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TESTING RANDOMNESS BY MATCHING PENNIES
— DEDICATED TO MIRJANA VUKOVIĆ —

DUSKO PAVLOVIC PETER-MICHAEL SEIDEL MUZAMIL YAHIA

ABSTRACT. In the game of Matching Pennies, Alice and Bob each hold a penny,
and at every tick of the clock they simultaneously display the head or the tail
sides of their coins. If they both display the same side, then Alice wins Bob’s
penny; if they display different sides, then Bob wins Alice’s penny. To avoid
giving the opponent a chance to win, both players seem to have nothing else to
do but to randomly play heads and tails with equal frequencies. However, while
not losing in this game is easy, not missing an opportunity to win is not. Ran-
domizing your own moves can be made easy. Recognizing when the opponent’s
moves are not random can be arbitrarily hard.

The notion of randomness is central in game theory, but it is usually taken
for granted. The notion of outsmarting is not central in game theory, but it is
central in the practice of gaming. We pursue the idea that these two notions can
be usefully viewed as two sides of the same coin. The resulting analysis suggests
that the methods for strategizing in gaming and security, and for randomizing in
computation, can be leveraged against each other.

1. INTRODUCTION

1.1. Game of Matching Pennies

The payoff matrix for Matching Pennies is displayed in Table 1. For the conve-
nience of using the bitstring notations, we denote the heads move as 0 and the tails
move as 1. The game is repeated, and we assume that it is played long enough that
even the smallest strategic advantages are captured in the outcome. Both players
can win or lose arbitrarily large amounts of pennies.
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0 1
−1 1

0 1 −1
1 −1

1 −1 1

TABLE 1. Payoffs for Matching Pennies

1.2. How not to lose Matching Pennies

To determine her strategy, Alice might reason something like this.

Suppose that I consistently play 1 with a frequency p ∈ [0,1] and
thus 0 with a frequency 1− p. If I set p < 1

2 , then Bob can get
the expected payoff −p+(1− p) = 1− 2p > 0 by playing 1. If
I set p > 1

2 , then Bob can get the expected payoff p− (1− p) =
2p−1 > 0 by playing 0. If I set p = 1

2 , then Bob’s expected payoff
is the same whether he plays 1 or 0: it is 1− 2p = 2p− 1 = 0.
Since Bob’s winnings are my losses, the best strategy for me is to
set p = 1

2 , and to play 0 and 1 with equal frequencies, since that
minimizes my expected losses.

By the same reasoning, Bob arrives at the same conclusion, that he should set the
frequency of playing 1 at q = 1

2 . This is the well known Nash equilibrium of the
game of Matching Pennies. Both players arrive to it by minimizing the expected
losses.

1.3. Playing Matching Pennies

In general, a mixed strategy Nash equilibrium prescribes the frequencies for both
players’ moves in the long run. The essential assumption is that the moves will be
randomized. If Bob’s move is predictable with some likelihood, then Alice can
increase her chances to win. It seems natural to imagine that the players randomize
by tossing their coins, and displaying the random outcomes. At the equilibrium,
the players are just passive servants of chance, since they cannot gain anything by
deviating from it. If they are rational, all they can do is toss their coins.

But suppose that Bob suddenly plays

0101010101010101010101010101010101010101 (1.1)

Will Alice predict that Bob’s next move is 0 and play 0 to win a penny? If she
thinks probabilistically, she will probably notice that the probability of getting (1.1)
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by flipping a fair coin is 2−40, which is exactly the same as the chance of getting,
e.g.

1101000100110101001011100100000100000010 (1.2)

or any other sequence that she would accept as random. If Alice’s rationality is
based on probabilities, then she will not be able to distinguish any two strings of
Bob’s moves, since they are all equally probable if he tosses fair coins.

But if Bob knows, or even just believes, that Alice’s rationality is based on
probabilities, and that Alice will thus continue to randomize her moves in any case,
then Bob has no reason to randomize, since playing (1.1), or (1.2), or a string of 0s,
or any other string, yield the same expected payoff against Alice’s random plays.
On the other hand, if Alice believes that Bob’s rationality is based on probabilities,
then she will have no reason to randomize either, for the same reason as Bob.

So by combining their beliefs about their probabilistic reasoning, both players
will become indifferent towards mixing and randomizing their moves. Their com-
mon knowledge that they may both stop randomizing, because they both know that
the opponent will be unable to tell, will not change their expected payoffs. Indeed,
if they both play non-randomly, one of them will almost surely win and the other
will lose, but their chances to be the winner are the same, and they average out.
However, while the expected payoffs remain unchanged, the higher moments will,
of course, change significantly.

1.4. How to win Matching Pennies if you can

In order to exploit Bob’s deviation from the equilibrium, or to give him an incen-
tive to genuinely randomize his mixed equilibrium strategy, Alice must go beyond
probabilities, i.e. beyond just calculating the frequency of his moves. If she just
checks whether the frequencies of 0 and 1 are 1

2 , she will detect that the string con-
sisting of 0s alone is not random, but not that the string (1.1) is not random; if she
checks whether the frequencies of 00, 01, 10 and 11 are 1

4 , she will detect that (1.1)
is not random, but not that the string where these four digraphs of bits alternate is
not random; etc. By checking that each bitstring of length n has in the long run the
frequency 1

2n , she will detect many non-random plays, but still miss most of them.
E.g., the string

011011100101110111100010011010101111001101 . . . (1.3)

obtained by concatenating the binary notations for the sequence of natural numbers
0,1,2,3. . . will pass the bias tests for all n-grams, if taken long enough, yet it is,
of course, easily predictable, and obviously not random. Moreover, Bob might,
e.g., randomize all even bits, and just alternate 0s and 1s at the odd positions.
To recognize such opportunities, Alice will have to check that every substring of
the string of Bob’s past moves has unbiased frequencies of all n-grams. As the
game goes on, Alice will thus have to keep proving that Bob’s play, i.e. the ever
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growing string of his past moves, is what von Mises called Kollektiv in his theory of
probability [22]. Proving that something is a Kollektiv is known to be a problematic
task, as specifying the substrings to be tested has led to problems that remained
open for many years [2, 36].

