
IISE Transactions on Healthcare Systems Engineering

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/uhse21

Uncertainty-driven modality selection for data-
efficient prediction of Alzheimer’s disease

Zhiyang Zheng, Yi Su, Kewei Chen, David Weidman, Teresa Wu, ShihChung
Lo, Fleming Lure, Jing Li & for the Alzheimer’s Disease Neuroimaging
Initiative

To cite this article: Zhiyang Zheng, Yi Su, Kewei Chen, David Weidman, Teresa Wu,
ShihChung Lo, Fleming Lure, Jing Li & for the Alzheimer’s Disease Neuroimaging
Initiative (2024) Uncertainty-driven modality selection for data-efficient prediction of
Alzheimer’s disease, IISE Transactions on Healthcare Systems Engineering, 14:1, 18-31, DOI:
10.1080/24725579.2023.2227197

To link to this article:  https://doi.org/10.1080/24725579.2023.2227197

Published online: 27 Jun 2023.

Submit your article to this journal 

Article views: 118

View related articles 

View Crossmark data

Citing articles: 1 View citing articles 

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uhse21

https://www.tandfonline.com/journals/uhse21?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24725579.2023.2227197
https://doi.org/10.1080/24725579.2023.2227197
https://www.tandfonline.com/action/authorSubmission?journalCode=uhse21&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=uhse21&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/24725579.2023.2227197?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/24725579.2023.2227197?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/24725579.2023.2227197&domain=pdf&date_stamp=27%20Jun%202023
http://crossmark.crossref.org/dialog/?doi=10.1080/24725579.2023.2227197&domain=pdf&date_stamp=27%20Jun%202023
https://www.tandfonline.com/doi/citedby/10.1080/24725579.2023.2227197?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/24725579.2023.2227197?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=uhse21


Uncertainty-driven modality selection for data-efficient prediction of Alzheimer’s
disease

Zhiyang Zhenga, Yi Sub, Kewei Chenb, David Weidmanb, Teresa Wuc, ShihChung Lod, Fleming Lured, Jing Lia,
and for the Alzheimer’s Disease Neuroimaging Initiative#

aH. Hilton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA; bBanner Alzheimer’s
Institute, Phoenix, AZ, USA; cSchool of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA; dMS Technologies
Corp, Rockville, MD, USA

ABSTRACT
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder. Early prediction of the risk
of converting to AD for individuals at pre-dementia stages such as Mild Cognitive Impairment
(MCI) is important. This could provide an opportunity for early intervention to slow down disease
progression before significant irreversible neurodegeneration occurs. Neuroimaging datasets of dif-
ferent modalities such as MRI and PET have shown great promise. However, different data modal-
ities are associated with varying acquisition costs/levels of accessibility to patients. We propose a
machine learning (ML) framework, namely Uncertainty-driven Modality Selection (UMoS), that
allows for sequentially adding data modalities for each patient on an as-needed basis, while at the
same time achieving high prediction accuracy as if all the modalities were used. UMoS provides a
tool to assist clinicians in deciding what data modalities/diagnostic exams each patient needs. We
apply UMoS to a real-world dataset from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
based on demographic/clinical data, MRI, and PET. UMoS shows high accuracy for predicting MCI
conversion to AD, which has no significant difference from models based on the simultaneous use
of all the modalities for each patient. The benefit of UMoS is significant data efficiency accom-
plished by saving a large percentage of patients from needing to acquire more costly/less access-
ible data modalities, thus lessening the burden on patients and the healthcare system.

KEYWORDS
Machine learning; multi-
modality data; computer-
aided diagnosis

1. Introduction

Alzheimer’s disease (AD) is a devastating neurodegenerative
disorder and the most common form of dementia. AD cur-
rently affects 6.2 million people aged 65 and older in the
U.S. (Alzheimer’s, 2022). The symptoms of AD start with
mild memory loss and cognitive decline, which are followed
by gradual deterioration of other brain functions. No cure
for AD is currently available, but there is consensus that
potential disease-modifying treatments will be more effective
in slowing down cognitive decline when given at earlier
stages of the disease.

Mild Cognitive Impairment (MCI) is a prodromal stage
when patients show a noticeable cognitive decline, typically
involving memory loss, but the symptoms are not severe
enough to disrupt the ability to perform daily activities inde-
pendently. The etiologies of MCI are heterogeneous, and the
prognosis depends in part on the primary etiology for a
given individual. Thus, some individuals with MCI will pro-
gress to AD dementia at a future time, whereas others may
remain stable or even revert. It is an important task to pre-
dict if an MCI patient will progress to AD, which could

provide an opportunity for early intervention to slow down
disease progression before significant irreversible neurode-
generation occurs.

Neuroimaging datasets have shown great promise to pre-
dict the progression (a.k.a. conversion) of MCI to AD.
Especially, neuroimages of different types/modalities meas-
ure different aspects of the brain affected by the early stage
of the disease. One of the most commonly used neuroimag-
ing modalities is T1-weighted volumetric magnetic reson-
ance imaging (MRI), which measures brain structure. Bron
et al. (2015) reviewed some earlier works using MRI for pre-
dicting MCI conversion to AD and provided benchmarking
studies. In more recent years, various machine learning
(ML) and deep learning methods have been adopted in this
field. For example, Moradi et al. (2015) proposed a semi-
supervised low-density separation model to classify MCI
converters versus non-converters, with MRI features selected
by regularized logistic regression. Beheshti et al. (2017) pro-
posed a feature ranking method based on t-test scores and a
genetic algorithm with Fisher criterion and used support
vector machine (SVM) for classification. Zhang et al. (2021)
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proposed a densely connected convolutional neural network
(CNN) and applied a connection-wise attention mechanism
to transform MRI into multi-level features for classification.
Bron et al. (2021) proposed to preprocess MRI into a modu-
lated grey matter map and predict MCI conversion to AD
with SVM and CNN.

Compared to the research studies using MRI only, com-
bining data from different neuroimaging modalities has
demonstrated improved prediction power in studies related
to AD. Positron emission tomography (PET) is another
commonly used neuroimaging modality which measures
various brain metabolic or biochemical processes depending
on the use of radioligands. AD pathology is characterized by
two pathologic hallmarks: amyloid plaques and neurofibril-
lary tangles (Holtzman et al., 2011). Amyloid-PET is a type
of PET imaging that can show amyloid plaque deposition in
the brain in the preclinical stage of AD, several years before
cognitive symptoms appear. Amyloid-PET holds promise for
predicting MCI conversion to AD, especially when com-
bined with structural MRI data to exploit the complemen-
tary strength (Rosenberg et al., 2013). Some multi-modality
ML methods have been proposed to integrate amyloid-PET
and MRI. For example, Xu et al. (2016) proposed a weighted
multi-modality sparse representation method, which mini-
mized the weighted sum of mean squared errors of the pre-
dictions of MCI conversion by different modalities. Zhu
et al. (2019) proposed a self-paced multi-kernel learning
method, in which a multi-kernel linear regression with low-
rank constraints on the regression coefficients was used to
fuze heterogeneous modalities for classification.

