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Multiscale topology-enabled 
structure-to-sequence transformer for 
protein–ligand interaction predictions

Dong Chen    1, Jian Liu    2   & Guo-Wei Wei    1,3,4 

Despite the success of pretrained natural language processing (NLP) 
models in various fields, their application in computational biology has 
been hindered by their reliance on biological sequences, which ignores 
vital three-dimensional (3D) structural information incompatible with 
the sequential architecture of NLP models. Here we present a topological 
transformer (TopoFormer), which is built by integrating NLP models and 
a multiscale topology technique, the persistent topological hyperdigraph 
Laplacian (PTHL), which systematically converts intricate 3D protein–
ligand complexes at various spatial scales into an NLP-admissible sequence 
of topological invariants and homotopic shapes. PTHL systematically 
transforms intricate 3D protein–ligand complexes into NLP-compatible 
sequences of topological invariants and shapes, capturing essential 
interactions across spatial scales. TopoFormer gives rise to exemplary 
scoring accuracy and excellent performance in ranking, docking and 
screening tasks in several benchmark datasets. This approach can be utilized 
to convert general high-dimensional structured data into NLP-compatible 
sequences, paving the way for broader NLP based research.

Drug discovery is crucial for modern healthcare, profoundly affecting 
our lives. Traditional drug development methods are laborious and 
expensive, taking over a decade and billions of dollars to bring a single 
drug to market1. These methods, including molecular docking2–5, free 
energy perturbation6 and empirical modelling7, have advanced drug 
discovery but have limitations. They often lack accuracy, are compu-
tationally intensive for large-scale screenings and may miss unconven-
tional binding sites or interaction kinetics, potentially overlooking 
therapeutic opportunities.

Deep learning models are emerging as promising tools in drug 
design8–11, celebrated for their ability to predict protein structures 
and identify complex patterns for superior predictions12. The transi-
tion to deep learning, leveraging chemoinformatics and bioinformat-
ics13, signifies a pivotal shift towards data-driven approaches in drug 
design and discovery14–16. However, challenges such as the need for 

frequent retraining and dependence on labelled data remain substan-
tial obstacles.

Groundbreaking transformer-based models like ChatGPT, which 
leverage large-scale pretraining and unlabelled data, highlight the 
untapped potential of self-supervised learning17–19. These models pro-
vide a powerful glimpse into potential solutions, particularly in the 
field of drug discovery where an insufficiency of labelled data can be 
a limiting factor20,21. While the success of the transformer framework 
in the realm of natural language processing is undeniable, its direct 
application to the domain of drug discovery, especially for protein–
ligand complex modelling, raises pertinent questions because the 
method neglects important stereochemical information of structures. 
One pivotal quandary is tailoring a model intrinsically designed for 
serialized language translations, to suit the study of protein–ligand 
complexes, which inherently defy serialized representation.
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research tasks like scoring, ranking, docking and screening. Its nuanced 
design ensures that unconventional interactions are not overlooked 
but are instead spotlighted. As shown in the results, TopoFormer con-
sistently outshines its peers, achieving state-of-the-art outcomes 
across diverse benchmark datasets in drug discovery.

The following text introduces the topological transformer (Topo-
Former) model and evaluates its performance in key tasks such as 
scoring, ranking, docking and screening. The analysis highlights Topo-
Former’s strengths and advantages over traditional methods.

Overview of TopoFormer
The transformer architecture17 introduced a new technique using atten-
tion mechanisms for sequential data analysis across domains18,28,29. 
Inspired by this, we developed a topological transformer model, Topo-
Former, integrating our PTHL26 with the transformer framework, as 
depicted in Fig. 1. Unlike traditional transformers that process protein 
and ligand sequences, TopoFormer inputs 3D protein–ligand com-
plexes. It transforms these complexes into sequences of topological 
invariants and homotopic shapes through PTHL, capturing their physi-
cal, chemical and biological interactions at multiple scales. Pretrain-
ing on a diverse dataset enables TopoFormer to understand complex 

In response to the existing challenges, we leverage advanced math-
ematical models from algebraic topology, differential geometry and 
combinatorial graph theory. These models, previously applied to 
represent biomolecular systems, have achieved notable successes22–25. 
Drawing upon insights from advanced mathematics, we unveil our 
topological transformer model: TopoFormer. TopoFormer is built upon 
persistent topological hyperdigraph Laplacian (PTHL)26, an advanced 
algebraic topological method. While intrinsically mirroring founda-
tional topological invariants akin to traditional persistent homology27, 
this multiscale technique introduced the topological hyperdigraph to 
capture intrinsic physical, chemical and biological interactions in pro-
tein–ligand binding and uniquely delivers a non-harmonic spectrum, 
shedding light on the three-dimensional (3D) intricacies of protein–
ligand complexes. In a nutshell, PTHL utilizes its multiscale topology 
and multiscale spectrum to convert intricate 3D protein–ligand com-
plexes into one-dimensional topological sequences that are ideally 
suitable for the sequential architecture of transformers (Fig. 1). This 
innovative fusion not only melds topological insights with cutting-edge 
machine learning but also heralds a paradigm shift in our grasp of pro-
tein–ligand relationships. Capitalizing on its deep-rooted topological 
framework, TopoFormer redefines performance benchmarks in drug 
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Fig. 1 | Schematic illustration of the overall TopoFormer model. a, A 3D 
protein–ligand complex (PDBID 6E9A) and its interactive domain. b, The 
topological sequence embedding of a 3D protein–ligand complex. Initially, 
the complex is split into a topological sequence, known as a chain complex in 
algebraic topology. Then, element-specific subcomplexes are created to encode 
physical interactions on a variety of scales controlled by a filtration parameter. 
Subsequently, element-specific PTHLs are utilized to extract the topological 
invariant and capture the shape and stereochemistry of the subcomplexes. For 
these subcomplexes, their topological invariant changes over scales that are 
retained in the harmonic spectrum of the hyperdigraph Laplacians, while their 
homotopic shape evolution over scales are manifested in the non-harmonic 

spectrum. Finally, the multiscale topological invariant changes and homotopic 
shape (stereochemical) evolution are assembled into a topological sequence as 
the input to the transformer. c, Self-supervised learning is applied to unlabelled 
topological sequences for both transformer encoders and transformer decoders. 
The outputs from the reconstructed topological sequences are used to calculate 
the reconstruction loss. d, At the supervised fine-tuning stage, task-specific 
protein–ligand complex data are fed into the pretrained encoder, which is 
equipped with specific predictor heads, such as the scoring head, ranking head, 
docking head and screening head. Subsequently, except for the docking task, 
the remaining predictions are consolidated with sequence-based predictions to 
produce the final result. seq., sequence.
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molecular interactions, including stereochemical effects not evident 
in molecular sequences. Fine-tuning on specific datasets allows it to 
capture detailed interactions within complexes and their characteris-
tics relative to the entire dataset, enhancing downstream deep learning 
applications.

