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 Abstract 

Previous work has identified characteristic neural signatures of value-based decision-making, 

including neural dynamics that closely resemble the ramping evidence accumulation process 

believed to underpin choice. Here, we test whether these signatures of the choice process can be 

temporally dissociated from additional, choice-independent value signals. Indeed, EEG activity 

during value-based choice revealed distinct spatiotemporal clusters, with a stimulus-locked 

cluster reflecting affective reactions to choice sets and a response-locked cluster reflecting choice 

difficulty. Surprisingly, neither of these clusters met the criteria for an evidence accumulation 

signal. Instead, we found that stimulus-locked activity can mimic an evidence accumulation 

process when aligned to the response. Re-analyzing four previous studies – including three 

perceptual decision-making studies – we show that response-locked signatures of evidence 

accumulation disappear when stimulus-locked and response-locked activity are modelled jointly. 

Collectively, our findings show that neural signatures of value can reflect choice-independent 

processes and look deceptively like evidence accumulation. 
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Significance Statement 

 To choose, people must evaluate their options and select between them. Selection is well 

described by a process of accumulating evidence up to some threshold, with an 

electrophysiological signature in the centroparietal positivity (CPP). However, decision-making 

also gives rise to value signals reflecting affective reactions and other selection-unrelated 

processes. Measuring EEG while participants made value-based choices, we identified two 

spatiotemporally distinct value signals, neither reflecting evidence accumulation. Instead, we 

show that evidence accumulation signals found in the CPP can arise artifactually from 

overlapping stimulus- and response-related activity. These findings call for a significant 

reexamination of established links between neural and computational mechanisms of choice, 

while inviting deeper consideration of the array of cognitive and affective processes that occur in 

parallel. 
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Over the past few decades, research has made significant advances toward understanding how 

people make value-based choices between competing options (e.g., items on a restaurant menu or 

in a store catalog). This research has identified consistent neural correlates of the values of the 

options under consideration 1,2, and characterized the process that gives rise to decisions among 

them, both neurally and computationally 3-7. However, drawing clear links between neural and 

computational investigations of value-based choice has been complicated by the fact that neural 

correlates of value can reflect processes outside of the ongoing decision (for a review see 8). For 

instance, engaging with a choice set can trigger evaluations of one’s options that are relatively 

automatic (e.g., Pavlovian) and potentially independent of the decision process itself 2,9-16. 

Distinguishing such choice-independent neural value signals from those that play a mechanistic 

role in the choice process requires disentangling the two types of signals within a measure of 

neural activity that provides the temporal resolution to uncover their unfolding dynamics. Here, 

we use EEG to explicitly tease apart value-based neural dynamics attributable to decision-

making from those that are not, and reveal, surprisingly, that only the latter, choice-independent 

value signals were to be found. 

Prevailing computational models show that decision-making can be described as a 

process of noisy evidence accumulating to a decision threshold, providing an account of choice 

behavior (choices and response times) across a variety of different choice settings 17,18. In the 

context of value-based decision-making, putative correlates of this evidence accumulation 

process have been identified throughout the brain 4-6,19 – often reflecting variability in the 

strength of evidence in favor of a particular option or attribute – and a subset of studies has used 

temporally-resolved estimates of neural activity to capture the dynamics of this evidence 

accumulation process. From this work, a putative EEG signature of evidence accumulation has 
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emerged in the centroparietal positivity (CPP), both for perceptual 20-22 and value-based 4 choice. 

Researchers have shown that the CPP demonstrates three characteristic elements of evidence 

accumulation (cf. Fig 1A): (1) following stimulus presentation, activity is greater and peaks 

earlier when decision-related evidence is stronger (consistent with a more rapid rise of evidence 

accumulation when choices are easier), (2) activity peaks around the time of the response 

(consistent with a common response threshold), and (3) in the period leading up to the response, 

due to the slower accumulation and thus shallower slope, activity is greater when evidence is 

weaker and/or responses are slower. The latter effect is sometimes part of a cross-over pattern 

and complemented by an opposite effect at the time of response, reflecting perhaps a decrease in 

decision-threshold for longer RTs through an urgency signal or a modulation of the overlapping 

readiness potential 20,23,24, specifically in paradigms where there is a clear on- and offset of the 

physical evidence 25,26. The CPP is thus a potential index of value-based processing that is 

integral to decision-making per se.  

 However, recent studies have shown that neural correlates of choice value can reflect 

appraisals of the choice set as a whole, that take place irrespective of whether the participant is 

comparing their options 9,13. For instance, using fMRI, dissociable components of the brain’s 

valuation network 1 were found to track how much participants liked a set of choice options 

overall versus elements of the choice process itself e.g., whether they were engaged in choice 

versus appraisal, and how demanding the choice was; 11,12,13. These studies suggest that value-

related activity may emerge soon after the stimuli are presented that is tied to choice-

independent, appraisal-like processes. They further predict that signatures of this appraisal 

process should be distinguishable from the evidence accumulation signatures described above, 

both in terms of the specific correlates of value that each of these tracks and, critically, in terms 
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of their temporal dynamics (Fig 1A): whereas appraisal-related processes should index the 

overall value of a choice set, and occur transiently and locked to the presentation of the choice 

options; choice-related processes should index comparisons between one’s options (e.g., the 

relative value of the chosen vs. unchosen option). The latter may reflect evidence accumulation, 

in which case such activity should ramp up between stimulus presentation and response selection 

cf. 3,4, or other choice-related processes (e.g. monitoring one’s confidence). Past work has been 

unable to test these predictions because it lacked the temporal resolution needed to demonstrate 

these distinct temporal profiles and to formally tease apart signals that meet the criteria of 

evidence accumulation from those that do not. As a result, it is unknown whether these value-

related signals are indeed distinct or merely two components of a unitary choice process Fig. 1A; 

cf. 5,27. 
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To fill this critical gap, we had participants make value-based decisions while undergoing 

EEG, and explicitly disentangled putative correlates of choice-independent appraisal processes 

(e.g., overall value and set liking) from correlates of the process of choice comparison (e.g., 

relative value and choice confidence). This allowed us to test two alternative hypotheses (Fig 1 

Figure 1. Dissociating appraisal- 
and choice-related processes. A. 
A set of options can elicit distinct 
evaluations, such as appraisal of 
the options and choice among 
them. Different frameworks make 
different predictions for whether 
and how those should affect neural 
activity locked to the response 
versus the stimulus. Top: One 
account predicts that appraisal and 
choice reflect different temporal 
stages of a unitary evidence 
accumulation process, such that 
relevant variables (e.g., value 
similarity, blue) would be 
reflected first in stimulus-locked 
activity, and culminate at the time 
of the response. Middle/Bottom: 
Alternative accounts predict that 
appraisal reflects an independent 
process that emerges during 
stimulus presentation. Under these 
accounts, neural activity correlated 
with choice-related variables may 
emerge as a parallel process of 
evidence accumulation (i.e., both 
stimulus-locked and response-
locked, middle) or in some other 
form as a non-accumulation-
related signal (shown response-
locked only as a stylized example- 
the shape and directionality of the 
signals may differ, bottom). B. To 
dissect the temporal dynamics of 
appraisal- and choice- related 
neural activity, we regress single 
trial EEG activity onto Appraisal-
related and Choice -related 
variables (see Fig. 2C), separately 
for stimulus- and response-locked 
activity. 
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A). One hypothesis is that value-related EEG activity would only emerge in the form of an 

evidence accumulation process, in which case we would expect any value-related variables 

(including overall value) to demonstrate characteristic patterns of stimulus-locked and response-

locked activity previously observed, for instance, in the CPP (Fig 1 A top). The alternate 

hypothesis, motivated by our recent fMRI findings, is that we would observe appraisal-related 

patterns of activity that are selectively locked to stimulus presentation (reflecting their potentially 

more reflexive nature), independently of choice-related value signals. These choice-related value 

signals may take the form of CPP-like evidence accumulation signals (Fig 1 A middle), or some 

other form (Fig 1 A bottom). 