To build a multi-modality ML model, it may be difficult
to obtain many samples with all the modalities available. To
leverage samples with partial or incomplete modalities, some
ML models have been developed in AD studies. For
example, Yuan et al. (2012) proposed two learning frame-
works: the first framework divided data into multiple tasks
based on available modalities and selected common features
using sparse learning regularization; the second framework
trained base classifiers on each modality to create a score
matrix, imputed missing values, and integrated the modal-
ities with a new classifier. Xiang et al. (2014) proposed a bi-
level learning model which learned individual models for
each modality and then integrated all the models via regu-
larizations/constraints. Zhou et al. (2019) proposed a stage-
wise model with each stage learning feature representations
for different combinations of modalities using the maximum
number of available samples. Zhou et al. (2020) proposed a
modality-specific projection loss to learn a common latent
space with missing modalities bypassed and build classifiers
based on the latent features. Wang et al. (2020) proposed to
train models on each modality independently using all the
available data, which were used as teachers to help the train-
ing of the model using complete modalities. Liu et al. (2021)
proposed an incomplete-multimodality transfer learning
model, which built predictive models for different combina-
tions of modalities and coupled the model estimation proc-
esses to enable transfer learning.

Our work in this study was driven by a practical consid-
eration that different data modalities are associated with
varying acquisition costs/levels of accessibility to patients.
For example, among imaging modalities, PET is more costly,
involves radiation exposure, and is less accessible than MRI.
Also, comparing imaging and non-imaging data such as
basic clinical assessments, the former may be more costly.
Thus, the goal of this study is to develop a need-based
approach within the context of predicting MCI conversion
to AD, which sequentially adds data modalities for each
patient, starting from standard ones (with lower costs and
higher accessibility to patients) and gradually adding more
sophisticated ones (with higher costs and lower accessibil-
ity). A modality is acquired for a patient when the predictive
model based on previously acquired modalities lacks cer-
tainty. By doing so, the process for predicting MCI conver-
sion to AD can be more “personalized” with data modalities
added on an as-needed basis for each individual, instead of
enforcing one-process-fits-all. In this paper, we aim to
develop an ML framework, namely the Uncertainty-driven
Modality Selection (UMoS) framework, to automate such a
personalized, need-based process for predicting MCI conver-
sion to AD. While there is an abundance of existing
research that develops multi-modality ML models for AD,
past studies mainly focused on designing different ways to
integrate multi-modality datasets. Also, UMoS is different
from the incomplete multi-modality learning methods that
were previously reviewed. While the latter methods assume
that the available modalities of each patient are fixed and
given, UMoS aims to determine the minimally needed
modalities for each patient in a sequential manner, which
can achieve the same level of prediction accuracy as if all
the modalities were used. Overall, there is no study to our
best knowledge that has the same goal as UMoS, which is to
achieve high predictive accuracy with patient-specific need-
based data efficiency.

There are two building blocks of the UMoS framework:
ML models based on sequentially added data modalities and
the capacity of quantifying uncertainties of the model-based
predictions. The latter drives the decision as to if the next
modality should be acquired for each individual patient.
Uncertainty quantification of ML models has drawn great
attention recently, as it is closely related to AI safety (Abdar
et al., 2021). With more and more automated systems driven
by ML/AI algorithms being deployed in real-life settings, it
is important to know when the algorithm is uncertain about
its prediction and inform humans in order to avoid cata-
strophic consequences. There are two types of uncertainties
that impact the prediction of ML models (H€ullermeier &
Waegeman, 2021). Epistemic uncertainty refers to the uncer-
tainty of the model structure or parameters, usually arising
due to insufficient training data. Aleatoric uncertainty arises
due to the measurement noise in the data itself. Both uncer-
tainties induce predictive uncertainty, the confidence for the
prediction made by an ML model. Existing research focuses
on developing uncertainty quantification methods for ML
(Abdar et al., 2021), uncertainty-mitigating ML models
(Hariri et al., 2019), and active learning strategies (Zhang &
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Lee, 2019). Different from the existing research, UMoS aims
to use the uncertainty of ML prediction to drive the selec-
tion of data modalities for each individual with MCI, with
the ultimate goal of predicting the individual’s risk of con-
version to AD with both high accuracy and high data effi-
ciency. The contributions of this paper are summarized as
follows:

� We propose an ML framework, UMoS, that allows for
sequentially adding data modalities for each patient on
an as-needed basis. Compared to the existing ML
research in multi-modality integration, our study is
unique in its goal of achieving high predictive accuracy
with patient-specific need-based data efficiency.

� We propose a new model formulation in UMoS that
allows the model training with incomplete modalities to
distill knowledge from that with complete modalities. We
further propose a strategy of using the predictive uncer-
tainty of a model to drive the selection of data modalities
for each patient. Compared to the existing research that
investigates the uncertainty of ML models, UMoS is
unique in the aspect of using the uncertainty to drive
patient-specific modality selection, which has not been
explored before to our best knowledge.

� We perform theoretical studies to show that the design
of the models in UMoS respects a “more certain more
accurate (MCMA)” condition. Different from typical
supervised learning models that aim to maximize accur-
acy, the models included in UMoS should be trained
such that if the model is more certain about a prediction,
the prediction result should be more accurate, namely,
MCMA. This is important because the predictive uncer-
tainty (or certainty) of the model for a given patient will
trigger the decision as to whether the next data modality
needs to be acquired.

� We apply UMoS to a real-world dataset collected by the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) to
predict the progression to AD of MCI patients. In the
two-modality case where MRI and demographic/clinical
data are considered as one modality and amyloid-PET as
the other modality, we demonstrate that 77% of patients
can be saved from needing to acquire PET, whereas the
prediction accuracy has no significant difference from
the ML model based on all modalities. We also demon-
strate UMoS in a three-modality case. These results show
the high accuracy and data efficiency achieved by UMoS.

2. Method

2.1. Data description

This study uses the data collected by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) project. ADNI
(http://adni.loni.ucla.edu) was launched in 2003 by the NIH,
FDA, private pharmaceutical companies, and nonprofit
organizations, as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. After the
initial ADNI project ended, subsequent efforts known as

ADNI-GO, ADNI-2 and ADNI-3 added additional partici-
pants to augment the cohort. The primary goal of ADNI has
been to test whether MRI, PET, other biological markers,
and clinical and neuropsychological assessment can be com-
bined to measure the progression of MCI and early AD.
ADNI is the result of the efforts of many co-investigators
from a broad range of academic institutions and private cor-
porations, and subjects have been recruited from over 50
sites across the US and Canada. For up-to-date information,
see http://www.adni-info.org/.

Our dataset was composed of 1319 samples from MCI
patients in the ADNI databases. Three data modalities were
included: demographic/clinical data, T1-weighted volumetric
MRI, and 18 F-Florbetapir amyloid-PET (referred to as
amyloid-PET in short hereafter). For the demographic/clini-
cal dataset, we included basic demographic information such
as age, gender, and education level; commonly used cogni-
tive test scores such as the Mini-Mental State Examination
(MMSE) and the Clinical Dementia Rating Scale (CDR); sta-
tus of the e4 allele of apolipoprotein E (APOE) which is a
major genetic risk factor of AD. All samples have demo-
graphic/clinical data and MRI available (480 converters and
839 non-converters according to a three-year conversion
time window). Only a subset of 612 samples additionally has
amyloid-PET (156 converters and 456 non-converters),
whereas the remaining 707 samples do not have amyloid-
PET. Finally, it is worth mentioning that the 1319 samples
were from 536MCI patients since each patient may have
multiple visits for data collection. Among these patients, 161
do not have amyloid-PET. We included all the samples in
this study to increase the sample size. On the other hand,
we were aware of the potential risk of overfitting by using
this strategy. To prevent overfitting, we performed training/-
validation split by patients not by samples. That is, if a
patient is selected into the training (or validation) set, all the
samples associated with the patient will go into the training
(or validation) set. In this way, we avoided including sam-
ples from the same patient in both training and validation
in order to prevent the risk of overfitting. Similar strategies
have been adopted by other researchers (Zhou et al., 2019).

