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Despite the success of pretrained natural language processing (NLP)
modelsinvarious fields, their application in computational biology has
been hindered by their reliance on biological sequences, whichignores

vital three-dimensional (3D) structural information incompatible with

the sequential architecture of NLP models. Here we present a topological
transformer (TopoFormer), which is built by integrating NLP models and
amultiscale topology technique, the persistent topological hyperdigraph
Laplacian (PTHL), which systematically converts intricate 3D protein-
ligand complexes at various spatial scales into an NLP-admissible sequence
of topological invariants and homotopic shapes. PTHL systematically
transformsintricate 3D protein-ligand complexes into NLP-compatible
sequences of topological invariants and shapes, capturing essential
interactions across spatial scales. TopoFormer gives rise to exemplary
scoring accuracy and excellent performance in ranking, docking and
screening tasks in several benchmark datasets. This approach can be utilized
to convert general high-dimensional structured data into NLP-compatible
sequences, paving the way for broader NLP based research.

Drugdiscoveryis crucial for modern healthcare, profoundly affecting
our lives. Traditional drug development methods are laborious and
expensive, taking over adecade and billions of dollars to bring asingle
drugto market’. These methods, including molecular docking®?, free
energy perturbation® and empirical modelling’, have advanced drug
discovery but have limitations. They often lack accuracy, are compu-
tationally intensive for large-scale screenings and may miss unconven-
tional binding sites or interaction kinetics, potentially overlooking
therapeutic opportunities.

Deep learning models are emerging as promising tools in drug
design®™, celebrated for their ability to predict protein structures
and identify complex patterns for superior predictions™. The transi-
tionto deeplearning, leveraging chemoinformatics and bioinformat-
ics®, signifies a pivotal shift towards data-driven approaches in drug
design and discovery'*°. However, challenges such as the need for

frequentretraining and dependence on labelled data remain substan-
tial obstacles.

Groundbreaking transformer-based models like ChatGPT, which
leverage large-scale pretraining and unlabelled data, highlight the
untapped potential of self-supervised learning” . These models pro-
vide a powerful glimpse into potential solutions, particularly in the
field of drug discovery where an insufficiency of labelled data can be
alimiting factor?>?. While the success of the transformer framework
in the realm of natural language processing is undeniable, its direct
application to the domain of drug discovery, especially for protein-
ligand complex modelling, raises pertinent questions because the
method neglectsimportant stereochemical information of structures.
One pivotal quandary is tailoring a model intrinsically designed for
serialized language translations, to suit the study of protein-ligand
complexes, which inherently defy serialized representation.
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Fig.1|Schematicillustration of the overall TopoFormer model. a, A3D
protein-ligand complex (PDBID 6E9A) and its interactive domain. b, The
topological sequence embedding of a3D protein-ligand complex. Initially,
the complexis splitinto a topological sequence, known as a chain complexin
algebraic topology. Then, element-specific subcomplexes are created to encode
physicalinteractions on a variety of scales controlled by afiltration parameter.
Subsequently, element-specific PTHLs are utilized to extract the topological
invariant and capture the shape and stereochemistry of the subcomplexes. For
these subcomplexes, their topological invariant changes over scales that are
retained in the harmonic spectrum of the hyperdigraph Laplacians, while their
homotopic shape evolution over scales are manifested in the non-harmonic

spectrum. Finally, the multiscale topological invariant changes and homotopic
shape (stereochemical) evolution are assembled into a topological sequence as
theinput to the transformer. ¢, Self-supervised learning is applied to unlabelled
topological sequences for both transformer encoders and transformer decoders.
The outputs from the reconstructed topological sequences are used to calculate
the reconstruction loss. d, At the supervised fine-tuning stage, task-specific
protein-ligand complex data are fed into the pretrained encoder, which is
equipped with specific predictor heads, such as the scoring head, ranking head,
docking head and screening head. Subsequently, except for the docking task,
the remaining predictions are consolidated with sequence-based predictions to
produce the final result. seq., sequence.

Inresponseto the existing challenges, we leverage advanced math-
ematical models from algebraic topology, differential geometry and
combinatorial graph theory. These models, previously applied to
represent biomolecular systems, have achieved notable successes® .
Drawing upon insights from advanced mathematics, we unveil our
topological transformer model: TopoFormer. TopoFormer is built upon
persistent topological hyperdigraph Laplacian (PTHL)?, an advanced
algebraic topological method. While intrinsically mirroring founda-
tional topological invariants akin to traditional persistent homology?”,
this multiscale technique introduced the topological hyperdigraph to
captureintrinsic physical, chemical and biological interactionsin pro-
tein-ligand binding and uniquely delivers anon-harmonic spectrum,
shedding light on the three-dimensional (3D) intricacies of protein-
ligand complexes. In a nutshell, PTHL utilizes its multiscale topology
and multiscale spectrum to convertintricate 3D protein-ligand com-
plexes into one-dimensional topological sequences that are ideally
suitable for the sequential architecture of transformers (Fig. 1). This
innovative fusion not only melds topological insights with cutting-edge
machinelearningbutalso heralds a paradigm shiftin our grasp of pro-
tein-ligand relationships. Capitalizing onits deep-rooted topological
framework, TopoFormer redefines performance benchmarksindrug

researchtasks like scoring, ranking, docking and screening. Its nuanced
design ensures that unconventional interactions are not overlooked
butareinstead spotlighted. As showninthe results, TopoFormer con-
sistently outshines its peers, achieving state-of-the-art outcomes
across diverse benchmark datasets in drug discovery.

The following text introduces the topological transformer (Topo-
Former) model and evaluates its performance in key tasks such as
scoring, ranking, docking and screening. The analysis highlights Topo-
Former’s strengths and advantages over traditional methods.

Overview of TopoFormer

Thetransformer architecture” introduced anew technique using atten-
tion mechanisms for sequential data analysis across domains'®*%,
Inspired by this, we developed a topological transformer model, Topo-
Former, integrating our PTHL* with the transformer framework, as
depictedinFig.1. Unlike traditional transformers that process protein
and ligand sequences, TopoFormer inputs 3D protein-ligand com-
plexes. It transforms these complexes into sequences of topological
invariants and homotopic shapes through PTHL, capturing their physi-
cal, chemical and biological interactions at multiple scales. Pretrain-
ing on a diverse dataset enables TopoFormer to understand complex
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Fig.2|Performance of TopoFormer on scoring and ranking tasks.

a, Comparison of PCCs of various models for protein-ligand complex binding
affinity scoring on the CASF-2016 benchmark. The results from other methods
areinthegreen colour. b, Comparison of s.d. of different models for protein-
ligand complex binding affinity scoring on the CASF-2016 benchmark. The
results from other methods are in the blue colour. The quantitative results
ofaandbarelisted in Supplementary Table 4, taking from refs. 22,25,30-32,
42,48,69,70.c, Comparison of the r.m.s.e. (inlog K,) of predictions for the
CASF-2007, CASF-2013 and CASF-2016 datasets from the Seq-ML model,
TopoFormer model, TopoFormer, model, TopoFormer,-Seq and TopoFormer-
Seq. The horizontal axis is the number of models in the consensus (consensus
size). The solid line represents the median r.m.s.e. and the shaded background
providesthe error bar for these 400 r.m.s.e. values. d, Comparison of the PCC

of predictions for the CASF-2007, CASF-2013 and CASF-2016 datasets from the
Seq-ML model, TopoFormer model, TopoFormer, model, TopoFormer,-Seq

and TopoFormer-Seq. The horizontal axis is the consensus size. The solid line
represents the averages and the shaded background provides the error bar

for the 400 PCCs at each consensus size. e, The correlation between predicted
protein-ligand binding affinities (TopoFormer PCC = 0.865) and experimental
results for the CASF-2016 benchmarks. Grey dots represent the training dataand
red dots denote the test data. f, Comparison of the ranking power assessed using
both high-level success measurements (depicted in dark shades) and low-level
success measurements (shown in lighter shades) across three benchmarks.
Results from TopoFormer-Seq are represented in blue and those from
TopoFormer,-Seq areillustrated in orange.

molecularinteractions, including stereochemical effects not evident
in molecular sequences. Fine-tuning on specific datasets allows it to
capture detailed interactions within complexes and their characteris-
ticsrelative to the entire dataset, enhancing downstream deep learning
applications.

