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Machine Learning and Deep Learning
Applications in Magnetic Particle Imaging

Saumya Nigam, PhD,"? Elvira Gjelaj,m’ Rui Wang, PhD,* Guo-Wei Wei, PhD,**>* and
Ping Wang, MD, PhD"#*

In recent years, magnetic particle imaging (MPI) has emerged as a promising imaging technique depicting high sensitivity
and spatial resolution. It originated in the early 2000s where it proposed a new approach to challenge the low spatial resolution
achieved by using relaxometry in order to measure the magnetic fields. MPI presents 2D and 3D images with high temporal res-
olution, non-ionizing radiation, and optimal visual contrast due to its lack of background tissue signal. Traditionally, the images
were reconstructed by the conversion of signal from the induced voltage by generating system matrix and X-space based
methods. Because image reconstruction and analyses play an integral role in obtaining precise information from MPI signals,
newer artificial intelligence-based methods are continuously being researched and developed upon. In this work, we summarize
and review the significance and employment of machine learning and deep learning models for applications with MPI and the

potential they hold for the future.
Level of Evidence: 5
Technical Efficacy: Stage 1

n modern clinical settings, biomedical imaging plays a huge

supporting role, enabling the physicians to visualize and provide
precise diagnostics for a wide range of diseases and conditions.
Biomedical imaging encompasses various modalities such as com-
puted tomography (CT), magnetic resonance imaging (MRI),
positron emission tomography (PET), ultrasound, and more, gen-
erating invaluable data for medical diagnoses. Biomedical imaging
has seen remarkable improvements throughout the years.
With a vast plethora of available imaging modalities, like
X-rays, CT, MRI, PET, and ultrasound, comes a large
amount of corresponding imaging data. Image reconstruc-
tion plays a crucial role in biomedical imaging through
tomographic methods by transforming raw data into visual
representations. It enables the generation of detailed and
accurate images, facilitating the diagnosis of medical condi-
tions. This process enhances the effectiveness of various
imaging techniques, such as CT scans and MRI, in
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healthcare applications." Traditional methods of image
processing can suffer from noise, artifacts, or low resolution
due to various reasons. Fast and accurate handling of this
data has necessitated the use of artificial intelligence (Al) in
medical image reconstruction, processing, and analysis. Al
has shown significant promise in image reconstruction and
analysis and can be used to enhance the quality and inter-
pretability of these images.” Al based techniques have
improved the imaging process in several ways. It can help
reduce noise, enhance the spatial resolution, real-time qual-
ity control, contrast enhancement, reduction of construction
time, dose reduction (eg, ionizing radiations in CT and
PET), and artifact reduction (implants, dental fillings, pace-
makers, motion artifacts from patients) to name a few. Al
techniques for medical image reconstruction largely rely on
training the models on large datasets of both clean and noisy
images. These trained models can then be applied to process
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newly acquired images, resulting in improved image quality
and diagnostic accuracy. However, it is essential to validate
and carefully integrate Al solutions in a clinical setting to
ensure their safety and efficacy.