2.2. Image preprocessing and feature extraction

The MRI included in this study was processed by FreeSurfer
v7.1 to obtain volumetric and cortical thickness measures
following standard procedures (Desikan et al., 2006; Fischl
et al., 2002; Fischl et al., 2004). Amyloid-PET was processed
by a PET Unified Pipeline to obtain regional standardized
uptake value ratios (SUVR) measurements for FreeSurfer
defined regions (Su et al., 2013; Su et al., 2015). In this
study, we included volumetric and thickness measures for
68 cortical regions of interest (ROIs) and volumetric meas-
ures for 14 sub-cortical and 6 ventricle regions, amounting
to a total of 156 features from MRI. Also, we included quan-
titative measures of amyloid SUVRs with cerebella reference
region for 68 cortical regions, 14 sub-cortical regions, and
68 white matter regions, and a mean SUVR feature,
amounting to 151 features from amyloid-PET.
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2.3. Proposed UMoS framework

2.3.1. Overview of the UMoS framework
Suppose there are M data modalities denoted by Xð1Þ,
Xð2Þ, :::, XðMÞ: For example, we can consider demographic/-
clinical data, MRI, and PET as three modalities. Xð1Þ con-
tains demographic and clinical variables; Xð2Þ and Xð3Þ

contain the features extracted from MRI and PET, respect-
ively. Let y denote the class label, e.g., MCI converters or
non-converters to AD. Furthermore, assume that the M data
modalities are ordered such that a modality later in the
order is more costly or difficult to acquire, but adding that
modality will improve or at least retain the accuracy of pre-
dicting the class label for a patient compared to using all the
previous modalities. To obtain such an order in a particular
application, domain knowledge can be leveraged. For
example, according to domain knowledge, one can reason-
ably order demographic/clinical data, MRI, and PET in our
application as Xð1Þ, Xð2Þ, Xð3Þ:

If not considering the cost of data acquisition, it would
be best to collect all the data modalities for every patient.
However, the cost aspect cannot be overlooked in practice.
Therefore, the basic idea of UMoS is to only add a modality
for a patient if it is needed, where the necessity is deter-
mined using the prediction uncertainty based on all previous
modalities, i.e., when this prediction uncertainty exceeds a
threshold. This method imitates the diagnostic process of
physicians, who would order a diagnostic test (usually more
expensive, complicated, or invasive, but also more accurate)
when all previous tests cannot support a decision with
certainty.

Formally, the UMoS framework includes a collection of
models, f ð1Þ, :::, f ð1:MÞ, that can be deployed sequentially for
a given patient. Each model in this collection is in the form
of f ð1:mÞ : Xð1:mÞ ! y, i.e., it takes collective modalities up
to the m-th modality as input to predict the class label y,
m ¼ 1, :::,M: Additionally, the UMoS framework requires

that we can have a score to quantify the uncertainty of each
model f ð1:mÞ regarding its prediction, denoted by uð1:mÞ:
Having both model-based prediction and uncertainty quanti-
fication imitates the decision-making process by physicians,
which typically includes not only a diagnostic/prognostic
result (e.g., having or not having a certain disease, will con-
vert or will not convert to AD dementia for an MCI patient)
but also the certainty/uncertainty level of the physician
regarding the result. Figure 1 depicts the workflow of how
the models in UMoS are sequentially deployed for a given
patient. Specifically, the patient will first acquire the data
modality Xð1Þ: Using Xð1Þ as input, the first model f ð1Þ will
be deployed. If the uncertainty score associated with the
model f ð1Þ is lower than a threshold, i.e., uð1Þ � u�ð1Þ, then

the class label of the patient will be predicted using f ð1Þ, i.e.,
ŷð1Þ, and the workflow for this patient is completed.

Otherwise, if uð1Þ > u�ð1Þ, the patient will need to acquire

the next data modality Xð2Þ: Using collective modalities
Xð1:2Þ as input, the second model f ð1:2Þ will be deployed, and
a similar step as previously described will be followed. In
this way, the sequence of models, f ð1Þ, :::, f ð1:MÞ, will be
deployed one after another until the first time when the
uncertainty score generated by a model is less than the
threshold or all the data modalities have been acquired.

2.3.2. Construction of the UMoS framework
The key to constructing the UMoS framework is to train the
models f ð1Þ, :::, f ð1:MÞ: Let Dtr denote a training set of n
samples. We do not require all the training samples to have
all the modalities available, as such a dataset would be too
expensive to collect in practice. Instead, let

Xð1:mÞ
i , yi

� �
i¼1, :::nð1:mÞ denote the samples with collective

modalities Xð1:mÞ available, m ¼ 1, :::M: The sample size
nð1:mÞ typically decreases as m increases.

Figure 1. Overview of the UMoS-based workflow in predicting the conversion risk to AD for each MCI patient.
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The models included in the UMoS framework can be div-
ided into two categories: f ð1:MÞ is the model based on com-
plete/all modalities; f ð1Þ, :::, f ð1:M�1Þ are models based on
incomplete (subsets of) modalities. Because of this differ-
ence, the two categories of models will be constructed in dif-
ferent ways. Specifically, the construction of f ð1:MÞ is
straightforward. In theory, it can be trained using any classi-
fication algorithm based on samples in the training set with
complete modalities. In practice, one can try a variety of dif-
ferent algorithms and choose the one with the best accuracy
to be f ð1:MÞ:

Building the models with incomplete modalities, i.e.,
f ð1Þ, :::, f ð1:M�1Þ, needs some special considerations, which is
the focus of discussion in this section. Specifically, to train
each model with incomplete modalities, f ð1:mÞ, m ¼
1, :::M � 1, we propose the following optimization:

minf 1:mð Þ
Xn 1:mð Þ

i¼1
l yi, f

1:mð Þ X 1:mð Þ
i

� �� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{prediction loss

þ k1
Xnð1:MÞ

j¼1
d ~f

ð1:mÞ
Xð1:MÞ
j

� �
,~f

ð1:MÞ
Xð1:MÞ
i

� �� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{knowlege distillation ðKDÞ

þ k2 kf ð1:mÞk
zfflfflfflffl}|fflfflfflffl{model complexity

m ¼ 1, :::M � 1:

, (1)

The first term is the prediction loss computed based on
training samples with collective modalities Xð1:mÞ available.
The second term is to encourage the prediction by f ð1:mÞ to
be similar to that by the model using complete modalities,
f ð1:MÞ, which is supposed to have the best performance.

