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Abstract
Cistaceae are shrubs, subshrubs and herbs that often occur in stressful, fire-prone or disturbed environments and form ectomy-
corrhizal (ECM) associations with symbiotic fungi. Although some Cistaceae are long-lived shrubs that grow to significant 
size, others are herbaceous annuals or short-lived plants. Thus, Cistaceae are atypical ECM hosts that are fundamentally 
different in their biology from trees that are the more typically studied ECM hosts. The Mediterranean region is the center of 
diversity for Cistaceae and the ectomycorrhizal fungi associated with Cistaceae hosts have primarily been studied in Europe, 
North Africa, and the Middle East. Mediterranean Cistaceae often host diverse communities of ECM fungi, but they also 
act as hosts for some ECM fungi that putatively show host-specificity or strong host preference for Cistaceae (including 
species of Delastria, Hebeloma, Terfezia, and Tirmania). The ECM associations of Cistaceae in North America, however, 
remain highly understudied. Here we use fungal DNA metabarcoding to document the ectomycorrhizal fungal communities 
associated with Crocanthemum and Lechea (Cistaceae) in open, fire-prone sandhill habitats in north Florida. At each site 
we also sampled nearby Pinus to determine whether small, herbaceous Cistaceae have specialized ECM fungi or whether 
they share their ECM fungal community with nearby pines. The ECM communities of Florida Cistaceae are dominated by 
Cenococcum (Ascomycota) and Russula (Basidiomycota) species but were also significantly associated with Delastria, an 
understudied genus of mostly truffle-like Pezizales (Ascomycota). Although many Cistaceae ECM fungi were shared with 
neighboring pines, the ECM communities with Cistaceae were nonetheless significantly different than those of pines.

Keywords  ECM · Rock-rose family · Mutualism · Fire-prone habitats

Introduction

Cistaceae is a family of heliophyte shrubs, subshrubs and 
herbs that typically occur in open, sunny areas on poor soils. 
There are nine genera and approximately 180 species of 
Cistaceae distributed mostly in temperate and subtropical 
regions of the Northern Hemisphere (Guzmán and Vargas 
2009; Byng et al. 2016). Cistaceae species diversity is high-
est in Mediterranean areas of Europe, North Africa, and the 
Middle East where members of this family are important col-
onizers during early successional stages in disturbed habitats 
(Guzmán and Vargas 2005). All known members of the fam-
ily form ectomycorrhizal (ECM) associations with symbiotic 
ECM fungi, including both woody perennial species and her-
baceous annual species (Brundrett 2009). Cistaceae species 
in the Mediterranean region host a wide diversity of ECM 
fungi (Comandini et al. 2006; Leonardi et al. 2020) although 
some ECM fungi appear to be specifically associated with 
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Cistaceae hosts (Díez et al. 2002; Comandini et al. 2006; 
Eberhardt et al. 2009). For example, several species of Hebe-
loma are putatively specialist fungi that exclusively form 
ECM with Cistus species (Comandini et al. 2006; Eberhardt 
et al. 2009). Similarly, species of the charismatic desert truf-
fle genera Terfezia and Tirmania are primarily or exclusively 
associated with Cistaceae hosts, mostly in the genus Heli-
anthemum (Montecchi and Sarasini 2000; Díez et al. 2002). 
In contrast, the majority of the ECM fungi associated with 
Cistaceae hosts can also colonize co-occurring trees (Dickie 
et al. 2004; Buscardo et al. 2012; Leonardi et al. 2020). Due 
to their ruderal strategy, Cistaceae hosts can often serve as a 
reservoir of ECM fungi and may facilitate the establishment 
of dominant trees, particularly in stressful habitats (Dickie 
et al. 2004; Martín-Pinto et al. 2006).

Three genera of Cistaceae are native to North America: 
Crocanthemum, Hudsonia and Lechea (Brizicky 1964). 
Crocanthemum has a disjunct distribution with all but one 
species located in North America, Central America and the 
Caribbean. One Crocanthemum species (C. brasiliense) is 
found in Uruguay, northern Argentina and southern Brazil 
(Govaerts et al. 2021). Hudsonia is distributed in subarctic 
and temperate regions across most of Canada and in the east-
ern United States; Lechea is distributed across most of North 
America, Central America and the Caribbean (Govaerts 
et al. 2021). Previous studies on the ECM communities in 
Crocanthemum, Hudsonia and Lechea in North America 
have reported that species in these genera form ectomycor-
rhizal associations with generalist fungi in the genera Ceno-
coccum (Ascomycota), Cortinarius, Laccaria and Russula 
(Basidiomycota) (Malloch and Thorn 1985; Dickie et al. 
2004; Massicotte et al. 2010; Byers et al. 2021). However, 
these studies of North American Cistaceae have generally 
examined a small number of host plants and have been geo-
graphically limited to temperate forests in eastern Canada 
and the Midwestern United States. Though Cistaceae are 
distributed throughout tropical and subtropical habitats in 
North America, Central America and the Caribbean, the fun-
gal symbionts in these habitats remain completely unstudied.