Magnetic particle imaging (MPI) is an emerging, nonin-
vasive, radiation-free, preclinical imaging technique first
reported almost 20 years ago.”* MPI has shown great prom-
ise in recent years and has experienced numerous advance-
ments.” This article elaborates on the different Al based
image reconstruction and analysis approaches targeted
towards MPI. Unlike traditional imaging methods like X-ray,
MRI, or CT, MPI relies on this unique non-linear magnetic
response of superparamagnetic nanoparticles to generate
images. The most commonly used nanomaterial for this
imaging modality is the superparamagnetic iron oxide
nanoparticles (SPIONs). The working principle of MPI is
based on Maxwell configuration, which involves the use of
magnetic field-free points (FFPs) to generate images. In this
setup, two opposing electromagnets create a field-free region/
point where the SPIONs experience minimal magnetic forces.
An oscillating magnetic field gradient is then applied, causing
the SPIONS to align with the field thereby generating a signal
detectable by the receiving coils. At this moment, SPIONs
have the ability to produce a signal due to their unsaturated
state. The system captures signals from multiple FFPs, enabling
the reconstruction of high-resolution images based on the spa-
tial distribution of SPIONs. There are no signals that are pro-
duced in the receiver coil outside of FFR due to magnetically
saturated SPIONs.”® The intensity of the signal depends on
the concentration of nanoparticles at each location, making it
possible to differentiate tissues based on their nanoparticle con-
tent. This quantitative correlation of MPI signal intensity and
nanoparticle concentration is a characteristic unique to
MPL”'? After the receiver coil picks up the MPI signal, the
next step includes the image reconstruction. This can be
achieved by using the harmonic-space MPI and X-space
MPL'"""? Although full sized human scanners have not been
available yet, researchers have been making persistent efforts to
scale-up this imaging modality."*"> As MPI scanners have
acquired recognition throughout the years, more extensive
research has been conducted in attempts of improving the
imaging performance and broaden the scope of its applica-
tions.'® So far, MPI has been used for cell tracking, vascular
imaging, neurodegenerative disorders, lung imaging, and cancer

detection and treatment.!” %>

MPI Image Generation: System Matrix-Based
and X Space-Based

System matrix-based image reconstruction is a technique
involving the use of a matrix, which represents the mathemad-
cal relationship between the acquired raw data and the desired
image. The matrix incorporates information about the imaging
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system’s geometry, characteristics, and the physical processes
involved. By applying this matrix to the raw data, image recon-
struction algorithms can generate a detailed image, providing a
clear representation of the imaged object or tissue. The system
matrix is a critical component in the image reconstruction pro-
cess for MPI, which contains Fourier components that corre-
spond to the MPI response of every point source location.”®*’
The system matrix relates the spatial distribution of SPIONs
within the imaging region to the measurements acquired by
MPI detectors. Therefore, precharacterization of SPIONs
becomes essential for accurately reconstructing the SPIONs
distribution from the acquired data. It also establishes the rela-
tionship between the SPIONs distribution and the acquired
MTPT signal. It describes how the spatial positions of SPIONs
affect the measurements obtained by MPI detectors (Fig. .12
The dimensions of the system matrix correspond to the number
of detectors and the number of spatial positions (voxels) within
the imaging region. In practical terms, this matrix is typically
quite large and sparse, given that there are many voxels and
detectors involved in MPI imaging.”® Building the system
matrix is a computationally intensive process as it requires the
placement of the nanoparticle probe to different spatial positions
in the field of view the magnetic field which is then used to
populate the matrix based on the detector measurements for
each spatial position.”” The output of the reconstruction process
is a high-resolution 2D or 3D image that represents the spatial
distribution of SPIONs within the imaged region. Accurate
reconstruction relies on calibration of the system matrix,
which includes accounting for the system’s geometry, sensi-
tivity, and the properties of the SPIONs. A major drawback
of system matrix-based image reconstruction is its computa-
tional complexity and memory requirements. Constructing
and manipulating the system matrix can be resource-
intensive, especially for large and high-resolution datasets.
This complexity may lead to increased processing times and
demands on computational resources, limiting its the real-
time applicability. Additionally, inaccuracies in the model-
ing of the system matrix can introduce artifacts or errors in
the reconstructed images, affecting the overall reliability of
the reconstruction process.