To focus our analysis, we identify heavy ligand and nearby protein 
atoms within set distances, using a 20 Å or a more precise 12 Å cutoff, 
as depicted in Fig. 1a. TopoFormer then transforms 3D molecular struc-
tures into topological sequences through its topological sequence 
embedding module (Fig. 1b), utilizing PTHLs for a multiscale analysis. 
This process embeds various physical, chemical and biological inter
actions into sequences of vectors.

TopoFormer undergoes self-supervised pretraining with unla-
belled protein–ligand complexes, as shown in Fig. 1c, using a trans-
former encoder–decoder to reconstruct topological sequences. This 
phase, which measures the accuracy by comparing output and input 
embeddings, prepares the model to understand protein–ligand dynam-
ics without labelled data. Following pretraining, TopoFormer enters a 
supervised fine-tuning stage with labelled complexes (Fig. 1d), where 
the initial embedded vector becomes a key feature for downstream 
tasks like scoring, ranking, docking and screening. Each task has a 
dedicated head in the predictor module. To ensure accuracy and reduce 
biases, TopoFormer integrates multiple topological transformer deep 
learning models initialized with different seeds and complements them 
with sequence-based models. The final output is a consensus of these 
diverse predictions, making TopoFormer a comprehensive model for 
analysing protein–ligand interactions, leveraging both topological 
insights and deep learning.

Evaluating TopoFormer on scoring tasks
The prediction of protein–ligand binding affinity plays a pivotal role 
in drug design and discovery. To assess the scoring capability of our 
models, we have evaluated them using the three most widely recognized 
protein–ligand datasets from the PDBbind database: CASF-2007, CASF-
2013 and CASF-2016 (refs. 30–32). The Pearson correlation coefficient 
(PCC), the standard deviation (s.d.) and the root mean squared error 
(r.m.s.e.) are used to measure the performance of the scoring func-
tion. In this task, we consider two TopoFormer models: a large model 
(TopoFormer) with longer topological sequence 100; a smaller model 
(TopoFormers) with topological sequence of length 50.

To enhance robustness, we train 20 topological transformers 
(TopoFormer) with unique random seeds for each dataset, minimiz-
ing initialization errors. Predictions from smaller models are labelled 
TopoFormers. To mitigate biases from using a single model type, we 
also employ sequence-based models, incorporating protein features 
from the experience sampling method (ESM) model33 and Simpli-
fied Molecular Input Line Entry System (SMILES) features from the 
Transformer-CPZ model28. Additionally, 20 gradient boosting regressor 
tree models are trained on these sequence-based features, with their 
collective predictions termed Seq-ML. The final output, a blend of Topo-
Former and Seq-ML predictions, is represented as TopoFormer-Seq and 
TopoFormers-Seq for the smaller models. Figure 2c,d illustrates how 
consensus size affects performance, with 400 trials per size showing 
that larger consensus sizes yield better performance (higher PCC, lower 
r.m.s.e.) and more stability (less error variation). A consensus size of 
10 is chosen for further analysis, where TopoFormer-Seq consistently 
outperforms other models, closely followed by TopoFormers-Seq.
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Fig. 2 | Performance of TopoFormer on scoring and ranking tasks.  
a, Comparison of PCCs of various models for protein–ligand complex binding 
affinity scoring on the CASF-2016 benchmark. The results from other methods 
are in the green colour. b, Comparison of s.d. of different models for protein–
ligand complex binding affinity scoring on the CASF-2016 benchmark. The 
results from other methods are in the blue colour. The quantitative results  
of a and b are listed in Supplementary Table 4, taking from refs. 22,25,30–32, 
42,48,69,70. c, Comparison of the r.m.s.e. (in log Ka) of predictions for the  
CASF-2007, CASF-2013 and CASF-2016 datasets from the Seq-ML model, 
TopoFormer model, TopoFormers model, TopoFormers-Seq and TopoFormer-
Seq. The horizontal axis is the number of models in the consensus (consensus 
size). The solid line represents the median r.m.s.e. and the shaded background 
provides the error bar for these 400 r.m.s.e. values. d, Comparison of the PCC 

of predictions for the CASF-2007, CASF-2013 and CASF-2016 datasets from the 
Seq-ML model, TopoFormer model, TopoFormers model, TopoFormers-Seq 
and TopoFormer-Seq. The horizontal axis is the consensus size. The solid line 
represents the averages and the shaded background provides the error bar 
for the 400 PCCs at each consensus size. e, The correlation between predicted 
protein–ligand binding affinities (TopoFormer PCC = 0.865) and experimental 
results for the CASF-2016 benchmarks. Grey dots represent the training data and 
red dots denote the test data. f, Comparison of the ranking power assessed using 
both high-level success measurements (depicted in dark shades) and low-level 
success measurements (shown in lighter shades) across three benchmarks. 
Results from TopoFormer-Seq are represented in blue and those from 
TopoFormers-Seq are illustrated in orange.
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Our TopoFormer-based models consistently outperform  
others in terms of PCC scores across three benchmark datasets, as 
illustrated in Fig. 2a and Supplementary Fig. 3a,b, with the lowest s.d. 
compared to methods with reported s.d. or r.m.s.e., as detailed in 
Supplementary Table 4. By averaging results from 400 repetitions, 
TopoFormer-Seq achieves an average PCC of approximately 0.84 across 
these datasets, as detailed in Table 1. Notably, on the PDBbind v.2016 
dataset, TopoFormer-Seq excels with a PCC of 0.866 and an r.m.s.e. 
of 1.561 kcal mol−1, surpassing the previous leader, TopBP22. These 
benchmarks are summarized in Table 3, with Fig. 2e and Supplementary 
Fig. 3c,d showcasing the comparison between predicted and experi-
mental binding affinities.

To assess TopoFormer’s performance on structurally similar pro-
teins, we employed the CASF-2016 core set, which can be grouped into 
57 clusters based on protein sequence similarity. As illustrated in Sup-
plementary Fig. 4, TopoFormer-Seq yielded the lowest mean r.m.s.e. 
(1.504 kcal mol−1) across all clusters. DeltaVinaRF20 followed closely 
with an r.m.s.e. of 1.563 kcal mol−1. These findings indicate TopoFor-
mer’s superior performance compared to other commonly used meth-
ods. For a comprehensive overview, the quantitative r.m.s.e. values of 
all methods across all clusters are presented in Supplementary Table 5.

Recently, several deep learning models have been reported for 
the prediction of protein–ligand binding affinity. Notable examples 
include the graphDelta model34, ECIF model35, OnionNet-2 model36, 
DeepAtom model37 and others38–40. These new models typically lever-
age on large training datasets that incorporate additional data from 
the general sets of the PDBbind database and thus are not comparable 
with other models that were trained on different training datasets. The 
details regarding the composition of training sets, testing sets and 
their corresponding performance are tabulated in Supplementary 
Table 3. For the latest PDBbind v.2020 (ref. 41), we consider a total of 
18,904 protein–ligand complexes for training, which has no overlap 
with the core sets of CASF-2007, CASF-2013 and CASF-2016. Our model 
achieved a commendable final PCC of 0.853 and an r.m.s.e. of 1.295 
(equivalent to 1.769 kcal mol−1) on the core set of CASF-2007. For the 
CASF-2013 core set, the PCC of 0.832 and an r.m.s.e. of 1.301 (equiva-
lent to 1.777 kcal mol−1) are obtained. Similarly, on the CASF-2016 core 
set, we obtained a PCC of 0.881 with an r.m.s.e. of 1.095 (equivalent to 
1.496 kcal mol−1). For the PDBbind v.2016 core set, we achieved a PCC of 
0.883 with an r.m.s.e. of 1.086 (equivalent to 1.483 kcal mol−1). Here, all 
the results are the average of 400 repeated experiments. These results 
underscore the robustness and predictive power of the TopoFormer 
model in the realm of protein–ligand binding affinity predictions.