1.5. Randomness from equilibrium

Scratching the surface of the basic assumption about the players’ incentive to
implement a mixed strategy equilibrium led us straight into the foundations of
probability. There is, of course, nothing surprising about the fact that the concept
of a mixed strategy, expressed in terms of probability, depends on the foundations
of probability. The point is not so much that there are deep foundational problems
lurking behind simple games. It seems much more useful, and more interesting,
that, the other way around, there seem to be instructive ways to state the solutions
of the foundational problems of probability in terms of games.

In particular, we show that the usual definition of mixed strategy equilibria based
on the notion of randomness as given can be reversed, and that the notion of ran-
domness can be defined using mixed strategy equilibria. The upshot is not just that
a complicated concept of randomness is replaced by an intuitive game theoretic
concept of not losing Matching Pennies at the equilibrium; the upshot is also that
the effective content of both concepts, of randomness and of equilibrium, can be
analyzed in terms of computational power of testing. This formalization brings
both the basic probabilistic concepts and the basic game theoretic concepts into the
logical realm of computable inductive inference [3, 9, 31, 34, 39].

1.6. Background and related work

We propose a simple and narrow bridge between games and probabilities. An
extensive effort towards reconstructing the foundations of probability theory from
a particular game has been ongoing for many years, as reported by Shafer and
Vovk [33]. The work presented in this paper is not only at the opposite end of
the scale in terms of its scope and technical sophistication, but it also goes in a
different direction, and therefore uses an essentially different model. While the
authors of [33] aim to reconstitute the full power of the diverse probabilistic tools
in their rich gaming model, the point here is to illustrate how the most basic games
capture the most basic probability concepts in a natural fashion. A similar analysis
geared in the opposite direction of eliminating probabilities is provided in [38].

The bridge between games and probabilities is built using significance testing
and computation. Significance testing goes back to Fisher [8,9] and lies, of course,
at the core of the method of statistical induction. The constructions sketched here
are related to the computational versions of testing, developed on one hand in
Martin-Löf’s work [21, 24], and on the other hand in the techniques of inductive
learning [3, 10, 37].
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We analyze the computational content of testing. The analyses of the compu-
tational content of strategic reasoning go back to the earliest days of game the-
ory [30], and continue through theory of bounded rationality [32], and on a broad
front of algorithmic game theory [25]. The finite state machine model seems pre-
ferred for specifying strategies [13, 32], since computable strategies lead to prob-
lems with the equilibrium constructions [17,23]. In recent work, a different family
of problems, arising from the cost of strategic computations has been analyzed,
including the cost of randomization [11, 12]. This led the players to not just lose
the incentive to randomize, as in the little story above, but to prefer determinism.
Although we are here also looking at the problem of deviating from the equilibrium
into non-randomness, we are concerned with a completely different question: How
should the opponent recognize and exploit this deviation? The present work seems
to deviate from previous computational approaches to gaming in one essential as-
pect: we are not analyzing the computations that the players perform to construct or
implement their own strategies, or the equilibrium, but the computations that they
perform to test the opponents’ strategies. This leads into a completely different
realm of computability, that emerges from a different aspect of gaming. While the
analysis goes through for most models of computation, represented by an abstract
family of programmable functions, as explained in Sec 2.3, it is perhaps worth stat-
ing the obvious: that stronger notions of computation lead to stronger notions of
randomness.

Although the high level models of gaming [1,14,26] are not explicitly introduced
in the paper, as they are not necessary for the presented results, they were used in
the earlier versions and may be gleaned in the background.

1.7. Outline of the paper

In Sec. 2 we spell out the preliminaries and some notations used in the paper.
In Sec. 3 we motivate and explain the simplest case of randomness testing, with
respect to the uniform distributions, and describe its application in gaming. Sec. 4
derives as a corollary the characterization of random strings as the equilibrium
plays. In Sec. 5 we describe how to construct randomness tests for arbitrary pro-
grammable distributions. Sec. 6 closes the paper with some final comments.

2. NOTATIONS AND PRELIMINARIES

2.1. Monoid of plays

In the games considered in this paper, the set of moves is always 2= {0,1}. We
sometimes call 0 heads and 1 tails. A play is a finite string (or list, or vector) of
moves~x = x1x2x3 · · ·xm, or~y = y1y2y3 · · ·yn played in a match of a game. The set of
all bitstrings, used to represent plays, is denoted by 2∗. The empty bitstring is (),
and the concatenation of bitstrings is ~x ::~y = x1 · · ·xmy1 · · ·yn. They constitute the
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monoid
(
2
∗, ::,()

)
, freely generated by 2. The monoid structure induces the prefix

ordering

~xv~y ⇐⇒ ∃~z. ~x ::~z =~y (2.1)

and the length measure ` : 2∗ −→N, which is the unique homomorphism from the
free monoid over two generators to the free monoid over one generator. The fact
that the length measure is a homomorphism means that

`() = 0 and `(~x ::~y) = `(~x)+ `(~y) .

