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ABSTRACT
Machine learning has shown great promise for integrating multi-modality neuroimaging datasets
to predict the risk of progression/conversion to Alzheimer’s Disease (AD) for individuals with Mild
Cognitive Impairment (MCI). Most existing work aims to classify MCI patients into converters ver-
sus non-converters using a pre-defined timeframe. The limitation is a lack of granularity in differ-
entiating MCI patients who convert at different paces. Progression pace prediction has important
clinical values, which allow from more personalized interventional strategies, better preparation of
patients and their caregivers, and facilitation of patient selection in clinical trials. We proposed a
novel ADPacer model which formulated the pace prediction into an ordinal learning problem with
a unique capability of leveraging training samples with label ambiguity to augment the training
set. This capability differentiates ADPacer from existing ordinal learning algorithms. We applied
ADPacer to MCI patient cohorts from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and
the Australian Imaging, Biomarker & Lifestyle Flagship Study of Aging (AIBL), and demonstrated
the superior performance of ADPacer compared to existing ordinal learning algorithms. We also
integrated the SHapley Additive exPlanations (SHAP) method with ADPacer to assess the contribu-
tions from different modalities to the model prediction. The findings are consistent with the AD
literature.
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Machine learning; ordinal
learning; Alzheimer’s
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1. Introduction

Alzheimer’s Disease (AD) is a devastating neurodegenerative
disorder that currently affects 6.5 million people aged 65
and older in the U.S. (Alzheimer Association, 2022). The
symptoms typically start with mild memory loss and cogni-
tive decline, and inevitably progress with gradual deterior-
ation of other brain functions. There is currently no cure
for AD. It is widely accepted that disease-modifying treat-
ments will have greater potential when given at early stages
of the disease.

Mild Cognitive Impairment (MCI) is the prodromal
phase of the disease when patients show noticeable signs of
memory loss and cognitive decline, but their symptoms are
not severe enough to disrupt ability to carry out daily activ-
ities independently. Individuals with MCI progress to AD at
different paces. Also, in part because the MCI symptoms
could be caused by other underlying diseases, some individ-
uals with MCI may not eventually progress to AD dementia.

It is important to predict the likelihood of progression to
AD for MCI patients, since interventions may have greater
potential to slow down the disease progression, when given
early, before neuronal damage is extensive.

Neuroimaging has shown great promise to predict MCI
progression to AD. Especially, images of different types/mo-
dalities measure different aspects of the brain affected by the
disease. Combining data from different neuroimaging
modalities has demonstrated improved prediction power
than using a single modality alone. Two commonly used
neuroimaging modalities are volumetric magnetic resonance
imaging (MRI) and positron emission tomography (PET),
which measure brain structure and function, respectively.
There is an abundance of research for predicting MCI pro-
gression to AD by integrating MRI and FDG-PET—a type
of PET image that measures cerebral glucose metabolism,
together with some non-imaging data. The existing research
typically formulates the progression prediction into a
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classification problem, i.e., to classify an MCI subject as a
converter if the subject progresses/converts to AD within a
pre-defined timeframe, and a non-converter otherwise. Next,
we provide a brief review of this area, with a focus on meth-
ods developed in the recent few years.

Liu et al. (2017) proposed a view-aligned hypergraph
learning method, which divided data into views based on
different combinations of modalities and generated sparse
representation to construct a hypergraph in each view space.
Coherence among the views was obtained by using a view-
aligned regularizer to generate class probability scores. The
final classification was achieved by assembling the scores
through a multi-view label fusion method. Zhou et al.
(2019) proposed a stage-wise deep neural network, in which
the latent representations of different combinations of
modalities were learned at each stage of the neural network
by taking the learned representation from the stage before.
Zhou et al. (2019) proposed a latent representation learning
framework which learned a common latent representation
from multi-modality data and modality-specific latent repre-
sentations from each modality. The latent representations
were projected jointly to the label space for classification.
Zhou et al. (2020) further proposed a latent representation
learning method combined with ensemble support vector
machine (SVM). Zhang and Shi (2020) proposed a deep
multi-modal fusion network which utilized an attention
mechanism to extract features from neuroimages and
acquire relevant information. Based on the importance of
the data, the fusion rate of each modality was assigned auto-
matically and a hierarchical fusion method was adopted to
fuze the multiple modalities. Shen et al. (2021) proposed a
heterogeneous data fusion method to predict MCI conver-
sion, which included data of healthy controls and patients
with AD as auxiliary data to enhance the learning capacity
of the classifier.