We were able to rule out the first hypothesis, instead finding appraisal-related EEG 

activity that was both stimulus-locked and independent of choice comparison-related activity. 

Putatively choice-related EEG activity, by contrast, occurred in a distinct temporal window 

(response-locked) and with a different spatial profile (fronto-posterior) than the spatiotemporal 

cluster we identified for appraisal (stimulus-locked and parietal). Remarkably, these putative 

choice value signals also did not meet key criteria for an evidence accumulation signal. Instead, 

and even more striking, we found that such apparent evidence accumulation signals can emerge 

from choice-independent stimulus-locked activity, as an artifact of standard approaches to 

investigating evidence accumulation processes, due to bleed-over between stimulus-locked and 

response-locked activity (particularly for rapid choices). Confirming this, when we apply a novel 

analysis approach that deconvolves stimulus and response-related activity to four previous 

decision-making studies, we eliminate response-locked signatures of evidence accumulation 

previously observed in those data. As a result, our findings collectively, and unexpectedly, 

support a third hypothesis (Fig. 1A bottom): that value signals separately correlated with 



 9 

appraisal-related and choice-related processes emerge during value-based decision-making, but 

neither of these reflect evidence accumulation.  

Results  

We recorded EEG while participants made incentive-compatible choices between pairs of 

options (consumer goods). Choice sets varied in the overall and relative value of the two options, 

as determined by ratings of individual items given earlier in the session (Fig. 2A, B). 

Participants’ choice behavior was consistent with that observed in previous studies and predicted 

by prevailing models of evidence accumulation 3,4,17: participants chose faster (LMM fixed 

effect: b = -348.7, t = -6.00, p <.001, two-sided, 95%CI = [-462.72 – -234.72]) and in a manner 

more accurate/consistent with their initial item ratings (GLMM fixed effect: b = 4.54, z = 12.40, 

p <.001, two-sided, 95%CI = [3.83 – 5.26]) as value difference increased, and also chose faster 

as overall value increased (LMM fixed effect: b = 357.14, t = 6.70, two-sided, p < .001, 95%CI = 

[-461.62 – -252.65]; Fig. 2 B, Table S 1). After making all of their choices, participants provided 

subjective ratings of the choice sets (how much they liked the sets as a whole) and of the choices 

themselves (how much choice anxiety they had experienced while making the choice, and how 

confident they were in their final decision). 

Distinct spatiotemporal clusters for appraisal vs. choice 

We predicted that we would find a temporal dissociation between neural activity 

associated with appraisal versus choice, whereby appraisal-related activity would be temporally 

coupled with the onset of the stimuli whereas choice-related activity would be temporally 

coupled with the response. To test this prediction, we analyzed the effects of appraisal and choice 

related variables on the same EEG data locked to the onset of the stimuli versus locked to the 

response. Given that a number of different variables captured our two constructs of interest - for 
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instance, appraisal was captured by the overall (average) value of the choice set and subjective 

ratings of set liking, and choice was captured by the difference between the option values and 

subjective ratings of confidence (cf. Fig. 2B) - we used principal component analysis (PCA) to 

reduce the dimensionality of these single-trial measures and improve the robustness of our 

estimates of each construct.  

 

Figure 2. Integrating multiple measures of appraisal and choice. A. Participants performed the 
experiment in three phases, rating consumer goods individually (Phase 1) before choosing between pairs 
of those items (Phase 2) and finally rating their subjective experiences of those choices (Phase 3: set 
liking [appraisal], confidence, and anxiety). B. Responses across these phases provided different measures 
of appraisal and choice. Top: Option sets for Phase 2 were generated based on participants’ initial item 
ratings to vary in their overall (average) value and the absolute difference between the values of the two 
options. Middle: Choices varied with the relative value of the chosen vs. unchosen option, and RTs varied 
with both overall value and value difference. Shown are linear mixed effects model predictions. Error 
bars indicate 95% confidence intervals.  Bottom: Overall value (OV; solid) and value difference (VD; 
dotted) differentially influenced experiences of choice anxiety, confidence, and set liking. Shown are 
linear mixed effects model predictions. Error bars indicate 95% confidence intervals.   C. We used 
principal component analysis to reduce the dimensionality of our measures, identifying two principal 
components in our variable set, clustering naturally into variables associated with appraisal (PC1) versus 
choice (PC2). Component loadings for each measure are represented by their distance from the origin. 
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This PCA identified two reliable principal components (Fig. 2C, Table S2), one 

associated with how positively the option set had been assessed overall (e.g., positively loading 

on overall value and on ratings of choice set liking) and the other associated with how difficult 

the choice comparison was (e.g., negatively loading on value difference and on ratings of choice 

confidence). We termed these the Appraisal PC and Choice PC, respectively. 

We regressed stimulus and response-locked single-trial EEG activity for each participant 

at each sensor and each time point onto these appraisal- and choice-related PCs (cf. Fig. 1 B), 

and identified significant stimulus- and response-related clusters associated with each PC using 

cluster-based permutation tests on the resulting t-statistics at the group level. We found that the 

PCs mapped onto distinct spatiotemporal patterns (Fig. 3, Supplementary Figure 1). In line with 

our predictions, we found that our Appraisal PC explained EEG activity locked to (and 

following) stimulus onset (Fig. 3A, p = .040, two-sided cluster permutation test, cf. Method), but 

not locked to the response (neither preceding nor following). The largest stimulus-locked cluster 

had a parietal distribution, peaking around 710 ms at CP2. Further in line with our hypothesis, 

we observed significant Choice PC-related activity locked to (and preceding) the response (Fig. 