Evaluating TopoFormer on ranking tasks
The efficacy of a scoring function is critically assessed by its aptitude 
to accurately rank the binding affinities of protein–ligand complexes 
within distinct clusters. In this work, two evaluative approaches are 
employed: the high-level and the low-level success measurements. 
In the high-level success metric, the objective is to perfectly rank the 
binding affinities of the complexes within each cluster. Conversely, 
the low-level success criterion requires the scoring function to merely 

identify the complex with the pinnacle binding affinity. The assessment 
of ranking efficacy termed ‘ranking power’ is gauged by the propor-
tion of correctly identified affinities across a specified benchmark. 
The mathematical formulations of the high-level and low-level suc-
cess measurements can be found in the Supplementary Information 
Section 1.

Figure 2f illustrates the ranking power of TopoFormer-based 
models. For the CASF-2007, the TopoFormer-Seq model achieved 
outstanding success rates, with 72% for low-level measure-
ment and 63% for high-level measurement. In comparison, the 
TopoFormers-Seq model achieved success rates of 70% for low-level 
and 58% for high-level measurement. Both models outperformed 
previous approaches, as demonstrated in high-level measurement  
Supplementary Fig. 5 and low-level measurement Supplementary 
Fig. 6. Similarly, for the CASF-2013, the TopoFormer-Seq model 
achieved success rates of 76% for low-level and 63% for high-level 
measurement, surpassing the performance of earlier models. The 
challenges intensified in CASF-2016, comprising 57 clusters, each con-
taining five distinct complexes32, making ranking tasks notably more 
demanding. In this context, the TopoFormer-Seq model achieved a 
success rate of 60% for low-level measurement and 21% for high-level 
measurement. The best-performing models for low-level (68%) and 
high-level (29%) success were ΔVinaRF20 (ref. 42).

Evaluating TopoFormer on docking tasks
In the present study, we harnessed the capabilities of TopoFormers to 
assess its docking proficiency, particularly its ability to distinguish 
native binding poses from those generated by established docking 
software packages. (Due to computational resource constraints, we 
employed TopoFormers for both docking and screening tasks.) Our 
evaluation centred on benchmark datasets CASF-2007 and CASF-2013 
(refs. 30,31). A pose was considered native if its root-mean-square devia-
tion (r.m.s.d.) with respect to the true binding pose was less than the 
2 Å threshold. Successful prediction occurred when the pose with the 
highest predicted binding energy matched a native pose. Following 
this comprehensive evaluation encompassing all 195 test ligands, an 
overall success rate was computed for the employed scoring func-
tion. The detailed assessment of docking success rates is available in  
Supplementary Information Section 1.

In molecular docking, deep learning methods have been applied 
effectively, leading to notable advancements43. Notable approaches 
include DeepDock44 (62.11% success), OnionNet-SFCT45 (76.84%), 
DeepBSP46 (79.7%) and RTMScore47 (80.7%) on the PDBbind core set. 
However, direct comparisons are difficult due to training on diverse 
datasets. For a fair evaluation, we trained TopoFormers on publicly 
available data and compared it on the CASF-2007 and CASF-2013 data-
sets42,48,49, as detailed in Methods. As depicted in Fig. 3f,g, TopoFormers 
achieved success rates of 93.3% on CASF-2007 and 91.3% on CASF-2013, 
outperforming existing models and demonstrating the efficacy of our 
topological approach. This underscores the diversity and potential of 
new methodologies in improving docking accuracy, offering a compre-
hensive and innovative solution to the docking challenge.

Table 1 | The PCC and r.m.s.e. (in kcal mol−1) of our TopoFormer models on the three benchmarks of CASF-2007, CASF-2013 
and CASF-2016

Dataset CASF-2007 CASF-2013 CASF-2016 Average

TopoFormer-Seq 0.837 (1.807) 0.816 (1.859) 0.864 (1.568) 0.839 (1.745)

TopoFormers-Seq 0.839 (1.798) 0.809 (1.886) 0.855 (1.609) 0.834 (1.764)

TopoFormer 0.826 (1.830) 0.788 (1.910) 0.849 (1.595) 0.821 (1.778)

TopoFormers 0.826 (1.832) 0.781 (1.944) 0.836 (1.657) 0.814 (1.811)

Seq-ML 0.798 (1.974) 0.790 (1.960) 0.837 (1.693) 0.808 (1.876)

TopoFormer and TopoFormers are considered. The averages of 400 repetitions are computed as the performance of the model. The detailed setting of two TopoFormers and gradient boosting 
regressor tree parameters can be found in Supplementary Information Section 2.
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To understand what TopoFormers learned in post-fine-tuning, we 
analysed the impact of spatial scale on protein–ligand interactions 
using attention scores. Figure 3b–e illustrates four ligand poses near 
the protein pocket (Protein Data Bank Identifier (PDBID) 1AJQ) high-
lighted in Fig. 3a. The real experimental pose in Fig. 3b has an r.m.s.d. of 
0 Å. We calculated TopoFormers’s attention scores for all spatial scales, 
reflecting the impact of interaction ranges on the docking score. The 
highest attention score at d = 4.2 Å suggests this scale most influences 
binding affinity. Figure 3c–e displays poses with r.m.s.d.s of 1.6 Å, 5.9 Å 
and 7.5 Å, respectively, with their maximum attention scores at scales 
d = 7.2 Å, d = 9.2 Å and d = 10.4 Å. This indicates a positive correlation 
between pose deviation from the true position and the scale at which 
interactions most affect the docking score.

Evaluating TopoFormer on screening tasks
Machine learning transforms the screening task by making it more 
accurate, efficient and cost-effective, which is vital for accelerating 
the pace of drug discovery50. To assess the screening capabilities of 
our TopoFormer method, we employ the CASF-2013 core set. Given 
that the evaluation of screening power necessitates the identification 

of three true binders for each of the 65 proteins in the core set, we take 
the crucial step of fine-tuning the pretrained TopoFormers model. For 
this purpose, we assemble a training dataset encompassing both ligand 
poses and energy labels, customizing TopoFormers for each protein 
target. Our screening task comprises two key steps. First, we generate 
poses for the 195 ligands through a docking procedure and predict their 
scores using TopoFormers, denoted as S1. Subsequently, we employ a 
sequence-based classification gradient boosting decision tree model, 
leveraging combined features from the Transformer-CPZ model28 and 
the ESM model33. This yields probabilities for the given ligands, referred 
to as S2. Ligands with high multiplied scores (S = S1 × S2) are identified as 
predicted binders. Here, due to computational resource constraints, 
we only utilize TopoFormers for virtual screening. Additionally, in this 
work, the success rate and enrichment factor (EF), specifically EF1%, EF5% 
and EF10%, are used in the virtual screening for drug discovery. It provides 
insight into the ability of the method to prioritize active compounds 
over non-active ones. The detailed definitions for both success rate and 
EF are provided in Supplementary Information Section 1.