Tofocus our analysis, we identify heavy ligand and nearby protein
atoms within set distances, using a 20 A or amore precise 12 A cutoff,
asdepicted inFig. 1a. TopoFormer then transforms 3D molecular struc-
tures into topological sequences through its topological sequence
embedding module (Fig. 1b), utilizing PTHLs for a multiscale analysis.
This process embeds various physical, chemical and biological inter-
actions into sequences of vectors.

TopoFormer undergoes self-supervised pretraining with unla-
belled protein-ligand complexes, as shown in Fig. 1c, using a trans-
former encoder-decoder toreconstruct topological sequences. This
phase, which measures the accuracy by comparing output and input
embeddings, prepares the model to understand protein-ligand dynam-
icswithoutlabelled data. Following pretraining, TopoFormer entersa
supervised fine-tuning stage with labelled complexes (Fig. 1d), where
the initial embedded vector becomes a key feature for downstream
tasks like scoring, ranking, docking and screening. Each task has a
dedicated headinthe predictor module. Toensure accuracy and reduce
biases, TopoFormer integrates multiple topological transformer deep
learning modelsinitialized with different seeds and complements them
with sequence-based models. The final output is a consensus of these
diverse predictions, making TopoFormer a comprehensive model for
analysing protein-ligand interactions, leveraging both topological
insights and deep learning.

Evaluating TopoFormer on scoring tasks

The prediction of protein-ligand binding affinity plays a pivotal role
in drug design and discovery. To assess the scoring capability of our
models, we have evaluated themusing the three most widely recognized
protein-ligand datasets fromthe PDBbind database: CASF-2007, CASF-
2013 and CASF-2016 (refs.30-32). The Pearson correlation coefficient
(PCC), the standard deviation (s.d.) and the root mean squared error
(r.m.s.e.) are used to measure the performance of the scoring func-
tion. In this task, we consider two TopoFormer models: a large model
(TopoFormer) with longer topological sequence 100; asmaller model
(TopoFormer,) with topological sequence of length 50.

To enhance robustness, we train 20 topological transformers
(TopoFormer) with unique random seeds for each dataset, minimiz-
inginitialization errors. Predictions from smaller models are labelled
TopoFormer,. To mitigate biases from using a single model type, we
also employ sequence-based models, incorporating protein features
from the experience sampling method (ESM) model*® and Simpli-
fied Molecular Input Line Entry System (SMILES) features from the
Transformer-CPZ model*®. Additionally, 20 gradient boosting regressor
tree models are trained on these sequence-based features, with their
collective predictions termed Seq-ML. The final output, ablend of Topo-
Former and Seq-ML predictions, is represented as TopoFormer-Seq and
TopoFormer,-Seq for the smaller models. Figure 2¢,d illustrates how
consensus size affects performance, with 400 trials per size showing
thatlarger consensus sizes yield better performance (higher PCC, lower
r.m.s.e.) and more stability (less error variation). A consensus size of
10is chosen for further analysis, where TopoFormer-Seq consistently
outperforms other models, closely followed by TopoFormer,-Seq.
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Table 1| The PCC and r.m.s.e. (in kcalmol™) of our TopoFormer models on the three benchmarks of CASF-2007, CASF-2013

and CASF-2016
Dataset CASF-2007 CASF-2013 CASF-2016 Average
TopoFormer-Seq 0.837(1.807) 0.816 (1.859) 0.864 (1.568) 0.839 (1.745)
TopoFormer,-Seq 0.839 (1.798) 0.809 (1.886) 0.855 (1.609) 0.834(1.764)
TopoFormer 0.826 (1.830) 0788 (1.910) 0.849 (1.595) 0.821(1.778)
TopoFormer, 0.826 (1.832) 0.781(1.944) 0.836 (1.657) 0.814 (1.811)
Seq-ML 0.798 (1.974) 0.790 (1.960) 0.837 (1.693) 0.808 (1.876)

TopoFormer and TopoFormer, are considered. The averages of 400 repetitions are computed as the performance of the model. The detailed setting of two TopoFormers and gradient boosting

regressor tree parameters can be found in Supplementary Information Section 2.

Our TopoFormer-based models consistently outperform
others in terms of PCC scores across three benchmark datasets, as
illustrated in Fig. 2a and Supplementary Fig. 3a,b, with the lowest s.d.
compared to methods with reported s.d. or r.m.s.e., as detailed in
Supplementary Table 4. By averaging results from 400 repetitions,
TopoFormer-Seqachieves anaverage PCC of approximately 0.84 across
these datasets, as detailed in Table 1. Notably, on the PDBbind v.2016
dataset, TopoFormer-Seq excels with a PCC of 0.866 and anr.m.s.e.
of 1.561 kcal mol™, surpassing the previous leader, TopBP?. These
benchmarks are summarizedin Table 3, with Fig. 2e and Supplementary
Fig. 3c,d showcasing the comparison between predicted and experi-
mental binding affinities.

To assess TopoFormer’s performance on structurally similar pro-
teins, we employed the CASF-2016 core set, which canbe groupedinto
57 clustersbased on protein sequence similarity. Asillustrated in Sup-
plementary Fig. 4, TopoFormer-Seq yielded the lowest mean r.m.s.e.
(1.504 kcal mol™) across all clusters. DeltaVinaRF20 followed closely
with an r.m.s.e. of 1.563 kcal mol™. These findings indicate TopoFor-
mer’s superior performance compared to other commonly used meth-
ods. Foracomprehensive overview, the quantitative r.m.s.e. values of
allmethodsacrossall clusters are presented in Supplementary Table 5.

Recently, several deep learning models have been reported for
the prediction of protein-ligand binding affinity. Notable examples
include the graphDelta model**, ECIF model®, OnionNet-2 model®,
DeepAtom model” and others®**°. These new models typically lever-
age on large training datasets that incorporate additional data from
the general sets of the PDBbind database and thus are not comparable
with other models that were trained on different training datasets. The
details regarding the composition of training sets, testing sets and
their corresponding performance are tabulated in Supplementary
Table 3. For the latest PDBbind v.2020 (ref. 41), we consider a total of
18,904 protein-ligand complexes for training, which has no overlap
withthe core sets of CASF-2007, CASF-2013 and CASF-2016. Our model
achieved a commendable final PCC of 0.853 and an r.m.s.e. 0of 1.295
(equivalent to 1.769 kcal mol™) on the core set of CASF-2007. For the
CASF-2013 core set, the PCC of 0.832 and an r.m.s.e. 0of 1.301 (equiva-
lent to1.777 kcal mol™) are obtained. Similarly, on the CASF-2016 core
set, we obtained aPCC of 0.881 with anr.m.s.e. 0f 1.095 (equivalent to
1.496 kcal mol™). For the PDBbind v.2016 core set, we achieved a PCC of
0.883withanr.m.s.e. of1.086 (equivalent to 1.483 kcal mol™). Here, all
theresultsare the average of 400 repeated experiments. These results
underscore the robustness and predictive power of the TopoFormer
modelin the realm of protein-ligand binding affinity predictions.