In contrast, there also exists a concept of hybrid system
matrix. Hybrid system matrix-based image reconstruction com-
bines elements of system matrix-based reconstruction with
other methodologies (like magnetic particle spectrometer) to
improve imaging accuracy. It typically involves integrating
information from multiple imaging modalities or employing
hybrid imaging systems. By incorporating data from various
sources or using hybrid systems that capture complementary
information, this approach aims to enhance the reconstruction
process.”” This fusion of techniques can lead to more detailed
and comprehensive images, particularly in scenarios where the
strengths of different imaging modalities can be leveraged for a
more robust reconstruction.
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FIGURE 1: (a) The principle of the CS-symmetry method: the first half of the SM is recovered based on the CS method. Then, the
complete SM is recovered based on mirror symmetry (alternatively, by changing the order of the two steps, symmetry-CS is
permissible). (b) The SM components at different frequencies recovered with the symmetry-CS method at different sampling rates.
(c) Reconstructed phantom results of the recovered SM at different sampling rates based on the symmetry-CS method, reproduced

with permission from Springer Nature."?

X-space-based MPI image reconstruction is a funda-
mental approach that leverages the spatial encoding principles
of MPI and the mathematical relationships between nanopar-
ticle distribution and detected signal. In MPI, the concept of
“X-space” is an important framework for image reconstruc-
tion. It is a mathematical representation used to describe
the spatial distribution of SPIONs and their response to the
MPI measurement process. It typically refers to a three-
dimensional Cartesian grid that covers the entire imaging vol-
ume. The system model in X-space relates the measured MPI
signal to the nanoparticle distribution within the imaging
region. It describes how the spatial positions of nanoparticles
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affect the measurements obtained by the MPI detectors.
Unlike system matrix-based approach, X-space allows the genera-
tion of a native MPI image without requiring precharacterization
of nanoparticles.”’ MPI utilizes spatial encoding, such as mag-
netic field gradients, to encode the position of nanoparticles
within the imaging volume. This spatial encoding is described in
X-space, where each voxel (volume element) in the grid repre-
sents a potential position for tracer particles.3 2 Langevin equa-
tion provides a directly proportional relationship of the field
required to saturate a single magnetic nanoparticle with the
nanoparticle’s volume. MPI detectors capture the signals emitted
by the SPIONS, often referred to as the “k-space data,” which
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serve as the input data for the image reconstruction process. The
data is typically transformed from the time domain to the
frequency (k-space) domain before reconstruction. X-space
method holds advantages over harmonic space due to its proven

).>" LSI systems ensure that

linearity and shift invariance (LSI
there is a linear relationship between the pixel intensity in the
image and the quality of the tracer at those pixels. This allows
for better accuracy and can be more reliable. Overall, MPI
X-space relies on three hypotheses: 1) The uniqueness of FFP,
which refers to the region where the static magnetic field is zero.
Here, it is assumed that the position of the FFP is unique at all
times, 2) Adiabatic Langevin model. It is assumed that the mag-
netic particles align adiabatically with the applied magnetic field,
and 3) Recovery from loss of low-frequency information. The
issue of low-frequency signal loss is not new to X-space MPI
since the system matrix experiences it as well; however, it is
recoverable through resilient signal signaling techniques.'""
Ongoing research aims to further improve reconstruction tech-
niques and optimize the use of regularization for better image

quality and accuracy.

Al Methods in Biomedical Imaging

Various Al methods are increasingly being used to generate
biomedical images, improving the speed, quality, and effi-
ciency of the imaging processes.”*” These methods are par-
ticularly valuable for applications such as denoising,
reconstruction, image augmentation, and even generating
synthetic images for training Al models. Al can also be used
to enhance the spatial resolution of medical images, such as
upscaling low-resolution MRI or CT scans to higher
resolution.® ™ Al can reduce noise and artifacts in medical
images, making them clearer and more diagnostically valu-
able. Al-based denoising methods are particularly beneficial in
noisy imaging modalities like ultrasound.**~*® In recent years,
the advent of machine learning (ML), particularly its subset
deep learning (DL), has significantly transformed the field of
biomedical imaging.47’48 One of the critical challenges in
MPI is image reconstruction. Incorporating ML and DL tech-
niques into MPI, has the potential to substantially enhance
image resolution, accelerate data processing, and improve diag-
nostic accuracy.49 These advanced algorithms have demonstrated
remarkable capabilities in image analysis, interpretation, and deci-
sion support. Various DL architectures, such as convolutional
neural networks (CNNG),*®%°! can be used for image-to-image
translation tasks in the biomedical field. Conditional generative
adversarial networks,”>>® U-Net architectures,”® and similar
models can convert images from one domain to another, for
example, converting 2D scans into 3D volumes. Al can gen-
erate augmented versions of real images for training DL
models. Techniques like rotation, scaling, translation, and
color variation can be applied to increase dataset size and

model robustness.