Here we used ~f to denote the “soft” prediction made by a
model, which is known to improve generalization compared
to directly using the (hard) prediction (Hinton et al., 2015).
More details to illustrate this concept can be found in the
next section. d �, �ð Þ is a distance metric and is computed
based on training samples with complete modalities. The
idea for the second term is that we consider the model
based on incomplete modalities, f ð1:mÞ, as a “student”, who
learns from the model based on complete modalities, f ð1:MÞ,
as a “teacher”, regarding how to make predictions for given

samples. That is, we want the student model to distill know-
ledge from the teacher model. Thus, the second term is
called a knowledge distillation (KD) loss. The third term in
the optimization is to penalize model complexity. k1 and k2
are tuning parameters. To help understand the basic idea of
the model in Equation (1) for modeling incomplete modal-
ities, Figure 2 provides a graphical illustration for a simple
case of two modalities.

Finally, we would like to discuss the choice of the model
f ð1:mÞ in the UMoS framework, m ¼ 1, :::M � 1: The model
needs to have the capability of quantifying the uncertainty
of its prediction. To have this capability, one choice for the
model f ð1:mÞ is probabilistic classifiers such as logistic regres-
sion, naïve Bayes, linear and quadratic discriminant analysis,
etc. A probabilistic classifier can generate a predicted prob-
ability for a patient to be in class 1, pð1:mÞ, versus class 0,
1� pð1:mÞ, given the data modalities of the patient, Xð1:mÞ:
This is to consider that yjXð1:mÞ follows a Bernoulli distribu-
tion with parameter pð1:mÞ: It is known that the variance of a
Bernoulli distribution is equivalent to Shannon entropy for
uncertainty quantification (Kala, 2022). Thus, we adopt the
variance of the Bernoulli distribution, pð1:mÞ 1� pð1:mÞ� �

, to
represent the predictive uncertainty in this paper, i.e.,
uð1:mÞ ¼ pð1:mÞ 1� pð1:mÞ� �

: An alternative approach is to
adopt a Bayesian model where the posterior distribution of
yjXð1:mÞ captures the uncertainty of the prediction. A
Bayesian model has the advantage of better accounting for
parameter uncertainty. This is a limitation for the Bernoulli
variance-based uncertainty quantification as the variance is
computed based on point estimates of model parameters
(i.e., estimates for minimizing a loss function as defined in
Equation (1)). On the other hand, there are well-known
challenges for Bayesian methods. For instance, analytical sol-
utions for the posterior distribution may not exist. Even
though approximate and computational methods can be
used, these methods can be computationally complex and
error-prone. Also, Bayesian methods rely on a proper selec-
tion of the prior distribution for model parameters.
However, there is usually a lack of domain knowledge for
the prior selection. An improper prior will not only affect
the correctness of the posterior distribution but also incur
computational cost. Based on these considerations, we adopt
Bernoulli variance for quantifying predictive uncertainty in

Figure 2. Graphical illustration of the incomplete-modality model in Equation (1) for a simple case of two modalities.
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this paper, while leaving the integration of a Bayesian model
into the UMoS framework for future exploration.

2.3.3. Implementation and algorithm
To solve the optimization in Equation (1), we will need to
choose a specific type of model for f ð1:mÞ: In this section, we

present an implementation with f ð1:mÞ as a penalized logistic
regression. Logistic regression is a probabilistic classifier,
thus being a proper model for UMoS according to the dis-
cussion at the end of the previous section. Let

gð1:mÞ ¼ bð1:mÞTXð1:mÞ be a linear predictor that combines

features contained in the collective modalities Xð1:mÞ using

coefficients bð1:mÞ: Logistic regression links gð1:mÞ with pð1:mÞ

by a logistic function, i.e., pð1:mÞ ¼ 1
1þexp �gð1:mÞð Þ ¼

1
1þexp �bð1:mÞTXð1:mÞð Þ : Then, the optimization in Eq. (1)

becomes:

minbð1:mÞ
Xnð1:mÞ

i¼1
l yi, p

ð1:mÞ
i

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{prediction loss

þ k1
Xnð1:MÞ

j¼1
d pð1:mÞ

j , pð1:MÞ
j ;T

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{knowledge dstillain ðKDÞ

þk2 kbð1:mÞk
zfflfflfflffl}|fflfflfflffl{model complexity

,

m ¼ 1, :::M � 1:

(2)

A commonly used prediction loss for logistic regression
is the negative log-likelihood, which is equivalent to the
cross-entropy (CE) loss (Good, 1992), i.e.,

l yi, p
ð1:mÞ
i

� �
¼ � yi log p 1:mð Þ

i þ 1� yið Þ log 1� p 1:mð Þ
i

� �n o
:

The KD loss is defined as the KL-divergence between the

“soft” predicted distributions by ~f
ð1:mÞ

(student model) and

~f
ð1:MÞ

(teacher model), i.e.,

d pð1:mÞ
j , pð1:MÞ

j ;T
� �

¼ ~pð1:MÞ
j log

~pð1:MÞ
j

~pð1:mÞ
j

þ 1� ~pð1:MÞ
j

� �
log

1� ~pð1:MÞ
j

� �
1� ~pð1:mÞ

j

� � ,

where ~pð1:MÞ
j and ~pð1:mÞ

j denote the “soft” predicted probabil-

ities by the teacher and student models, respectively, i.e.,

~pð1:MÞ
j ¼ 1

1þ exp �gð1:MÞ=T
� � , (3)

~pð1:mÞ
j ¼ 1

1þ exp �gð1:mÞ=T
� � : (4)

T is known as the temperature parameter (Hinton et al.,
2015). When T ¼ 1, Equation (3) and (4) become the pre-
dicted probabilities. However, using T > 1 has been shown

to produce more generalizable results in KD. T is treated as
a tuning parameter in the optimization.

The third term in Equation (2), i.e., kbð1:mÞk, can be any
sparsity-inducing penalty on the model coefficients. We
found that the elastic net penalty works particularly well
with our dataset, due to the high-dimensional and correlated
features. The elastic net penalty is:

kbð1:mÞk ¼ ckbð1:mÞk1 þ 1� cð Þkbð1:mÞk22,
Where k � k1 is the L1-norm and k � k22 is the squared L2-

norm.
The optimization problem in Equation (2) is convex. To

solve it, we used the adaptive moment estimation (Adam)
solver (Kingma & Ba, 2014), which is a computationally-effi-
cient version of Stochastic Gradient Descent algorithms with
momentum and adaptive learning rate.

2.3.4. Hyper-parameter tuning
There are two sets of hyper-parameters to be tuned. The
first set includes four tuning parameters involved in solving
the optimization for the model f ð1:mÞ i.e., k1, k2, T, and c:
The second set includes the uncertainty threshold associated
with the model, i.e., u�ð1:mÞ, which is used to determine if
the next modality should be acquired for each patient, m ¼
1, :::M � 1: Since the two sets of parameters serve different
functions, two validation sets, Dval1 and Dval2 are needed to
tune each set. Dval1 is used to select k1, k2, T, and c for
f ð1:mÞ: Thus, this set only needs to include samples with col-
lective modalities Xð1:mÞ available. Dval2 is used to select the
uncertainty thresholds. With different values of the uncer-
tainty thresholds, a patient may or may not require the next
modality. These different values need to be tried to find the
best ones, which means that Dval2 must include samples
with complete modalities. This will further allow us to com-
pare UMoS and the complete-modality method that requires
all patients to have all/complete modalities.