Evaluating TopoFormer on ranking tasks

The efficacy of a scoring function is critically assessed by its aptitude
to accurately rank the binding affinities of protein-ligand complexes
within distinct clusters. In this work, two evaluative approaches are
employed: the high-level and the low-level success measurements.
In the high-level success metric, the objective is to perfectly rank the
binding affinities of the complexes within each cluster. Conversely,
the low-level success criterion requires the scoring function to merely

identify the complex with the pinnacle binding affinity. The assessment
of ranking efficacy termed ‘ranking power’ is gauged by the propor-
tion of correctly identified affinities across a specified benchmark.
The mathematical formulations of the high-level and low-level suc-
cess measurements can be found in the Supplementary Information
Section1.

Figure 2f illustrates the ranking power of TopoFormer-based
models. For the CASF-2007, the TopoFormer-Seq model achieved
outstanding success rates, with 72% for low-level measure-
ment and 63% for high-level measurement. In comparison, the
TopoFormer,-Seq model achieved success rates of 70% for low-level
and 58% for high-level measurement. Both models outperformed
previous approaches, as demonstrated in high-level measurement
Supplementary Fig. 5 and low-level measurement Supplementary
Fig. 6. Similarly, for the CASF-2013, the TopoFormer-Seq model
achieved success rates of 76% for low-level and 63% for high-level
measurement, surpassing the performance of earlier models. The
challengesintensified in CASF-2016, comprising 57 clusters, each con-
taining five distinct complexes®’, making ranking tasks notably more
demanding. In this context, the TopoFormer-Seq model achieved a
success rate of 60% for low-level measurement and 21% for high-level
measurement. The best-performing models for low-level (68%) and
high-level (29%) success were AVinaRF20 (ref. 42).

Evaluating TopoFormer on docking tasks

Inthe present study, we harnessed the capabilities of TopoFormer, to
assess its docking proficiency, particularly its ability to distinguish
native binding poses from those generated by established docking
software packages. (Due to computational resource constraints, we
employed TopoFormer, for both docking and screening tasks.) Our
evaluation centred onbenchmark datasets CASF-2007 and CASF-2013
(refs.30,31). A pose was considered native ifits root-mean-square devia-
tion (r.m.s.d.) with respect to the true binding pose was less than the
2 A threshold. Successful prediction occurred when the pose with the
highest predicted binding energy matched a native pose. Following
this comprehensive evaluation encompassing all 195 test ligands, an
overall success rate was computed for the employed scoring func-
tion. The detailed assessment of docking success rates is available in
Supplementary Information Section 1.

In molecular docking, deep learning methods have been applied
effectively, leading to notable advancements*’. Notable approaches
include DeepDock** (62.11% success), OnionNet-SFCT* (76.84%),
DeepBSP* (79.7%) and RTMScore* (80.7%) on the PDBbind core set.
However, direct comparisons are difficult due to training on diverse
datasets. For a fair evaluation, we trained TopoFormer, on publicly
available dataand compared it onthe CASF-2007 and CASF-2013 data-
sets**** asdetailed in Methods. As depictedinFig. 3f,g, TopoFormer,
achieved success rates 0f 93.3% on CASF-2007 and 91.3% on CASF-2013,
outperforming existing models and demonstrating the efficacy of our
topological approach. This underscores the diversity and potential of
new methodologiesinimproving docking accuracy, offeringacompre-
hensive and innovative solution to the docking challenge.

Nature Machine Intelligence | Volume 6 | July 2024 | 799-810

802


http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-024-00855-1

d ] e

. 1 l

c c c c
2 Qo S0 S0
< g €8 €8 €8
£ =] =] =]
PDBID 1AJQ < < 2 5 8 n < 2 5 8 n <
Filtration parameter (A) Filtration parameter (A) Filtration parameter (A) Filtration parameter (A)
f 9 j k
TopoFormer, 93.3 TopoFormerg TopoFormer, TopoFormer, [ TN
AGL-score 84.0 AGL-score GlideScore-SP GlideScore-sP —| .
GOLD:ASP 825 DyinaRF20 ChemScore@GOLD Chemscore@GolD [T
DyingRF20 80.0 ChemPLP@GOLD GlideScore-XP Ligscore2eps | [N
DS:PLP1 3 GlideScore-SP. LigScore2@D$ GlideScore-XP 7::.
DS:PLP2 ChemScore@GOLD ChemPLP@GOLD chemplpecoLo | [ T
DrugScorePDB: Pair PLPIGDS LUDI@DS LUDI2@DS —|
DrugScorePDB::PairSurf LigScore2@Ds LUDI2@DS LUDI@DS 7_|_-
GlideScore:SP Alpha-HB@MOE ¥ ASP@GOLD ASP@GOLD ] ]
DS::LigScore2 PLP2@DS v LigScore1@Ds tigscorel@ps - [ TN
GOLD::ChemScore GlideScore-XP PDBIDTEGS Affinity-dG@MOE Affinity-dc@mMoE —[ [T TR
GOLD::GoldScore ASP@GOLD i London-dG@MOE PLPI@DS 1
X-Scorel.2:HMScore GoldScore@GOLD GoldScore@GOLD GoldScore@GOLD — ]
X-Scorel.2:HSScore LUDI2@DS PLPI@DS London-dG@MOE —] ]
X-Score1.2 LigScore1@Ds ® LUDI3@DS LUDI3@DS |
DS::LigScorel Affinity-dG@MOE c PLP2@DS pe2eps — [ T
SYBYL:F-score X-ScoreHM 8 Jain@DS seineps TN
GlideScore:XP London-dG@MOE S PMF@SYBYL Chemscore@syayL — [ JRNN
X-Scorel.2::HPScore X-score a ChemScore@SYBYL PMF@SYBYL 7:|:-
X-Scorel.3 ChemScore@SYBYL g PMFO4@DS Alpha-HBemoE —| [T [RNN
X-Scorel.3:HMScore LUDI@DS o Alpha-HB@MOE pmroa@Ds — [ TR
SYBYL:ChemScore X-ScoreHs Tg PMF@DS pvreps | [ TR
DrugScoreCSD::Pair X-ScoreHP uc) ASE@MOE aseemoe — [N
X-Scorel.3::HSScore PMFO4@DS € X-ScoreHP x-scorere — [T
DS:LUDI2 PMF@SYBYL i) DScore@SYBYL x-scorerm —_ T
DS::LUDIT ASE@MOE w X-ScoreHM Dscore@syeYL - [T
X-Score1.3:HPScore LuDI3@DS X-ScoreHs [ Top 1% xscorens {0 [ Top 10%
DrugScoreCSD:PairSurf Jain@DS X-score X-score ] )]
DS::LUDI3 GScore@SYBYL GScore@SYBYL O Top 5% Gscore@svevL —{ T NN O Top 5%
SYBYL:PMF-score PMF@DS 2 5 8 1 dsAs M Top 10% dsas [T O Top 1%
. . H T T
30 60 90 Filtration (A) 0 15 30 0 40 80
[ eie— .
Docking power Docking power 1 2 Screening power Screening power
CASF-2007 success CASF-2013 success Gradient x10-° CASF-2013 CASF-2013

rate (%) of best pose

rate (%) of best pose

Fig.3 | Performance of TopoFormer on docking and screening tasks.

a, Visualization of the protein-ligand complex PDBID 1AJQ. The highlighted
rectangle shows the protein’s pocket area. b-e, Four distinct ligand poses within
the protein 1AJQ. The molecule in light grey represents the true pose, while the
blue molecules depict alternative poses withr.m.s.d. values of 0 A (b), 1.6 A
(c),5.8 A(d)and 7.5 A (e). The light blue curve represents the attention score
generated by TopoFormer, varying with the filtration parameter (that is, the
scale) of the topological embedding. The highest attention scores are observed
atscalesofd=4.2A,d=7.2A,d=9.2 Aandd=10.4 A for posesinb, c,dand e,
respectively. f,g, Comparison of docking success rates between TopoFormer,

enrichment factor success rate (%)

and traditional docking tools on the CASF-2007 core set (f) and the CASF-2013
coreset (g). h, Visualization of the protein-ligand complex PDBID 1E66. i, The
saliency map of the topological embedding for complex 1E66. The colour bar
represents the gradient weights of each feature relative to the prediction.