January 2025

Nigam et al.: ML and DL Applications in MPI

With all the promises and encouraging results, it also has
some drawbacks. Al-driven image reconstruction in biomedical
imaging faces challenges such as heavy reliance on extensive,
diverse datasets, potentially compromising performance for
underrepresented cases. Lack of interpretability in DL models
raises concerns about understanding critical decisions. Demand-
ing computational resources hinder real-time applications and
difficulties in generalization across modalities and patient demo-
graphics may limit broad applicability. Ethical and legal consid-
erations regarding privacy and data security also pose challenges
for responsible Al integration in clinical settings.

Conventional Machine Learning (CML) Approaches
in Biomedical Imaging

CML is a subset of Al that focuses on the development of
algorithms that learn patterns and make predictions or deci-
sions based on data. As CML algorithms can be trained to
recognize patterns, they are revolutionizing biomedical imag-
ing by enhancing image reconstruction processes, segmenting
regions of interest, and analyzing images. This further aids in
disease diagnosis, and even predicts patient outcomes.” >/
In this context, image reconstruction involves converting raw
data, often acquired from imaging modalities like MRI,”*>’
CT,* or ultrasound,®”® into high-quality, diagnostically
valuable images. These techniques have proven to be quite
effective in this domain and are increasingly employed to
learn the complex mappings between the acquired data and
the desired reconstructed images. Their capability to handle
large and high-dimensional datasets make them suitable for
processing the vast amount of data generated by the imaging
modalities. One significant advantage of CML-based image
reconstruction is its ability to improve image quality while
reducing acquisition times and radiation exposure, which is
crucial for patient safety. It can effectively denoise images,
correct artifacts, and enhance resolution, providing
healthcare professionals with clearer and more informative
images for diagnosis and treatment planning. Furthermore,
CML allows for adaptive and patient-specific reconstruction,
optimizing the process for each clinical scenario. These
models can classify medical images into categories, such as
healthy or diseased, based on patterns and features extracted
from the images. CML algorithms can accurately delineate
regions of interest within images, such as tumor boundaries,
facilitating treatment planning and assessment.**** CML
models have been applied to detect diseases from various
imaging modalities. For example, they can detect lung nod-

65,66 . ) 4
> neurodegenerative disorders, % or

67

ules in chest scans,
abnormalities in mammograms.

CML APPROACHES IN MPI. CML is helping MPI make sig-
nificant strides by transforming its image reconstruction and
analysis processes. These models are particularly adept at
learning the intricate relationships between raw MPI
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the

nanoparticles.Gg’G9 They cannot only contribute to artifact

measurements  and spatial  distribution  of
reduction, improve image quality and spatial resolution, and
expedite reconstruction times but also play a crucial role in
segmenting MPI images and quantifying nanoparticle distribu-
tion within dssues (Fig. 2).7% Accurate segmentation allows for
precise measurements and analysis of nanoparticle concentra-
tions, which can aid in disease characterization and treatment
planning. While this approach employs unsupervised ML for
segmentation and subsequent iron quantification, it achieved
excellent performance of K-means++ based model on segmenta-
tion and quantification analysis of MPI data.