The specific tuning process is the following: Based on
Dval1, we select k1, k2, T, and c to minimize the validation
CE loss for each model f ð1:mÞ, m ¼ 1, :::M � 1: Then, under
the selected optimal tuning parameters, the models are
retrained. Next, the retrained models are used in the UMoS
workflow with a grid search for the uncertainty thresholds.
That is, for each combination of values of the uncertainty
thresholds, the workflow is deployed on samples in Dval2:
After the deployment, we can compute two types of metrics
on Dval2 : 1) Area Under the Curve (AUC), which reflects
the classification performance of UMoS. AUC is chosen
because it is not affected by the probability cutoff used to
classify samples, whereas other classification metrics can be
reported too. 2) Percentages of samples that need to acquire
Xð1Þ, Xð1:2Þ, … , Xð1:M�1Þ, respectively, which reflect the
data efficiency of UMoS, i.e., the percentages of patients that
can be saved from needing to acquire more expensive/less
accessible modalities. We will cross-reference the metrics in
1) and 2) to choose the uncertainty thresholds that yield a
high AUC while at the same time saving as many as possible
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patients from needing more expensive/less accessible modal-
ities. In practice, instead of providing a single choice for the
uncertainty thresholds, it may be more desirable to create a
visualization to show the tradeoff between the metrics in 1)
and 2) for a range of different choices. This will help practi-
tioners choose the uncertainty thresholds that best suit their
needs. More details to demonstrate the procedure of select-
ing the uncertainty thresholds will be presented in the case
studies in Sec. 3.

Furthermore, it is worth mentioning that an alternative
approach to using two validation sets Dval1 and Dval2 is to
use a double-loop cross-validation (CV) scheme, which
includes an internal CV serving the role of Dval1 and an
external CV serving the role of Dval2: CV provides a more
robust approach for hyper-parameter tuning as it iterates
through all samples, which is used in our case study.

Finally, we want to point out that the selection of uncer-
tainty thresholds as described above does not consider the
available resources such as the availability of imaging equip-
ment and appointment slots. In other words, UMoS makes
suggestions as to whether a patient needs a subsequent
modality such as an amyloid-PET scan. Whether and when
the patient can acquire that modality will have to depend on
the available resources in the health care system.

2.4. Theoretical study

This section discusses some theoretical aspects of the models
included in the UMoS frameworks, f 1:mð Þ, m ¼ 1, :::M � 1:
For notation simplicity, we remove the superscript and use f
to represent any model in this sequence. The other notations
used in this section are defined as follows: Let x denote the
input feature set. Let y ¼ 1 or 0 denote two classes. Recall
that f is a probabilistic classifier. Thus, given x, f xð Þ outputs
the predicted probability for x to be class 1. To get the pre-
dicted class label ŷ, a cutoff of 0.5 is typically used and ŷ ¼
I f xð Þ > 0:5ð Þ, where I �ð Þ is an indicator function.
Furthermore, considering that the predicted class is binary
and can be modeled by a Bernoulli distribution, the variance
of the distribution is f xð Þ 1� f xð Þð Þ, which can represent
the predictive uncertainty, i.e., u xð Þ ¼ f xð Þ 1� f xð Þð Þ: Also,
let a xð Þ denote the probability of correct prediction/classifi-
cation for x, i.e., a xð Þ ¼ P ŷ ¼ yjx� �

: Finally, let / fð Þ denote
a loss for f : Let R fð Þ ¼ Ex, y / fð Þð Þ denote the risk associ-
ated with the loss /, which is the expected loss on the data
distribution. Let R̂ fð Þ denote the empirical risk computed
based on a training set. Let R� ¼ inf f R fð Þ denote the

Bayesian optimal risk. For a given f , the excess risk
is R fð Þ � R�:

Different from typical classifiers that aim to maximize
accuracy, f needs to consider both accuracy and uncertainty.
Specifically, f needs to be trained such that if it is more cer-
tain about a prediction, the probability that the prediction is
correct should be higher (i.e., the prediction is more accur-
ate). This is named the more-certain-more-accurate
(MCMA) condition in this paper. Definition 1 provides a
formal definition of MCMA.

Definition 1 (MCMA condition): Consider two samples x
and x0 which are predicted by the model f : If uðxÞ < uðx0Þ,
i.e., the model is more certain about the prediction for x,
then a xð Þ > a x0ð Þ, i.e., the probability for x to be correctly
predicted/classified is also higher.

The training of f should be attentive to the MCMA condi-
tion because f is not a stand-alone classifier. In UMoS, the
predictive uncertainty (or certainty) of f for a given patient
will trigger the decision as to whether the next data modality
needs to be acquired. If the decision is not to acquire the next
modality for a patient, which happens when the certainty of
the prediction is high, we want the probability that the predic-
tion is correct for this patient to also be high. In other words,
we want to avoid training a model that has high certainty for
its prediction but the prediction result is actually wrong,
because this would stop the patient from acquiring another
modality to improve the prediction accuracy.

To train a model f with the aforementioned property, we
first need to define a loss that encodes the MCMA condi-
tion, which is the MCMA loss as follows.

Definition 2 (MCMA loss): The MCMA loss is defined on
a pair of samples with uðxÞ < uðx0Þ, i.e., /MCMA fð Þ ¼
I uðxÞ < uðx0Þð ÞI aðxÞ � aðx0Þð Þ: A loss of one is incurred if
the MCMA condition is violated and zero if it is satisfied.

Furthermore, we can write the MCMA risk as RMCMA fð Þ ¼
Ex, y /MCMA fð Þð Þ: To train a classifier, the risk cannot be dir-
ectly minimized as the data distribution is unknown. Thus, a
typical training process is to minimize the empirical risk com-
puted based on a training set. Specifically, given a training set
of n sample, D ¼ xi, yið Þni¼1

, the empirical MCMA risk is

R̂MCMA fð Þ ¼ 1
nðn�1Þ=2

P
i, jð Þ2D; uðxiÞ<uðxjÞI uðxiÞ < uðxjÞ

� �
I aðxiÞð

� aðxjÞÞ, where the summation is over all pairs of samples in
the training set and there are a total of nðn� 1Þ=2 pairs.

It is difficult to minimize the empirical MCMA risk in
model training because the risk is intractable in optimiza-
tion. In Theorem 1, we derive that minimizing MCMA risk
is equivalent to minimizing the 0/1 risk which is well-
defined for classification problems.

Theorem 1: The 0/1 loss is /0=1 fð Þ ¼ I ŷ 6¼ yjx� �
, i.e., a loss

of one is incurred for wrong prediction/classification. The 0/1
risk is R0=1 fð Þ ¼ Ex, y /0=1 fð Þ� �

: The minimizer for the
MCMA risk is the same as that for the 0/1 risk,
i.e., arg inf f RMCMA fð Þ ¼ arg inf f R0=1 fð Þ:

Proof: We first prove uðxÞ ¼ aðxÞð1� aðxÞÞ: Recall that,
according to the definition of u xð Þ, u xð Þ ¼ f xð Þ 1� f xð Þð Þ,
where f xð Þ outputs the predicted probability for x to be class
1. f xð Þ can be written in a probabilistic form, f xð Þ ¼ Pðŷ ¼
1jxÞ: Put this back into u xð Þ, we get

u xð Þ ¼ P ŷ ¼ 1jxÞ 1� P ŷ ¼ 1jxÞ� �
:

��
(5)