Jj, Comparison of screening success rates for the top 1%, top 5% and top 10%
selected ligands between TopoFormer,and docking tools on the CASF-2013 core
set. k, Comparison of average enhancement factors for the top 1%, top 5% and top
10% selected ligands between TopoFormer,and docking tools on the CASF-2013
core set. Max@, maximum at.

Tounderstand what TopoFormer,learned in post-fine-tuning, we
analysed the impact of spatial scale on protein-ligand interactions
using attention scores. Figure 3b-e illustrates four ligand poses near
the protein pocket (Protein Data Bank Identifier (PDBID) 1AJQ) high-
lightedinFig. 3a. The real experimental pose in Fig. 3b hasanr.m.s.d. of
0 A.We calculated TopoFormer,’s attention scores for all spatial scales,
reflecting the impact of interaction ranges on the docking score. The
highest attention score atd = 4.2 A suggests this scale most influences
binding affinity. Figure 3c-e displays poses withr.m.s.d.sof 1.6 A,5.9 A
and 7.5 A, respectively, with their maximum attention scores at scales
d=72A,d=9.2Aandd=10.4 A. This indicates a positive correlation
between pose deviation from the true position and the scale at which
interactions most affect the docking score.

Evaluating TopoFormer on screening tasks

Machine learning transforms the screening task by making it more
accurate, efficient and cost-effective, which is vital for accelerating
the pace of drug discovery*’. To assess the screening capabilities of
our TopoFormer method, we employ the CASF-2013 core set. Given
that the evaluation of screening power necessitates the identification

ofthree true binders for each of the 65 proteinsin the core set, we take
the crucial step of fine-tuning the pretrained TopoFormer,model. For
this purpose, we assemble a training dataset encompassing both ligand
poses and energy labels, customizing TopoFormer, for each protein
target. Our screening task comprises two key steps. First, we generate
posesforthe195ligands through adocking procedure and predict their
scores using TopoFormer,, denoted as S,. Subsequently, we employ a
sequence-based classification gradient boosting decision tree model,
leveraging combined features from the Transformer-CPZ model*® and
the ESM model®. This yields probabilities for the given ligands, referred
toasS,. Ligands with high multiplied scores (S =S, x §,) are identified as
predicted binders. Here, due to computational resource constraints,
we only utilize TopoFormer,for virtual screening. Additionally, in this
work, the successrate and enrichment factor (EF), specifically EF,,, EFs,
andEF,,,, areusedin the virtual screening for drug discovery. It provides
insight into the ability of the method to prioritize active compounds
over non-active ones. The detailed definitions for both successrateand
EF are provided in Supplementary Information Section 1.

Figure 3j,k shows that TopoFormer outperforms previous meth-
odsinsuccessrate and EF. TopoFormer achieves a 68% success rate and
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a29.6%EF for the top 1%-ranked molecules, surpassing GlideScore-SP’s
60% success rate and 19% EF. For the top 5% and 10% ranked molecules,
TopoFormer’ssuccessrates are 81.5% and 87.8%, with EFs of 9.7 and 5.6,
respectively, the highest among tested methods (Fig. 3k). AGL-score*®
and AVineRF20 (ref. 42) show comparable results but only for the top
1% on the CASF-2013 dataset. Deep learning models like RTMScore®,
DeepDock**and PIGNet™ also show notable results but were evaluated
onthe CASF-2016 set and trained on different datasets, limiting direct
comparison with TopoFormer.

To identify the most influential scales of protein-ligand interac-
tions on TopoFormer, predictions, we generated a saliency map for
a specific complex (PDBID 1E66), as shown in Fig. 3h. The analysis
considers protein atoms within 12 A of the ligand. In Fig. 3i, the y axis
represents different element-specific combinations, and the x axis
shows the filtration parameter from2 A to12 A. The colour bar indicates
the gradientintensity for each topological feature, withlarge gradients
marked in black, especially around the 4 A scale. This saliency map
highlights the decision-making process of TopoFormer,, showing that
heavy-atom interactions around 4 A substantially impact the model’s
screening output, given the absence of hydrogen atoms in the PDBbind
database and our models.

We also evaluated our proposed method using the LIT-PCBA
dataset, which is characterized by an extreme imbalance between
experimentally verified actives and inactives, reflecting the challenging
conditions of real screening tasks. We included all 15 targets from the
LIT-PCBA dataset in our evaluation, measuring performance using the
EF, acrossthesetargets. AsshowninTable 2, our model demonstrated
competitive performance, achieving an average EF,, of 7.29, which
surpasses most score function-based screening methods, except for
the Interaction Fingerprint (IFP) method, whichreported an EF,, 0f 7.46
(ref. 52). It isimportant to note that IFP and GRIM methods, while not
strictly score function-based, resemble fingerprint similarity search
approaches, and their generalizability may be limited in some cases****.
Our model relies on 3D poses generated by AutoDock Vina, which
itself achieved a screening efficacy of EF,,=4.74. To provide a com-
prehensive understanding of our model’s performance, we conducted
detailed evaluations for each target within the dataset and compared
our results with the most recent published work® (Supplementary
Table 6). Despite comparing our model against the best results from
models trained with multiple parameters, our approach outperformed
otherson 8 out of the 15 targets. It is also important to clarify that our
evaluationdid notinvolve overfitting our model; the reported results
are the average outcomes from 20 TopoFormer-Seq models.

However, it must be acknowledged that comparisons may not
be entirely fair due to the use of different docking software across
methods, which can substantiallyimpact performance. Despite these
challenges, our findings indicate that our model maintains excellent
screening capabilities across large virtual screening benchmarks.
Furthermore, we will make all 3D poses generated during this study
publicly available, contributing to the transparency and reproduc-
ibility of our research.

Discussion

In our study, we utilize the PTHL for a detailed representation of 3D
protein-ligand complexes, offering advantages over conventional
graphs, simplicial complexes and hypergraphs (see Supplementary
Fig. 9). Asshown in Fig. 4c, the topological hyperdigraph captures
complex higher-order relationships through directed hyperedges that
connectverticesin specific sequences, covering dimensions from 0 to
3. This approach allows for modelling complex interactions beyond
simple pairwise connections by using directed hyperedges of various
dimensions. Moreover, the orientation of these edges incorporates
physical and chemical properties, such as electronegativity and ioniza-
tionenergy, providingamore nuanced representation than traditional
methods. Supplementary Fig. 10g,h demonstrates this capability by

Table 2 | Comparison of the screening powers on LIT-PCBA
dataset

Groups Docking programs  Scoring function Average EF,,
Surflex Surflex 2.51
Pafnucy 5.32
Ref. % AVinaRF20 5.38
IFP 7.46°
GRIM 6.87°
Smina RFScore-4 1.28
RFScore-VS 0.73
Ref. Vina 11
Dense (affinity) 2.58
Smina + Vinardo Vinardo 0.99
Smina + Lin_F9 Vina 278
Ref. & AVinaRF20 318
Lin_F9 221
Dy roXGB 5.55
Glide SP Glide SP 406
Ref. *° GT 6.51°
GatedGCN 6.8°
This work AutoDock Vina Vina 474
TopoFormer,-Seq 7.29

#Similarity searching approach. "The best score among models trained with different
hyperparameters is shown.

differentiating two B,C,H, isomers with directed hyperedges, show-
casing the method’s ability to effectively distinguish elemental
configurations.