While most existing research, including all aforemen-
tioned works, has focused on integrating FDG-PET with
MRI, more recently, amyloid-PET has been introduced to
study MCI conversion. Pathologically, AD is characterized
by amyloid plaques and neurofibrillary tangles (Holtzman
et al., 2011). Amyloid-PET imaging measures the accumula-
tion of amyloid plaques in the brain, which holds great
promise for predicting MCI conversion to AD, especially
when combined with structural MRI data (Rosenberg et al.,
2013; Schwarz et al., 2016). Some recent works developed
multi-modality models to classify MCI converters vs. non-
converters based on MRI and amyloid-PET. Xu et al. (2016)
proposed a weighted multi-modality sparse representation
method, in which the classification was done by minimizing
the weighted sum of mean-squared-errors of the predictions
by multiple modalities. Zhu et al. (2019) proposed a self-
paced multi-kernel learning method, in which a multi-kernel
linear regression with low rank constraints on the regression
coefficients was used to fuze heterogeneous modalities for
classification. Liu et al. (2021) proposed an incomplete-
multimodality transfer learning (IMTL) model, which built
predictive models for different combinations of modalities
and coupled the model estimation processes of different

combinations to allow for transfer learning. An Expectation-
Maximization (EM) algorithm was utilized to estimate logis-
tic regression parameters of IMTL and extended to a collab-
orative learning paradigm for patient privacy preservation.

Most of the existing studies, including all that have been
reviewed previously, formulated the prediction of MCI pro-
gression/conversion to AD into a binary classification prob-
lem. Using a pre-defined timeframe, these studies aimed to
classify each MCI patient into a converter if the patient pro-
gresses/converts to AD dementia within the timeframe, and
a non-converter otherwise. The limitation of these existing
studies is a lack of granularity in differentiating MCI
patients who convert at different paces. The capability of
predicting the pace of conversion for each MCI patient has
important clinical value. For example, more personalized
interventional strategies can be given to patients depending
on if an individual will convert to AD very fast, fast, moder-
ate, or slow. Patients can better prepare themselves and their
family members, planning in a timely manner to address
future care needs, by knowing their pace of conversion.
Additionally, this may help clinical trials select the appropri-
ate patient cohort.

In this paper, we formulate the prediction of the pace of
conversion into an ordinal learning problem, in which the
response variable has C classes with a natural order, i.e.,
class 1, 2, … , C represent different fast-to-slow paces of
conversion. Ordinal learning is a subfield in machine learn-
ing (ML). Various ordinal classification models have been
developed such as ordinal SVM (Chu and Keerthi, 2007),
ordinal Gaussian Process (Chu et al., 2005), and ordinal
logit regression (Harrell, 2015). Most of the existing algo-
rithms can only use precisely-labeled samples in training
with each sample belonging to one and only one ordinal
class. However, in some applications, it is difficult to obtain
precisely-labeled training samples due to cost, availability,
and other practical constraints, whereas it is common to
have samples with label ambiguity, i.e., we know that the
sample is from a range of several ordinal classes but do not
know which precise class the sample is from. Next, we give
an example to further illustrate this situation.

Consider an example of predicting four different paces of
MCI conversion to AD: conversion within the first year after
the MCI diagnosis (class 1), conversion between the first
and second year (class 2), conversion between the third and
the fifth year (class 3), and conversion beyond the fifth year
(class 4). One reason causing label ambiguity in the training
data is that the assessment times of different patients may
not perfectly align. For example, some MCI patients might
not be assessed within the first year but in the second year
when they were found to have converted to AD. In this
case, we can only know that these patients belong to class 1
or 2, but not the precise class of these patients. As another
example, some patients might be known to have not con-
verted to AD within the first year but then they dropped
out of the study. In this case, we can only know that these
patients do not belong to class 1, i.e., they belong to class 2,
3, or 4, but we do not know which of the last three classes
they precisely belong to. If conventional ordinal learning
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models were used, they would have to exclude these
ambiguously-labeled patients from the training set, which
would greatly reduce the training sample size. Motivated by
this gap in the existing research, we propose a new model
called ADPacer to integrate both ambiguously- and pre-
cisely-labeled samples for training a robust ordinal classifier
to predict the pace of conversion to AD for each patient
with MCI based on multi-modality neuroimaging (MRI and
PET) and non-imaging data.