We shall also need a bijective pairing 〈−,−〉 : 2∗×2∗ −→ 2
∗ with the projections

−(0),−(1) : 2∗ −→ 2
∗, which means that together they satisfy〈

~x(0),~x(1)
〉
=~x 〈~x0,~x1〉(i) =~xi.

Using the fact that a free monoid is also cofree, a bijective pairing can be derived
from any two disjoint injections 2∗ ↪→ 2

∗. For simplicity, we use

〈~x,~y〉 = x1x1x2x2 · · ·xmxm01y1y2 · · ·yn (2.2)

where ~x = x1x2 · · ·xm and ~y = y1y2 · · ·yn. The length induces the shift homomor-
phism

`(〈~x,~y〉) = 2`(~x)+ `(~y)+2. (2.3)

2.2. Sets and functions

|X | denotes the number of elements of the set X . A function written f : X → Y
is always total, whereas a partial function is written h : X ⇁ Y . We write h(x) ↓
when the partial function h is defined on the input x, and h(x)↑ or h(x) =↑ when h
is undefined on x.

2.3. Programmable functions

We say that f : 2∗ ⇁ 2
∗ is L-programmable, or that it is an L-function when

it is specified using a programming language L . The intuitions from the reader’s
favorite programming language, practical or theoretical, should do. For a theo-
retical example, one could take L to be the language of finite state machines. A
program could then be either a list of transitions of a Moore or Mealy machine, or
a corresponding regular expression [4,15]. The graphs of programmable functions
would be regular as languages. A larger family or programmable functions would
be obtained from a Turing complete programming language, like Python or Java,
or from the language of Turing machines themselves. In the latter case, a program
could again be a list of the transitions of the machine. A high-level formalism is
based on the structure of monoidal computer, spelled out in [27–29].

Formally, the programming language is given by a universal evaluator (or in-
terpreter), a partial function L : 2∗×2∗⇁ 2

∗. This function may or may not be
in L . E.g., when L is a Turing complete language, then L is an L-function. If L
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is the language of regular expressions, then their universal evaluator is not L-pro-
grammable.

We usually write L(x,y) in the form {x}y. A universal evaluator is characterized
by the requirement that for every L-function f : 2∗ −→ 2

∗ there is a bitstring p f :∈
2
∗ such that

f (~x) = {p f}~x.

3. RANDOMNESS FOR UNIFORM DISTRIBUTIONS

We focus on Alice’s task to detect patterns of non-randomness in Bob’s play,
which she could exploit to predict his moves. Bob is assumed to be doing the
same, observing Alice’s play and trying to detect some patterns. But what is a
pattern? And what does it mean to detect it?

Intuitively, an object has a pattern if it can be described succinctly, i.e. com-
pressed. E.g. the string in (1.1) can be compressed to (01)20 in mathematical
notation, or to

f o r ( i =0 ; i <20; i ++) { p r i n t 01 }
in a Java-like programming language. The program to extend (1.1) infinitely would
be (01)∗ or

f o r ( ; ; ) { p r i n t 01 }
and the program to output (1.3) would be as follows.

f o r ( i = 0 ; ; i ++) { p r i n t i }
On the other hand, a program to output the string (1.2), without a detectable pattern,
would have to spell it out in full length:

p r i n t 110100010011010100101110010000010000001001

The idea that randomness can be defined as incompressibility goes back to Kol-
mogorov [18], and further back to the scholastic logical principle known as Oc-
cam’s Razor, which established the priority of succinct descriptions as inductive
hypotheses, as explained by Solomonoff [34].

3.1. Testing hypotheses

Definition 3.1. Let L be a family of programmable (partial) functions. A hypoth-
esis is an L-function h : 2∗⇁ 2

∗ such that

h(~x) =~y =⇒ `(~x)< `(~y). (3.1)

A string~y that lies in the image of h is said to be h-regular. A string~x on which h
is defined and maps it to~y is a short description of~y. A hypothesis h is predictive if

∀~x. h(~x)↓ =⇒ ∃~z. ~x@~z∧h(~x)@ h(~z) (3.2)
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where @ is the prefix ordering (2.1).

The tacit idea behind predictive hypotheses is that the input data are given with
some end markings, which tell the computer where the input string ends. This is
the case with the data input on most real computers, but not on “plain” Turing
machines, which leads to the restriction to prefix-free or self-delimiting machines
[6, 20, 42]. For the Turing machine model, the reader should assume that there is
a special symbol � denoting the end of each string, and that the string inclusion
ignores that symbol. The computation h(~x) thus halts when it encounters� after~x,
whereas the computation h(~z) proceeds longer and provides a longer output when
h is predictive.

Definition 3.2. A bitstring~y is said to be h-regular at the level m ∈ N if

∃~x. h(~x) =~y ∧ `(~x)+m≤ `(~y). (3.3)

The h-regular bitstrings at each level form the h-regularity sets

Hn
m = {~y ∈ 2n|∃~x. h(~x) =~y∧ `(~x)+m≤ `(~y)} (3.4)

Hm =
∞⋃

n=1

Hn
m. (3.5)

Setting for convenience H0 = 2
∗ yields a decreasing sequence of sets:

H0 ⊇ H1 ⊇ H2 ⊇ H3 ⊇ ·· · ⊇ Hm ⊇ ·· · (3.6)

This tower of sets is the h-test.