In the investigation of protein-ligand complexes, we employ
topological hyperdigraphs forinitial representation, further enhanced
by PTHL theory?®® to analyse their geometric and topological features.
Drawing inspiration from physical systems like molecular structures,
where the zeroth-dimensional Hodge Laplacian operator has the
connection with the kinetic energy operator of the Hamiltonian for
well-defined quantum systems, we extend a discrete analogy to topo-
logical hyperdigraphs. These eigenvalues of Laplacian matrix provide
insights into the topological object’s properties, akin to a physical
system’s energy spectrum, offering a detailed view of the structural
and energetic aspects of complex systems.

Comparedto traditional persistent homology, our PTHL method
marks asubstantial advancement by analysing abroader range of struc-
tures beyond simplicial complexes. It captures fundamental homology
information and geometric insights, including Betti numbers and
homotopic shape evolution, through the non-harmonic spectra of
persistent Laplacians. Supplementary Fig. 7a-e shows our method’s
analysis results, offering amore comprehensive characterization than
traditional homology, whichis illustrated in Supplementary Fig. 7f.
The multiplicity of zero eigenvalues of the Laplacians, corresponding
to Betti numbers, confirms that our approach encompasses barcode
information, as shown in Supplementary Fig. 7e, providing a robust
framework for understanding protein-ligand complexes.

To capture the complex range of atomic interactions in protein-
ligand complexes, including covalent, ionic and van der Waals forces,
we utilize the PTHL for a multiscale analysis. This method allows for
the examination of interactions across scales by evolving topological
sequences based on filtration parameters, aiding transformer models
inrecognizing the contributions of each scale to properties like bind-
ing affinity. Figure 3b-e illustrate how different scales contribute to
protein-ligand complex formation through attention scores.
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Elementalinteractions, including hydrogen bonding, van der Waals
forces and pi-stacking, are fundamental to the stability and specificity of
protein-ligand complexes. Toanalyse these interactions at the elemental
level, we introduce an element-specific analysis within the topological
sequence embedding, as shown in Fig. 1b. This approach constructs
sub-hyperdigraphs based on common heavy elements in proteins and
ligands, generating element-specific Laplacianmatrices toencodeinter-
actions withinthe complex. Thistechnique extracts detailed physicaland
chemical features, enhancing the transformer model’s understanding
ofthe complex dynamicsin protein-ligand interactions. Further details
onthis element-specific analysis are provided in Methods.

Methods

Datasets

The dataset utilized for pretrainingin this study isacomprehensive com-
pilation of protein-ligand complexes (without the labels) sourced from
the diverse PDBbind database, including CASF-2007, CASF-2013, CASF-
2016 and PDBbind v.2020 (ref. 41). To ensure the dataset’s integrity and
toeliminateredundancies, arigorous curation process was meticulously
conducted, resulting inatotal of 19,513 non-overlapping complexes for
pretraining. Rigorous training-test splitting isemployed and advocated
inthis work. For the standard scoring and ranking tasks, the training set
comprises the defined refine set, excluding the core set, from PDBbind
CASF-2007 (equivalent to PDBbind v.2007), CASF-2013 (equivalent to
PDBbind v.2013), CASF-2016 and PDBbind v.2016 datasets. The test
set encompasses the respective core sets of these datasets. Given the
absence of a core setin PDBbind v.2020, the general set (19,443), exclud-
ingtheall core sets from CASF-2007, CASF-2013, CASF-2016 and PDBbind
v.2016, isemployed as the training set (18,904) for the large TopoFormer
model. This approach enables a meaningful comparison with recently
developed models that have been trained using different data sources.
Further details regarding the datasets can be found in Table 3.

For the docking task, the test sets were sourced from the bench-
mark datasets CASF-2007 and CASF-2013. Each of these datasets con-
sists of 195 test ligands, and for each ligand, 100 poses are generated
using various docking programs®®>'. In preparation for the docking
task training set, a set of 1,000 training poses are generated for each
given target ligand-receptor pair within the test set. These training
poses were generated using GOLD v.5.6.33 (ref. 56). Consequently, for
both CASF-2007 and CASF-2013, there was a total of 365,000 training
poses available for fine-tuning purposes. The pose structures and
their corresponding scores, as reported by GOLD, are accessible at
https://weilab.math.msu.edu/AGL-Score.

For the screening task, the core set of CASF-2013 was utilized as the
test dataset. This set comprises 65 proteins, and each proteininteracts
with three true binders selected from the 195 ligands within the core
set®®, Regarding the training set, for each target protein present in
the test set, the training dataset was constructed using all complex
structures and their associated energy labels from the PDBbind v.2015
refine set. Notably, the core (test) set complexes were excluded from
this training dataset. To augment the training dataset, additional poses
and their corresponding labels were generated*®”. It is worth men-
tioning that the list of true binders for each protein is available in the
CASF-2013 benchmark dataset. For eachligand, the pose with the high-
est energy was used as the upper bound for the training set. All pose
structures and their scores can be accessed at https://weilab.math.
msu.edu/AGL-Score. Additionally, to ensure an unbiased evaluation,
we employed the LIT-PCBA benchmark dataset™, which comprises
15 targets with a total of 7,955 true actives and 2,644,022 inactives.
This dataset’s active-to-inactive ratio of approximately 1:1000 closely
mirrors real-world virtual screening scenarios. Following established
practices and to optimize computational efficiency”, we selected the
most representative PDB template for each target as the docking tar-
get. Autodock Vina®” was used to generate up to ten docking poses per
compound, withanenergy range of three and exhaustiveness of ten. The

Table 3 | Detailed information of the used datasets

Datasets Training Test set (core set)
set
Pretraining Combined PDBbind 19,513 /
(self-supervised (CASF-2007, 2013, 2016,
learning) PDBbind v.2015, v.2020)
CASF-2007 1,105 195
CASF-2013 2,764 195
CASF-2016 3,772 285
. . PDBbind v.2016 3,767 290
Fine-tuning
(supervised PDBbind v.2020 18,904 195 (CASF-2007
learning) core set)
195 (CASF-2013
core set)
285 (CASF-2016
core set)

pose with the strongest binding affinity score was selected for predic-
tion by our model. This resulted in a total of 2,651,977 protein-ligand
complexes. Detailed dataset information is summarizedin Supplemen-
tary Table 7. All posed protein-ligand complexes and associated scores
are publicly available at https://github.com/WeilabMSU/TopoFormer.