Cistaceae are generally widespread and relatively com-
mon in some habitats across the Southeastern USA (Brizicky 
1964). In Florida, there are six species of Crocanthemum 
and nine species of Lechea (Wunderlin et al. 2023) and these 
plants typically occur in sandhill ecosystems (Spaulding 
2013). Sandhill habitats are subtropical to temperate forest-
savannah habitats characterized by sandy soils and a xeric 
environment with minimal understory vegetation and an open 
canopy that is maintained by frequent, low intensity fires 
(Myers 1985; Sorrie and Weakley 2006). Sandhill habitats 
dominated by Pinus palustris (Longleaf Pine) are also consid-
ered endangered habitats because they occupy only ca. 3% of 
their previously widespread range in the Southeastern United 
States and are increasingly endangered by urbanization and 

changes in the fire regime (Frost 1993; Costanza et al. 2015). 
These ecosystems also serve as the only habitat for endan-
gered species such as the red-cockaded woodpecker (Dryo-
bates borealis) and the eastern indigo snake (Drymarchon 
couperi) (Walters et al. 1988; Hyslop et al. 2014).

Ectomycorrhizal fungal communities have rarely been 
studied in sandhill ecosystems even though the dominant 
trees and some common understory plants rely on ECM 
fungi for their growth (Rasmussen et al. 2018). While some 
ECM have specific associations with Cistaceae hosts in the 
Mediterranean basin, host-specificity of mycobionts associ-
ated with Cistaceae have not been evaluated in subtropical 
ecosystems in the Americas. The goal of this study was to 
characterize the ECM fungal symbionts associated with Cro-
canthemum and Lechea species in northern Florida, USA. We 
hypothesized that: 1) Cistaceae host plants share the majority 
of their ectomycorrhizal symbionts with co-occurring trees 
but that 2) deeper sampling will detect some specialist ECM 
fungi that preferentially or specifically associate with Cista-
ceae hosts. Characterizing the ECM fungal communities on 
these common and widespread Cistaceae hosts is a critical 
first step towards understanding the dynamics of ECM fungi 
in sandhill ecosystems and in determining whether Cistaceae 
hosts may facilitate the survival of ECM fungi and promote 
colonization by ECM trees such as Pinus palustris.

Material and methods

Study area and sampling design

Sampling was conducted in four locations in northern Flor-
ida. The study areas included Cedar Key Scrub State Reserve, 
Etoniah Creek State Forest, Ordway-Swisher Biological Sta-
tion and Twin Rivers State Forest (Fig. 1a, Table 1). The cli-
mate of the region is humid subtropical (Kottek et al. 2006). 
Although these sites are hot and humid throughout much of 
the year, rain is concentrated in the summer months and there 
is typically a cool period during November-January (Florida 
Climate Center 2024). Temperatures may reach 0 ˚C a few 
times per year, but these sites may also periodically experi-
ence “hard freeze” events where temperatures as low as -12 
˚C have been recorded (Osland et al. 2021).

At each location, we selected 3–5 local sites in sandhill 
habitats (Fig. 1b) within a 4 km2 area based on the pres-
ence of common species of Crocanthemum (Fig. 1c) and 
Lechea (Fig. 1d) (Cistaceae). Between September 2018 and 
March 2019, we opportunistically collected whole speci-
mens of Crocanthemum spp. and Lechea spp. as well as 
10–50 g of roots from nearby Pinus species (within 1–5 m 
from the Cistaceae plant) at each site. Pinus palustris was 
the dominant pine species at each site, but at least four other 
Pinus species were present across the sampling sites (Pinus 
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clausa, P. elliottii, P. glabra, and P. serotina). All plants 
were actively growing and had green leaves at the time they 
were sampled. Because our sampling was destructive to indi-
vidual Cistaceae host plants, we only sampled plants in areas 
where there were sufficient populations of many individuals 
– small or highly isolated plants were not sampled. All plant 
material was transported on ice to the lab, stored at 4 ˚C, and 
processed within 2 days. To characterize soils, two samples 
from each local site were collected, air-dried, and passed 
through a 2-mm sieve. Soil samples were then analyzed at 
the University of Florida Extension Soil Testing Laboratory.