The contributions of this paper are summarized as
follows:

� Our study focused on predicting the pace of MCI pro-
gression/conversion to AD by integrating multi-modality
neuroimaging and non-imaging datasets. This comple-
ments the existing studies in literature that mainly focus
on binary classification of converters and non-converters.
Prediction of progression pace has multifold benefits as
it would allow for individually tailored intervention, bet-
ter preparation of patients and caregivers, and more
nuanced patient selection strategies in clinical trials.

� We proposed a novel ADPacer model to leverage train-
ing samples with label ambiguity to augment the training
set with precisely-labeled samples. This capability differ-
entiates ADPacer from existing ordinal learning
algorithms.

� We applied ADPacer to MCI patient cohorts from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) and
Australian Imaging, Biomarker & Lifestyle Flagship Study
of Aging (AIBL), and demonstrated the superior per-
formance of ADPacer compared to existing ordinal
learning algorithms. We also integrated the SHapley
Additive exPlanations (SHAP) method with ADPacer to
assess the contributions from different modalities to the
model prediction. The findings are consistent with the
AD literature.

2. Method

2.1. Data description

This study used ADNI data as the primary source for devel-
oping and demonstrating ADPacer. As a supplementary, we
also included some data from AIBL. Due to the small sam-
ple size of the AIBL data, its role in this study is secondary,
limited to only providing some preliminary validation of the
model.

2.1.1. Primary data source from ADNI
Introduction to ADNI. ADNI (http://adni.loni.ucla.edu) was
launched in 2003 by the NIH, FDA, private pharmaceutical
companies, and nonprofit organizations, as a $60 000 000,
5-year public-private partnership. The primary goal of
ADNI has been to test whether MRI, PET, other biological
markers, and clinical and neuropsychological assessment can
be combined to measure the progression of MCI and early
AD. Determination of sensitive and specific markers of very
early AD progression is intended to aid researchers and

clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical
trials. The Principal Investigator of this initiative is Michael
W. Weiner, MD, VA Medical Center and University of
California-San Francisco. ADNI is the result of efforts of
many co-investigators from a broad range of academic insti-
tutions and private corporations, and subjects have been
recruited from over 50 sites across the US and Canada. For
up-to-date information, please see http://www.adni-info.org/.

Patient cohort. Pathologically, AD is characterized by amyl-
oid plaques and neurofibrillary tangles (Holtzman et al.,
2011). Using amyloid-PET imaging, MCI patients can be
divided into two subgroups according to published guide-
lines (Fleisher et al., 2011): amyloid-positive and amyloid-
negative. MCI patients in the amyloid-positive subgroup are
at an elevated risk of progressing to AD. Predicting the dif-
ferent paces of progression/conversion for patients in this
subgroup has important clinical value, which is the goal of
this study.

We present different fast-to-slow paces of conversion by
four ordinal classes. Class 1-4 represents conversion to AD
within one year, between one and two years, between three
and five years, and beyond five years from the time of a
clinical visit, t, when the patient is assessed as having amyl-
oid-positive MCI. t could correspond to either the initial
visit when the patient is first diagnosed with MCI, or any
follow-up visit when the patient’s condition remains as
MCI. t is also the time when ADPacer can be deployed. In
other words, ADPacer serves as a predictive tool that can be
deployed at any clinical visit when the patient is assessed as
having amyloid-positive MCI, and informs both the patient
and clinician about the future course of the disease. As a
final note about the definition of the classes, class 4 is rela-
tively more heterogeneous than the other classes because it
includes patients who eventually convert to AD but beyond
five years, as well as those whose MCI is not due to AD but
some other underlying conditions.