3B; p = .002 for a positive and p <.001 for the negative based on two-sided cluster-permutation 

tests), but not locked to and following the stimulus. The response-locked Choice PC activity 

included a frontocentral positive cluster, peaking around -566 ms at FC4, and a posterior 

negative cluster, peaking around -818 ms at P5. Similar clusters emerged when performing 

separate analyses on variables that constituted each of the PCs (Table S3).  
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Figure 3. Appraisal and Choice exhibit dissociable spatio-temporal profiles. A – B. Curves 
show predicted ERPs for each level of a given PC from the regression model (visualized in 
discrete terciles), averaged within the electrodes in the respective cluster, within 1 second 
following stimulus onset (A) and preceding the response (B). Note that the median RT was 
approximately 1.7 s, so there is little overlap between stimulus- and response-locked data. Grey 
bars indicate cluster time points that significantly exceed permutation cluster masses (two-tailed 
test) for either the positive or negative clusters. Topographies display t-values within these 
clusters aggregated across cluster time points. To visualize the variability in the data underlying 
these clusters, individual participants’ t-values are displayed on the right of each panel, 
aggregated within cluster times and electrodes. A. Stimulus-locked centroparietal positive activity 
increases with higher Appraisal PC scores (more positive appraisal). B. Response-locked 
posterior positivities and fronto-central negativities are reduced for higher Choice PC scores 
(more difficult trials). C. Coefficient topographies for the Appraisal PC (top) and Choice PC 
(bottom), averaged across sliding 200 ms windows aligned to stimulus (left) and response (right). 
Darker regions indicate time-windows encompassing significant clusters (cluster permutation 
corrected p <.05). 
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Neither cluster is consistent with evidence accumulation 

Our analyses suggest that two value-related EEG patterns emerge during value-based choice. The 

first of these was stimulus-locked, tracked appraisal-related measures (i.e., assessments of how 

much the participant liked the set overall), and had a timing and spatial distribution similar to 

that of the late positive potential (LPP), an ERP commonly found to index the affective salience 

of stimuli 28-30, suggesting that this stimulus-locked cluster may index processes unrelated to the 

choice itself. By contrast, the response-locked value clusters we observed tracked measures of 

choice comparison (e.g., how much more valuable one option was than the other, and how 

certain the participant was in their choice), and had a spatiotemporal profile consistent with 

fronto-parietal EEG patterns that have been previously implicated in value-based decision-

making 3,31. The posterior cluster overlapped topographically with the CPP 4,20-22. We therefore 

reasoned that this response-locked cluster was a good candidate for providing an index of the 

evidence accumulation process leading up to the choice, and performed follow-up analyses to 

test whether activity in this or the more anterior cluster met the criteria for such a process.  

Typically, evidence accumulation signals are also evident in stimulus-locked activity, 

because responses fully overlap with the stimulus time-window, leading to the characteristic 

greater and earlier peaks for faster evidence accumulation. Since in our study response times are 

longer, the absence of this pattern is expected. Surprisingly, however, neither of our response-

locked clusters met the two response-locked criteria for signatures of evidence accumulation. 

First, rather than ramping towards a temporally common peak (marking the response threshold) 

immediately prior to a response, we found that activity peaked more than 500 ms prior to the 

response. Second, rather than seeing greater activity leading up to a response on harder choice 

trials, reflecting the slower rate of evidence accumulation expected for those trials (compare light 
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and dark lines in Fig. 3B), we instead found the opposite. Both frontal and posterior clusters 

showed greater amplitudes for easier as opposed to more difficult trials.  

The fact that our data failed to meet either of these criteria was particularly notable for 

our posterior cluster, given its apparent overlap with the centroparietal positivity, the event-

related potential most strongly associated with evidence accumulation. To better understand this 

discrepancy with previous work, we performed follow-up analyses focused directly on the CPP 

proper. Specifically, we tested for a key marker of evidence accumulation traditionally observed 

in the CPP: that slower trials (which require more evidence accumulation and exhibit a shallower 

slope) should show larger amplitudes leading up to the response than faster trials 3,4. In our study, 

CPP amplitudes in the pre-response time window - 700 to -200 ms as in previous work4 instead 

showed the opposite pattern: significantly larger for shorter relative to longer RTs (LMM fixed 

effect: b = - 0.47, t = -3.10, p = .002, 95%CI = [-0.77 - -0.17]). Similar findings emerge when 

using value difference as a proxy for choice difficulty (as in the analyses above): CPP amplitude 

was larger for easier than harder choice trials (LMM fixed effect: b = 0.62, t = 1.77, p = .077, 

95%CI = [-0.07 – 1.31]) rather than the reverse.  

One possible explanation for this apparent contradiction has to do with differences in the 

timing of choices in our study relative to previous studies. Our participants were given up to four 

seconds to make their choice, in contrast to shorter response windows in earlier work e.g., 1.25s 

4. The evidence accumulation signal may therefore have been more spread out in time within our 

data, leading the expected greater activity for slower/more difficult trials to occur earlier. To 

investigate this possibility, we examined the average ERP curves on trials above and below the 

median RT (Fig 4 A).  
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Figure 4. Stimulus-locked EEG activity can produce spurious patterns of response-locked activity 
due to variability in response times. A. Top: Response-locked single trial ERPs at Pz sorted by RT for 
trials faster (black box) and slower (grey box) than the median RT. Black lines mark stimulus onsets, and 
red lines mark the average onset of the stimulus-locked P3. Bottom: Averaging across these trials 
produces differential patterns of response-locked ERPs for faster trials (black) relative to slower trials 
(grey). B. The unexpected patterns observed in Panel A can result from component overlap. Top: 
Evidence accumulation signals expected for fast- and slow RTs respectively. Middle: When activity is 
locked to the response, this introduces jitter in stimulus-locked activity, with stimulus-related activity 
appearing earlier and earlier as RTs increase (i.e., the greater the delay between stimulus and response). 
Bottom: The convolution of the two patterns above can produce a pattern that is dominated by component 
overlap and obscures signatures of evidence accumulation. Such a pattern is similar to that shown in panel 
A. 

Moving far enough back in time, to around 1s prior to response onset, we do see that the 

relative magnitudes of slow and fast trials reverses such that slow trials elicit greater activity than 

fast trials, as predicted by an evidence accumulation account. However, at odds with this 

account, we also see that slower trials elicit much earlier peaks than faster trials. To understand 

why these peaks were systematically shifting in time, we plotted the single trial amplitudes 

underlying the median RT averages and sorted them by RT (Fig 4A top). This revealed a marked 

positive amplitude response in all trials (red line) approximately 350 ms following stimulus onset 
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(black line), and the rise and peak of the ERP curves approximately followed the respective 

temporal distributions of this response (compare Fig 4 A top and bottom).  

We therefore considered that the discrepancy between our findings and those previously 

observed (cf. Fig 4 B, top) may have been caused by overlap with this choice-unrelated response 

(Stimulus ERP jitter, Fig 4 B, middle) which may have masked the expected evidence 

accumulation signal. We therefore performed a separate analysis, analogous to standard event-

related analyses for fMRI, which explicitly modeled stimulus-locked and response-locked 

activity, allowing them to be formally deconvolved from one another 32-34. Like our previous 

analyses, this approach again identified a positive stimulus-locked appraisal cluster with a 

centro-parietal distribution (peak around 810 ms at electrode Pz, p = .004, two-sided cluster 

permutation test) and response-locked choice clusters over frontal (positive, peak around -722 

ms at electrode AFz, p = .010, two-sided cluster permutation test) and parietal (negative, peak 

around -616 ms at electrode P8, p = .010, two-sided cluster permutation test) sites, respectively 

(Supplementary Figure 1, 2). This approach also showed no stimulus-locked choice effects, or 

response-locked appraisal effects. Thus, despite successfully disentangling the stimulus- and 

response-locked activity, it did not change our overall pattern of results; even after controlling 

for component overlap, our response-locked pattern remained inconsistent with evidence 

accumulation.  
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Component overlap can look like evidence accumulation  

These findings led us to question whether rather than masking evidence accumulation 

signals in our findings, stimulus-locked activity may have spuriously caused signatures of 

evidence accumulation in previous work. As we indicated earlier, most studies investigating 

evidence accumulation signals in EEG involved much faster decisions ~750ms on average in 4; cf. 