Processing of plant samples

Aboveground Cistaceae plant parts were cut and deposited as 
plant herbarium specimens in the Florida Museum of Natu-
ral History Herbarium (FLAS). When they were present, we 
preserved flowers to facilitate plant identification. However, 
it was not always possible to sample flowering individuals, 
so some samples could only be accurately identified to the 
genus level. Roots were rinsed in running tap water to remove 
adhering soil. Cleaned roots were stored up to 48 h in water at 
4 ̊ C. Roots were then inspected under a dissecting microscope 

Fig. 1   a Map of the study 
area in north Florida, USA. 
Cedar Key Scrub State Reserve 
(CKSSR), Etoniah Creek State 
Forest (ECSF), Ordway-Swisher 
Biological Station (OSBS) 
and Twin Rivers State Forest 
(TRSF), b Sandhill ecosystem 
where Cistaceae specimens 
were collected, c. Specimen of 
Crocanthemum nashii, d Speci-
men of Lechea torreyi 

Table 1   Host presence, average concentration of P, K, Ca, Mg and Al and pH in the soil 0–10 cm layer at the four locations of the study area

1  Following EPA 200.7 and the P was extracted with Melich 1
2  Following EPA 150.1

Study Site Host Plants Present Soil Variables (mg kg−1)

P1 K Ca Mg Al pH2

Cedar Key Scrub State Reserve Crocanthemum sp., C. nashi, C. corymbosum, Lechea sp., L. torreyi, 
Pinus palustris, and P. clausa

1.4 8.9 124 20.4 13 4.78

Etoniah Creek State Forest Crocanthemum sp., C. corymbosum, L. sessiflora, L. minor, Pinus 
palustris, P. clausa, P. elliotti, P. glabra, and P. serotina

6.9 9.6 85 12.1 49 4.94

Ordway-Swisher Biological Station Crocanthemum sp., C. corymbosum, L. sessiflora, L. minor, and Pinus 
palustris

11.3 9.6 82 11.9 133 5.31

Twin Rivers State Forest C. corymbosum, L. sessiflora, L. minor, L. torreyi, and Pinus palustris 8.8 12.4 143 17.8 122 5.30
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and healthy ECM root tips were collected with clean forceps. 
We removed all actively growing and healthy ECM root tips 
from each plant and compiled them into a clean petri dish 
filled with water. The ECM roots from each individual plant 
were placed into a 1.5 ml tube to sample ECM fungal com-
munities using amplicon sequencing (see below). Samples for 
amplicon sequencing were placed in cetyltrimethylammonium 
bromide (CTAB) buffer (Gardes and Bruns 1993) and kept 
at -20 ˚C prior until processing. However, some individual 
plants of Crocanthemum and Lechea with abundant ECM root 
tips were examined to further characterize the morphology of 
dominant ECM morphotypes (see below).

For morphological characterization of representative mor-
photypes, we selected plants with high ECM colonization 
and sampled eight individual ECM root tips from a dominant 
morphotype. Six of the eight root tips per morphotype were 
stored in FAA solution (45:5:5:45 volume per volume ratio 
of 95% ethanol:formaldehyde:acetic acid:distilled water) for 
visualization by light microscopy. The remaining two ECM 
root tips were cleaned and subjected to DNA extraction using 
the Extract-N-Amp Plant Kit (Sigma-Aldrich, St. Louis, Mis-
souri) for rapid DNA extraction and amplification. We ampli-
fied and Sanger sequenced the ITS region using ITS1F and 
ITS4 primers (White et al. 1990) and following the protocols 
in Karlsen-Ayala et al. (2023). DNA sequences from these 
individual morphotypes are available in GenBank (Table S1).