Topological sequence embedding

Topological hyperdigraph. Topological hyperdigraphs offer a power-
ful generalization, encompassing graphs, digraphs, simplicial com-
plexes and hypergraphs. They excel at representing intricate
relationships, including multi-source to multi-target mappings and
asymmetric connections, which pose challenges for traditional graphs
or simplicial complexes®. Essentially, a topological hyperdigraph
consists of sequences of distinct elements from afinite set, known as
directed hyperedges. Figure 4c provides examples of directed hyper-
edges of varying dimensions. These sequences share similarities with
simplices in a simplicial complex (Fig. 4b). For detailed definitions of
common graph, simplicial complex and hypergraph concepts, refer
toSupplementary Information Section 3. A hyperdigraph 7 comprises
avertex set Vand a collection of sequences with distinct elements in
V. A sequence of length k +1is called a k-directed hyperedge, mathe-
matically represented as an inclusion map e:[k] > V, where
[k1=10,1, ..., k}. Ahyperdigraph s essentially a collection of directed
hyperedges on V, sometimes denoted as # = (V,E), withErepresenting
the set of directed hyperedges. Notably, hyperdigraphs canbe reduced
tohypergraphswhenthe set Vand all directed hyperedges are ordered,
and to directed graphs when all directed edges are restricted to one
dimension. This versatility positions hyperdigraphs as powerful aggre-
gators, enabling flexible and diverse data representation.

More formally, let G be an abelian group, and let C,(V; G) be the
Abeliangroup generated by the sequences with (k +1) distinct elements
in V. Then C.(V; G) is a chain complex with the boundary operator
0,: C(V; G) > C,(V; G)given by

k
X0, X1, %) = 2 (<1 (Xgs s K e, X, M
i=0

Here, x;means omission of the termx,. Let F,(J¢; G)be the Abeliangroup
generated by the k-directed hyperedges on 7. It follows that F,(7(; G)
isagraded subgroup of C.(V; G). We denote

YUE;6) = {x € FRTC; G)|0kx € F (5 G)). 2

Then, 2,((;G) is also a chain complex, specifically tailored for
exploring the topology of hyperdigraphs. It is essential to highlight
that the chain complex £2,(¢; G) undergoes simplification when the
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Fig. 4 |Illustration of the concepts related to topological sequence
embedding. a, Representation of structural data as a point cloud. b, Depiction
of 0-simplex (node), 1-simplex (edge), 2-simplex (triangle) and 3-simplex
(tetrahedron), which serve as the fundamental building blocks of a simplicial
complex. ¢, lllustration of O-directed hyperedge, 1-directed hyperedge,
2-directed hyperedge and 3-directed hyperedge, which form the basic building
blocks of a hyperdigraph. d, Visualization of the multiplicity of zero spectra, that
is, topological invariants, of the persistent topological hyperdigraph at the Oth
(Bo) and 1st (B,) dimensions, respectively, showcasing their variations with
respect to the filtration (scale) parameter d. e, lllustration of the impact of
varying the filtration parameter on multiscale analysis, resulting in changes
inthe connectivity of the point cloud and the creation of asequence of
hyperdigraphs, representing a series of topological structures. f, Representation
of non-zero minimum non-harmonic spectra of the PTHL at the Oth and 1st

Hyperdigraph

2 3 4 5 6 7
Filtration parameter, d

k

L, non-harmonic eigenvector
embedding (A"")

L, harmonic eigenvector
embedding (H,)

dimensions (A7 and A"™"), highlighting their dependence on thefiltration
parameter d. g, Visualization of protein 6L9D with a representation featuring
only Ca atoms. The alpha helix is highlighted in orange, while the beta helix is
showningreen. h, Illustrations of simplicial complex representation for the Ca
atoms of protein 6L.9D at a cutoff distance of d =5 A. The 2-simplices are filled by
green, 3-simplices are coloured by orange. i, Visualizations of hyperdigraph
representations for the Ca atoms of protein 6L.9D at a cutoff distance of d =5 A.
The1-directed hyperedges are depicted as purple edges with arrows, the
2-directed hyperedges are represented by pink edges with arrows, and the
3-directed hyperedges areillustrated as blue edges with arrows. j, Description of
the £y non-zero smallest non-harmonic eigenvector embedding for the Ca
atoms of protein 6L.9D at a cutoff distance of d =5 A. Kk, Explanation of the £;
harmonic eigenvector embedding for the edges between the Ca atoms of protein
6L9D atacutoffdistance of d=5 A.

hyperdigraphis transformed back into a simplicial complex or hyper-
graph. The corresponding simplicial complex representation of Ca
atomsinprotein 6L9Disdepictedin Fig.4h.Here, blue triangles repre-
sent the 2-simplices, while orange highlights designate the 3-simplices,
providingarough visualization of the alpha helix structures. Addition-
ally, Fig. 4iillustrates the 3-directed hyperedges within the hyperdi-
graph, highlighted in blue, serving as an alternative representation of
thealphahelixinthestructure. Supplementary Fig. 9 further presents
diverse topological representations, encompassing graphs, simplicial
complexes, hypergraphs and hyperdigraphs. More detailed descrip-
tions and definitions of graphs, simplicial complexes and hypergraphs
areavailable in the Supplementary Section 3 and the original paper?.

Furthermore, to enable the practical application of hyperdigraphs
in protein-ligand complex analysis, we introduce Vietoris-Rips
(VR) and alpha hyperdigraphs. These hyperdigraphs are inspired
by the widely used Vietoris—Rips complex and alpha complex topo-
logical models, respectively. All analyses in this work utilize the VR
hyperdigraph unless otherwise specified. For illustrative purposes,
Supplementary Figs.1and 2 depict VR and alphahyperdigraphs, respec-
tively. Detailed construction methods and definitions are provided
in Supplementary Information Section 4.

Topological Laplacians and spectrum analysis. The combinato-
rial Laplacianis a cornerstone tool in discrete geometry and alge-
braic topology, offering insights into the structure of topological
systems like simplicial complexes, hypergraphs and hyperdigraphs.
Justasthegraph Laplacian analyses graph properties (considering
graphs as 1-simplices), the combinatorial Laplacian extends this
analysis to higher-dimensional structures. Eigenvalues of the graph
Laplacian encode connectivity information. For instance, the sec-
ond smallest eigenvalue (Fiedler vector) reflects algebraic con-
nectivity, while the smallest positive eigenvalue (spectral gap)
relatesto the Cheeger constant. The collection of eigenvalues forms
the Laplacian spectrum. Interestingly, the graph Laplacian matrix
(£ =D-A,where D is the degree matrix and A is the adjacency
matrix) can be expressed as £ = B;B] when considering the graph
as al-dimensional simplicial complex and B, as the one-dimensional
boundary operator matrix. This observation inspires the generali-
zation of the Laplacian operator to higher dimensions using bound-
ary operators, leading to the Laplacian operator on simplicial
complexes. Let K be a simplicial complex, and let B, be the repre-
sentation matrix of its k-dimensional boundary operator. The Lapla-
cian matrix is defined as
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Ly = BB}, +BBy. (3)

k+1
Here, B} denotes the transpose matrix of B,. The term B8] B, indicates
the connectivity arising from the intersections of k-simplices at
(k—1)-simplices, while the term B8} implies the interactions result-
ing from the inclusions of k-simplices into (k +1)-simplices.