Note that a bitstring of length n can only be regular at the level m if m≤ n. The
h-regularity sets Hn

m for m > n are empty.

Proposition 3.1. The size of h-regularity sets decreases exponentially with m, in
the sense

|Hn
m| < 21+n−m. (3.7)

Proof. By (3.4), for every~y ∈Hn
m there is~x such that h(~x) =~y and `(~x)+m≤ `(~y),

and thus `(~x)≤ n−m, because~y ∈ 2n. The function h : 2∗ −→ 2
∗ is thus restricted

to a surjection onto Hn
m from the set of strings ~x of lengths at most n−m. Hence

(3.7). �

Proposition 3.1 says that the chance that an observation~y is h-regular at the level
m decreases exponentially in m. Since this is true for all hypotheses, the implication
is that most bitstrings are irregular: most hypotheses are eventually rejected, and
most bitstrings are accepted as random. This is a formal expression of Laplace’s
observation that regular objects constitute a null set [19].
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Definition 3.3. The h-regularity degree σh(~y) is the highest h-regularity level that
the bitstring~y achieves, i.e.

σh(~y) = max{m≤ `(~y) |~y ∈ Hm}.
The h-regularity degree is thus a function σh : 2∗ −→ N.

3.2. Alice’s testing strategy

Alice’s computations of h-regularity degree follow the basic method of signifi-
cance testing [8, 9]. She tests whether Bob’s play~y satisfies the hypothesis h. The
hypothesis is rejected if ~y is not h-regular at a sufficiently high level. So Alice
goes down the test tower H0 ⊇ H1 ⊇ H2 ⊇ ·· · , and checks how far is it true that
~y ∈ Hm. This ceases to be true when m = σh(~y). The hypothesis h is thus rejected
if the regularity degree σh(~y) is below some significance threshold M, chosen in
advance. If she wants to echo statisticians’ habit to set the significance level at 1%
or 5%, Alice should probably choose M to be between 4 and 7, since the indices
of the test towers correspond to the negative logarithms of statistical significance
levels.

But what is Alice trying to achieve by testing Bob? What will she do if she
detects a significant h-regularity in his play ~y? She wants to predict his moves,
and use the prediction to take his pennies. In particular, if she finds a significantly
shorter description~x of~y realized by h, she will try to guess a bitstring~s such that
h(~x ::~s) is defined, and extends~y, i.e. such that

~y @ h(~x ::~s) .

The definition of predictive hypotheses requires that they always allow such exten-
sions. So if she formulates a predictive hypothesis h, finds a short description ~x
of Bob’s play ~y, and guesses an extension ~s allowing her to predict Bob’s moves,
Alice will match and take Bob’s pennies.

3.3. Separating regularity and randomness

The essence of Alice’s testing strategy is to separate a regular component of
Bob’s strategy from the random component. If Bob plays completely randomly,
his play ~y will not have a short description, and Alice will not find a hypothesis h
that~y will satisfy. The regular component is then empty. If Alice finds a hypothesis
h and a short description ~x of ~y proving that ~y satisfies h, then h captures some of
the regularity of ~y. If there is still some regularity in ~x, then it has a still shorter
description~x′, realized using a hypothesis h′. In other words, ~x = h′ (~x′) and there
is m′ such that `(~x′)+m′ < `(~x). But this means that~x′ is a still shorter description
of Bob’s play~y, showing that it satisfies the hypothesis h◦h′ at the regularity level
m+m′, since h◦h′ (~x′) =~y and `(~x′)+m+m′ < `(~y).

On the other hand, if~x is incompressible, then it is random. In that case, the short
description~x is the random component of Bob’s play~y, whereas all of its regularity
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is captured by h. Alice can thus extrapoloate Bob’s future moves by running h.
She also has to expand the random part ~x by some additional randomness ~s, as
presumably Bob will continue doing. In that sense, Alice still has to gamble. But
just like ~x is much shorter than h(~x) =~y, the chance of guessing ~x ::~s is greater
than the chance of guessing h(~x ::~s). So separating out the regular component h
of Bob’s play and reducing the randomness of Bob’s play to a significantly shorter
description presents a significant advantage for Alice.

Since σh (h(~x)) ≥ `(~x), regularity increases with length, and the testing out-
comes become more significant, and provide better fitting predictions. On the other
hand, longer strings also fit more hypotheses, and the usual problems of overfitting
in statistical inference enter scene. But testing hypotheses as L-programmable
functions turns out to have a special feature, which we consider next.

3.4. Universal hypothesis

The main remaining question is: How should Alice choose her hypotheses? She
can, of course, stares at ~y and search for a pattern. She can try a hypothesis h(1),
and if it gets rejected, she can try h(2), and h(3), and so on. But which one should
she try first? Occam suggests: The simplest hypotheses should be tried first. But
which ones are the simplest? Solomonoff and Kolmogorov suggest: The simplest
functions are those that have the shortest programs [20, 31, 39].

This is where Alice comes to use the fact that her hypotheses are programma-
ble. By enumerating all programs, she can in principle test all hypotheses. If the
universal evaluator L is L-programmable itself, she can in fact test a universal
hypothesis. The idea of a universal randomness test goes back to Per Martin-Löf
[21]. Since it will eventually detect any regularity, any universal hypothesis test is
in fact also a universal randomness test, as random strings can be characterized as
just those that pass all tests [22].