Microscopy

Root tips fixed in FAA were gradually dehydrated in an ethanol 
series (50%, 70%, 95%) to absolute ethanol (several changes in 
100%) followed by 1:1 absolute ethanol:xylene and then sev-
eral changes of xylene, with a minimum of 12 h in each solu-
tion along with gentle agitation on a shaker. The ECM root tips 
were gradually infiltrated with melted Paraffin (mp of 56˚C) in 
a 60˚C oven, with occasional agitation over the course of seven 
days until the paraffin had completely displaced the xylene. 
Root tips were perpendicularly oriented in fresh, melted par-
affin in an embedding tray and allowed to harden overnight. 
Wax blocks of embedded root tips were trimmed and 8 µm 
thick cross sections were cut with a rotary microtome. These 
were mounted on Probe on Plus slides (Thermo Fisher Sci-
entific, Fairlawn, NJ, USA) in a drop of water and allowed to 
solidify overnight on a warming tray set to the lowest heat. Sec-
tions were deparaffinized to water in a graded series of xylene, 
ethanol and water solutions, and stained in Toluidine Blue O 
(Sigma-Aldrich, St. Louis, MO USA) 0.05% in water. Stained 
sections were dehydrated in a graded series of water, ethanol, 
and xylene solutions, and the xylene-soaked sections mounted 
in a drop of permount (Thermo Fisher Scientific, Fairlawn, NJ 
USA) with a coverslip applied on top. Mounted sections were 
viewed with a Zeiss Axio Imager A2 compound microscope 
(Carl Zeiss, Oberkochen, Germany).

DNA extraction, amplification and sequencing

Before DNA extraction, ECM root tips sampled for ampli-
con sequencing were ground using a drill press fitted with a 
sterile plastic pestle. Genomic DNA was then extracted using 
a modified glass milk extraction protocol described by Lind-
ner and Banik (2009) with the modifications of Jusino et al. 
(2014). We amplified the fungal rDNA internal transcribed 
spacer region 1 (ITS1) using the primers ITS1F (Gardes and 
Bruns 1993) and ITS2 (White et al. 1990). Libraries were 
prepared using a dual-index sequencing strategy (Kozich 
et al. 2013) with the first PCR step used to amplify the ITS1 
region using modified primers with Illumina Nextera v2 
adapters (Illumina, San Diego, CA, USA) and the second 
PCR step used to ligate the barcodes from the Illumina Nex-
tera v2 Kit. The first PCR conditions were 94 °C (3 min) 
followed by 35 cycles at 94 °C (30 s), 52 °C (30 s), 68 °C 
(30 s) and a final extension at 68 °C (7 min) using 5– 10 ng 
of DNA, DNA-free water, 5X Green GoTaq buffer (Promega, 
Madison, WI, USA), 10 mM of each primer, 20 mg/mL BSA 
(New England BioLabs, Ipswich, MA, USA), 10 mM dNTPs 
(Promega, Madison, WI, USA) and 5 units/ml GoTaq® Poly-
merase (Promega, Madison, WI, USA). Thermocycler condi-
tions for the second PCR were 95 °C (3 min) followed by 8 
cycles at 95 °C (30 s), 52 °C (30 s), 72 °C (1 min) and a final 
extension at 72 °C (7 min). Positive and negative controls 
were used during extraction, PCR, and sequencing. Positive 
controls included a biological mock community consisting 
of known ectomycorrhizal fungi (Amanita sp., Cortinarius 
iodes, Inocybe pallidicremea, Lactarius scrobiculatus, Rus-
sula vesca, Suillus sp., and Tuber lyonii). A single-copy 
mock community (SynMock) consisting of single-copy, non-
biological ITS sequences combined in equimolar amounts 
(Palmer et al. 2018) was also used as a positive sequenc-
ing and bioinformatics control. Barcoded samples were then 
cleaned and size-selected at ≥ 300 bp with Zymo Select-A-
Size Clean & Concentrator kits (Zymo Research, Irvine, 
CA, USA). Resultant products were then quantified using an 
Invitrogen Qubit 4.0 Fluorometer and Qubit 1X dsDNA HS 
Assay kit (Invitrogen, Eugene, OR, USA). Samples were then 
equilibrated and combined. The final library was sequenced 
in both directions using Illumina MiSeq v3 2 × 300 bp at the 
Interdisciplinary Center for Biotechnology Research at the 
University of Florida.