Recall that the topological information for simplicial complexes,
hypergraphs, or hyperdigraphsis derived from their respective chain
complexes. Fromnow on, we will define the Laplacian operator starting
from the perspective of chain complexes. Let Q. be a chain complex
with the differential 9, : Q,~> Q,,. Assume that, for each k, thereis always
aninner product structure on Q,. Consequently, the boundary operator
O hasitsadjoint operator ;. The combinatorial Laplacian 4;: Q, > Q,
isdefined by

Ak = 6k+1 o (3;:“ + 6: o ak. (4)

In particular, A, = 9; - 8;. For each k, choose a standard orthonormal
basis for Q,, thenrepresentation matrix L, of the Laplacian operator 4,
with respect to the standard orthonormal basis is given by

Ly = BB, + BBy (5)

k+1

where B, is the representation matrix of boundary operator 9, by left
multiplication®. This combinatorial Laplacian is a generalization of
thegraph Laplacian, whichisjusta carve-out of the properties of graphs
(that is, 1-simplical complex). The combinatorial Laplacian, on the
other hand, extends the analysis to higher dimensions. Its eigenvectors
and eigenvalues encode geometric and topological information about
the simplicial complex or hyperdigraph. Because the Laplacian matrix
is positive semidefinite, all eigenvalues of the Laplacian matrix are
non-negative. Particularly, the zero eigenvalues, that is, the harmonic
spectrum, encode the topological information. While the non-zero
eigenvalues (the non-harmonic spectrum) encode the geometricinfor-
mation about the system. Figure 4j shows the £, non-zero smallest
non-harmonic eigenvector embedding for the Ca atoms (that is,
0-simplices in the simplicial complex) of protein 6L.9D at a cutoff dis-
tanceof d =5 A. And Fig. 4k shows the £; harmonic eigenvector embed-
ding for the edges (that is, 1-simplices in the simplicial complex)
between the Ca atoms of protein 6L.9D at a cutoff distance of d =5 A.
Specifically, for £;, the multiplicity of the zero eigenvalue (that s, the
number of times O appears as an eigenvalue) equals the number of
independent cycles; it also equals the topological invariant (5,) in the
k-dimensional space®. For example, multiplicity of zero for £, (that
is, Bo) is the number of connected componentsin the graph (1-simplicial
complex), the multiplicity of zero for £, (that is, B,) is the number of
circles, and it means the number of cavities for £,. The largest eigen-
value A7* of £, is less than or equal to the maximum number d,
of (k+1)-simplex shared one k-simplex (maximum degree of the
graphfor £,). Specifically, 0 < A7 < 2d,. The smallest non-zero eigen-
value for £, also known as spectral gap, denoted as A", reflects
the geometric structure of the system. In this work, the multiplicity of
zero, the average value, the s.d., the minimum, the maximum and the
summation of the positive eigenvalue for £, are used to embed the
given topological Laplacians. In addition, to validate the power of
topological hyperdigraph Laplacian, two B,C,H,isomers withidentical
geometricstructures, differing only in the positions of carbon atoms,
are constructed in the validation, as shown in Supplementary Fig. 10.
The findings indicate that the hyperdigraph Laplacian possesses the
capacity to encode more information compared to standard
Laplacians.

Persistent Laplacians. Persistent Laplacians, or multiscale topological
Laplacians, wereintroduced in aseries of papers on a differential mani-
fold setting® and a discrete point cloud setting?* in 2019. A filtration

process is essential to achieving the multiscale representation in per-
sistent Laplacians****as well asin persistent homology****>. The choice
of the filtration (scale) parameter, denoted as d, varies based on the
datastructure in question: for point cloud data (Fig. 4a), itis often the
sphere radius (or diameter). By systematically adjusting d, one can
derive asequence of hierarchical representations, illustrated in Fig. 1a.
Notably, these representations are not limited to simplicial complexes,
but can also be realized with hyperdigraphs. As an example, consider
afiltration operation applied to a distance matrix, where the matrix
elements represent distances between vertices. One could define a
cutoffvalue as the scale parameter; if the distance between two vertices
falls below this cutoff, they are connected. By progressively increasing
this cutoff, one obtains asequence of nested graphs. Each graphin this
sequence, derived from asmaller cutoffvalue, is asubset of the graph
generated with a higher cutoff.

Inasimilar vein, nested simplicial complexes canbe formed based
on different complex definitions like the VR complex, Cech complex
and alpha complex. The VR complex is used in this work. Mathemati-
cally, the nested simplicial complexes can be written as:

@ C Ky, SKy © - CKg, =K (6)

Here, for any two d; < d;, we have K, C K, . The concept extends to
hyperdigraphs as well, namely the VR hyperdlgraph one can form
nested hyperdigraphs by properly defining directed hyperedges®. To
visualize the effects of changing filtration parameters, Fig. 4e depicts
alterations in point cloud connectivity from Fig. 4a, leading to a
sequence of hyperdigraphs. Additionally, Supplementary Fig. 8a show-
cases the simplicial complex produced at different filtration para-
meters and Supplementary Fig. 8billustrates hyperdigraphs generated
at different filtration parameters. The details about the construction
ofaVRhyperdigraph canbe seeninSupplementary Fig.1.Inaddition,
inspired by the alpha complex, the alpha hyperdigraph is also intro-
duced inthis work, as shown in Supplementary Fig. 2.

As afiltration process unfolds, it naturally gives rise to a family of
chain complexes. For eachfiltration step d; (withiindexing the steps),
achaincomplex C(K,; G)is constructed. Mathematically, a chain com-
plexfora particular filtration step is a sequence of Abelian groups (or
modules) and boundary homomorphisms:

d; d»

9 4+
= Cry1(Kg; G) =5 Cu(Ky3 G) = Cea(Kys G) — @)

where C(K,; G) is the k-dimensional chain group at filtration step d;.
Foramore general exposition, we now introduce the Laplacianin
a mathematical formalism. For real numbers a < b, let 2¢ and 2% be
chaincomplexes. Suppose that 22 c £2%. The chain complexes consid-
ered canbethe chain complexes obtained from afiltration of simplicial
complexes, hypergraphs, or hyperdigraphs, among other possibilities.
Moreover, the chain complexes 22 and 2% are endowed with the com-
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The kth persistent Laplacian is defined as

A = 0t e (0F) +(09) o 0f. ©)

Here, (azfl)Xand (a;)* are adjoint operators of 8" and 9%, respecti-
vely. It is worth noting that the harmonic part of A,“(’b, that is,
ker A% = {x € Q%|A%"x = 0}, is naturally isomorphic to the (a, b)-
persistent homology HZ”’ = im(H(29) » H(22)) (ref. 64).In a broad
sense, the harmonic part of the persistent Laplacian containsinforma-
tion about persistent homology. To glean insights from each chain
complex, one can resort to spectrum analysis. By constructing the
Laplacian matrices corresponding to each d, and 9,,; and examining
their spectra (eigenvalues and eigenvectors), one can uncover rich
structuralinformation about the topological and geometric properties
inherentin the dataatthat particular scale of thefiltration. This spectral
information often provides a compact and informative summary of
the data, allowing for efficient comparison and analysis across different
scales. Figure4dillustrates the evolution of zero eigenvalue multiplici-
ties in the associated Laplacian matrix as the filtration (scale) param-
eters change, while Fig. 4f depicts the variation in the smallest positive
eigenvalue with changing filtration (scale) parameters. Additional
persistent attributes are presented in Supplementary Fig. 7.

Element-specific embedding. In this work, the topological embed-
ding method is applied to encoding the protein-ligand complex. An
accurate prediction requires a better representation of the interac-
tions between proteins and ligands at the molecular level. Here, the
element-specific topological embedding? is used to characterize
protein-ligand interactions.