Fig 5A,~800ms on average in 20,~1s on average in 21 except for a perturbation condition with additional stimulus dynamics. 

One possibility is therefore that the characteristic response-locked evidence accumulation pattern 

in prior studies was driven by overlap between stimulus-related activity (e.g., related to the 

salience of the stimuli) and response-locked activity 34. This component overlap account can 

explain basic features of CPP data, (Fig. 5A bottom) and makes a distinct prediction: rather than 

activity remaining locked to the response (as predicted by an evidence accumulation account), a 

component overlap account predicts that the peak of the CPP should move back in time as RTs 

increase (Fig. 5B bottom). As a consequence, for short-RTs, variability in the extent of overlap 

between stimulus-related and response-related activity with RT would produce an artifactual 

ramping signal in average ERPs that appears steeper for faster and shallower for slower 

responses. To test this possibility, we produced the same ERP plots as above for the subset of 

trials that had RTs shorter than 1.25 seconds, as in previous studies (Fig. 5B top). Compared to 

the entire dataset, the peaks for this subset of short RTs moved closer to the response and, 

crucially, a pattern reminiscent of the CPP emerged, with slower RT trials in this range 

displaying a larger parietal positivity up to 500 milliseconds prior to the response. Our collective 

pattern of results, across both short and long RTs, therefore exactly matches the predictions of the 

component overlap account (Fig. 5A/B bottom).  
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Figure 5. Evidence accumulation signals emerge as an artifact of component overlap. A. A 
representative CPP finding (data from Pisauro et al. 2017) shows faster ramping for ERPs curves from 
fast compared to slow trials. Histograms show distributions of stimulus onsets relative to the response for 
each average ERP curve. Simulation: Component overlap can generate an evidence accumulation-like 
pattern under plausible assumptions about RT distributions. Note that these simulations assume the same 
response-related component for all trials (black line), omitting any evidence accumulation. For fast 
response times (<900 ms on average), overlapping stimulus- and response-related component are 
predicted to resemble a single ramp-like component. The peak time and shape of the underlying 
component will depend on the mean and width of the RT distribution of trials in each ERP average. B. 
Data from our decision-making study are consistent with component overlap predictions. Shown are 
average ERPs for median split fast and slow RTs below 1.25 s (left) RT across all trials (right), 
respectively. Histograms show distributions of stimulus onsets relative to the response. Stimulus-evoked 
peaks move further away from the response as response times increase (top). Peak times and widths of the 
observed ERP curves vary with the mean and width of the RT distribution of the underlying trials. This 
pattern of results is consistent with a component overlap account (bottom). 

To test whether these findings replicate in an independent sample, we examined the CPP 

in a separate value-based decision-making dataset (Study 2; N = 39) and found the same pattern: 

At odds with typical findings, CPP amplitudes in the pre-response time window - 700 to -200 

ms4 were again significantly larger for shorter relative to longer RTs (LMM fixed effect: b = - 

1.01, t = -6.58, p < .001, two-sided, 95%CI = [-1.30 - -0.71]), and for easier than harder choice 

trials (LMM fixed effect: b = 0.87, t = 2.32, p = .027, two-sided, 95%CI = [0.13 – 1.60]).  When 
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plotting fast and slow RT trials in a fast subset of the data (RT < 1.25s) and across all trials as in 

Figure 5, we reproduce the moving peaks that follow the distribution of stimulus onsets (see 

Supplementary Figure 3). 

However, it is still difficult to generalize from these results because in both studies our 

average RTs were longer than those in previous studies, even when only focusing on our subset 

of short-RT trials (those below 1.25s). As a result, rather than peaking exactly at the time of 

response (as is characteristic of past CPP results), EEG activity during that subset of trials peaks 

slightly before the response. To provide a more direct test of our hypothesis that the evidence 

accumulation effects in the CPP could originate from a component overlap artifact, we re-

analyzed EEG findings from four previous datasets in which response times were more tightly 

constrained, one collected during value-based decision-making (Study 3 4) and the other three 

collected during perceptual decision-making 25,35,36. In the value-based decision-making study, 

participants (N = 21) chose among pairs of snack items while their EEG was recorded and had to 

respond within 1.25s from stimulus onset. The authors found that behavior was well-captured 

with a DDM and reported the typical response-locked CPP evidence accumulation signal (cf. 

Fig. 4A top). In the first perceptual decision-making study (Study 4 36), EEG was recorded while 

participants (N = 40) decided whether a deviant object in a circular array of objects was on the 

left or right side of the display (Fig 6). Objects in the array were chosen to be visually similar 

and presented either intact or blurred, which serves as an index of evidence strength and 

modulated performance accordingly (lower accuracy and slower RTs for blurred compared to 

intact stimuli). Stimuli were presented for 200 ms, and participants had up to 2 s from stimulus 

onset to respond. In the second perceptual decision-making study (Study 5 25) EEG was recorded 

while participants (N = 17) determined which of two overlaid gratings had a higher contrast. 
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Unlike the other studies, stimuli were not suddenly presented, but faded in at equal contrast and 

switched to the target contrasts after a random time interval simultaneously with a tone signaling 

the change. The evidence was then presented for 2400 ms within which participants had to 

respond. In the third perceptual decision-making dataset (Study 635), EEG was recorded while 

participants (N = 17) judged the overall blueness versus redness of compound stimuli that varied 

in the blue, red and purple hue of their components. Stimuli were presented for 160ms and 

participants had 1200ms to decide. 

 When we separately reanalyze stimulus-locked and response-locked activity using mass-

univariate analyses analogous to standard ERP analyses, we find the characteristic CPP indices 

of evidence accumulation over centroparietal sites in all four studies. Response-locked analyses 

revealed that activity peaked at the time of the response and rose with a steeper slope for fast 

relative to slow trials in value-based decision-making (Fig. 6A, top) and intact relative to blurred 

stimuli (Fig. 6B, top) and fast relative to slow trials (Fig. 6C-D, top) in perceptual decision-

making, resulting in more positive CPP amplitudes for trials that putatively required more 

evidence accumulation, respectively (cf. Fig. 1A). The centro-parietal positivity in all studies 

therefore meets response-locked criteria for signatures of evidence accumulation. However, 

because these analyses do not explicitly account for the overlap between stimulus-related and 

response-related components, they cannot distinguish whether the response-locked patterns 

reflect evidence accumulation or stimulus-related activity. To formally disentangle these, we 

again applied the deconvolution approach introduced earlier 32, including stimulus and response 

events in a single model of neural responses. After deconvolution, we no longer find significant 

response-locked signatures of evidence accumulation in any of the datasets (Fig. 6A-D, bottom), 

suggesting that in our previous analysis this characteristic pattern of evidence accumulation was 
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predominantly an artifact of component overlap (see Supplementary Figure 4 for corresponding 

stimulus-locked activity).  