Bioinformatics

Illumina MiSeq sequencing data were processed using 
AMPtk v1.5.3 (Palmer et al. 2018). FastQ files were de-
multiplexed and the forward and reverse primers were 
stripped using VSEARCH v2.10.4. (Rognes et al. 2016). 
Sequences < 125 bp were discarded and reads > 450 bp 
were trimmed to 450 bp. Sequences were quality-filtered 
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with expected errors less than one (Edgar and Flyvbjerg 
2015), denoised and clustered at 97% similarity into oper-
ational taxonomic units (OTUs) using UPARSE (Edgar 
2013). The 97% cutoff is commonly used to approximate 
fungal species (Smith et al. 2007a; Kõljalg et al. 2013). 
After clustering, we used SynMock (Palmer et al. 2018) to 
account for observed rates of index bleed using the filtering 
module of AMPtk. We assigned OTU-level taxonomy by 
using the taxonomic algorithm in AMPtk and by perform-
ing BLAST searches via the National Center of Biotech-
nology Information (NCBI). Finally, we identified ECM 
fungal OTUs using FUNGuild (Nguyen et al. 2016). Fur-
ther analysis of fungal guilds retained OTUs in taxa with 
confidence levels of “probable” and “highly probable”. 
When some OTUs could not be easily evaluated for their 
ECM status with FUNGuild (e.g. they belong to families 
or genera that contain both ECM and non-ECM fungi and 
their identity was ambiguous), we evaluated them using 
methods in Karlsen-Ayala et al. (2023). Specifically, we 
used BLAST searches to carefully evaluate ECM status. 
We considered these OTUs as ectomycorrhizal if the 
closest BLAST hit matched an ECM species hypothesis 
with > 90% similarity and > 90% coverage. ECM status 
was also compared with the ECM lineages identified by 
Tedersoo and Smith (2013). The identification of OTUs 
in Pezizales was conducted by phylogenetic approaches 
using the ITS datasets from (Healy et al. 2022). If an OTU 
could not unambiguously be determined to be ECM, we 
excluded that OTU from the ECM guild for the purposes 
of our analysis. All sequences were deposited at NCBI 
Sequence Read Archive under BioProject accession num-
ber PRJNA1073980.

Data analysis

All analysis were performed using R version 4.1.1 (R Core 
Team 2021). To account for uneven sequencing depth, we 
took a conservative approach and rarefied the OTU table to 
a depth of 4,370 sequences/sample. This approach enabled 
us to retain the largest number of samples and sequencing 
depth within the dataset. We inspected the extraction and 
PCR controls and all samples suspected of lab contamina-
tion were excluded from the analysis. To reduce issues due 
to potential sequencing artifacts, we removed rare OTUs that 
had less than 100 sequences across all samples.

To visualize the ECM fungal communities associated 
with different host genera and geographic locations in 
ordination space, we used nonparametric multidimensional 
scaling (NMDS) with the vegan package (Oksanen et al. 
2019). To test whether different host plants harbor differ-
ent ECM fungal communities and how these are affected 
by site, we performed a nonparametric permutational 

multivariate ANOVA (PERMANOVA) (Anderson 2001) 
using the adonis2 function in the vegan package (Oksanen 
et  al. 2019) with the Raup-Crick dissimilarity metric, 
which has been shown to be appropriate for zero-weighted 
datasets (Chase et al. 2011). We tested differences in mul-
tivariate dispersion among host genera using the function 
betadisper (Anderson 2006). Bipartite networks were gen-
erated using the ggalluvial package (Brunson 2020). To 
determine host preference of different ECM fungi, we per-
formed an indicator species analysis based on the indicator 
value index (IndVal) using the indicspecies package (De 
Cáceres and Legendre 2009).

Results

Plant collection and morphological characterization 
of ectomycorrhizal root tips

We collected at total of 51 specimens of Crocanthemum, 
49 specimens of Lechea and 53 root samples from nearby 
Pinus. Crocanthemum specimens included C. corymbosum 
and C. nashi whereas Lechea specimens included L. sessili-
flora, L. deckertii, L. minor, and L. torreyi.

We observed ECM colonization on all host plant spe-
cies. Colonized root tips exhibited a swollen appearance 
with a wide degree of morphological variability in the 
fungal mantle and emanating hyphae that was variable 
based on the identity of the ECM fungal species (Fig. 2 
a-d, m-p). Microscopy of root tip cross-sections of the 
most common ECM morphotypes on Crocanthemum spp. 
(Fig. 2 e–h) and Lechea spp. (Fig. 2 i–l) confirmed the 
presence of a mantle and Hartig net, indicating functional 
ECM structures. We also obtained sequences of diverse 
communities of ECM fungi using both Sanger sequenc-
ing on individual root tips (Table S1) and ITS1 amplicon 
sequencing on pooled ECM root tips with multiple mor-
photypes from a single plant (Table S2).