The results demonstrated that the K~means++ algorithm
exhibited a high degree of specificity in segmenting true sig-
nals, showing little susceptibility to signal bleeding or noise.
This held true even in the presence of spatially complex signal
patterns. The algorithm’s accuracy, when compared to assess-

ments by an imaging specialist, was reinforced by a high degree

of inter-rater reliability across all in vitro, in vivo, and ex vivo
models. In some instances, the algorithm exhibited fewer
instances of salt noise and false positives in its region of interest
(ROI) predictions, potentially enabling more accurate predic-
tion of iron content compared to that of an imaging
specialist.70

A method that combined deblurring and region scalable
ficting (DeRSF) was proposed to determine the imaging tracer
distribution. Then, a uniform erosion and scaling criterion
was established based on simulation experiments to correct
the segmentation results, which was further validated on
phantom imaging. MPI tracer at gradient concentrations were
imaged to establish the calibration curve between the MPI
signal and iron mass for iron quantification in phantom and
in vivo imaging. Three alternative MPI segmentation methods
including grayscale morphological reconstruction, k-means
clustering, and k-means + RSF were compared with the
DeRSF method. The segmentation results of four different
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FIGURE 2: Overview of the K-means++ algorithm and standard curve for total iron value (TIV) prediction. Raw image of MPI is
loaded into the algorithm, and a k value is chosen in order to cluster the data points for segmentation. The cluster of interest is then
selected from the predicted clusters. A standard curve is then generated based on the total pixel sum value and corresponding total
iron value of the four reference markers. This standard curve is used to estimate the unknown TIV of the segmented ROI of interest,

reproduced with permission from Springer.”®

46

Volume 61, No. 1

QSUOIIT SUOWWIO)) AANEAL)) d[qedridde oy Aq pauIdA0S dIe SF[ONIE Y (9SN JO SO J0F AIRIQIT dUIUQ KJ[IA\ UO (SUOHIPUOD-PUB-SULID} /W00 Kd[Im " AIeIqriour[uo//:sd)y) SuonIpuo)) pue Sud [, oy} 908 [$z07/10/91] uo Areiqr auruQ A9[IM ‘6767 IWl/Z001 0 1/10p/wod Ao[im  ATeIqrouruo,//:sdjyy woiy papeorumo( ‘1 ‘Sz0T ‘98STTTS T



algorithms and the ground truth images, demonstrating that
the DeRSF segmented results were closer to the ground truth
images. The quantitative evaluation also showed that the
DeRSF had the highest dice coefficient.”! Moreover, CML
algorithms can aid in real-time reconstruction, making it
instrumental in scenarios where rapid image generation is
crucial.”* These CML algorithms can also address challenges
unique to MPI, such as compensating for system-specific
characteristics, improving signal-to-noise ratio, avoiding
ringing artifacts in MPI and providing reconstructions
with sharpened edges.”” In addition, CML can be applied to
integrate MPI data with data from other imaging modalities
(eg, CT, or PET).”>77 This further enables multimodal
imaging, providing complementary information for more
comprehensive diagnostics.

While CML has made significant contributions to bio-
medical imaging, it is not without challenges and limitations.
High-quality labeled data is essential for training CML
models. Gathering large, diverse, and well-annotated datasets
can be time-consuming and costly. Many CML models are
challenging to understand about their decision-making pro-
cesses. In critical medical applications, interpretability is cru-
cial. Ensuring that CML models generalize well to diverse
patient populations and imaging modalities is a complex task.