 So far, we assumed that signatures of evidence accumulation should be closely tied to the 

response. This is the typical prediction in the literature and plausible if non-decision time 

(comprising stimulus and motor processes at both ends of the evidence accumulation process) is 

constant, and the time required for motor processes is short. However, both stimulus and motor 

processes can vary from trial to trial, leading to an evidence accumulation process that is not 

closely tied to either stimulus or response. The only model that explicitly and independently 

accounts for these variance components is the neurally informed DDM 26. To test whether 

unfold’s deconvolution approach would be robust to detecting evidence accumulation signals – 

either response- or stimulus-locked – when accounting for these different forms of variability, we 

simulated the neurally informed DDM (simulation code adapted from Kelly & O’Connell) for 

strong and weak signals with varying ratios of stimulus and response variability. The simulations 

confirm that signatures of evidence accumulation need not be response-locked. The simulations 

also show that, as response variability increases, unfold will increasingly assign activity to the 

stimulus event, rather than the response event (Supplementary Figure 5). Importantly, these 

simulations show that any signatures of evidence accumulation are recoverable, either at the 

stimulus, the response, or both. The simulations also provide us with qualitative alternative 

predictions for signatures of evidence accumulation under different ratios of stimulus- and motor 

variability. Specifically, under the Kelly et al (2021) model, we would expect that as motor 

variability increases, evidence accumulation signals would be evident in a greater stimulus-

locked amplitude for easy/fast compared to hard/slow trials.  
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Of the four datasets we analyzed, the only one in which we observed a pattern in 

principle consistent with such stimulus-locked evidence accumulation signatures, but also with 

non-integration accounts, was the visual search dataset 36 (see Supplementary Figure 4B). To test 

whether signatures of evidence accumulation may have been moved towards the stimulus in the 

remaining datasets, and thus missed in our previous analyses, we reanalyzed these data again, 

this time allowing stimulus-locked data to vary with response time in addition to allowing 

response-locked data to vary. The resulting patterns in the remaining datasets showed neither 

significant response-locked signatures of evidence accumulation, nor the predicted stimulus-

locked amplitude modulations, and were thus inconsistent with any of the simulated patterns 

(Supplementary Figure 6). For Study 5, the results are somewhat ambiguous due to a significant 

baseline difference, which if taken into account may produce a stimulus-locked peak difference 

in the expected direction. However, these findings are complemented by results showing that 

signatures of evidence accumulation can no longer be found using MASS-univariate analysis 

following RT-agnostic overlap correction of the data (Supplementary Figure 7).  

 

Figure 6. Response-locked evidence accumulation patterns vanish when correcting for component 
overlap. A. Regression ERPs (rERPs) from a mass-univariate re-analysis (top) of an independent value-
based decision-making dataset (Pisauro, Fouragnan, Retzler, & Philiastides, 2017, cf Fig. 5A) exhibit a 
CPP with characteristic signatures of evidence accumulation. Decisions based on weaker evidence (slow 
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compared to fast) are associated with a slower response-locked ramping of CPP amplitude, resulting in 
larger CPP amplitudes prior to the response. When re-analyzing these data with a deconvolution approach 
that models both stimulus-related and response-related activity (bottom), we find that response-locked 
rERPs no longer show the characteristic evidence accumulation pattern. B - C. Regression ERPs (rERPs) 
from a mass-univariate analysis (top) of three independent perceptual decision-making datasets exhibit a 
CPP with characteristic signatures of evidence accumulation. Decisions based on weaker evidence 
(blurred stimuli/slower responses) are associated with slower response-locked ramping of CPP amplitude, 
resulting in larger CPP amplitudes prior to the response. When re-analyzing these data with a 
deconvolution approach that models both stimulus-related and response-related activity (bottom), we find 
that response-locked rERPs no longer show the characteristic evidence accumulation pattern. Data are 
shown with average reference. B. Data from Frömer, Maier, & Abdel Rahman (2018). C. Data from 
Steinemann, O'Connell, & Kelly (2018). D. Data from Boldt, Schiffer, Waszak, & Yeung (2019). A.-
D. Grey bars indicate temporal clusters significant at p < .05, cluster permutation-corrected for multiple 
comparisons. 
 

Discussion 

Previous work has identified reliable neural correlates of choice value, and interpreted 

them as elements of a uniform choice process in which option values are compared through an 

accumulation-to-bound process. These interpretations have been reinforced by evidence of such 

neural correlates ramping up towards the response, as would be expected of activity associated 

with evidence accumulation 4. However, recent work suggests that certain neural correlates of 

choice value are unrelated to goal-directed processes such as evidence accumulation and instead 

reflect the appraisal of one’s options 9,11,13. Here, we tested whether we could use EEG to 

temporally dissociate such choice-independent value signals from choice-related value signals. 

We anticipated that choice-independent value signals would follow shortly after stimulus onset, 

whereas choice-related activity should be coupled to and lead up to the response. We found this 

expected temporal dissociation. Remarkably, though, we found that the identified choice-related 

activity was inconsistent with evidence accumulation, and that instead, putative signatures of 

evidence accumulation can emerge artifactually in standard response-locked analyses from 

overlapping stimulus-related activity. Across three value-based decision-making studies and 

three perceptual decision-making studies, we show that signatures of evidence accumulation are 
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absent when stimulus-locked and response-locked activity are sufficiently separated in time, and 

disappear when overlapping activity is formally deconvolved.  

It is important to note that our observation that correlates of appraisal (e.g., overall value) 

occur earlier in time than correlates of choice (e.g., value difference) does not in and of itself 

suggest that these signals arose from independent processes. Indeed, this same temporal pattern 

(overall value signals preceding value difference signals) is predicted to emerge from certain 

forms of unitary evidence accumulation processes, such as that of Wang and colleagues 37,38; see 

Hunt & Hayden, 2017; Hunt et al., 2012. However, models like this also predict that all these value signals 

should emerge locked to the response (Supplementary Figure 8). At odds with such an account, 

we only found stimulus-locked correlates of appraisal (unlike response-locked choice correlates). 

Our findings are thus better explained by separate mechanisms related to appraisal and choice. 

The distinctiveness of these two sets of value signals is further supported by the fact that 

they were linked to distinct topographies. As predicted, we found appraisal-related activity 

temporally locked to stimulus onset - reflected in a parietal positivity consistent with an LPP 

ERP component  28,29,30. The distribution and timing of this component parallels previous ERP 

findings on single item valuation 39,40, and therefore may be interpreted as reflecting an initial 

valuation stage prior to the onset of an independent choice comparison process 41-43. Notably, the 

LPP is sensitive to affective information even when that information is not task relevant 29,44 and 

its putative sources 45 overlap with the pregenual ACC and PCC regions in which we previously 

found choice-independent set appraisals 13. Collectively, these findings suggest that rather than 

an initial choice-related valuation step, these appraisal-related signals reflect an automatic 

valuation signal 46, or enhanced attention to such motivationally relevant events 47,48. 

Accordingly, we found that the variable that best predicted activity in our Appraisal Cluster was 
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a participant’s affective appraisal of the set (i.e., set liking, Table S2). Thus, appraisal-related 

activity may reflect initial (and perhaps reflexive) affective reactions to the stimuli cf. 11,13, and 

possibly serve to inform control decisions 45,49 and/or future choices 50. 