In general, the ectomycorrhizae were ca. 0.5–3 mm 
long and 0.5 mm thick and included yellow, light brown, 
dark brown and black morphotypes. For example, there 
was frequent branching in C. corymbosum + Delastria sp. 
(Fig. 2e) and C. corymbosum + Xerocomus hypoxanthus 
(Fig. 2h). Some ECM roots were short and small as in 
L. sessiliflora + C. geophilum (0.5 mm; Fig. 2n) or were 
elongated as in C. corymbosum + Delastria sp. (2 mm; 
Fig.  2e) and in L. sessiliflora + Delastria sp. (3  mm; 
Fig. 2p). In most ECM root tips cross-sections, the Hartig 
net was confined to the outer layer of radially elongated 
epidermal cells, but in some cases the fungus penetrated 
to the second row of plant cortical cells, as in C. cor-
ymbosum + Xerocomus hypoxanthus sp. (Fig. 2h) and L. 
sessiliflora + Pisolithus arrhizus (Fig. 2o).
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Ectomycorrhizal fungi associated with Cistaceae 
hosts based on amplicon sequencing

The Illumina MiSeq run resulted in 3,482,863 fungal ITS 
reads with an average of 21,632 reads/sample and a total of 
1,473 OTUs. We examined extraction and PCR negative con-
trols and found two samples suspected of lab contamination 
that were excluded from further analyses. After rarefaction 
and excluding rare OTUs (those with a total of 100 read or 
less), the total number of OTUs was 985. From those 985 
OTUs, 204 were identified as ECM fungi taxa and 168 were 
associated with Cistaceae plants. Overall, there was a high 
overlap among ECM fungal communities associated with 
Cistaceae hosts and Pinus species (Fig. 3). Ectomycorrhizal 
fungal communities from all hosts were significantly affected 
by location (adonis, R2 = 0.11, pseudo-F = 6.30, p < 0.001). 
Ectomycorrhizal fungal communities associated with Cro-
canthemum were slightly but significantly different than 
ECM fungi associated with Pinus species (adonis, R2 = 0.047, 
pseudo-F = 4.84, p < 0.001; Fig. 3) and multivariate disper-
sion of ECM communities was significantly different between 
the two hosts (betadisper, F = 6.23, p < 0.05). Similarly, ECM 
fungal communities associated with Lechea were slightly but 
significantly different than ECM fungi associated with Pinus 

species (adonis, R2 = 0.05, pseudo-F = 5.11, p < 0.001; Fig. 3) 
and had a significant difference in multivariate dispersion 
(betadisper, F = 5.43, p < 0.05). In contrast, ECM fungal 
communities did not differ between Cistaceae host genera 
(adonis, R2 = 0.017, pseudo-F = 1.67, p = 0.063; Fig. 3) and 
had a similar multivariate dispersion (F = 0.54, p = 0.46). The 
results above are based on frequency-based measures (i.e. 
Raup-Crick) but we also found that PERMANOVA and mul-
tivariate dispersion with abundance-based (i.e. Bray–Curtis) 
metrics gave similar results (data not shown).

Perhaps unsurprisingly due to the small sizes of their root 
systems, both Crocanthemum and Lechea species harbored 
lower ECM species richness than Pinus (Fig. 4a). Species 
accumulation curves also suggest that there is likely addi-
tional, undetected diversity for all three genera (Fig. 4a). From 
the 204 ECM OTUs we detected in the roots of Cistaceae 
hosts and nearby pines, 83 OTUs were shared among the 
three genera, whereas 11 OTUs were only associated with 
Crocanthemum, 26 OTUs were only associated with Lechea, 
and 36 OTUs were only associated with Pinus (Fig. 4b). The 
ECM OTUs that were most frequently associated with both 
the Cistaceae and pine hosts included Cenococcum geophi-
lum, Lactifluus hygrophoroides, Pisolithus arrhizus and Rus-
sula spp. (Fig. 4c, Table S2). In the case of Cistaceae hosts, 

Fig. 2   Ectomycorrhizal root tips 
of representative morphotypes 
from specimens of Crocanthe-
mum spp. (a–h) and Lechea 
spp. (i–p). a. Photograph of 
root tips and Hartig net (e) of 
ectomycorrhizal root colonized 
by Delastria sp., b. Photograph 
of root tips and Hartig net (f) of 
ectomycorrhizal root colonized 
by Cenococcum geophilum, 
c. Photograph of root tips and 
Hartig net (g) of ectomycorrhi-
zal root colonized by Tricho-
loma equestre, d. Photograph of 
root tips and Hartig net (h) of 
ectomycorrhizal root colonized 
by Xerocomus hypoxanthus., i. 
Photograph of root tips and Har-
tig net (m) of ectomycorrhizal 
root colonized by Russula sp., 
j. Photograph of root tips and 
Hartig net (n) of ectomycorrhi-
zal root colonized by Cenococ-
cum geophilum, k. Photograph 
of root tips and Hartig net (o) of 
ectomycorrhizal root colonized 
by Pisolithus arrhizus, l Pho-
tograph of root tips and Hartig 
net (p) of ectomycorrhizal root 
colonized by Delastria sp. Scale 
bars = 20 µm
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the most frequent ECM fungi also included Delastria spp. 
(Fig. 4c, Table S2). This preferential association between 
Cistaceae hosts and Delastria spp. was corroborated by our 
indicator species analysis (Table S3). It is notable that 13 out 
of 14 OTUs determined by the indicator species analysis to 
be preferentially associated with Cistaceae belonged to Asco-
mycota. In contrast, 7 out of 8 OTUs that were preferentially 
associated with Pinus were Basidiomycota.