Definition 3.4. A hypothesis υ : 2∗⇁ 2
∗ is universal if any string that is regular

with respect to any hypothesis h is also regular with respect to υ. More precisely,
for every hypothesis h : 2∗⇁ 2

∗ there is a constant ch for which every bitstring ~x
satisfies

σh(~x) ≤ ch +συ(~x). (3.8)

Proposition 3.2. If the universal evaluator of a family of L-programmable func-
tions is L-programmable itself, then the family also contains a universal hypothe-
sis.

The assumption that the universal evaluator L is L-programmable is satisfied
not just when L interprets a Turing complete language, but also when it is resticted
to a complexity class with complete instances.
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Proof. Let {} : 2∗ × 2∗ ⇁ 2
∗ be a universal evaluator. Recall that this means

that for every computable function f : 2∗ ⇁ 2
∗ there is a program ~p f such that

f (~x) = {~p f}~x. Define

υ(~x) =

{{
~x(0)
}
~x(1) if `(~x)< `

({
~x(0)
}
~x(1)
)

↑ otherwise.
(3.9)

Then υ : 2∗⇁ 2
∗ is a hypothesis by Def. 3.1. Any hypothesis h : 2∗⇁ 2

∗ and any
bitstring~x satisfy

h(~x) = υ(〈~ph,~x〉)

for a program ~ph encoding h. For ch = 2`(~ph)+2, we have the bound

ch + `(~x)+m ≤ `(υ(〈~ph,~x〉)) = `(h(~x)) (3.10)

The constants 2 in ch come from the particular definition of pairing and length that
we have chosen in (2.2) and (2.3). But (3.10) means that υ-regularity at the level
m implies h-regularity at the level m+ ch, i.e. Un

m ⊆ Hn
m+ch

. Hence (3.8). �

3.5. Alice’s universal strategy

If Bob’s play~y is not random, then finding an~x such that υ(~x) =~y will separate
the regular component ~x(0) and the random component ~x(1) from his play ~y, as
explained in Sec. 3.3. Guessing Bob’s moves~b can then be reduced to the task of
guessing a shorter random string~s such that~y ::~b = υ(~x ::~s).

In summary, Alice’s tasks are similar to her testing strategy: the first task is
to search for inverse images along a programmable function, this time υ : 2∗ −→
2
∗; and her second task is again to use the detected regularity of ~y to predict an

extension.
Concerning the first task, note that Alice will stall if she simply lists a sequence

of candidates ~x(1),~x(2),~x(3), . . . and tries to compute υ
(
~x(i)
)
=
{
~x(i)(0)

}
~x(i)(1) for i =

1,2,3, . . ., one after another seeking to find an inverse image of ~y along υ. That
strategy will only go as far as the first ~x(i) for which the program ~x(i)0 diverges on
the input~x(i)1 ; the next candidate will never be tested. To avoid that, the search for
short descriptions ~x must proceed by dovetailing, as described e.g. in [42]. This
means that the search through the sequence ~x(1),~x(2),~x(3), . . . should run a finite
number of steps of each computation in a finite initial segment of the sequence,
and keep extending that initial segment. In that way, each member of the sequence
will eventually be reached and run. E.g., a single step of each of the computations
υ
(
~x(i)
)

can be run in following order:

~x(1),~x(2),~x(1),~x(2),~x(3),~x(1),~x(2),~x(3),~x(4),~x(1), . . .
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Once Bob’s play~y has been captured by a short description~x, i.e. decomposed
in the form~y =

{
~x(0)
}
~x(1), where~x(0) is the regular component of~y, and~x(1) is its

random component, then Alice can proceed with the second task.
In summary, Alice’s universal strategy can be described as the search for the

earliest bitstring ~b which results from a shorest extension ~s of a shortest inverse
image~x of~y along υ. This can be summarized as the function α : 2∗⇁ 2

∗ where

α(~y) = µ~b. A
(
~y,~b
)

where

A
(
~y,~b
)
⇐⇒ ∃~x~s. Ã

(
~x,~y,~s,~b

)
∧

∀~x′~s′.
(

Ã
(
~x′,~y,~s′,~b

)
⇒

`(~x)≤ `
(
~x′
)
∧ `(~s)≤ `

(
~s′
))

where

Ã
(
~x,~y,~s,~b

)
⇐⇒ υ(~x) =~y ∧

{
~x(0)
}(

~x(1) ::~s
)
=~y ::~b.

While Alice thus seeks to predict Bob’s moves~b in order to play the same moves,
Bob’s universal strategy would be dual, in the sense that he would seek to pre-
dict Alice’s moves ~a in order to play the opposite moves. We discuss below what
happens if two universal strategies are played against each other.

4. MATCHING PENNIES RANDOMNESS

The notion of randomness as incompressibility, as formalized by Kolmogorov
[18] and developed in algorithmic information theory [20], has been justified by
Martin-Löf’s proof that incompressible strings are just those that pass all random-
ness tests [20, 21, 24]. But we have seen that randomness tests are also a part of
playing Matching Pennies. The players stay at the equilibrium only as long as their
plays pass each other’s tests. Whenever a test produces a significant outcome, the
randomness hypothesis is rejected, and the players depart from the equilibrium,
whether the detected pattern was a real consequence of someone’s earlier deviation
from the equilibrium, or whether the test overfitted a pattern onto an actually ran-
dom string. The equilibrium persists only if both players’ plays pass both players’
tests.

Corollary 4.1. A bitstring is uniformly random (in the sense of Kolmogorov [18,
21]) if and only if it can occur as a play of the equilibrium strategy in the game of
Matching Pennies.