Figure 3j,k shows that TopoFormer outperforms previous meth-
ods in success rate and EF. TopoFormer achieves a 68% success rate and 
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Fig. 3 | Performance of TopoFormer on docking and screening tasks.  
a, Visualization of the protein–ligand complex PDBID 1AJQ. The highlighted 
rectangle shows the protein’s pocket area. b–e, Four distinct ligand poses within 
the protein 1AJQ. The molecule in light grey represents the true pose, while the 
blue molecules depict alternative poses with r.m.s.d. values of 0 Å (b), 1.6 Å 
(c), 5.8 Å (d) and 7.5 Å (e). The light blue curve represents the attention score 
generated by TopoFormer, varying with the filtration parameter (that is, the 
scale) of the topological embedding. The highest attention scores are observed 
at scales of d = 4.2 Å, d = 7.2 Å, d = 9.2 Å and d = 10.4 Å for poses in b, c, d and e, 
respectively. f,g, Comparison of docking success rates between TopoFormers 

and traditional docking tools on the CASF-2007 core set (f) and the CASF-2013 
core set (g). h, Visualization of the protein–ligand complex PDBID 1E66. i, The 
saliency map of the topological embedding for complex 1E66. The colour bar 
represents the gradient weights of each feature relative to the prediction. 
j, Comparison of screening success rates for the top 1%, top 5% and top 10% 
selected ligands between TopoFormers and docking tools on the CASF-2013 core 
set. k, Comparison of average enhancement factors for the top 1%, top 5% and top 
10% selected ligands between TopoFormers and docking tools on the CASF-2013 
core set. Max@, maximum at.
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a 29.6% EF for the top 1%-ranked molecules, surpassing GlideScore-SP’s 
60% success rate and 19% EF. For the top 5% and 10% ranked molecules, 
TopoFormer’s success rates are 81.5% and 87.8%, with EFs of 9.7 and 5.6, 
respectively, the highest among tested methods (Fig. 3k). AGL-score48 
and ΔVineRF20 (ref. 42) show comparable results but only for the top 
1% on the CASF-2013 dataset. Deep learning models like RTMScore47, 
DeepDock44 and PIGNet51 also show notable results but were evaluated 
on the CASF-2016 set and trained on different datasets, limiting direct 
comparison with TopoFormer.

To identify the most influential scales of protein–ligand interac-
tions on TopoFormers predictions, we generated a saliency map for 
a specific complex (PDBID 1E66), as shown in Fig. 3h. The analysis 
considers protein atoms within 12 Å of the ligand. In Fig. 3i, the y axis 
represents different element-specific combinations, and the x axis 
shows the filtration parameter from 2 Å to 12 Å. The colour bar indicates 
the gradient intensity for each topological feature, with large gradients 
marked in black, especially around the 4 Å scale. This saliency map 
highlights the decision-making process of TopoFormers, showing that 
heavy-atom interactions around 4 Å substantially impact the model’s 
screening output, given the absence of hydrogen atoms in the PDBbind 
database and our models.

We also evaluated our proposed method using the LIT-PCBA 
dataset, which is characterized by an extreme imbalance between 
experimentally verified actives and inactives, reflecting the challenging 
conditions of real screening tasks. We included all 15 targets from the 
LIT-PCBA dataset in our evaluation, measuring performance using the 
EF1% across these targets. As shown in Table 2, our model demonstrated 
competitive performance, achieving an average EF1% of 7.29, which 
surpasses most score function-based screening methods, except for 
the Interaction Fingerprint (IFP) method, which reported an EF1% of 7.46 
(ref. 52). It is important to note that IFP and GRIM methods, while not 
strictly score function-based, resemble fingerprint similarity search 
approaches, and their generalizability may be limited in some cases53,54. 
Our model relies on 3D poses generated by AutoDock Vina, which 
itself achieved a screening efficacy of EF1% = 4.74. To provide a com-
prehensive understanding of our model’s performance, we conducted 
detailed evaluations for each target within the dataset and compared 
our results with the most recent published work55 (Supplementary 
Table 6). Despite comparing our model against the best results from 
models trained with multiple parameters, our approach outperformed 
others on 8 out of the 15 targets. It is also important to clarify that our 
evaluation did not involve overfitting our model; the reported results 
are the average outcomes from 20 TopoFormer-Seq models.

However, it must be acknowledged that comparisons may not 
be entirely fair due to the use of different docking software across 
methods, which can substantially impact performance. Despite these 
challenges, our findings indicate that our model maintains excellent 
screening capabilities across large virtual screening benchmarks. 
Furthermore, we will make all 3D poses generated during this study 
publicly available, contributing to the transparency and reproduc-
ibility of our research.

Discussion
In our study, we utilize the PTHL for a detailed representation of 3D 
protein–ligand complexes, offering advantages over conventional 
graphs, simplicial complexes and hypergraphs (see Supplementary 
Fig. 9). As shown in Fig. 4c, the topological hyperdigraph captures 
complex higher-order relationships through directed hyperedges that 
connect vertices in specific sequences, covering dimensions from 0 to 
3. This approach allows for modelling complex interactions beyond 
simple pairwise connections by using directed hyperedges of various 
dimensions. Moreover, the orientation of these edges incorporates 
physical and chemical properties, such as electronegativity and ioniza-
tion energy, providing a more nuanced representation than traditional 
methods. Supplementary Fig. 10g,h demonstrates this capability by  

differentiating two B7C2H9 isomers with directed hyperedges, show-
casing the method’s ability to effectively distinguish elemental  
configurations.

In the investigation of protein–ligand complexes, we employ 
topological hyperdigraphs for initial representation, further enhanced 
by PTHL theory26 to analyse their geometric and topological features. 
Drawing inspiration from physical systems like molecular structures, 
where the zeroth-dimensional Hodge Laplacian operator has the 
connection with the kinetic energy operator of the Hamiltonian for 
well-defined quantum systems, we extend a discrete analogy to topo-
logical hyperdigraphs. These eigenvalues of Laplacian matrix provide 
insights into the topological object’s properties, akin to a physical 
system’s energy spectrum, offering a detailed view of the structural 
and energetic aspects of complex systems.

Compared to traditional persistent homology, our PTHL method 
marks a substantial advancement by analysing a broader range of struc-
tures beyond simplicial complexes. It captures fundamental homology 
information and geometric insights, including Betti numbers and 
homotopic shape evolution, through the non-harmonic spectra of 
persistent Laplacians. Supplementary Fig. 7a–e shows our method’s 
analysis results, offering a more comprehensive characterization than 
traditional homology, which is illustrated in Supplementary Fig. 7f. 
The multiplicity of zero eigenvalues of the Laplacians, corresponding 
to Betti numbers, confirms that our approach encompasses barcode 
information, as shown in Supplementary Fig. 7e, providing a robust 
framework for understanding protein–ligand complexes.