Discussion

We explored the ECM fungal community associated with 
two Cistaceae genera, Crocanthemum and Lechea, in san-
dhill ecosystems in Florida. As far as we know this is the 
first study to document the ECM fungal communities in sub-
tropical Cistaceae in the Americas. We found that plants of 
Crocanthemum and Lechea were consistently colonized by 
morphologically differentiated ECM fungi that formed typi-
cal fungal mantels and Hartig nets (Fig. 2). Using amplicon 
sequencing based on fungal ITS1, we detected a diverse com-
munity of ECM fungi on Cistaceae host plants (168 ECM 
OTUs). It is important to note that while OTU number is 

strongly correlated with the number of species, it does not 
represent an exact number of species because some OTUs 
might represent ITS1 sequence variants of the same spe-
cies (Lindahl et al. 2013). Similar to previous studies that 
reported that Cistaceae host plants share a large number of 
ECM fungi with nearby trees (Dickie et al. 2004; Buscardo 
et al. 2012; Leonardi et al. 2020), we detected a high overlap 
among ECM communities between Crocanthemum, Lechea 
and co-occurring Pinus species. Despite this large overlap in 
the ECM fungal communities, the ECM fungal communities 
associated with Cistaceae hosts nonetheless differed signifi-
cantly from those associated with Pinus (Fig. 3). The ECM 
fungal communities from Crocanthemum and Lechea, how-
ever, were not significantly different from each other. This is 
an expected result because, in addition to being members of 
the same plant family, species of Crocanthemum and Lechea 
are frequently found in the same sunny, sandy, fire-prone 
habitats (Fig. 1a) and often co-occur at the same sites. Some 
fungi in the Mediterranean region have specific associations 
with certain Cistaceae genera, but others are generalists and 
colonize different Cistaceae genera as well as co-occuring 
trees (Comandini et al. 2006; Eberhardt et al. 2009; Albu-
querque-Martins et al. 2019; Leonardi et al. 2020).

Fig. 3   Non-metric multi-
dimensional scaling (NMDS) 
ordination of ECM fungal 
communities from Crocanthe-
mum, Lechea and Pinus root 
tips using a modified Raup-
Crick dissimilarity metric. 
Cedar Key Scrub State Reserve 
(CKSSR), Etoniah Creek State 
Forest (ECSF), Ordway-Swisher 
Biological Station (OSBS) 
and Twin Rivers State Forest 
(TRSF)
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Fig. 4   a Species accumulation curve for the ectomycorrhizal fungi 
with Crocanthemum, Lechea and Pinus showing the lower and upper 
95% confidence intervals (shaded region), b Venn diagram showing 
the number of ectomycorrhizal fungi operational taxonomic units 
(OTUs) associated with each host plant genus and the number of 

OTUs shared among them, c Bipartite network of the three plant gen-
era (Crocanthemum, Lechea and Pinus) (upper level) and the ecto-
mycorrhizal fungi OTUs found in at least 25% of samples from each 
genus (lower level)
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Our results also show that ECM fungal communities var-
ied significantly across locations. This pattern is partially 
explained in part by large distances between some of our 
sampling sites (> 150 km) as well as differences in soil prop-
erties across sites, with notable variation in soil P, Ca, and 
Al (Table 1). While our experimental design did not explore 
spatial patterns at a fine scale within individual field sites, 
future work might consider manipulative experiments to 
determine the strength of host preferences and whether they 
are influenced by both physical and phylogenetic distances 
between host plants.