The dataset used in this study included 282 samples from
209 participants in ADNI. Each sample corresponds to a
clinical visit. A participant could have one or multiple sam-
ples if the corresponding clinical visit(s) meet the following
inclusion criteria: 1) the patient is assessed as having amyl-
oid-positive MCI at the visit, which can be either the initial
visit when the MCI diagnosis is first made or a follow-up
visit when the MCI status remains unchanged; 2) T1 MRI
and florbetapir-PET (a type of amyloid-PET) were collected
during the visit. According to the forementioned definitions
of the four ordinal classes, we found that among the 282
samples, 167 samples have precise class labels (46, 41, 45,
and 35 for class 1-4, respectively), whereas 115 samples have
label ambiguity (46 samples in class 2, 3, or 4; 69 samples in
class 3 or 4).

To prevent the risk of overfilling by including samples
from the same patient in both the training and validation
sets, we cautiously designed the cross validation (CV)
scheme in model evaluation by splitting CV folds among
patients not samples. In this way, samples from the same
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patient will be included in either the training or validation
set, but not in both, thus avoiding overfitting. Similar strat-
egies have been adopted by other papers (Zhou et al., 2019).
This CV scheme was followed in our case study in
Section 3.

2.1.2. Secondary data source from AIBL
AIBL was launched in 2006 in Australia, with purposes of
discovering biomarkers, cognitive characteristics, and health
and lifestyle factors that determine subsequent development
of symptomatic AD. Data was collected by the AIBL study
group. AIBL study methodology has been reported previ-
ously (AIBL Research Group, 2009). For more information,
please see https://aibl.csiro.au/. Our dataset includes 33
amyloid-positive MCI samples. Among them, 0, 9, 8, and 2
samples belong to class 1-4, respectively; 9 samples belong
to class 2, 3, or 4; 5 samples belong to class 3 or 4. It is
important to note that the acquisition of amyloid-PET for
these samples involved the use of the Pittsburgh Compound
B (PIB), a different tracer than ADNI. Due to this discrep-
ancy, the inclusion of AIBL data in our study only intends
to serve the purpose of some preliminary validation for the
ADPacer model trained using ADNI data. Further validation
is needed based on larger and more compatible datasets.

2.2. Image processing and feature computation

T1 MRI was processed by FreeSurfer v7.1 (Fischl, 2012) to
obtain volumetric and cortical thickness measures following
standard, published procedures (Schwarz et al., 2016).
Amyloid-PET was processed by a PET Unified Pipeline to
obtain regional standardized uptake value ratios (SUVR)
measurements for FreeSurfer defined regions (Su et al.,
2013, 2015).

156 features extracted from MRI were included: volumet-
ric measures for 68 cortical regions of interest (ROIs), 14
sub-cortical structures, and 6 ventricle structures; cortical
thickness measures for 68 ROIs. 151 features extracted from
amyloid-PET were included: SUVRs of 68 cortical ROIs, 14
sub-cortical structures, and 68 white matter structures; a
mean cortical SUVR feature. Additionally, in the ADNI
dataset, we included non-imaging features including basic
demographics such as gender, age and education level;
scores from commonly used cognitive and clinical assess-
ments such as the Mini-Mental State Examination (MMSE)
total score and the Clinical Dementia Rating Scale (CDR)
global score and sum-of-boxes score; status of the e4 allele
of apolipoprotein E (APOE) gene, which is a major genetic
risk factor of AD. In the AIBL dataset, some of the afore-
mentioned non-imaging features are missing, such as educa-
tion and CDR sum-of-boxes score.

2.3. Proposed model: ADPacer

Consider a training dataset that consists of n MCI patients.
Let xi denote the feature vector of the i-th patient, which
includes image features from MRI and PET as well as non-

imaging variables, i ¼ 1, :::, n: Let C denote the total number
of ordinal classes corresponding to different paces of pro-
gression to AD. For conventional ordinal classification mod-
els, each sample in the training set should belong to one
and only one ordinal class, i.e., each patient’s pace of pro-
gression should be precisely-labeled. For the proposed
ADPacer model, each sample in the training set can belong
to a range of classes, ½Yl

i ,Y
r
i �: When Yl

i < Yr
i , the range

includes more than one class, i.e., the patient has label ambi-
guity. Note that the notation ½Yl

i ,Y
r
i � includes the precise

label as a special case, i.e., when Yl
i ¼ Yr

i , the sample is pre-
cisely labeled. The goal of ADPacer is to leverage both pre-
cisely- and ambiguously-labeled samples in training in order
to build a robust ordinal classifier to differentiate the differ-
ent paces of progression for MCI patients.