When analysing ligands, the focus is on heavy elements such as
carbon (C), nitrogen (N), oxygen (0), sulfur (S), phosphorus (P), fluorine
(F), chlorine (Cl), bromine (Br) and iodine (I). Conversely, for proteins,
only carbon (C), nitrogen (N), oxygen (O) and sulfur (S) are considered.
Subsequently, arange of element combinations, arranged in a specific
sequence, will represent the interactions between the proteinand the
ligand. For proteins, the combinations are denoted as &,oein = {{C}, {N},
{0}, {S},{C, N}, {C, 0}, {C, S}, {N, O}, {N, S}, {O, S}, {C, N, O, S}}. Meanwhile,
the ligand combinations are &ygng = {C}, {N}, {O}, {S}, {C, N},
{C,0},{C,S},{N, 0},{N, S}, {0, S}, N, P}, {F, CI, Br, 1}, {C,O,N, S, F, P, CI,
Br, I}}. Within the element-specificembedding approach, the interac-
tions between proteins and ligands are defined by the topological links
between two sets of atoms, one from the protein and the other from
the ligand. For example, a representation like K¢ y, s, indicates the
topological hyperdigraph representation where the Cand N atoms are
derived fromthe protein, while the Satom comes from the ligand. The
element-specificembeddings detail interactions based on their spatial
relationships. It can be characterized by distance matrix D
asfollows:

=

0, other
(10)

D) , if ¥; € Eproteins ¥'j € Eligand OT ¥; € Eiligand> ¥ j € Eprotein
i.j) =

where the r;and r; are coordinates for the ith and jth atoms in the set,
and |r; - rj” is their Euclidean distance. In the TopoFormer model,
protein atoms located within 20 A of ligand atoms are taken into
account. For the TopoFormer, model, the range is reduced to protein
atoms within12 A of the ligand atoms. In this study, emphasisis placed
onthe protein-ligand interactions by assigning aninfinite value to the
distance between atoms either within the protein or the ligand. For a
specific protein-ligand complex, there are 143 potential combinations
(derived from 11 protein sets multiplied by 13 ligand sets). Each of these
combinations functions as a simplicial complex and is further exam-
ined usingthe PTHL approach.

TopoFormer model

TopoFormer utilizes a topological embedding model to transform 3D
protein-ligand complexesinto topological sequences characterized by
multiscale features. Thelarger TopoFormer variantemploysascalerange
of 0to10 A (0.1 Aincrements), generating a 100-unit sequence. At each
scale,embedded featuresare represented by a143 x 6 matrix (6 attributes
per £,). Topologicalembeddings are combined with trainable multiscale
embeddings to produce the final output (Fig. 1a). Convolutional layers
within the transformer’s encoder and decoder convert these matrices
into1-dimensional vectors (Fig. 1c). TopoFormer’s attention mechanism
utilizes encoded representations (queries, keys and values) for eachfiltra-
tion increment, similar to conventional transformers. An asymmetric
design, inspired by the Masked Autoencoders (MAE) modelin computer
vision®, is applied to the encoder and decoder. Detailed model settings
areprovided in Supplementary Information Section 2. Training involves
two phases: (1) Self-supervised learning: 19,513 unlabelled protein-ligand
complexes from PDBbind are used to pretrain TopoFormer. Topological
embeddingsarereconstructed, and the meansquared errorservesasthe
reconstructionloss. Thisapproachallows the modeltolearn generalized
representations of protein-ligand interactions from vast amounts of
unlabelled data. (2) Supervised learning: For scoring, ranking, docking
and screeningtasks, TopoFormer isfine-tuned to predict specific scores
for protein-ligand complexes, again using MAE as the loss function.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Thetraining dataset employed in this study comprises acomprehensive
collection of protein-ligand complexes sourced from various PDBbind
databases, specifically CASF-2007, CASF-2013, CASF-2016 and PDBbind
v.2020. To ensure the dataset’s reliability and eliminate redundancies,
ameticulous curation process was undertaken, resulting in a total of
19,513 non-overlapping complexes. All data used in this study can be
downloaded from the official PDBbind website: http://www.pdbbind.
org.cn/index.php. Wealso provide acomprehensive set of resources at
https://github.com/WeilabMSU/TopoFormer. Thisincludes topologi-
cal embedded features used in both TopoFormer and TopoFormer,,
sequence-based features derived from the Transformer-CPZ*® and
ESM**models and all additional generated poses with their associated
scores, whichwere crucial for the docking and screening tasks. Instruc-
tions for accessing the poses are also available via Zenodo at https://
doi.org/10.5281/zen0d0.10892799 (ref. 66).

Code availability
Allsource code and models are publicly available via Zenodo at https://
doi.org/10.5281/zenod0.10892799 (ref. 66).
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eliminate redundancies, a rigorous curation process was meticulously conducted, resulting in a total of 19,513 non-overlapping complexes for
pre-training. Rigorous training-test splitting is employed and advocated in this work. For the standard scoring and ranking tasks, the training
set comprises the defined refine set, excluding the core set, from PDBbind CASF-2007 (equivalent to PDBbind v2007), CASF-2013 (equivalent
to PDBbind v2013), CASF-2016, and PDBbind v2016 datasets. The test set encompasses the respective core sets of these datasets. Given the
absence of a core set in PDBbind v2020, the general set (19443), excluding the all core sets from CASF-2007, CASF-2013, CASF-2016, and
PDBbind v2016, is employed as the training set (18,904) for the large TopoFormer model. This approach enables a meaningful comparison
with recently developed models that have been trained using different data sources.
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For the docking task, the test sets were sourced from the benchmark datasets CASF-2007 and CASF-2013. Each of these datasets consists of
195 test ligands, and for each ligand, 100 poses are generated using various docking programs. In preparation for the docking task training
set, a set of 1000 training poses are generated for each given target ligand-receptor pair within the test set. These training poses were
generated using GOLD v5.6.33. Consequently, for both CASF-2007 and CASF-2013, there was a total of 365,000 training poses available for
fine-tuning purposes.

For the screening task, the core set of CASF-2013 was utilized as the test dataset. This set comprises 65 proteins, and each protein interacts
with three true binders selected from the 195 ligands within the core set. Regarding the training set, for each target protein present in the
test set, the training dataset was constructed using all complex structures and their associated energy labels from the PDBbind v2015 refine
set. Notably, the core (test) set complexes were excluded from this training dataset. To augment the training dataset, additional poses and
their corresponding labels were generated. It is worth mentioning that the list of true binders for each protein is available in the CASF 2013
benchmark dataset. For each ligand, the pose with the highest energy was used as the upper bound for the training set.

Additionally, to ensure an unbiased evaluation, we employed the LIT-PCBA benchmark dataset \cite{tran2020lit}, which comprises 15 targets
with a total of 7,955 true actives and 2,644,022 inactives. This dataset's active-to-inactive ratio of approximately 1:1000 closely mirrors real-
world virtual screening scenarios. Following established practices and to optimize computational efficiency\cite{shen2023generalized}, we
selected the most representative PDB template for each target as the docking target. AutodockVina\cite{trott2010autodock} was used to
generate up to 10 docking poses per compound, with an energy range of 3 and exhaustiveness of 10. The pose with the strongest binding
affinity score was selected for prediction by our model. This resulted in a total of 2,651,977 protein-ligand complexes. Detailed dataset
information is summarized in Supplementary Table \ref{stable:lit_pcba_datainfo}. All posed protein-ligand complexes and associated scores
are publicly available at https://github.com/WeilabMSU/TopoFormer.
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Data exclusions | No data excluded from the analysis.

Replication All the attempts at replication were successful.

1. To enhance robustness, we trained 20 distinct topological transformers for each dataset, each initialized with different random seeds to
mitigate initialization-related errors.

2. Subsequently, we developed 20 Gradient Boosting Regressor Tree (GBRT) models exclusively utilizing sequence-based features.

3. We randomly selected 10 models from the set described in statements 1 and 2. The experimental prediction is derived from the consensus
of these 20 predictions. The final result discussed in the paper is obtained by averaging the outcomes over 400 repetitions.

Randomization  Different random seeds were used during the replications for training the models, including the GBRT models and TopoFormer models.

Blinding This work does not include wet experiments for binding tests. Predictions of binding affinities by the proposed model (for all replications) are
available at https://github.com/WeilabMSU/TopoFormer.
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