In contrast, choice-related activity was temporally locked to the response, and was 

characterized by a prominent frontocentral negativity and concomitant posterior positivity, 

consistent with previous findings demonstrating increased time-frequency coupling between 

frontoparietal regions, and stronger fronto-central beta power during value-based compared to 

perceptual decision-making 3,31. However, across two independent studies, follow-up analyses 

showed that this pattern of activity was inconsistent with it reflecting the evidence accumulation 

process leading up to the choice 3,4,20,21, in that amplitudes were larger for easier (or faster) rather 

than more difficult (or slower) trials. Thus, rather than merely constituting a negative result (i.e., 

lacking support for evidence accumulation reflected in the CPP), our results consistently 

positively contradict such predictions in favor of a different explanation. Our findings also rule 

out alternate versions of this evidence accumulation account whereby the decision threshold (or 

urgency signal) varies between decision-types with known differences in difficulty 35 or over the 

course of the decision 26. These varying-threshold accounts would still predict that activity would 

be locked to one’s response, and are thus ruled out by the backward-shifting peaks we observed.  

If these choice value correlates do not in fact reflect elements of the evidence 

accumulation process, what might they reflect? A prominent alternative account of such 

correlates would propose that signals associated with choice difficulty (e.g., value difference) 

that we observe in our choice clusters might instead reflect monitoring (e.g. conflict or 

confidence), which could inform higher-order decisions about further information sampling and 

potential information gain 51-63. Recent work in value-based decision-making is converging on 
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the idea that value based choice as studied here requires higher order decisions on gaze/attention 

allocation in the service of information sampling that fundamentally rely on representations of 

both value and uncertainty 54-56,58,64-67. This functional interpretation is consistent with proposed 

loci of CPP activity in dACC 4, and decrements in choice consistency when fronto-central 

coupling is disrupted during value-based choice 31. While intriguing, this interpretation requires 

additional work to test specific predictions of a monitoring or active information search account. 

Whatever the nature of these signals, our results call for caution when interpreting 

response-locked neural patterns as evidence accumulation. Across six datasets, we found that 

evidence accumulation signatures in the response-locked CPP may artificially arise from 

response time-dependent overlap with stimulus-related processing. This was true across both 

value-based and perceptual decision-making tasks. Considering the value-based decision-making 

studies only, one may have hypothesized that there is no CPP signature of value-based evidence 

accumulation, because the CPP is specific to perceptual evidence accumulation that precedes and 

is a necessary precursor to value-based evidence accumulation cf. 8, perhaps implemented 

through subcortical circuits. Yet, the collective findings of our reanalysis of three perceptual 

decision-making datasets speak against this hypothesis.   

This is particularly notable since in their original analyses Steinemann, et al. 25 had used a 

different algorithm RIDE; 68 to subtract stimulus-locked activity associated with the auditory 

evidence onset cue and found the typical CPP patterns intact. This method separates early 

stimulus-locked components that are tightly temporally coupled from later activity that is not 

closely temporally coupled to the response, a central component. However, merely subtracting 

the stimulus-locked component determined this way does not offer information as to whether this 

central component is more aligned with the stimulus or the response, nor will it account for this 
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component in response-locked analyses of the remaining data. If this central component occurred 

somewhat aligned to the stimulus, albeit more loosely than the early stimulus-locked activity, as 

a transient ERP, analyzing it locked to the response would still result in the same component 

overlap effect identified in this paper, and under certain conditions give the appearance of a 

ramp. Our findings suggest that the central component preserved in Steinemann, et al. 25 is 

indeed locked to the stimulus as a canonical P3 ERP. This component is commonly observed for 

most behaviorally relevant visual stimuli, including feedback, regardless of response times, and 

is thought to potentially reflect a form of monitoring 69.  

A crucial signature of evidence accumulation is that the corresponding signal peaks close 

to the time of the response, with that peak occurring earlier for faster compared to slower 

decisions. This is frequently observed for the CPP in perceptual decision making when the onset 

of the relevant stimulus is purposefully obscured, thus when the subjective onset of the stimulus 

can vary relative to the objective onset 20,26,70,71. However, other decision-making studies that 

have identified the CPP as a signature of evidence accumulation only show response-locked 

activity 4,35; and in some cases where stimulus-locked activity was examined, including our 

present results, the expected latency effect was not found 45. Our work highlights the importance 

of testing multiple predictions. 

Doing so, several studies have shown that evidence accumulation signals simulated from 

diffusion model fits to behavior reproduce the CPP in detail, including its stimulus and response-

aligned waveforms, the relationship between its pre-response amplitude and choice RT and 

accuracy and modulations of its pre-response amplitude by experimental manipulations of time 

pressure and prior knowledge e.g., 21,22,26. Here, we highlight several cases in which some of the 

relevant characteristics could emerge artifactually from component overlap by virtue of evidence 
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accumulation and component overlap sharing a common link to response time. Thus, in addition 

to testing multiple predictions of evidence accumulation accounts, future research can avoid 

misinterpretations of neural activity by inspecting ERP image plots for temporal patterns in 

single-trial data and deconvolving stimulus and response-locked signals 32 to show that the 

putative evidence accumulation pattern cannot be produced by component overlap alone. 

Perhaps more importantly, our results reveal that the very nature of the evidence 

accumulation signal expected in the study at hand may vary drastically as a function of decision 

parameters, such as stimulus or motor variability, the shape of the decision bound/urgency 

parameters etc. Rather than testing out of the box predictions, we therefore recommend that 

future research into signatures of evidence accumulation apply the analysis approaches outlined 

above to the empirical data as well as simulations from a best-fitting model informed by 

independent measures of stimulus- and motor variability, as well as bound/urgency parameters 26.  

While we have provided evidence for the pervasive risk that these artifacts pose for 

inferring evidence accumulation from response-locked signals, we can not claim to have 

definitively ruled out that the CPP can in certain cases carry the signature of an evidence 

accumulation signal. For instance, one finding that is not easily accounted for by component 

overlap is  O'Connell, et al. 21 observation that perturbations in the stimulus lead to expected 

patterns in the CPP (see also 72). In a continuous detection task, where participants needed to 

indicate when a stimulus was disappearing, O’Connell et al. showed that briefly increasing 

stimulus contrast led to an attenuation of the average stimulus-locked CPP that ramped up again 

as stimulus contrast continued to reduce. Such a pattern is difficult to explain with component 

overlap alone, but may still be accounted for by other non-integration accounts. Novel 

approaches are therefore needed to test the evidence accumulation hypothesis against alternative 
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non-integration models 73,74. Along those lines, some studies have employed repeated stimulus 

presentations to better characterize how signatures of evidence accumulation evolve with each 

piece of evidence75,76. 

 Our findings build on recent work in non-human animals, which has demonstrated that 

signatures of evidence accumulation can be necessary but not sufficient to conclude that a given 

neural population underpins the evidence accumulation process that drives choice. Using 

deactivation approaches, such studies have called into question the role of candidate regions of 

decision-making in parietal and prefrontal cortex that showed patterns expected for evidence 

accumulation using standard approaches 59,77,78,79; but see also: Jeurissen, Shushruth, El-Shamayleh, Horwitz, & Shadlen, 

2022. Similar to these findings, our work shows that evidence of accumulation is not sufficient to 

argue for an evidence accumulation account, and that to better understand the array of signals 

that appear over the course of a decision, we need to incorporate insights from affective science, 

metacognition and cognitive control 8.  