A typical ordinal classifier includes a set of ranking func-
tions, fk, k ¼ 1, :::,C � 1, which satisfy the constraint of f1 �
::: � fC�1 (Chu and Keerthi, 2007; Chu et al., 2005; Harrell,
2015). To predict the label for a sample x, one can compute
the outputs from the ranking functions for this sample,
f1 xð Þ, … , fC�1 xð Þ: Then, the sample is assigned to class k if
fk xð Þ is the first one being non-negative in the series of the
ranking functions. For example, if all ranking functions are
non-negative, the sample is assigned to class 1. If the
f1 xð Þ < 0 and all f2 xð Þ, … , fC�1 xð Þ � 0, then the sample is
assigned to class 2. If all ranking functions are negative, the
sample is assigned to class C: To train such ranking func-
tions that compose an ordinal classifier, conventional algo-
rithms can only use precisely-labeled samples (Chu and
Keerthi, 2007; Chu et al., 2005; Harrell, 2015). ADPacer
aims to include both precisely- and ambiguously-labeled
samples in training. To achieve this, we first propose an
alternative view of the ranking functions as a set of binary
classifiers, i.e.,

f1 : xi ! class 1 vs: class ½2, :::,C�
..
.

fk : xi ! class ½1, :::, k� vs: class ½kþ 1, :::,C�
..
.

fC�1 : xi ! class ½1, :::,C � 1� vs: class C

f1 � ::: � fC�1

(1)

Each fk is responsible for classifying a sample into the
“left” or “right” side of k, where the left side includes classes
ordered before k (including k) whereas the right side
includes classes ordered after k: It can be proved that using
this set of binary classifiers will guarantee to classify a test
sample into one and only one classes, i.e., it can achieve the
same goal of any conventional ordinal classifier at the test
stage when the trained model is deployed, whereas the
advantage of the proposed binary view is that it allows the
training stage to accommodate samples with label ambiguity.

To train the proposed set of binary classifiers, we first
identify a subset of samples in the training set, Dk, which
can be used to train each binary classifier fk: Dk should
include samples whose range of classes, ½Yl

i ,Y
r
i �, is either on
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the left side of k, which means Yr
i � k, or on the right side

of k, which means k < Yl
i : That is, Dk can include ambigu-

ously-labeled samples as long as the range of classes for
those samples are completely on the left or right side of k,
i.e., Dk excludes samples whose range of classes include k:
Mathematically, we can denote Dk as

Dk ¼ Dl
k [ Dr

k

¼ xi, ½Yl
i ,Y

r
i �

� �
: Yr

i � k, i ¼ 1, :::, n
n o

[ xi, ½Yl
i ,Y

r
i �

� �
: k < Yl

i , i ¼ 1, :::, n
n o

: (2)

Furthermore, to keep the intrinsic order of f1 � ::: �
fC�1, we introduce intercepts/thresholds b1, :::, bC�1 by
enforcing b1 � ::: � bC�1, and let fk ¼ hþ bk, k ¼ 1, :::,
C � 1, where h is a shared function. We adopt the support
vector formulation for h due to the success of SVM in vari-
ous applications, and let h xð Þ ¼ wT/ xð Þ, which / contains
non-linear transformations of the features. Note that we do
not need to define the explicit form of the non-linear trans-
formations and can use the kernel tricks similar to SVM
(Chu and Keerthi, 2007). Finally, we propose the ADPacer
model formulation as the following optimization problem:

minw, bkf gC�1
k¼1

1
2
wTw (3)

subject to:

wT/ xið Þ þ bk � 1� nki , i 2 Dl
k

wT/ xjð Þ þ bk � �1þ fkj , j 2 Dr
kP

i2Dl
k
nki þ

P
j2Dr

k
fkj � �k

nki � 0, i 2 Dl
k; fkj � 0, j 2 Dr

k

9>>>>=
>>>>;
for k ¼ 1, :::,C � 1

(4)

b1 � ::: � bC�1 (5)