DL Approaches in Biomedical Imaging

DL is a subset of ML that leverages deep neural networks to
automatically learn hierarchical features from raw data. It is
well-suited for complex tasks with large datasets but often
requires more computational resources and lacks the inter-
pretability of traditional ML algorithms. The choice of DL
techniques depends on the specific problem, available data,
and computational resources. DL techniques are making sub-
stantial advances in the realm of biomedical imaging by revo-
lutionizing image reconstruction processes.””’” Its ability to
automatically learn features from data using deep neural net-
works is key to its prominent use. DL techniques, particularly
CNNs, are proving to be exceptionally effective in enhancing
image reconstruction in this context, enabling the diagnosis
of diseases from medical images with high accuracy. DL algo-
rithms can decipher complex patterns and relationships in
medical image data, offering remarkable advantages in terms
of denoising, artifact correction, and resolution enhancement.
This integration of DL within biomedical imaging is
poised to transform medical diagnostics, providing healthcare
professionals with sharper, more informative images that
drive better clinical decision-making and improved patient
outcomes.®” These networks are designed to learn from large
datasets, enabling them to grasp intricate details and features
within the acquired data. One of its most remarkable aspects
for biomedical image reconstruction is its capacity to expedite
imaging procedures while maintaining, or even enhancing,
the quality of images. These results in a reduced burden on
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patients, shorter scan times, and decreased radiation exposure
in the case of modalities like MRI and CT. DL models, such
as U-Net and Mask region-based convolutional neural net-
work (R-CNN), are widely used for precise image segmenta-
tion, allowing for the identification and measurement of
specific structures or abnormalities. On the other hand,
models like generative adversarial networks (GANs) can gen-
erate synthetic medical images, which can be used for data
augmentation or simulating different scenarios.”®' Due to
their adaptability, the DL models can also tailor reconstruc-
tion to specific clinical requirements and the unique anatomi-
cal characteristics of individual patients. This personalized
approach boosts diagnostic accuracy and enables more
targeted and effective treatments. As technology continues to
advance, the impact of DL on biomedical imaging is only
expected to grow. DL models are extensively used for medical
image analysis in radiology, pathology, and dermatology. It can
identify and classify anomalies in X-rays, MRIs,**®** CT
scans,”"® PET,**® and histopathology slides,* "

the detection of lung anomalies, tumors, fractures, skin diseases,
92-99

aiding in
and cell tracking.

DL APPROACHES IN MPI. In context of MPI, DL plays a
crucial role in enhancing the image reconstruction process,
offering several advantages. Traditional reconstruction
methods often face challenges in extracting clear and accurate
images from the raw MPI data, which can be noisy and con-
tain artifacts. DL models, on the other hand, excel at learning
intricate patterns and relationships within this data, enabling
them to generate high-quality images with greater speed and
precision.'?™'%* DL for MPI image reconstruction aids in
denoising images, reducing artifacts, and enhancing spatial
103105 1. MpI

CNNs, are employed to tackle the complex task of image

resolution. DL algorithms, particularly
reconstruction due to their ability to automatically learn hier-
archical features from data.’®*"'°® While the primary appli-
cation of CNNs in MPI may be image reconstruction, they
can also be used for other tasks such as image enhancement,
artifact reduction, and feature extraction.'?” They can learn
to map raw MPI data to high-quality images by capturing
complex patterns and relationships in the data.'”®'*” CNN-
based reconstruction methods are data-driven and can
enhance the quality of MPI images, especially in the presence
of noise and artifacts. It enables the production of clearer and
more diagnostically valuable images for medical professionals,
which is crucial in various clinical applications, including can-
cer imaging, vascular mapping, and cell tracking.”®''!"
Another area emerging to supplement MPI image analysis is
the GANs. GANSs are a type of DL model composed of a gen-
erator and a discriminator, and they are used for various tasks
in MPI, including image reconstruction, and denoising. GANs
can generate synthetic medical images, aiding in data augmenta-
tion and anomaly detection. They can be used to enhance the
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FIGURE 3: Comparison of limited view reconstruction results using in vivo mouse data, reproduced with permission from Elsevier.""?