To capture the complex range of atomic interactions in protein–
ligand complexes, including covalent, ionic and van der Waals forces, 
we utilize the PTHL for a multiscale analysis. This method allows for 
the examination of interactions across scales by evolving topological 
sequences based on filtration parameters, aiding transformer models 
in recognizing the contributions of each scale to properties like bind-
ing affinity. Figure 3b–e illustrate how different scales contribute to 
protein–ligand complex formation through attention scores.

Table 2 | Comparison of the screening powers on LIT-PCBA 
dataset

Groups Docking programs Scoring function Average EF1%

Ref. 52

Surflex Surflex 2.51

Pafnucy 5.32

ΔVinaRF20 5.38

IFP 7.46a

GRIM 6.87a

Ref. 67

Smina RFScore-4 1.28

RFScore-VS 0.73

Vina 1.1

Dense (affinity) 2.58

Smina + Vinardo Vinardo 0.99

Ref. 68

Smina + Lin_F9 Vina 2.78

ΔVinaRF20 3.18

Lin_F9 2.21

ΔLin_F9XGB 5.55

Ref. 55

Glide SP Glide SP 4.06

GT 6.51b

GatedGCN 6.8b

This work AutoDock Vina Vina 4.74

TopoFormers-Seq 7.29
aSimilarity searching approach. bThe best score among models trained with different 
hyperparameters is shown.
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Elemental interactions, including hydrogen bonding, van der Waals 
forces and pi-stacking, are fundamental to the stability and specificity of 
protein–ligand complexes. To analyse these interactions at the elemental 
level, we introduce an element-specific analysis within the topological 
sequence embedding, as shown in Fig. 1b. This approach constructs 
sub-hyperdigraphs based on common heavy elements in proteins and 
ligands, generating element-specific Laplacian matrices to encode inter-
actions within the complex. This technique extracts detailed physical and 
chemical features, enhancing the transformer model’s understanding 
of the complex dynamics in protein–ligand interactions. Further details 
on this element-specific analysis are provided in Methods.

Methods
Datasets
The dataset utilized for pretraining in this study is a comprehensive com-
pilation of protein–ligand complexes (without the labels) sourced from 
the diverse PDBbind database, including CASF-2007, CASF-2013, CASF-
2016 and PDBbind v.2020 (ref. 41). To ensure the dataset’s integrity and 
to eliminate redundancies, a rigorous curation process was meticulously 
conducted, resulting in a total of 19,513 non-overlapping complexes for 
pretraining. Rigorous training–test splitting is employed and advocated 
in this work. For the standard scoring and ranking tasks, the training set 
comprises the defined refine set, excluding the core set, from PDBbind 
CASF-2007 (equivalent to PDBbind v.2007), CASF-2013 (equivalent to 
PDBbind v.2013), CASF-2016 and PDBbind v.2016 datasets. The test 
set encompasses the respective core sets of these datasets. Given the 
absence of a core set in PDBbind v.2020, the general set (19,443), exclud-
ing the all core sets from CASF-2007, CASF-2013, CASF-2016 and PDBbind 
v.2016, is employed as the training set (18,904) for the large TopoFormer 
model. This approach enables a meaningful comparison with recently 
developed models that have been trained using different data sources. 
Further details regarding the datasets can be found in Table 3.

For the docking task, the test sets were sourced from the bench-
mark datasets CASF-2007 and CASF-2013. Each of these datasets con-
sists of 195 test ligands, and for each ligand, 100 poses are generated 
using various docking programs30,31. In preparation for the docking 
task training set, a set of 1,000 training poses are generated for each 
given target ligand–receptor pair within the test set. These training 
poses were generated using GOLD v.5.6.33 (ref. 56). Consequently, for 
both CASF-2007 and CASF-2013, there was a total of 365,000 training  
poses available for fine-tuning purposes. The pose structures and  
their corresponding scores, as reported by GOLD, are accessible at 
https://weilab.math.msu.edu/AGL-Score.

For the screening task, the core set of CASF-2013 was utilized as the 
test dataset. This set comprises 65 proteins, and each protein interacts 
with three true binders selected from the 195 ligands within the core 
set30. Regarding the training set, for each target protein present in 
the test set, the training dataset was constructed using all complex 
structures and their associated energy labels from the PDBbind v.2015 
refine set. Notably, the core (test) set complexes were excluded from 
this training dataset. To augment the training dataset, additional poses 
and their corresponding labels were generated48,57. It is worth men-
tioning that the list of true binders for each protein is available in the 
CASF-2013 benchmark dataset. For each ligand, the pose with the high-
est energy was used as the upper bound for the training set. All pose 
structures and their scores can be accessed at https://weilab.math.
msu.edu/AGL-Score. Additionally, to ensure an unbiased evaluation, 
we employed the LIT-PCBA benchmark dataset58, which comprises 
15 targets with a total of 7,955 true actives and 2,644,022 inactives. 
This dataset’s active-to-inactive ratio of approximately 1:1000 closely 
mirrors real-world virtual screening scenarios. Following established 
practices and to optimize computational efficiency55, we selected the 
most representative PDB template for each target as the docking tar-
get. Autodock Vina57 was used to generate up to ten docking poses per 
compound, with an energy range of three and exhaustiveness of ten. The 

pose with the strongest binding affinity score was selected for predic-
tion by our model. This resulted in a total of 2,651,977 protein–ligand 
complexes. Detailed dataset information is summarized in Supplemen-
tary Table 7. All posed protein–ligand complexes and associated scores 
are publicly available at https://github.com/WeilabMSU/TopoFormer.

Topological sequence embedding
Topological hyperdigraph. Topological hyperdigraphs offer a power-
ful generalization, encompassing graphs, digraphs, simplicial com-
plexes and hypergraphs. They excel at representing intricate 
relationships, including multi-source to multi-target mappings and 
asymmetric connections, which pose challenges for traditional graphs 
or simplicial complexes26. Essentially, a topological hyperdigraph 
consists of sequences of distinct elements from a finite set, known as 
directed hyperedges. Figure 4c provides examples of directed hyper-
edges of varying dimensions. These sequences share similarities with 
simplices in a simplicial complex (Fig. 4b). For detailed definitions of 
common graph, simplicial complex and hypergraph concepts, refer 
to Supplementary Information Section 3. A hyperdigraph ℋ comprises 
a vertex set V and a collection of sequences with distinct elements in 
V. A sequence of length k + 1 is called a k-directed hyperedge, mathe-
matically represented as an inclusion map e : [k] → V, where 
[k] = {0, 1, …, k}. A hyperdigraph is essentially a collection of directed 
hyperedges on V, sometimes denoted as ℋ⃗ = (V,E), with E representing 
the set of directed hyperedges. Notably, hyperdigraphs can be reduced 
to hypergraphs when the set V and all directed hyperedges are ordered, 
and to directed graphs when all directed edges are restricted to one 
dimension. This versatility positions hyperdigraphs as powerful aggre-
gators, enabling flexible and diverse data representation.