 

Method 

Participants 

For the main study 48 participants were recruited from Brown University and the general 

community. Of these 9 had to be excluded due to technical problems during data acquisition. The 

final sample consisted of 39 participants (27 female), with a mean age of 20.84 years (SD = 

3.90). Participants gave informed consent and received $10 per hour for their participation ($30 

for the entire experiment). In addition to the compensation, participants could win one of their 

choices at the end of the experiment. The study was approved by Brown University’s IRB 

(Approval number: 1606001529).  
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The sample in study 2 comprised 39 participants recruited from Brown University and 

the general community.  Participants (26 female, mean age 23.92, SD = 5.14), gave informed 

consent and received $10 or $15 per hour for their participation (the hourly rate as per IRB was 

increased after the study commenced and participants’ payments were adjusted accordingly 

moving forward). This study was approved by Brown University’s IRB (Approval number: 

1606001529), and not incentivized. 

Please see the original publications for detailed participant information in Study 3 (N = 

21 4), Study 4 (N = 40 36), Study 5 (N = 17 25), and Study 6 (N= 17 after exclusion of 3 

participants with non-matching behavioral and EEG data 35).   

Task and Procedure 

The main experiment consisted of 3 parts: value rating, choice and subjective experience 

rating (Fig. 1A). The experimental procedure is an adapted version of that used in previous 

studies 11,13 to meet the requirements of EEG, specifically in the choice part.  

In the first part, participants were presented with consumer goods, one at a time, and 

asked to rate how much they would like to have each of them on a continuous scale from 0 to 10 

with zero being “not at all” and 10 being “a great deal”. Labels presented below each item 

supported their identification. Participants were encouraged to use the entire scale. Based on 

individual ratings, choice sets were created automatically, varying value difference and set value 

such that in half of the choices variance in value difference was maximized, while in the other 

half value difference was minimal and variance in set value was maximized 12.  

In the second part, participants had to choose between two items presented left and right 

from a fixation cross by pressing the “A” or “L” key on a keyboard with their left or right index 

finger, respectively. At the beginning of the choice part, participants were placed at 90 cm 
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distance to the screen with the keyboard in their lap and their fingers placed on the response 

keys. Images were presented with a size of 2° visual angle (115 pixel) each, at 1.3° visual angle 

(77 pixel) from a centrally presented fixation cross. Thus, the entire choice set extended to 

maximally 2.3° visual angle in each hemifield. This small stimulus size was chosen as to reduce 

eye movements by presenting the major portion of the stimuli foveally radius of ~2 deg. visual 

angle; 81. At the time of the response or after a maximum duration of 4s, the stimuli vanished 

from the screen and a fixation cross was presented for a constant 1.5 s inter trial interval. Before 

the beginning of the choice part, participants were informed that one of the choices would be 

randomly selected for a final gamble in the end of the experiment that would give them the 

opportunity to win the item they chose on that trial (N = 20 who won and received an item).  

In the third part, participants were presented with all choices again to sequentially rate 1) 

their anxiety while making each particular choice, 2) their confidence in each choice, and 3) how 

much they liked each choice set, respectively. For all subjective evaluations the scales ranged 

from one to five mapped onto the corresponding number keys on the keyboard. 

In the beginning and at the end of the experimental session, demographic and debrief data 

were collected, respectively, using Qualtrics. All subsequent parts were programmed in 

Psychophysics Toolbox 82,83 for Matlab (Version 2016b, The MathWorks Inc.) and presented at 

60 Hz on a 23 inch screen with a 1920 x 1080 resolution. Prior to the main experiment, 

participants filled in computerized personality questionnaires (Behavioral Inhibition/Activation 

Scales (BIS/BAS), Neuroticism subscale of the NEO Five Factor Inventory, Intolerance for 

Uncertainty Scale, and Need for Cognition). These data are not analyzed for the present study. 

Study 2 differed in the following respects cf. 84: Prior to the value ratings, participants 

viewed all items twice, once with labels and once without. During the second viewing they were 
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asked to indicate whether they could recognize each item without seeing the label. During value 

ratings, participants for each item additionally evaluated their confidence in the value rating on a 

scale from 1 (not at all confident) to 5 (very confident). During the choice phase, rather than all 

at once, items were presented alternating individually at the center of the screen, until a decision 

was made, or 5 seconds elapsed while the duration of each item presentation was varied. One 

item was always presented longer on average than the other. Specific presentation durations on 

each turn were drawn from different distributions for long (M = 500 ms, SD = 100 ms) and short 

presentations (M = 200, SD = 50); these distributions were informed by previous work 85. 

Response buttons corresponding to each item were coded via blue and red colored frames around 

the options and manipulated independently of the order and duration of item presentation. 

In Study 3 4, participants chose among pairs of previously rated snack items and had to 

respond within 1.25s from stimulus onset. The difficulty of trials was manipulated by varying the 

value difference between options across 4 levels (1 through 4). 

In Study 4 36,  participants decided whether a deviant object in a circular array of objects 

was on the left or right side of the display. Objects in the array were chosen to be visually similar 

and presented either intact or blurred, which serves as an index of evidence strength and 

modulated performance accordingly (lower accuracy and slower RTs for blurred compared to 

intact stimuli). Stimuli were presented for 200 ms, and participants had up to 2 s from stimulus 

onset to respond.  

In Study 5 25, participants performed a contrast discrimination task in which they decided 

which of two overlaid grating patterns had a higher contrast. Participants were cued to either 

emphasize accuracy or speed and were rewarded when their responses met the current condition 

and punished when they did not. A trial began with a regimen cue, followed by neutral stimuli 
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with equal contrast, which changed to the target stimulus alongside a tone to signal evidence 

onset and stayed on screen for 2400 ms. Participants received feedback following their response.    

In Study 6 35,  participants judged whether stimuli, each consistent of a circular array of 8 

red, blue and purple circles, were more blue or more red on average. Across trials, the colored 

circles varied in their color strength (e.g., how clearly the stimulus was blue or red rather than 

purple) and in their variance (e.g., how variable the hues of the circles was). Stimuli were 

presented for 160 ms and participants had 1200 ms to respond. Participants were cued to one of 

four conditions (high mean – low variance, low mean – low variance, high mean – high variance, 

low mean – high variance). They also provided prospective and retrospective confidence 

judgments.   

Psychophysiological recording and processing 

EEG data were recorded from 64 active electrodes (ActiCap, Brain Products, Munich, 

Germany) referenced against Cz with a sampling rate of 500 Hz using Brain Vision Recorder 

(Brain Products, Munich, Germany). Eye movements were recorded from electrodes placed at 

the outer canti (LO1, LO2) and below both eyes (IO1, IO2). Impedances were kept below 5 kΩ. 

EEG analyses were performed using customized Matlab (Versions 2022b; The MathWorks Inc.) 

scripts and EEGLab (Version 13_6_5b; 86) functions cf. 36, for an earlier version of the pipeline. Offline data 

were re-referenced to average reference and corrected for ocular artifacts using brain electric 

source analyses (BESA; 87) based on individual eye movements recorded after the experiment. 

The continuous EEG was low pass filtered at 40 Hz (eeglab FIR-filter, default filter coefficients). 

For mass-univariate analyses (see below), choice data was segmented into epochs of 4.2 s locked 

to stimulus onset, and 2.8 s relative to the response with 2 s pre- and 800 ms post response. 

Epochs were baseline-corrected to the 200 ms pre-stimulus interval for both segmentations. 
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Trials containing artifacts (exceeding amplitude thresholds of +/- 150µV or a gradient of 50µV) 

were excluded from further analyses. Unfold analyses were performed on unsegmented, 

preprocessed data as described below.  

