that y < 8(r — p). Hence, it follows that there exists n sufficiently
large such that ag—a;(14+84...48") < 0. For such n, we thus conclude from (3.84) that ® =0
in R2.

For the other case, 50 =1+ o, where 1 + o < ay, we proceed similarly to the case bg = 1 +«
in the proof of Theorem 2.1. We invoke (3.81) with 0 = ap — (1 4 «) to obtain

- CLA0~2(14) if a1—(14+a)>(1+a)(1-38), (a)
/|O(y)|pdy5{CL‘"’O—%—“W)(S if a—(1+a) < +a)(l—29). (b) (3:86)

lyIsL

The proof is over if the powers of L in both (3.86a) and (3.86b) are negative. Otherwise, we may
repeat the same process as in (3.48)-(3.52) and obtain, for each n € N, a number b, such that
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f |©()|Pdy < Li~bum1,

lyl=L

and with

bypy1 > ar(l1+38+...4+8.

Therefore, by proceeding similarly to (3.84) and (3.85), we infer that there exists n € N suffi-
ciently large such that ag — a;(1 +38 + ...+ 8") < 0, which implies that ® = 0 and concludes
the proof of this case.

Finally, for the case 8 — 1 + Z_Ty <a<B—1+2we replicate the argument by contradiction
employed in Case 3. Namely, we assume that ® = 0 and, given that the upper bound in (2.6) is
valid, we assume that the lower bound in (2.6) does not hold. Then, analogously to (3.55), we
obtain

0 » )
e [ 1ewrayzc [ SOE dy e [

1.2—p(+a—B) ly|2-e—p+a—p) y|3te—p+a—p) ’
IyI<L [yI=L [yI=L
(3.87)

This estimate will be repeatedly used in conjunction with (3.74) and Lemma 4.2 to improve
the upper bound of f‘ yi<L |©(y)|”dy. To present this in a more organized manner, assume that

/ |©()|Pdy <CL° witho <2— p(1+a—p).

lyIsL

Then, based on estimates similar to (3.74)-(3.79), cf. (3.37)-(3.39), we obtain from (3.87) the
following general estimate

/ ©()Pdy < CLP=0He=D) | Lo+, (3.88)
[yI<L
where
D:=2—p(l+a—pB)anddy:=(D —y)1—8)+p>0. (3.89)

In view of (3.6), we first apply (3.88) with o = D, and arrive at

f 10()|Pdy < CLP=d 4 cp P—(1+) (3.90)

lyIsL

From (3.89) and the assumption that > 8 — 1 + 2_7/, it follows that 30 <1+ «. Thus,

r

/ ©()[Pdy < CLP.
ly|<L
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Next, applying (3.88) witho = D — do, we obtain that

1©()|Pdy < CLD—&0(1+5) + CLD—JO—(I—Hx). (3.91)

lyl<L
Since 6 € [0, 1) and Czo > (0, then 5708 < d~0 < 1+ «, and consequently
[ 10wiray < cr-i,
Iyl<L
Hence, repeating this process n times, for any given n € N, we arrive at
|®(y)|pdy < CLD*J0(1+5+...+8"). (392)
Iyl<L

Since | +8+...4+68" — ﬁ:r—pasneooandy<ﬂ(r—p),Weobtainthat

D—dy(r—p)=D—[(D—y)(1 =8 +Blr—p) =y —Br—p)<O0.

Therefore, there exists n sufficiently large such that the power of L in (3.92) is negative. This
implies that ©® = 0 in R?, which is a contradiction with our initial assumption that © = 0 in R?.
This concludes the proof.