When the true class is y ¼ 1, we can use y to replace the 1
in (5). Thus, (5) becomes u xð Þ ¼ P ŷ ¼ yxð Þ 1� P ŷ ¼ yxð Þð Þ ¼
aðxÞð1� aðxÞÞ: When the true class is y ¼ 0, we first write (5)
into an equivalent form, i.e., u xð Þ ¼ 1� Pðŷ ¼ 0jxÞ� �

Pðŷ� ¼
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0jxÞÞ, and then replace the 0 by y, so that we get u xð Þ ¼
1� Pðŷ ¼ yjxÞ� �

Pðŷ ¼ yjxÞ� � ¼ ð1� aðxÞÞaðxÞ: Thus, we
proved that no matter if y ¼ 1 or 0, uðxÞ ¼ aðxÞð1� aðxÞÞ:
Furthermore, using the found relationship between u and a,
we can show that, for two samples with uðxÞ < uðx0Þ, a suffi-
cient and necessary condition for aðxÞ � aðx0Þ is a xð Þ � 0:5:
This means that the MCMA loss is incurred if and only if
a xð Þ � 0:5: Recall that a xð Þ is the probability of correct predic-
tion, so a xð Þ � 0:5 means the prediction is wrong. When this
happens, the 0/1 loss is incurred. Thus, we have proved that the
MCMA loss is incurred if and only if the 0/1 loss is incurred.
Furthermore, since risks are expected losses on the data distri-
bution, we can naturally show that minimizing the MCMA risk
is equivalent to minimizing the 0/1 risk, i.e.,
arg inf f RMCMA fð Þ ¼ arg inf f R0=1 fð Þ: �

The 0/1 loss is a discrete loss, which makes the corre-
sponding 0/1 risk difficult to optimize in model training.
We look for a surrogate loss of the 0/1 loss, which has better
computational tractability. Lemma 1 provides an upper
bound of the excess risk associated with the 0/1 loss (See
Theorem 1 in Bartlett et al. (2006)). Based on the result of
Lemma 1, we further derive in Theorem 2 that the CE loss
is a convex, surrogate of the 0/1 loss.

Lemma 1: For a given classifier f , the excess 0/1 risk is
R0=1 fð Þ � R�

0=1: Let /s fð Þ denote a general s-loss that is con-

vex and classification-calibrated (see Definition 1 in Bartlett
et al. (2006)), and the associated excess risk is Rs fð Þ � R�

s :

Then, for any classifier f , we have w R0=1 fð Þ � R�
0=1

� �
�

Rs fð Þ � R�
s , where w hð Þ ¼ H�

s
1þh
2

� �
�Hs

1þh
2

� �
is a trans-

form function, w : 0, 1½ � ! ½0, 1Þ:

Theorem 2: For any sequence of classifiers f nð Þ under the CE
loss /CE, if RCE f nð Þ� �

! R�
CE, then R0=1 f nð Þ� �

! R�
0=1, which

means that convergence of the CE risk also leads to conver-
gence of the 0/1 risk.

Proof: Under the CE loss, the transform function in Lemma

1 can be derived as w hð Þ ¼ H�
CE

1þh
2

� �
�HCE

1þh
2

� �
¼

1þh
2 ln 1þ hð Þ þ 1�h

2 ln 1� hð Þ, which is a non-negative
monotonically increasing function on h 2 0, 1½ �:
Convergence of the CE risk means that there exists an inte-

ger N such that RCE f Nð Þ
� �

� R�
CE fð Þ � w eð Þ for all e:

Furthermore, it can be shown that the CE loss is convex
and classification-calibrated. Thus, we can use the result of

Lemma 1 and get w R0=1 f Nð Þ
� �

� R�
0=1

� �
� RCE f Nð Þ

� �
�

R�
CE fð Þ � w eð Þ: Recall that the function w is non-negative

and monotonically increasing. Thus, R0=1 f Nð Þ
� �

� R�
0=1 � e,

which means that the 0/1 risk converges. �

Remarks: In Lemma 1, according to Definition 1 in Bartlett
et al. (2006), “convexity” means that the loss function is
convex with respect to the predicted probability of the

classifier, not with respect to the parameters/coefficients of
the classifier. “Classification-calibration” means that the loss
function is defined in a meaningful way that it penalizes
wrong predictions while not penalizing correct predictions.
The CE loss satisfies these two properties, which leads to the
result in Theorem 2.

Theorem 2 implies that the CE loss is a surrogate of the
0/1 loss, and minimization of the CE risk can lead to mini-
mization of the 0/1 risk. Also, based on Theorem 1, we
know that the minimizer for the MCMA risk is the same as
that for the 0/1 risk. Thus, the minimization of the CE risk
can lead to minimization of the MCMA risk. It is important
that the models included in the UMoS framework should
respect the MCMA condition and that the training of these
models aims to minimize the MCMA risk. Through the the-
oretical study in this section, we demonstrated that this
important goal can be achieved by using the CE loss.

Another implication of the theoretical results in this sec-
tion is that we can potentially include any classifier that is
trained using the CE loss in the UMoS framework. In the
case studies of this paper, we demonstrate the UMoS frame-
work using a penalized logistic regression model that is esti-
mated with the CE loss. Logistic regression is adopted due
to its simplicity, interpretability, and ease in training. Other
classifiers can be adopted as the CE loss is a commonly
used loss function in training classifiers. Also, future work
may include designing other surrogate losses beyond CE
that can provide a tighter bound of the excess 0/1 risk, thus
leading to better performance for supporting the MCMA
condition.

3. Result

3.1. UMoS with two modalities

We first demonstrated the application of the UMoS frame-
work to the ADNI dataset under a two-modality scenario:
demographic/clinical data and MRI together as the first
modality Xð1Þ; amyloid-PET as the second modality Xð2Þ:
MRI is currently used in the standard of care in the U.S. for
AD-related clinical examination. Thus, it is reasonable to
assume that MRI and demographic/clinical data have the
same accessibility to patients. In comparison, amyloid-PET
has much lower accessibility due to the high cost.

To apply UMoS, two models were trained: f ð1Þ based on

Xð1Þ, which is considered an incomplete modality; f ð1:2Þ

based on complete modalities, Xð1:2Þ: As mentioned in
Section 2.3.2, the model based on complete modalities,
f ð1:2Þ, can be trained using any classification algorithm. We
tried a variety of algorithms and found logistic regression
with the elastic net penalty yielded the best performance in
our experiments. Furthermore, we trained the model based
on the incomplete modality, f ð1Þ, using the proposed model
in Equation (2). A double-loop 10-fold CV scheme was used
for hyper-parameter tuning of UMoS.