FBP

image reconstruction process in MPI too. By training a GAN
on a dataset of MPI measurements and corresponding high-
quality images, the generator network can learn to produce
more accurate and high-resolution images from the raw MPI
data. This is particularly useful for improving image quality and
reducing noise and artifacts.''* This is important in cases where
MPI images are affected by noise, making it easier to interpret
the results. They can also be used for quantitative analysis of
MPI images by learning to estimate nanoparticle concentration
and distribution in a ROI, aiding in image analyses.”" In addi-
tion, a projection generative network was employed to obtain
sparse-view projections for the reconstruction, aiming to
enhance the temporal resolution of 3D imaging in projection
MPL>* The researchers utilized simulated data for algorithm
training and validation, while actual phantom and mice data
were employed to assess the accuracy of the network. This
approach is grounded in pretrained models for related tasks,
which proves advantageous in cases where labeled data for MPI
is limited. It also contributes to enhancing the model’s perfor-
mance with less specific training data. However, the selection of
an appropriate sparse representation and robust handling of
noise pose challenges. Projection MPI has the potential to
greatly enhance the temporal resolution of 3D imaging when
compared to traditional point-by-point scanning methods.
However, the requirement for a dense view of projections in
tomographic reconstruction poses limitations on optimizing
temporal resolution. In the context of CT, addressing this chal-
lenge involves utilizing limited view projections (sparse view or
limited angle) during reconstruction. This can be achieved by
completing the limited view sinogram and employing image
post-processing  techniques to mitigate streaking artifacts
resulting from insufficient projections. Despite significant
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progress made by DL algorithms in both categories, which have
benefited from large-scale CT datasets, the implementation of
similar methods in MPI faces hurdles due to limited data avail-
ability. To overcome this limitation, a cross-domain knowledge
transfer learning strategy aims to transfer the prior knowledge of
limited views learned by a CT model to MPI was proposed.''?
This novel approach helps alleviate network requirements for
authentic MPI data. Additionally, the size of the imaging target
influences the extent of streaking artifacts arising from inade-
quate projections. In response, a parallel-cascaded multi-scale
attention module has been developed. This module enables the
network to dynamically recognize streaking artifacts across dif-
ferent scales. The effectiveness of the proposed method was
assessed using phantoms and iz vive animal models, demon-
strating its superior performance compared to several alter-
native limited view methods (Fig. 3).1 It s promising that
these proposed methods could eliminate streaking artifacts caused
by an insufficient number of projections for MPL'"?

Opverall, the application of DL in MPI is a dynamically
evolving field, and the development of DL architectures and
training strategies tailored to MPI is an area of ongoing
research.

Despite their successes, DL models come with their
own set of challenges. First, they typically require large and
diverse datasets which can be scarce in medical imaging due
to privacy concerns. Second, DL may not generalize well to
new and diverse data across different imaging systems, patient
populations, and nanoparticle types, and it can be sensitive to
variations in image quality or acquisition protocols. Last,
training these models demand substantial computational
resources, which can be a barrier for widespread adoption in
healthcare systems with limited infrastructure.
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Conclusions and Future Directions

ML and DL models have revolutionized the field of biomedi-
cal imaging, empowering healthcare professionals with
advanced tools for diagnosis, treatment planning, and patient
care. As technology continues to advance and datasets grow,
the potential for Al-driven healthcare solutions becomes even
more promising. The integration of CML and DL techniques
in MPI image reconstruction and analyses have the potential
to significantly enhance the diagnostic capabilities and
research potential of this cutting-edge imaging modality.
These advanced algorithms can enhance image reconstruc-
tion, segmentation, and quantification, enabling better disease
diagnosis and treatment planning. As the field of MPI
continues to evolve and datasets grow, the amalgamation of
Al-based approaches will play a vital role in advancing patient
healthcare and improving decision-making. We believe in
near future, these new Al tools can also facilitate remote diagno-
sis and monitoring, enhancing healthcare accessibility in under-
served areas. However, it is essential to address challenges related
to data availability, model interpretability, integration with
clinical workflow, ethical considerations, and regulatory to fully
harness the potential of Al in MPI. With continued research,
collaboration, and responsible implementation, these technolo-
gies have the potental to reshape the future of biomedical
imaging and personalized medicine.
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