The majority of the Cistaceae ECM community was com-
prised of generalist ECM fungi, many of which were also 
found on nearby pines (Figs. 3 and 4). The most frequently 
occurring fungi, Cenococcum geophilum and Russula spe-
cies, were also found previously on the ECM roots of Cro-
canthemum and Hudsonia species in eastern Canada and the 
midwestern United States (Malloch and Thorn 1985; Dickie 
et al. 2004; Massicotte et al. 2010). Cenococcum geophi-
lum and Russula species frequently dominate ECM fungal 
communities with a wide diversity of gymnosperms and 
angiosperms, including Pinus and Quercus species (Trappe 
1962; Dickie et al. 2004; Miyamoto and Nara 2016; Rasmus-
sen et al. 2018; Karlsen-Ayala et al. 2023), and these taxa 
were also common on the roots of the pines that we sampled 
(Fig. 4c). Cenococcum is often an important component of 
the ECM communities in abiotically stressful environments 
such as serpentine soils (Gonçalves et al. 2009) and xeric 
habitats (Smith et al. 2007b). It is worth noting that Ceno-
coccum geophilum is represented by more than seven differ-
ent OTUs in our dataset (Fig. 4, Tables S1, S2 and S3). Pre-
vious studies in northern Florida revealed high phylogenetic 
diversity of Cenococcum, with multi-locus sequencing that 
resolved six major clades that likely represent phylogeneti-
cally distinct taxa (Obase et al. 2016).

Although Cistaceae ECM communities were dominated 
by host generalists, we nonetheless found evidence for spe-
cialization or host preference among some of the ECM fungi 
on Crocanthemum and Lechea. In particular, our indicator 
species analysis revealed 14 OTUs that were preferentially 
associated with the Cistaceae hosts (Table S3). This group of 
Cistaceae-associated fungi was dominated by Ascomycota (13 
out of 14 OTUs), six of which belonged to the genus Delastria 
(Pezizales). Although Delastria spp. have been found to form 
ectomycorrhizas with Florida Pinus seedlings (Karlsen-Ayala 
et al. 2023), the majority of the Delastria observations in our 
dataset were on Cistaceae hosts and these OTUs were the most 
strongly Cistaceae-associated taxa that we recovered. Interest-
ingly, most of the Delastria species that have been described 
are associated with Mediterranean Cistaceae, including spe-
cies of Cistus, Halimium, and Tuberaria (Paz et al. 2018), 
although these fungi also sometimes form ECM on nearby 
Quercus and Pinus trees. It is also notable that the type species 

of the genus, Delastria rosea, is often associated with Cistus 
ladanifer, another member of Cistaceae (Alvarado et al. 2011). 
While Delastria species are common ECM symbionts associ-
ated with Florida Cistaceae, there are no described species in 
this genus from North America. The preferential association 
of Delastria and other Ascomycota ECM fungi with North 
American Cistasceae is consistent with the observations of 
ECM communities with Cistaceae in Europe, North Africa 
and the Middle East. Across this range, Cistaceae are consist-
ently associated with Delastria and with other Pezizales such 
as the desert truffle genera Terfezia and Tirmania (Montecchi 
and Sarasini 2000; Díez et al. 2002; Paz et al. 2018). Interest-
ingly, many of the ECM fungi in Pezizales have either con-
tact or short-distance exploration types and they often retain 
some saprotrophic capabilities (Tedersoo and Smith 2013; 
Hughes et al. 2020; Healy et al. 2022). Species of Terfezia and 
Tirmania as well as all but one species of Delastria produce 
truffle-like fruiting bodies with tough, durable spores that are 
likely able to withstand hot, disturbance-prone environments 
(Montecchi and Sarasini 2000). All these traits are probably 
advantageous for Delastria, Terfezia and Tirmania when colo-
nizing small, herbaceous hosts in stressful environments, both 
in the Mediterranean region and Florida.

This is the first study that explores the ECM fungal commu-
nities associated with Cistaceae in the subtropical Americas. 
The only tree in Cistaceae, Pakaraimaea dipterocarpaceae – a 
tropical tree occurring in the Guyana Shield in South America 
– is associated with a wide diversity of ECM fungi (Smith 
et al. 2013). It is important to note that, similar to Cistaceae in 
the Mediterranean basin (Martín-Pinto et al. 2006; Guzmán 
and Vargas 2009), Cistaceae in the southeastern United States 
are subject to frequent disturbances. Low severity fires are a 
common disturbance that is critical for the sandhill ecosystem 
and for the dominant pine species, P. palustris (Myers 1985). 
The sandy soils within these habitats often have low water 
availability and minimal organic material, making them stress-
ful environments for plant communities (Foster and Brooks 
2001). Because both Crocanthemum and Lechea species in 
sandhill ecosystems shared a large proportion of their mycobi-
onts with Pinus, it is possible that these Cistaceae hosts serve 
as an ECM fungi reservoir that might facilitate pine establish-
ment (Martín-Pinto et al. 2006). Thus, future research should 
explore the importance of these Cistaceae host plants and their 
potential impacts and ecological connections in these impor-
tant endangered ecosystems.
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