Figure 3 shows the AUC of UMoS evaluated on external
CV under different values of the uncertainty threshold u�ð1Þ:
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As u�ð1Þ increases, more patients will be saved from needing
to acquire amyloid-PET, but with the price of lowering the
AUC. To select a proper value for u�ð1Þ, we started with
u�ð1Þ ¼ 0:028, which yielded the highest AUC ¼ 0.905. This
setting has zero data efficiency because it requires all
patients to acquire amyloid-PET in addition to demograph-
ic/clinical data and MRI. Then, we gradually increased u�ð1Þ

until the AUC decreased to a level below which the AUC
would become significantly lower than 0.905. We adopted a
conservative approach and set the significance level to be p-

value equal to 0.2. Under this significance level, we could
decrease the AUC to 0.88, which has no statistically signifi-
cant difference from 0.905. The corresponding uncertainty
threshold is u�ð1Þ ¼ 0:237: This setting comes with a huge
gain in data efficiency that 77% patients can be saved from
needing to acquire amyloid-PET (i.e., they only need to
acquire demographic/clinical data and MRI). Using this set-
ting, Figure 4 demonstrates the UMoS workflow and reports
metrics about the classification performance and data effi-
ciency associated with the workflow. Furthermore, Table 1
compares UMoS and the complete-modality method (i.e.,
the method that requires all patients to acquire complete
modalities) in terms of AUC, accuracy (ACC), sensitivity,
specificity, and data efficiency. The p-value of the compari-
son were calculated using the following approaches: The p-
value of ACC, sensitivity and specificity were calculated
using McNemar’s test based on the confusion matrix con-
structed from comparing the true class of each sample and
the corresponding predicted class from CV (Hofer et al.,
2020). The p-value of AUC was calculated using Delong’s
test (Sun & Xu, 2014). The p-value of data efficiency was
calculated using the z-test for proportions. Compared to the
complete-modality method, UMoS has no statistically sig-
nificant difference for AUC, ACC, sensitivity, and specificity,
but with a significant gain in data efficiency.

Furthermore, to demonstrate the effectiveness of the
uncertainty threshold selection strategy in UMoS, we ran-
domly selected 77% patients to have no amyloid-PET, referred
to as the random strategy. We compared the AUCs of the two
strategies based on non-overlapping patients selected by these
strategies. The average AUC over ten repeated runs of the ran-
dom strategy is 0.796. This is lower than the AUC of the pro-
posed strategy in UMoS, which is 0.847.

Figure 4. UMoS workflow and performance metrics for the two-modality scenario. Using an uncertainty threshold of 0.237, 77% patients only need to acquire dem-
ographic/clinical data and MRI while 23% patients need to acquire all the modalities.

Figure 3. The change of AUC (y-axis) with respect to uncertainty threshold
u�ð1Þ (x-axis, bottom). Each uncertainty threshold (x-axis, bottom) corresponds
to a percentage of patients who are saved from needing to acquire amyloid-
PET (x-axis, top). Intersection of two red dash lines marks u�ð1Þ ¼ 0:237, which
results in AUC ¼ 0.88 (no significant difference from the highest AUC) and 77%
patients saved from needing amyloid-PET.
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Moreover, to demonstrate the unnecessity of adding
amyloid-PET for the 77% patients selected by UMoS, we
applied the complete-modality model to these patients,
which yielded an AUC of 0.923. This has no significant dif-
ference from the AUC of 0.901 by the incomplete-modality
model (p¼ 0.3). Also, to demonstrate the necessity of adding
amyloid-PET for the remaining 23% patients, we applied the
incomplete-modality model to these patients, which yielded
an AUC of 0.587. This is much lower than that from the
complete-modality model which achieved an AUC of 0.793.

Finally, we would like to point out that all the aforemen-
tioned results are based on an uncertainty threshold, u�ð1Þ ¼
0:237, which is chosen such that the AUC of UMoS is not sig-
nificantly lower than that based on the complete-modality
model at a significance level of 0.2. This significance level is
used as a conservative choice. More stringent significance lev-
els can be used, which will yield a lower AUC but a higher
percentage of patients saved from needing amyloid-PET. For
example, at a significance level of 0.05, the AUC of UMoS is
0.866 with 91% patients saved from needing amyloid-PET.

3.2. UMoS with three modalities

In this section, we demonstrate the application of UMoS to
the ADNI dataset under a three-modality scenario: demo-
graphic/clinical data as the first modality Xð1Þ; MRI as the

second modality Xð2Þ; amyloid-PET as the third modality

Xð3Þ: Even though MRI is considered an appropriate stand-
ard of care by medical specialists in AD-related examina-
tions in the U.S., primary care providers may take a more
conservative approach. Also, if patients do not have insur-
ance coverage, the cost of MRI is much higher than that of
obtaining basic demographic/clinical data. Thus, in this sec-
tion, as a proof-of-concept, we apply UMoS to sequentially
add the three modalities on an as-needed basis for each
patient.

The training process is similar to that in Section 3.1. We
report the results in the following. There are two uncertainty
thresholds, u�ð1Þ and u�ð1:2Þ: The highest AUC ¼ 0.905 is

achieved with u�ð1Þ ¼ 0:005 and u�ð1:2Þ ¼ 0:042: This setting,
however, has zero data efficiency because it requires all
patients to acquire all data modalities. If the two uncertainty
thresholds are increased to u�ð1Þ ¼ 0:1 and u�ð1:2Þ ¼ 0:24,
AUC ¼ 0.88 will be achieved without a significant difference
from the highest AUC (p¼ 0.2). This setting improves the
data efficiency so that 77% patients can be exempted from
the need to acquire amyloid-PET (i.e., they only need to
acquire demographic/clinical data and MRI); 25% patients
can be exempted from the need to acquire MRI and amyl-
oid-PET (i.e., they only need to acquire demographic/clinical
data). Figure 5 demonstrates the UMoS workflow and
reports metrics about the classification performance and

Table 1. Comparison between UMoS and the complete-modality method (i.e., the method that requires all patients to acquire complete modalities).

AUC ACC Sensitivity Specificity Data efficiency (% patients saved from needing amyloid-PET)

UMoS 0.880 0.819 0.801 0.825 77%
Compete-modality method 0.905 0.830 0.840 0.827 0%
P value of difference 0.2 0.5 0.2 1.0 <0.001

Figure 5. UMoS workflow and performance metrics for the three-modality scenario. Using two uncertainty thresholds of 0.1 and 0.24, 25% patients only need dem-
ographic/clinical data, 52% patients need both demographic/clinical data and MRI, and 23% patients need all three modalities.

IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING 27



data efficiency associated with this workflow. Furthermore,
Table 2 compares UMoS and the complete-modality method
(i.e., the method that requires all patients to acquire com-
plete modalities) in terms of AUC, ACC, sensitivity, specifi-
city, and data efficiency.

To demonstrate the unnecessity of adding subsequent
modalities for those patients selected by UMoS, we per-
formed the following experiments. Among the patients who
only need demographic/clinical data according to UMoS, we
compared the AUCs of the model using only demographic/-
clinical data and the model that added MRI. The AUCs of
the two models are 0.962 and 0.967, which do not have sig-
nificant difference (p¼ 0.8). Furthermore, among the
patients who need demographic/clinical data and MRI
according to UMoS, we compared the AUCs of the model
using demographic/clinical data and MRI with the model
that added amyloid-PET. The AUCs of the two models are
0.835 and 0.884, which do not have significant differ-
ence (p¼ 0.2).

Also, to demonstrate the necessity of adding subsequent
modalities, we performed the following experiments. Among
the patients who need both demographic/clinical data and
MRI according to UMoS, we compared the AUCs of the
model using only demographic/clinical data and the model
that added MRI. The AUC of the former is 0.794, while
adding MRI increases the AUC to 0.835. Furthermore,
among the patients who need all three modalities according
to UMoS, we compared the AUCs of the model using only
demographic/clinical data and MRI with the model that
added amyloid-PET. The AUC of the former is 0.603, while
adding amyloid-PET increases the AUC to 0.781.