Proof. If a bitstring is uniformly random, then it will pass every randomness test,
and can occur as an equilibrium strategy. If a bitstring can occur in an equilibrium
strategy, and thus passes every randomness test, then it is uniformly random. �
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The upshot of this corollary is that randomness tests are an important aspect of
the actual process of gaming, yet they are generally abstracted away from game
theory. When randomness is taken for granted, the computational content of equi-
librium constructions are abstracted away from game theoretic analyses, while the
competitive aspects of gaming, of course, essentially depend on using randomness,
and recognizing non-randomness. Taking the randomness testing for granted hides
from sight the whole wide area of players’ strategic analyses of each other’s plays,
which is where the essence of real gaming is played out. If Alice’s play passes
Bob’s tests, but Alice’s tests detect the regularity behind Bob’s play, then Alice
will win by outsmarting Bob. Randomness and outsmarting are two sides of the
same coin. Taking one for granted hides the other one from sight, and separates
game theory from practice.

While the concept of randomness in the above statements largely follows the
approach and the ideas of Martin-Löf [6, 20, 21, 24], the abstract view of computa-
tion [27, 29], although lurking in the background in this extended abstract, allows
a broader approach. When L is a Turing complete language, and testing is com-
putable, then Prop. 3.2 implies that there is a universal strategy, and Prop. 4.1 thus
says that a bitstring is uniformly random if it does not lose the game of Matching
Pennies against the universal strategy. Using weaker programming languages L ,
and thus specifying weaker randomness tests, yields weaker notions of random-
ness. A path towards a taxonomy of different notions of randomness obtained in
this way is discussed in [24]. The point here is that all such notions can be cast in
terms of games. A different approach to a similar idea has been pursued to a much
greater depth in [33].

5. GENERAL RANDOMNESS TESTING

There are many games with nonuniformly distributed mixed strategy equilib-
ria. They require nonuniform randomness testing, more general than described in
Sec. 3.5. Many familiar games can be used to motivate it. We describe a new
variation on the theme of Matching Pennies. It has infinitely many mixed state
equilibria, and the players must test randomness with respect to for multiple distri-
butions, as they are seeking the equilibrium.

Moreover, we shall see in the next section that this game seems to allow a spooky
strategic interaction at a distance1 among the members of a team capable of shar-
ing quantum effects — without disturbing the external randomness of their plays.

1Einstein famously referred to quantum entanglement itself as ”spooky action at a distance” [7,
Letter of March 3, 1947].
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5.1. Coordinating Pennies

Let us consider a version of Matching Pennies played by Alice and Bob against
Clare and Dave. Alice and Bob play together, but they are not allowed to com-
municate; Carol and Dave play together, and cannot communicate either. The task
for all of them is to coordinate without communicating. That is why we call the
game Coordinating Pennies. Just like Matching Pennies, the game is repeated, and
played long enough for the frequencies to settle and the advantages to play out.

Carol and Dave display their two coins first, both of them at the same time. They
may agree in advance about the frequencies with which they display their coins, but
during the game they must sample their moves independently of one another. Alice
only sees Carol’s coin before her own move, and Bob only sees Dave’s coin before
his. All moves are public after they are made. If Carol and Dave have displayed 11,
then Alice and Bob win by displaying 01 or 10. Otherwise, Alice and Bob win by
displaying 00 or 11. Otherwise they lose. The game is zero sum again, i.e. Carol
and Dave win whatever Alice and Bob lose, and vice versa. The payoff matrix is
on Table 2. To determine their strategies

00,01,10 11
−1 1

00,11 1 −1
1 −1

01,10 −1 1

TABLE 2. Payoffs for Coordinating Pennies

• Carol and Dave need to determine together
– the frequency c with which Carol should play 1, and
– the frequency d with which Dave should play 1,

• Alice and Bob need to determine together
– the frequencies ai for i = 0 or 1, with which Alice should play 1 when

she sees Carol’s move i,
– the frequencies bi for i = 0 or 1, with which Bob should play 1 when

he sees Dave’s move i.

Denoting by q11 = cd the frequency with which Carol and Dave play 11, Alice
and Bob’s expected payoffs are q11− (1−q11) if they play different sides of their
coins, and (1− q11)− q11 if they play the same sides. By reasoning just like in
Sec. 1.2 for Matching Pennies, Carol and Dave can thus conclude that they must
play q11 = cd = 1

2 , or else Alice and Bob can gain a positive expected payoff by
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settling on a pure strategy. Carol and Dave must thus play

c =
1

2d
for d ∈

[
1
2
,1
]
. (5.1)

The frequencies of Carol’s and Dave’s joint moves will thus be as in Table 3, where
qi j is the probability that they will play i j.

q00 q01 q10 q11

−d + 3
2 −

1
2d d− 1

2
1

2d −
1
2

1
2

TABLE 3. Carol’s and Dave’s joint frequencies

On the other hand, Alice and Bob’s expected payoff E11 when Carol and Dave
play 11 is a1(1−b1)+(1−a1)b1−a1b1−(1−a1)(1−b1), whereas for i j = 00,01
or 10 the expected payoffs Ei j are aib j +(1−ai)(1−b j)−ai(1−b j)− (1−ai)b j,
which all together simplifies to

Ei j = (2ai−1)(2b j−1) for i j = 00,01,10
E11 = −(2a1−1)(2b1−1).