More formally, let G be an abelian group, and let Ck(V ; G) be the 
Abelian group generated by the sequences with (k + 1) distinct elements 
in V. Then C*(V ; G) is a chain complex with the boundary operator 
∂k : Ck(V ; G) → Ck−1(V ; G) given by

∂k(x0, x1,… , xk) =
k
∑
i=0

(−1)k(x0,… , ̂xi,… , xk). (1)

Here, x̂i means omission of the term xi. Let Fk(ℋ;G) be the Abelian group 
generated by the k-directed hyperedges on ℋ⃗ . It follows that Fk(ℋ⃗ ;G) 
is a graded subgroup of C*(V ; G). We denote

Ωk(ℋ⃗ ;G) = {x ∈ Fk(ℋ⃗ ;G)|∂kx ∈ Fk−1(ℋ⃗ ;G)}. (2)

Then, Ωk(ℋ⃗ ;G)  is also a chain complex, specifically tailored for  
exploring the topology of hyperdigraphs. It is essential to highlight 
that the chain complex Ωk(ℋ⃗ ;G) undergoes simplification when the 

Table 3 | Detailed information of the used datasets

Datasets Training 
set

Test set (core set)

Pretraining 
(self-supervised 
learning)

Combined PDBbind  
(CASF-2007, 2013, 2016, 
PDBbind v.2015, v.2020)

19,513 /

Fine-tuning 
(supervised 
learning)

CASF-2007 1,105 195

CASF-2013 2,764 195

CASF-2016 3,772 285

PDBbind v.2016 3,767 290

PDBbind v.2020 18,904 195 (CASF-2007 
core set)

195 (CASF-2013 
core set)

285 (CASF-2016 
core set)
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hyperdigraph is transformed back into a simplicial complex or hyper-
graph. The corresponding simplicial complex representation of Cα 
atoms in protein 6L9D is depicted in Fig. 4h. Here, blue triangles repre-
sent the 2-simplices, while orange highlights designate the 3-simplices, 
providing a rough visualization of the alpha helix structures. Addition-
ally, Fig. 4i illustrates the 3-directed hyperedges within the hyperdi-
graph, highlighted in blue, serving as an alternative representation of 
the alpha helix in the structure. Supplementary Fig. 9 further presents 
diverse topological representations, encompassing graphs, simplicial 
complexes, hypergraphs and hyperdigraphs. More detailed descrip-
tions and definitions of graphs, simplicial complexes and hypergraphs 
are available in the Supplementary Section 3 and the original paper26.

Furthermore, to enable the practical application of hyperdigraphs 
in protein–ligand complex analysis, we introduce Vietoris–Rips 
(VR) and alpha hyperdigraphs. These hyperdigraphs are inspired 
by the widely used Vietoris–Rips complex and alpha complex topo-
logical models, respectively. All analyses in this work utilize the VR  
hyperdigraph unless otherwise specified. For illustrative purposes, 
Supplementary Figs. 1 and 2 depict VR and alpha hyperdigraphs, respec-
tively. Detailed construction methods and definitions are provided  
in Supplementary Information Section 4.

Topological Laplacians and spectrum analysis. The combinato-
rial Laplacian is a cornerstone tool in discrete geometry and alge-
braic topology, offering insights into the structure of topological 
systems like simplicial complexes, hypergraphs and hyperdigraphs. 
Just as the graph Laplacian analyses graph properties (considering 
graphs as 1-simplices), the combinatorial Laplacian extends this 
analysis to higher-dimensional structures. Eigenvalues of the graph 
Laplacian encode connectivity information. For instance, the sec-
ond smallest eigenvalue (Fiedler vector) reflects algebraic con-
nectivity, while the smallest positive eigenvalue (spectral gap) 
relates to the Cheeger constant. The collection of eigenvalues forms 
the Laplacian spectrum. Interestingly, the graph Laplacian matrix 
(ℒ = D − A , where D is the degree matrix and A is the adjacency 
matrix) can be expressed as ℒ = B1BT1  when considering the graph 
as a 1-dimensional simplicial complex and B1 as the one-dimensional 
boundary operator matrix. This observation inspires the generali-
zation of the Laplacian operator to higher dimensions using bound-
ary operators, leading to the Laplacian operator on simplicial 
complexes. Let K be a simplicial complex, and let Bk be the repre-
sentation matrix of its k-dimensional boundary operator. The Lapla-
cian matrix is defined as

Simplicial complex   1 harmonic eigenvector
embedding (H1)

 0 non-harmonic eigenvector
embedding (λ0

min)
Hyperdigraph
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Fig. 4 | Illustration of the concepts related to topological sequence 
embedding. a, Representation of structural data as a point cloud. b, Depiction  
of 0-simplex (node), 1-simplex (edge), 2-simplex (triangle) and 3-simplex 
(tetrahedron), which serve as the fundamental building blocks of a simplicial 
complex. c, Illustration of 0-directed hyperedge, 1-directed hyperedge, 
2-directed hyperedge and 3-directed hyperedge, which form the basic building 
blocks of a hyperdigraph. d, Visualization of the multiplicity of zero spectra, that 
is, topological invariants, of the persistent topological hyperdigraph at the 0th 
(β0) and 1st (β1) dimensions, respectively, showcasing their variations with 
respect to the filtration (scale) parameter d. e, Illustration of the impact of 
varying the filtration parameter on multiscale analysis, resulting in changes  
in the connectivity of the point cloud and the creation of a sequence of 
hyperdigraphs, representing a series of topological structures. f, Representation 
of non-zero minimum non-harmonic spectra of the PTHL at the 0th and 1st 

dimensions (λmin
0  and λmin

1 ), highlighting their dependence on the filtration 
parameter d. g, Visualization of protein 6L9D with a representation featuring 
only Cα atoms. The alpha helix is highlighted in orange, while the beta helix is 
shown in green. h, Illustrations of simplicial complex representation for the Cα 
atoms of protein 6L9D at a cutoff distance of d = 5 Å. The 2-simplices are filled by 
green, 3-simplices are coloured by orange. i, Visualizations of hyperdigraph 
representations for the Cα atoms of protein 6L9D at a cutoff distance of d = 5 Å. 
The 1-directed hyperedges are depicted as purple edges with arrows, the 
2-directed hyperedges are represented by pink edges with arrows, and the 
3-directed hyperedges are illustrated as blue edges with arrows. j, Description of 
the ℒ0 non-zero smallest non-harmonic eigenvector embedding for the Cα 
atoms of protein 6L9D at a cutoff distance of d = 5 Å. k, Explanation of the ℒ1 
harmonic eigenvector embedding for the edges between the Cα atoms of protein 
6L9D at a cutoff distance of d = 5 Å.
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ℒk = Bk+1BTk+1 + B
T
kBk. (3)

Here, BTk  denotes the transpose matrix of Bk. The term BTkBk  indicates 
the connectivity arising from the intersections of k-simplices at 
(k − 1)-simplices, while the term Bk+1BTk+1 implies the interactions result-
ing from the inclusions of k-simplices into (k + 1)-simplices.