Among the C � 1 sets of constraints in (4), each set cor-
responds to a binary classifier fk with the purpose of achiev-
ing max-margin separation between class ½1, :::, k� vs: class
½kþ 1, :::,C�: nki and fkj are slack variables. �k is a tuning

parameter.
To efficiently solve the ADPacer optimization, we derive

the dual form of the primal problem in (3)–(5), which is
summarized in Proposition 1. The proof is given in the
Appendix.

Proposition 1: Let Dl
k

�� �� and Dr
k

�� �� denote the sample sizes
of the training subsets, Dl

k and Dr
k, respectively, k ¼

1, :::,C � 1: Let Y denote a diagonal matrix, Y ¼ diagð1, :::, 1
zfflffl}|fflffl{Dl

1j j
,

�1, :::, � 1
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Dr

1j j
, :::, 1, :::, 1

zfflffl}|fflffl{Dl
C�1j j

, �1, :::, � 1
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Dr

C�1j j
Þ: Furthermore, for any

sample i 2 Dk ¼ Dl
k [ Dr

k, introduce an indicator variable

yki ¼ 1 or � 1 to indicate if xi 2 Dl
k or xi 2 Dr

k, respectively.
Also, let K denote a covariance matrix with Kij ¼
/ xið ÞT/ðxjÞ ¼ k xi, xjð Þ that can be computed by a kernel

function defined on the feature space. Then, the dual form of
the primal ADPacer optimization in (3)–(5) is:

minc
1
2
cTYKYc�

XC�1

k¼1

X
i2Dk

aki ,

subject to: XC�1

k¼1

X
i2Dk

aki y
k
i ¼ 0, (6)

XL

k¼1

X
i2Dk

aki y
k
i � 0, L ¼ 1, :::,C � 2, (7)

0 � aki � kk, i 2 Dk, k ¼ 1, :::,C � 1,

where c ¼ a1i2 D1

n o
, :::, aC�1

i2DC�1

n o� �T

are the Lagrange

multipliers, and kk, k ¼ 1, :::,C � 1, are tuning parameters.

The dual optimization is a convex quadratic program-
ming problem, which can be solved by a standard solver
such as CPLEX. After the optimal solution ĉ is obtained, we
can obtain the optimal solution in the primal problem.
Specifically, we can get:

ŵ ¼
XC�1

k¼1

X
i2Dk

âki y
k
i / xið Þ: (8)

b̂k can be estimated using any training sample that satisfies
the KKT condition, i.e.,

b̂k ¼ yki � ŵT/ xið Þ, (9)

with xi 2 Dk and 0 < aki < kk; k ¼ 1, :::,C � 1: This con-
cludes the training process of ADPacer.

To apply the trained ADPacer model to make a predic-
tion for any new sample x, we can compute the ranking
functions for the new sample as:

fk xð Þ ¼ ŵT/ xð Þ þ b̂k ¼
XC�1

k¼1

X
i2Dk

âki y
k
i k xi, xð Þ þ b̂k:

(10)

Finally, based on the computed ranking functions, the new
sample is assigned to class k if is fk xð Þ is the first one being
non-negative in the series of the ranking functions, i.e.,

k̂ ¼ argmin
k
fk : fk xð Þ � 0g: (11)

Please see Algorithm 1 for an overview of the entire
training and application process of ADPacer.