Carol and Dave can now maximize their payoffs by minimizing Alice and Bob’s
expected payoff

E = ∑
i, j∈2

qi jEi j (5.2)

and derive that they should play

d =
1
2

√
2 · a1−a0

b1−b0
· 2a0−1

2b0−1
. (5.3)

Extracting an additional dependency from Carol and Dave’s incentive for mixing,
and substituting it all into (5.2) shows that there are infinitely many mixed strategy
equilibria, all with the expected payoff 0. For each mixture, each team has to keep
testing the randomness of the other team’s plays.

This gives rise to the task of testing the randomness of the moves distributed
according to arbitrary distributions, not necessarily uniform.

5.2. Testing P-hypotheses and P-randomness

Any probability distribution over a finite set can arise as a mixed strategy equi-
librium for suitable payoffs. Moreover, iterated games and games with changing
payoffs induce in the same way a family of stochastic processes that also arise in
computation and cryptography. Their randomness can be defined in terms of mixed
strategy equilibria again.
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Definition 5.1. A string distribution is an L-programmable2 function P : 2∗ −→
[0,1] such that

P() = 1 P(~x) = P(~x :: 0)+P(~x :: 1).

Definition 5.2. Given a string distribution P : 2∗ −→ [0,1], a P-hypothesis with
respect to L is an L-function hP : 2∗⇁ 2

∗ such that

hP(~x) =~y =⇒ `(~x)< `(~y) ∧ P(~x)> P(~y). (5.4)

A bitstring~y is said to be hp-regular at the level m ∈ N whenever

∃~x. hP(~x) = ~y ∧ `(~x) + m ≤ `(~y) ∧ P(~x) ≥ 2m · P(~y). (5.5)

The hP-regular bitstrings at each level form the hP-regularity sets

Hn
m =

{
~y ∈ 2n | ∃~x. hP(~x) =~y ∧

∧ `(~x)+m≤ `(~y) ∧ P(~x)≥ 2m ·P(~y)
}
. (5.6)

The sets Hm =
⋃

∞
n=1 Hn

m form the hp-test

H1 ⊇ H2 ⊇ H3 ⊇ ·· · ⊇ Hm ⊇ ·· ·

Proposition 5.1. The P-size of hP-regularity sets decreases exponentially with m

∑
~y∈Hn

m

P(~y) < 21−m. (5.7)

Proof. By definition of Hn
m, for every~y∈Hn

m there is~x of length at most n−m such
that P(~y)≤ 2−mP(~x). It follows that

∑
~y∈Hn

m

P(~y)≤ ∑
~x∈2n−m

2−m ·P(~x) < 21−m.

�

The search for non-random patterns, deviating from a given string distribution
P, proceeds just like the search for patterns deviating from the uniform distribution
in Sec. 3.2. When L is the family of all computable functions, there is a universal
P-hypothesis, defined just like in Def. 3.4.

Proposition 5.2. If the universal evaluator L and the string distribution P are L-
programmable, then there is an L-programmable universal P-hypothesis as well.

2The programmability of a real function P can be defined in different ways. The idea going back
to Turing [35] is to present P as a program ~pP : 2∗ −→ 2

∗ which for each~x outputs a program ~pP(~x)
which streams the digits of the real number P(~x) ∈ [0,1].
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Proof. The universal P-hypothesis is this time

υP(~x) =


{
~x(0)
}
~x(1) if `(~x)< `

({
~x(0)
}
~x(1)
)

and P(~x)> 22`(~x(0))+2 ·P
({

~x(0)
}
~x(1)
)

↑ otherwise,

(5.8)

where the 2s come from (2.2) and (2.3) again. For a P-hypothesis hP, some pro-
gram ~ph for it, and the length ch = 2`(~ph)+2 again, this time we have

ch +m+ `(~x) ≤ `(υP (〈~ph,~x〉)) = `(hP(~x))

P(~x) > 2m ·P(υ(〈~ph,~x〉)) ≥ 2ch+m ·P(hP(~x))

which gives Un
m ⊆ Hn

ch+m. By Def. 3.4, this means that υP is universal for all P-
hypotheses hP. �

Corollary 5.1. A bitstring is P-random if and only if it can occur as a play in a
game where the string distribution P is a component of a mixed strategy equilib-
rium.

5.3. Universal strategies beyond Matching Pennies

Just like a universal hypothesis can be used to build a universal strategy for win-
ning, if possible, in the game of Matching Pennies, universal P-hypotheses can be
used to build universal strategies for a large family of games, where mixed strate-
gies are expressed in terms of string distributions. A familiar example of such a
game is the iterated version of Prisoners’ Dilemma, where dynamically changing
mixed strategies, inducing string distributions, have been played in tournaments
against each other since the early days. Strategies played in such tournaments are
usually described by finite state machines, and thus induce L-programmable distri-
butions where L is a language generating regular expressions. More powerful lan-
guages allow specifying not only more powerful strategies, but also games where
the payoff matrices are not necessarily fixed through the iterations of the game,
but may also change, in an L-programmable way. The crucial feature that allows
analyzing such games are the fixed point constructions, enabled by the universal
evaluators.

We assume that the payoffs are public information, and that both Alice and
Bob have both computed the equilibrium strategies, and know the distributions PA
and PB according to which Alice and Bob, respectively, must randomly mix their
moves. Alice’s first task is thus to program a function ηA : 2∗ −→ 2

∗ to search
for short descriptions ~x = ηA (~y) of Bob’s plays ~y, whereas Bob’s first task is to
program a function ηB : 2∗ −→ 2

∗ to search for short descriptions ~u = ηB (~w) of
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Alice’s plays ~w. So they are both looking for a right inverse of the universal P-
detector of the opponent’s string distribution P, i.e.