Finally, we would like to point out that all the aforemen-
tioned results are based on uncertainty thresholds, u�ð1Þ ¼
0:1 and u�ð1:2Þ ¼ 0:24, which are chosen such that the AUC
of UMoS is not significantly lower than that based on the
complete-modality model at a significance level of 0.2. This
significance level is used as a conservative choice. More
stringent significance levels can be used, which will yield a
lower AUC but a higher percentage of patients saved from
needing subsequent modalities. For example, at a signifi-
cance level of 0.05, the AUC of UMoS is 0.862 with 28%
patients saved from needing MRI and amyloid-PET and
83% patients saved from needing amyloid PET.

4. Discussion and conclusion

We proposed an ML framework, UMoS, to predict MCI
conversion to AD by sequentially adding data modalities for
each patient on an as-needed basis. The capability of using
fewer data modalities while preserving prediction accuracy

distinguished UMoS from existing multi-modality research.
This capability is also important for improving clinical effi-
ciency especially when there are barriers preventing sophisti-
cated modalities, which are usually more costly and less
accessible, from routine use. We applied UMoS to an ADNI
dataset. In the two-modality case, we demonstrated that 77%
of patients can be saved from needing to acquire PET,
whereas the prediction accuracy has no significant difference
from the ML model based on all modalities (0.880 AUC
compared to 0.905 AUC, p-value of difference ¼ 0.2). We
further demonstrate in a three-modality scenario that if MRI
and demographic/clinical data were split into two modalities,
25% of patients can be saved from needing MRI without
impacting the prediction accuracy. These results show the
high accuracy and data efficiency achieved by UMoS.

To our best knowledge, there is no existing study for per-
sonalized modality saving in predicting MCI conversion to
AD. In our experiments, we showed that the proposed
UMoS framework can preserve prediction accuracy at the
same level as that achieved by ML models based on all/com-
plete modalities. In the existing studies of predicting MCI
conversation to AD using multi-modality datasets, the
reported accuracy is in the range of 0.743–0.898 by integrat-
ing MRI and PET with some works additionally including
non-imaging data (Liu et al., 2017; Liu et al., 2021; Shen
et al., 2021; Xu et al., 2016; Zhang & Shi, 2020; Zhou et al.,
2019; Zhou et al., 2020; Zhou et al., 2019; Zhu et al., 2019).
UMoS achieved similar levels of accuracy, but with a signifi-
cant saving of data modalities. On the other hand, we want
to point out that the different studies vary in aspects of
dataset composition, MCI conversion timeframe, and fea-
tures included, and thus a direct comparison is difficult. To
mitigate the difference in results caused by factors other
than the ML model, we used standard, well-established
image processing and feature extraction methods from MRI
and PET, adopted a commonly used MCI conversion time-
frame (36months), and utilized data from the world-class
ADNI database. Comparative prediction performance was
achieved using the proposed UMoS framework with signifi-
cantly improved data efficiency, which indicated the utility
of UMoS in this research field.

AD is a devastating neurodegenerative disease. Early pre-
diction of AD can lead to early intervention to potentially
slow down the disease’s progression. However, in previous
studies, the cost and accessibility of the different data
modalities used to obtain such early prediction did not raise
enough concern in developing ML-driven computer-aided
diagnosis/prognosis systems. The tracking of the progression
of AD can be a long-term and costly process for patients.
The proposed UMoS framework provided a clinical tool to

Table 2. Comparison between UMoS and the complete-modality method (i.e., the method that requires all patients to acquire complete modalities).

AUC ACC Sensitivity Specificity

Data efficiency
(% patients saved from
needing amyloid-PET)

Data efficiency
(% patients saved from

needing MRI and amyloid-PET)

UMoS 0.880 0.817 0.795 0.825 77% 25%
Complete-modality

method
0.905 0.830 0.840 0.827 0% 0%

P-value of difference 0.2 0.4 0.1 1.0 <0.001 <0.001
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assist with deciding what data modalities/diagnostic exams
each patient needs, and a modality/exam is added only if
the patient needs it. In this way, some patients can be saved
from needing all the modalities while the prediction accur-
acy for these patients would not be compromised, thus less-
ening the burden on patients and the healthcare system.

To gain some insight into patients with which character-
istics are more likely to be exempted from MRI or PET as
informed by UMoS, we performed some additional experi-
ments. Specifically, in one experiment we treated the
patients who are exempted from MRI and who are not as
two classes, and built a decision tree model to classify them
based on demographic and clinical characteristics of the
patients. We focused on patients who are converters because
the non-converters are heterogenous and include patients
who converted to AD in any number of years beyond three
years as well as patients whose MCI symptoms are not due
to AD as the underlying etiology. Our result showed that
patients who can be exempted from MRI have older age and
higher CDR (meaning worse symptoms). A similar result
was obtained in another experiment which aimed to find
out patients with which characteristics are more likely to be
exempted from PET. These results make sense because
patients with these characteristics, by nature, have a higher
chance of developing AD. Thus, it is more likely for UMoS
to find the predictions for these patients to be certain even
without imaging exams.

This study has some limitations, which drive future
research directions. First, an assumption of UMoS is that
every patient should have access to the first modality, such
as the demographic/clinical data and MRI in the two-modal-
ity case study. This assumption is met in our study because
we chose to include commonly used demographic and clin-
ical variables; MRI is also commonly available because it is
used in the standard of care in the U.S. for AD-related clin-
ical examinations. However, there could be situations when
this assumption cannot be satisfied. For example, the demo-
graphic/clinical data or/and MRI for some patients may be
missing due to problems that happen during the process of
data acquisition, storage, and preprocessing; the MRI scans
of some patients may not have sufficient quality to be used
by ML. Thus, there could be patients who do not have dem-
ographic/clinical data or/and MRI but only amyloid-PET.
To include the data of such patients in training the UMoS
model, one potential approach is to impute the missing
modalities. Future research may be conducted to design
proper imputation algorithms to be integrated with UMoS
and to assess the uncertainty of modality selection due to
the incorporation of imputed data in training the UMoS.

Second, the proposed sequential modality selection pro-
cess can be extended to include more and other data modal-
ities, such as genomic data, CSF biomarkers, and other
neuroimaging techniques (fMRI, tau-PET, etc.). Early pre-
diction of AD is a challenging task. These data modalities
have shown utility in predicting MCI conversion to AD. An
extended UMoS would help with selecting the needed
modalities for each patient to save costs.

Third, there are several aspects of the models in UMoS
that can be improved. The uncertainty threshold of each
model is currently determined by cross-validation. An inte-
grated approach may work better, which learns the threshold
together with model coefficients during the training process.
The models are based on pre-extracted features from ana-
tomically-defined brain regions. Future research may extend
this work and use deep learning models based on 3D
images. There is heterogeneity in the AD risk among
patients, depending on patient characteristics. Even though
we included some patient characteristic variables which are
known AD risk factors in our present model, a more care-
fully-crafted method is to stratify patients into cohorts with
different characteristic profiles and train a different model
to link imaging data with AD conversion status, and identify
a different uncertainty threshold for each cohort. This
method can be explored in future research. Last but not
least, this study focused on prediction of MCI conversion to
AD. Prediction of future risk of AD for individuals who are
currently cognitive normal is important to move the detec-
tion window even earlier, i.e., before MCI, which can lead
to significant improvement in the treatment potential of this
devastating disease.
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