Recall that the topological information for simplicial complexes, 
hypergraphs, or hyperdigraphs is derived from their respective chain 
complexes. From now on, we will define the Laplacian operator starting 
from the perspective of chain complexes. Let Ω* be a chain complex 
with the differential ∂k : Ωk → Ωk−1. Assume that, for each k, there is always 
an inner product structure on Ωk. Consequently, the boundary operator 
∂k has its adjoint operator ∂∗k. The combinatorial Laplacian Δk : Ωk → Ωk 
is defined by

∆k = ∂k+1 ∘ ∂∗k+1 + ∂∗k ∘ ∂k. (4)

In particular, ∆0 = ∂1 ∘ ∂∗1 . For each k, choose a standard orthonormal 
basis for Ωk, then representation matrix Lk of the Laplacian operator Δk 
with respect to the standard orthonormal basis is given by

ℒk = Bk+1BTk+1 + B
T
kBk, (5)

where Bk is the representation matrix of boundary operator ∂k by left 
multiplication59. This combinatorial Laplacian is a generalization of 
the graph Laplacian, which is just a carve-out of the properties of graphs 
(that is, 1-simplical complex). The combinatorial Laplacian, on the 
other hand, extends the analysis to higher dimensions. Its eigenvectors 
and eigenvalues encode geometric and topological information about 
the simplicial complex or hyperdigraph. Because the Laplacian matrix 
is positive semidefinite, all eigenvalues of the Laplacian matrix are 
non-negative. Particularly, the zero eigenvalues, that is, the harmonic 
spectrum, encode the topological information. While the non-zero 
eigenvalues (the non-harmonic spectrum) encode the geometric infor-
mation about the system. Figure 4j shows the ℒ0 non-zero smallest 
non-harmonic eigenvector embedding for the Cα atoms (that is, 
0-simplices in the simplicial complex) of protein 6L9D at a cutoff dis-
tance of d = 5 Å. And Fig. 4k shows the ℒ1 harmonic eigenvector embed-
ding for the edges (that is, 1-simplices in the simplicial complex) 
between the Cα atoms of protein 6L9D at a cutoff distance of d = 5 Å. 
Specifically, for ℒk, the multiplicity of the zero eigenvalue (that is, the 
number of times 0 appears as an eigenvalue) equals the number of 
independent cycles; it also equals the topological invariant (βk) in the 
k-dimensional space60. For example, multiplicity of zero for ℒ0 (that 
is, β0) is the number of connected components in the graph (1-simplicial 
complex), the multiplicity of zero for ℒ1 (that is, β1) is the number of 
circles, and it means the number of cavities for ℒ2. The largest eigen-
value λmax

k  of ℒk  is less than or equal to the maximum number dk  
of (k + 1)-simplex shared one k-simplex (maximum degree of the  
graph for ℒ0). Specifically, 0 ≤ λmax

k ≤ 2dk. The smallest non-zero eigen-
value for ℒk , also known as spectral gap, denoted as λmin

k , reflects  
the geometric structure of the system. In this work, the multiplicity of 
zero, the average value, the s.d., the minimum, the maximum and the 
summation of the positive eigenvalue for ℒ0 are used to embed the 
given topological Laplacians. In addition, to validate the power of 
topological hyperdigraph Laplacian, two B7C2H9 isomers with identical 
geometric structures, differing only in the positions of carbon atoms, 
are constructed in the validation, as shown in Supplementary Fig. 10. 
The findings indicate that the hyperdigraph Laplacian possesses the 
capacity to encode more information compared to standard 
Laplacians.

Persistent Laplacians. Persistent Laplacians, or multiscale topological 
Laplacians, were introduced in a series of papers on a differential mani-
fold setting61 and a discrete point cloud setting24 in 2019. A filtration 

process is essential to achieving the multiscale representation in per-
sistent Laplacians24,26,62 as well as in persistent homology27,63. The choice 
of the filtration (scale) parameter, denoted as d, varies based on the 
data structure in question: for point cloud data (Fig. 4a), it is often the 
sphere radius (or diameter). By systematically adjusting d, one can 
derive a sequence of hierarchical representations, illustrated in Fig. 1a. 
Notably, these representations are not limited to simplicial complexes, 
but can also be realized with hyperdigraphs. As an example, consider 
a filtration operation applied to a distance matrix, where the matrix 
elements represent distances between vertices. One could define a 
cutoff value as the scale parameter; if the distance between two vertices 
falls below this cutoff, they are connected. By progressively increasing 
this cutoff, one obtains a sequence of nested graphs. Each graph in this 
sequence, derived from a smaller cutoff value, is a subset of the graph 
generated with a higher cutoff.

In a similar vein, nested simplicial complexes can be formed based 
on different complex definitions like the VR complex, Čech complex 
and alpha complex. The VR complex is used in this work. Mathemati-
cally, the nested simplicial complexes can be written as:

∅ ⊆ Kd0 ⊆ Kd1 ⊆ ⋯ ⊆ Kdn = K (6)

Here, for any two di < dj, we have Kdi ⊆ Kd j . The concept extends to 
hyperdigraphs as well, namely the VR hyperdigraph: one can form 
nested hyperdigraphs by properly defining directed hyperedges26. To 
visualize the effects of changing filtration parameters, Fig. 4e depicts 
alterations in point cloud connectivity from Fig. 4a, leading to a 
sequence of hyperdigraphs. Additionally, Supplementary Fig. 8a show-
cases the simplicial complex produced at different filtration para
meters and Supplementary Fig. 8b illustrates hyperdigraphs generated 
at different filtration parameters. The details about the construction 
of a VR hyperdigraph can be seen in Supplementary Fig. 1. In addition, 
inspired by the alpha complex, the alpha hyperdigraph is also intro-
duced in this work, as shown in Supplementary Fig. 2.