υB ◦ηA (~y) =~y υA ◦ηB (~w) = ~w

where we write υB to simplify υPB and υA for υPA . Their second tasks will be to
program functions ϑA,ϑB : 2∗ −→ 2

∗ to guess the likely extensions of opponents’
plays, i.e.

υB ◦ϑA ◦ηA (~y)A~y υA ◦ϑB ◦ηB (~w) A ~w.

In summary, Alice’s and Bob’s tasks are thus to program strategies α = ϑA ◦ηA
and β = ϑB ◦ηB with

υB ◦α(~y)A~y υA ◦β(~w) A ~w.

Alice’s universal strategy described in Sec. 3.5 is an instance of this α.

5.4. On outsmarting and coordination

In a zero-sum game like Matching Pennies, Alice and Bob have no incentive to
cooperate. Each tries to predict opponent’s moves and to hamper the opponent’s
efforts to predict their own moves. If there is a non-random component of their
strategies, then they trying to outsmart each other: to design the regular compo-
nent of the strategy so complex that the opponent will not be able to find it. This
situation leads to increase of complexity in evolution of adversary processes.

In a non-zero-sum game like Prisoners’ Dilemma, the opponents do have an in-
centive to cooperate, but if the cooperation is not an equilibrium of the game, then
the players have an incentive to defect, and the fascinating problem of trust arises.
This makes Prisoners’ Dilemma into a subject of many sciences, surely more than
any other game. The salient point of universal hypotheses, as tools for separat-
ing regular components of strategies from random components, as discussed in
Sec. 3.3, is that they provide a framework where the players can apparently go be-
yond the established Nash equilibria of their games, and deviate from the random-
ization prescriptions in an apparently coordinated way. The example of Prisoners’
Dilemma shows that there are situations where such deviations are beneficial for
all. In such situations, the process of randomness testing, described in this paper,
seems to provide for the players a framework to coordinate their hypotheses to-
wards a secondary equilibrium construction: an algorithmic learning equilibrium,
that the players may be able to jointly construct in a secure and mutually beneficial
fashion, after they have jointly performed the usual Nash equilibrium construc-
tion3.

3We refer to Nash equilibrium as a joint construction in the sense that it depends on all play-
ers knowing all players’ preferences, deriving everyone’s best response strategies, which allows all
of them to define the best response profile, and compute the equilibria as its fixed points. It is a
joint construction in the sense that all players perform the same computations in parallel; not in the
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Without coordinating, the only way Alice and Bob can construct their universal
strategies α and β is by exhaustive dovetailed search, as described in Sec. 3.5. If
they share the same language L , and use the same universal evaluator for it, then
they can coordinate a construction their universal strategies as a suitable joint fixed
point of the following help functions:

ΞA (p,q,~y) = µ~ξ. υB

(
~ξ
)
A~y

ΞB (p,q,~w) = µ~ζ. υA

(
~ζ
)
A ~w.

The players will then construct the coordinated help functions

Ξ̂A (p,q,~y) = ΞA ([p]q, [q] p,~y)

Ξ̂B (p,q,~w) = ΞB ([p]q, [q] p,~w) .

6. CONCLUDING REMARKS

The starting point of this paper was the observation that finding and playing
one’s own strategy is often much easier than recognizing and understanding other
players’ strategies. In particular, randomizing is much easier than testing random-
ness. On the other hand, knowing that the opponent keeps an eye on how you
play is necessary for the implementations of many equilibrium concepts, usually
assumed implicitly. In order to stay at an equilibrium, the players must test each
other. But capturing their tests opens an alley towards modeling competition, out-
smarting, and deceit, which are prominent in the practice of gaming, but often
ignored in game theory. We believe that the tools are readily available to tackle
this interesting and important aspect of gaming.

Players’ randomness testing of each other’s plays turned out to be an intuitive
characterization of the notion of randomness. It is perhaps worth emphasizing here
that the players with different computational powers recognize different notions
of randomness. More precisely, different families of programmable functions L
induce different hypotheses, different tests, different notions of randomness, and
different implementations for the mixed strategy equilibria. Restricting the fam-
ily L to the language of regular expressions or finite state machines would give
a weak but interesting notion. The hypotheses could be implemented along the
lines of the familiar compression algorithms, such as those due to Lempel, Ziv and
Welch [40,41]. However, since there is no such thing as a universal finite state ma-
chine, capable of evaluating all finite state machines, such tests based on regular
languages would have to be specified one at a time, and sought ad hoc. In contrast,

sense that there is any communication or coordination between them. The construction of learning
equilibrium, presented here, has the same character.
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taking L to be a Turing complete language, such as the language of Turing ma-
chines themselves, allows constructing a universal randomness test, which Alice
could implement as a universal hypothesis from Sec. 3.4. This leads to the canoni-
cal notion of randomness spelled out by Kolmogorov, Martin-Löf and Solovay, and
characterized in Corollary 4.1. Although the simple dovetailing technique used to
construct the universal hypothesis quickly leads beyond the realm of what is con-
sidered feasible computation, the methods of algorithmic learning and statistical
induction are built upon them nevertheless [16, 31, 39]. The idea that randomness
testing can be used to construct a learning equilibrium, sketched in Sec. 5.4, sug-
gests an alternative interpretation of the presented results. It is not an afterthought,
but predates the present paper, and ties its threads in a different way. Whether it
is another conceptual link or a different kind of computational knot remains to be
seen.
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