EEG data acquisition and processing for study 2 was identical except that passive Ag/Cl 

electrodes were used, and that segments were restricted to 2 s post stimulus and pre response, 

with 200ms pre stimulus and post response, respectively. 

Please see the original publications for detailed information on EEG data acquisition in 

Study 3 4, Study 4 36, Study 5 25, and Study 6 35. We obtained preprocessed data for Studies 3 and 

4. Raw data for Study 5 were concatenated across blocks, re-referenced and low-pass filtered at 

40Hz. A subset of blocks (18 total from 298 blocks across all participants) could not be matched 

with the behavioral data and were excluded from further analyses. We obtained data for Study 6 

with ocular artifact reduction and downsampled to 250Hz and removed horizontal and vertical 

EEG channels as well as M2. Data were then matched with behavioral data and low-pass filtered 

at 40Hz.  

Analyses 

 Behavioral data were analyzed using linear mixed effects models as implemented in the 

lme4 package (Version 1.1-31) 88 for R (4.2.2 (2022-10-31)89) in RStudio (Version  

2022.12.0+353). P-Values were computed using the sjplot package (Version 2.8.12) 90. We 

modeled main effects for value variables (both fixed and random effects) in line with previous 

work 5,9. Random effects components were removed if they explained no variance 91. Predictors 

in all analyses were mean centered, values were scaled to max equals 1 for ease of reporting. 

Choices were analyzed using generalized linear mixed effects models using a binomial link 

function with the dependent variable being probability of choosing the right item. In these cases, 
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reported fixed effects are conditional on the random effects, because marginal fixed effects are 

difficult to estimate using Generalized Linear Mixed Models. 

Appraisal and Choice principal components were derived from principal component analysis of 

all participants data on all trials on which a choice was made in time (4637/4680 trials) with the 

following variables normalized to 0-1 ranges: chosen value (value of the item that was ultimately 

chosen), unchosen value (value of the item that was ultimately chosen), value difference (max 

value minus min value), overall value (average of both values), set salience (absolute mean 

centered overall value), anxiety, liking, and confidence. Thus, the dimensions of the input matrix 

were 4637 x 8. An initial exploratory PCA with permutation testing identified 2 principal 

components with eigenvalues greater than the 95th percentile than the distribution from shuffled 

data. We thus derived 2 principal components using matlab’s pca function, rotated the factors 

(normalized varimax), and derived trial-wise scores by multiplying the trial indicators with the 

factor loadings. We thus reduced the variables above to one score for Appraisal and one for 

Choice for each trial.  

 EEG data were analyzed using a mass-univariate approach employing custom made Matlab 

scripts adapted from Collins and Frank 92,Collins and Frank 93: For each subject, voltages at each 

electrode and time point (downsampled to 250 Hz) as dependent variables were regressed (using 

MATLAB’s regress function which implements least squares regression) against trial parameters 

and an intercept term as independent variables to obtain regression weights for each predictor 

similar to difference wave ERPs for each condition in traditional approaches, cf.: 33. These 

regression weights were weighted by transforming them into t-values (dividing them by their 

standard error), effectively biasing unreliable estimates towards zero, and then submitted to 

group-level cluster-based permutation tests, employing a cluster forming threshold of p = 0.005. 
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Clusters with masses (summed absolute t-values) larger than 2.5 % of the maximum cluster 

masses obtained from 1000 random permutation samples were considered significant. Observed 

cluster mass was compared to a permutation distribution to get a percentile rank, which was 

inverted (such that lower numbers corresponded to more unlikely events), divided by 100 (to 

convert the percentile to a decimal), and multiplied by 2 to obtain a p-value for a two-sided test. 

We separately analyzed stimulus locked and response locked EEG data in the 1000 ms time 

interval following the stimulus and preceding the response, respectively. These time intervals 

were chosen in order to include sufficient trials at all time points. Data points outside the current 

trial range (following the response in stimulus-locked data and preceding the stimulus onset in 

response locked data) were set to nan to avoid spill-over from other trials or inter trial intervals. 

In the main analyses, the PC loadings for Appraisal and Choice PCs were included as 

independent variables with the intercept term. In three control analyses with the sets of variables 

underlying the PCs we entered as independent variables either overall value and value difference, 

Chosen and Unchosen Value, or Liking, Confidence and Anxiety alongside the intercept term. 

 For the deconvolution analyses, we conducted first level analyses on preprocessed data using the 

unfold toolbox 32. This MATLAB/Julia toolbox implements multiple regression with combined 

linear deconvolution for multivariate time-series similar to FIR-GLM analyses in fMRI. That is, 

by providing event-timings and per-event regression formulas, it allows us to disentangle 

temporally overlapping ERP responses for detailed introduction to the method, see 32, or 34. 

Stimulus onsets and responses were modeled simultaneously with the same regressors as in the 

main analyses. Deconvolution was implemented using FIR/stick basis functions, time expanded 

+/- 2 seconds around the respective events. Artifacts (amplitudes exceeding +/- 250µV) were 

detected and removed using the built-in threshold functions. No baseline corrections were 
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applied. The obtained betas were submitted to the same cluster-based permutation analyses for 

second level analyses as described above.  

 Study 4 perceptual decision-making data 36 were analyzed using the same procedures as 

just described, except that we used +/-1 second time-windows due to the faster pace of the task, 

and additionally computed mass-univariate betas without overlap correction for comparison. The 

value-based decision-making data in Study 3 4, as well as perceptual decision-making data in 

Studies 5 25 and 6 35 were re-analyzed analogously using the Julia implementation of the unfold 

toolbox 94. Regressors for 36 were visual field and stimulus quality, and both stimulus and 

response-locked activity were modeled with both regressors. Regressors for the three other 

studies were median split RT for response-locked activity, whereas we initially only modelled 

intercepts for stimulus locked activity. In a set of control analyses, we reanalyzed the data of the 

latter three studies to test whether stimulus and response-locked activity varied in ways predicted 

by unfold analyses of simulated data under different stimulus and response variability regimes. 

Simulations. We simulated the neurally informed DDM based on code shared by Simon 

Kelly and Redmond O’Connell. In this model, stimulus processing as well as motor processes 

vary, so that the timing of the evidence accumulation process in between both is jittered. Both 

jitters were modelled using the simplifying assumption of uniform distributions with duration 

“stim_jitter” and “motor_jitter”, respectively. Further, we report the ratio stim_jitter/motor_jitter, 

indicating whether the evidence accumulation process is more closely associated with the 

stimulus or the motor. We simulated 3 scenarios, 1) 2/1 ratio, whereby stim_jitter was set to 0.2s 

and motor_jitter to 0.1s, 2) 1/1 ratio, where both were set to 0.2s, and 3) 1/2 ratio, where 

stim_jitter was set to 0.1s and motor_jitter to 0.2s.  
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Data Availability 

Data for Studies 1, 2 (only data used here), 3 and 4 are available through on different platforms 

with links provided through github under: 

https://github.com/froemero/Common_Neural_Choice_Signals_emerge_artifactually.  

 

Code Availability 

All code can be accessed under 

https://github.com/froemero/Common_Neural_Choice_Signals_emerge_artifactually. 
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