As a filtration process unfolds, it naturally gives rise to a family of 
chain complexes. For each filtration step di (with i indexing the steps), 
a chain complex C(Kdi ;G) is constructed. Mathematically, a chain com-
plex for a particular filtration step is a sequence of Abelian groups (or 
modules) and boundary homomorphisms:

⋯→ Ck+1(Kdi ;G)
∂dik+1⟶ Ck(Kdi ;G)

∂dik⟶ Ck−1(Kdi ;G) → ⋯ (7)

where Ck(Kdi ;G) is the k-dimensional chain group at filtration step di.
For a more general exposition, we now introduce the Laplacian in 

a mathematical formalism. For real numbers a ≤ b, let Ωa
∗  and Ωb

∗  be 
chain complexes. Suppose that Ωa

∗ ⊆ Ω
b
∗. The chain complexes consid-

ered can be the chain complexes obtained from a filtration of simplicial 
complexes, hypergraphs, or hyperdigraphs, among other possibilities. 
Moreover, the chain complexes Ωa

∗  and Ωb
∗ are endowed with the com-

patible inner product structures. Let Ωa,b
k+1 = {x ∈ Ω

b
k+1|∂

b
k+1x ∈ Ω

a
k }. The 

persistent boundary operator ∂a,bk+1 ∶ Ω
a,b
k+1 → Ω

a
k  is defined by 

∂a,bk+1x = ∂bk+1x  for x ∈ Ω
a,b
k+1.
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The kth persistent Laplacian is defined as

Δa,bk = ∂a,bk+1 ∘ (∂
a,b
k+1)

∗
+ (∂ak)

∗
∘ ∂ak . (9)

Here, (∂a,bk+1)
∗
and (∂ak)

∗
 are adjoint operators of ∂a,bk+1 and∂ak , respecti

vely. It is worth noting that the harmonic part of Δa,bk , that is, 
kerΔa,bk = {x ∈ Ωa

k |Δ
a,b
k x = 0}, is naturally isomorphic to the (a, b)- 

persistent homology Ha,bk = im(Hk(Ωa
∗) → Hk(Ωb

∗))  (ref. 64). In a broad 
sense, the harmonic part of the persistent Laplacian contains informa-
tion about persistent homology. To glean insights from each chain 
complex, one can resort to spectrum analysis. By constructing the 
Laplacian matrices corresponding to each ∂k and ∂k+1 and examining 
their spectra (eigenvalues and eigenvectors), one can uncover rich 
structural information about the topological and geometric properties 
inherent in the data at that particular scale of the filtration. This spectral 
information often provides a compact and informative summary of 
the data, allowing for efficient comparison and analysis across different 
scales. Figure 4d illustrates the evolution of zero eigenvalue multiplici-
ties in the associated Laplacian matrix as the filtration (scale) param-
eters change, while Fig. 4f depicts the variation in the smallest positive 
eigenvalue with changing filtration (scale) parameters. Additional 
persistent attributes are presented in Supplementary Fig. 7.

Element-specific embedding. In this work, the topological embed-
ding method is applied to encoding the protein–ligand complex. An 
accurate prediction requires a better representation of the interac-
tions between proteins and ligands at the molecular level. Here, the 
element-specific topological embedding22 is used to characterize 
protein–ligand interactions.

When analysing ligands, the focus is on heavy elements such as 
carbon (C), nitrogen (N), oxygen (O), sulfur (S), phosphorus (P), fluorine 
(F), chlorine (Cl), bromine (Br) and iodine (I). Conversely, for proteins, 
only carbon (C), nitrogen (N), oxygen (O) and sulfur (S) are considered. 
Subsequently, a range of element combinations, arranged in a specific 
sequence, will represent the interactions between the protein and the 
ligand. For proteins, the combinations are denoted as ℰprotein = {{C}, {N},  
{O}, {S}, {C, N}, {C, O}, {C, S}, {N, O}, {N, S}, {O, S}, {C, N, O, S}}. Meanwhile, 
the ligand combinations are ℰligand  = {{C}, {N}, {O}, {S}, {C, N},  
{C, O}, {C, S}, {N, O}, {N, S}, {O, S}, {N, P}, {F, Cl, Br, I}, {C, O, N, S, F, P, Cl, 
Br, I}}. Within the element-specific embedding approach, the interac-
tions between proteins and ligands are defined by the topological links 
between two sets of atoms, one from the protein and the other from 
the ligand. For example, a representation like K{C, N},{S} indicates the 
topological hyperdigraph representation where the C and N atoms are 
derived from the protein, while the S atom comes from the ligand. The 
element-specific embeddings detail interactions based on their spatial 
relationships. It can be characterized by distance matrix D  
as follows:

D(i, j) = {
‖
‖ri − r j‖‖ , if ri ∈ ℰprotein, r j ∈ ℰligand or ri ∈ ℰligand, r j ∈ ℰprotein

∞, other
(10)

where the ri and rj are coordinates for the ith and jth atoms in the set, 
and ‖‖ri − r j‖‖ is their Euclidean distance. In the TopoFormer model, 
protein atoms located within 20 Å of ligand atoms are taken into 
account. For the TopoFormers model, the range is reduced to protein 
atoms within 12 Å of the ligand atoms. In this study, emphasis is placed 
on the protein–ligand interactions by assigning an infinite value to the 
distance between atoms either within the protein or the ligand. For a 
specific protein–ligand complex, there are 143 potential combinations 
(derived from 11 protein sets multiplied by 13 ligand sets). Each of these 
combinations functions as a simplicial complex and is further exam-
ined using the PTHL approach.

TopoFormer model
TopoFormer utilizes a topological embedding model to transform 3D 
protein–ligand complexes into topological sequences characterized by 
multiscale features. The larger TopoFormer variant employs a scale range 
of 0 to 10 Å (0.1 Å increments), generating a 100-unit sequence. At each 
scale, embedded features are represented by a 143 × 6 matrix (6 attributes 
per ℒ0). Topological embeddings are combined with trainable multiscale 
embeddings to produce the final output (Fig. 1a). Convolutional layers 
within the transformer’s encoder and decoder convert these matrices 
into 1-dimensional vectors (Fig. 1c). TopoFormer’s attention mechanism 
utilizes encoded representations (queries, keys and values) for each filtra-
tion increment, similar to conventional transformers. An asymmetric 
design, inspired by the Masked Autoencoders (MAE) model in computer 
vision65, is applied to the encoder and decoder. Detailed model settings 
are provided in Supplementary Information Section 2. Training involves 
two phases: (1) Self-supervised learning: 19,513 unlabelled protein–ligand 
complexes from PDBbind are used to pretrain TopoFormer. Topological 
embeddings are reconstructed, and the mean squared error serves as the 
reconstruction loss. This approach allows the model to learn generalized 
representations of protein–ligand interactions from vast amounts of 
unlabelled data. (2) Supervised learning: For scoring, ranking, docking 
and screening tasks, TopoFormer is fine-tuned to predict specific scores 
for protein–ligand complexes, again using MAE as the loss function.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The training dataset employed in this study comprises a comprehensive 
collection of protein–ligand complexes sourced from various PDBbind 
databases, specifically CASF-2007, CASF-2013, CASF-2016 and PDBbind 
v.2020. To ensure the dataset’s reliability and eliminate redundancies, 
a meticulous curation process was undertaken, resulting in a total of 
19,513 non-overlapping complexes. All data used in this study can be 
downloaded from the official PDBbind website: http://www.pdbbind.
org.cn/index.php. We also provide a comprehensive set of resources at 
https://github.com/WeilabMSU/TopoFormer. This includes topologi-
cal embedded features used in both TopoFormer and TopoFormers, 
sequence-based features derived from the Transformer-CPZ28 and 
ESM33 models and all additional generated poses with their associated 
scores, which were crucial for the docking and screening tasks. Instruc-
tions for accessing the poses are also available via Zenodo at https://
doi.org/10.5281/zenodo.10892799 (ref. 66).

Code availability
All source code and models are publicly available via Zenodo at https://
doi.org/10.5281/zenodo.10892799 (ref. 66).
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