3.4. Proof of Corollary 2.6
We follow a similar proof as in Corollary 2.3 and make the appropriate modifications. As

such, to prove (i), we first take M to be a positive constant such that |@(y)| < |y|~7 for all
ly| = M. Since ® € C#(R?), we obtain that for all L > 0 and r > %

1
/|®(y)|’dy§ / |®(y)|rdy+f |y|mdy§C.
IyI<L lyl=M lyl=M

Then, denoting p; := max {1, %}, it follows that the assumptions of Theorem 2.4 are satisfied

with p = p1, r = p1 + 1 and y = 0. As a consequence, the values of o admitting nontrivial
2

p1+1°

tions of Theorem 2.4 are also verified with p = p; +k,r = p;+k+1and y =0, for any k > 0,

_2
p1+k

: 2 2 2 2
it follows that « € [5—1+m,ﬂ—1+m]m[ﬁ—1+m,ﬁ—1+E]=@,andwe
deduce that ® = 0 in R2, as desired.

Regarding item (ii), let us now consider M > 0 such that |®(y)| < |y|® for all |y| > M, and
fix an arbitrary p € [1, 00) and r > p + 1. Similarly as in (3.64), we have that for L > 1

profiles ® must belong to the interval [,3 -1+ B—1+ %] Moreover, since the assump-

then such « must also belong to [,8 -1+ ﬁ, B—1+ ] for any k > 0. Taking k > 2,
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/I®(y)|’dy§ / W dy + / lyI"°dy < CL"+2, (3.93)
[yI<L yI<M M<|y|<L

where we again used the fact that © is a continuous function in R? to bound the first integral.
Choosing r sufficiently large such thatr > (24 Bp)/(B—o0),sothator+2 < B(r — p), it follows
that the assumptions of Theorem 2.4 are satisfied with any fixed p > 1, such choice of 7, and y =
or + 2. Thus, the values of o admitting nontrivial profiles ® in this case belong to the interval
B—1—0,—-1+ %], and the corresponding nontrivial © satisfies (2.6). But since |©(y)| 2 1
for |y| > 1, then we may argue as in (3.66) to deduce that in fact « € [ — 1 — o, § — 1], which
concludes the proof.

4. Auxiliary results

In the following result, Lemma 4.1, we prove the upper bound for the function v given in
(3.17) that was used at various steps in the proof of Theorem 2.1 regarding the case g8 € (1, 2).
Specifically, this lemma shows that the growth assumption (2.3) on the L" norm of the gradient
of the profile, V®, yields an upper bound on the L" norm of VD over a certain annulus in R2.
The subsequent Lemma 4.2 shows an analogous result in the case 8 € (0, 1] by relying instead
on assumption (2.2) on ®, which was used in the proof of Theorem 2.4.

Let us recall the definition of the set A, given in (3.15), namely

A {te[tt] Pl _r t)ﬁ<p1}
= L2l o= = = =TT
’ 8 1yl 41yl
_ (p/4)'* (p/8)'*

for fixed y e R\ {0} and 0 <t; <1 < T.

Lemma 4.1. Let 8 € (1,2) and © € CL(R?). Suppose that for some r € [1,00) and y € R, it
holds

/|V®|’dy§LV Sforall L> 1. 4.2)

IyI=L

Then, the function v defined by

19}
\7<1>(y):/‘/ |y—1z|/3 V5EO@), (2(T — ) Te)dz| T4, (D)dt, 4.3)
1 R2

with0 <ty <t <T and Ay as given in (4.1), satisfies the following estimate

|V(1)(y)|rdy <prtr=e=F - forall L > 1. 4.4

L=|y|=2L
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Proof. Denote the kernel from (4.3) by

— 1
Kp(y) = AR R2\{0}.

From the definitions of V(1) and Ay, we have

r

/ O dy

<|yl=2L

r 1
123 r

= / f /f;;(y—Z)VL(H)(z)qsp(z(T_t)ﬁ)dZ 1a,(0dt | dy
\LflylszL 1 R2

1

r 1

T,(P/8)1+a r
|).‘1+(¥

IA

/?ﬁ(y_Z)VL®(Z)¢p(Z(T —nwa)dz|dt | dy

L=lyl=2L \7_(@4lte R2
Ty e

1
r

_(p/g)l-Hx T
=y
_ 1
= / /Kﬂ(y_Z)]lB|gL(0)(y_Z)VJ_@(Z)(pp(Z(T —H)Te)dz|dt | dy| ,
L|yl=2L \p_ oo R?
mlJrot
4.5)

where as before Bjgy, (0) denotes the ball of radius 18 L centered at the origin, and we used that for
1 1
y| <2L,|z| < p(T—t)  ™e andt < T — ([\)T/IS)H(X’ itholdsthat |y —z| <2L+p(T —¢t) T+« <
2L + 8|y| < 18L.
Applying Minkowski and Young’s convolution inequality, we obtain

/ |V<“<y>|’dy> "

L=|y|=2L
T?(%)lﬂl

_ e
< f < / ‘ /Kﬁ(y — )1 p, )Y — DIVEO)P, (T — 1)+ 2)dz
T_(ﬂT/S)Hot L<|y|<2L R?2

1

r G
dy) dt

T— #)H—a

—~

(/ (K p1815,.0) * (VO ()T —t)”;”))](y)lrdy)rdf

T_(PT/“)1+41 R2

=

—
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T—(#)l+a
— 1
< / 1K 61 3,5, 0111 @2 IV O (VT — ) TF)|| 11 2y dt
Ti(pTM)H—D[
T_(#)H»a

= [ ([ ge0)( [ wrewra)a

p/4 <18L 1
T IS Yl<p(T 1) T

T— (20 e i
1 T
5( / Wdy) f ( f |V®(y>|’dy) dr. (4.6)
ly|<I8L T_(pTM)1+a lyl<16L

Since B € (1,2), then fly\<L ly|~Pdy < L?>~B. Moreover, invoking assumption (4.2), it fol-
lows that for all L sufficiently large

| T— /T)lJrot
/ |V“><y>|’dy)'5L2‘ﬁ [ Lrdt SLrti=ep,
L<|y|<2L T_(pT/4)l+Ot

which proves (4.4). O

Lemma 4.2. Let € (0, 1] and © € CB(R?). Suppose that for some r € [1,00) and y € R, it
holds

/ lO@)|'dy LY, forall L>> 1. 4.7)
Iyl=L

Then, the function om defined by

~(1) -2+t 1
U'V(y = fP V/ B |2+ﬁ®(1)¢p(Z(T—t)l+a)dZ ]lAy(t)dt 4.8)

where 0 < t] <ty < T, satisfies the following estimate
OV dy S LY 77@HB  forall L>> 1. (4.9)
L=ly|<2L

Proof. Let us first assume that 8 € (0,1). Note that, in this case, the kernel Kg(x) =
yEy|~C*A) |y € R?\ {0}, from (4.8) is integrable near the origin. Namely,
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I ]
[ igsonay= [ —pay s (4.10)
IyISL IyISL

16\ 1T«

~

We may thus apply similar arguments as in the proof of Lemma 4.1 to arrive at
T—(2
1

1
~ r 1 7
([ wvors) =( [ o) [ weera) a

L=lyl=2L IyI<I8L T_(pT/z;)H“ lyl<16L

—~
\h‘
~—

Thus, it follows from (4.10) and assumption (4.7) that

T_<#)l+a
1

|t7“>(y>|’dy) SLP / Lrdi LT F,
L=ly|=2L T_(pTM)Ha

as desired.

The proof for the case § = 1 was done in [38, Lemma 2.2]. Here we note that (4.10) no
longer holds. However, in this case the kernel Kg is a Calderén-Zygmund operator, and hence
I1Kp* fllLarz) S IfllLar2) forany f € L7(R?) and 1 < ¢ < oco. Replacing the use of Young’s
convolution inequality in (4.6) with this property, one may then proceed with analogous argu-
ments and conclude (4.9). O
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