Algorithm 1: ADPacer

Model Training Phase

Input: training set: D ¼ ðxi, Yl
i ,Y

r
i

� 	Þ
 �
i¼1, :::, n; setting of

tuning parameters: kk, k ¼ 1, :::,C � 1; form of
the kernel function k :ð Þ

Output: estimated model parameters: ĉ ¼ â1i2 D1

n o
, :::,

�
âC�1
i2DC�1

n o�T
, ŵ, b̂k, k ¼ 1, :::,C � 1

Procedure:

1. Reformate the training set to fit the alternative view of
ordinal classification as a set of binary classifiers in (1):
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a. For each binary classifier fk, k ¼ 1, :::,C � 1, pull
training samples into Dk using (2) and create the
binary label as yki ¼ 2I xi 2 Dl

k

� 
� 1:
b. Reformat the training set as D0 ¼ xi, yki

� 

: i 2


Dk, k ¼ 1, :::,Cg
2. Solve the dual ADPacer optimization in Proposition 1

using a convex quadratic solver and obtain the optimal

solution ĉ ¼ â1i2 D1

n o
, :::, âC�1

i2DC�1

n o� �T

:

3. Obtain the optimal solution for the primal ADPacer

optimization in (3)–(5) using (8) and (9), i.e., ŵ ¼PC�1
k¼1

P
i2Dk

âki y
k
i / xið Þ; b̂k ¼ yki � ŵT/ xið Þ with xi 2

Dk and 0 < aki < kk; k ¼ 1, :::,C � 1:

Model Application Phase
Input: estimated model parameters from training: ĉ, ŵ,

b̂k, k ¼ 1, :::,C � 1; reformatted training set D0; a
new sample x

Output: Predicted ordinal class k̂ for the new sample
Procedure:

1. Compute the ranking functions for the new sample x
using (10): fk xð Þ ¼ ŵT/ xð Þ þ b̂k ¼

PC�1
k¼1

P
i2Dk

âki y
k
i

k xi, xð Þ þ b̂k, ¼ 1, :::,C � 1:
2. Predict the ordinal class using (11): k̂ ¼ argminkfk :

fk xð Þ � 0g

Implementation details. Previously we have discussed the gen-
eral ADPacer model. Next, we will present the detailed imple-
mentation of ADPacer to the specific dataset described in
Section 2.1 and 2.2. Our dataset has four ordinal classes cor-
responding to fast-to-slow paces of progression, which
means that there are three tuning parameters in the dual
optimization of ADPacer, k1, k2, k3: Our dataset is fairly
balanced in each class. Thus, we set k1 ¼ k2 ¼ k3 ¼ k: We
used CV based on patients not samples to avoid overfitting
(see more discussion in Section 2.1), and selected the k with
the highest CV accuracy. A final detail to mention is that
because of the high-dimensional features used to train
ADPacer, we embedded a feature weighting scheme within
the CV. Specifically, the conventional kernel is computed by
weighting all features equally. For example, in the commonly
used radial basis function (RBF) kernel, the kernel between
two samples xi and xj is expð�h

Pp
l¼1 xi, l � xj, lð Þ2Þ: To esti-

mate feature-specific weights hl, l ¼ 1, :::, p, we adopted a
simple idea of pre-training a linear ADPacer (i.e., ADPacer
with a linear kernel), from which we could obtain the fea-

ture weights as hl ¼
PC�1

k¼1

P
i2Dk

aki y
k
i xi, l: Then, we used

these weights in the RBF kernel to re-train a nonlinear
ADPacer. The nonlinear ADPacer was used as the final
ordinal classifier to leverage the flexibility provided by a
nonlinear model. The pre-trained linear ADPacer served the
purpose of estimating the feature-specific weights to inform

the nonlinear kernel. This simple strategy turned out to
work quite well in our case study.

2.4. Integration of ADPacer and SHAP for model
interpretation

To help interpret the ADPacer model, we integrated a popu-
lar, model-agnostic method called SHapley Additive
exPlanations (SHAP) (34) with ADPacer, with purpose of
quantifying the contributions of different data modalities to
the pace prediction. Specifically, we used SHAP to estimate
the contribution score of each of the three data modalities
(e.g., MRI, amyloid-PET, and non-imaging data), namely
the SHAP value, by computing the difference in the
ADPacer’s prediction when the modality is included vs.
excluded. The higher the absolute SHAP value of a data
modality, the greater contribution of the modality.

3. Results

We applied ADPacer to the ADNI dataset described in Sections
2.1 and 2.2. Specifically, we used a 30-fold CV scheme in which
the precisely-labeled samples were divided into 30 folds. One
fold was left out as the validation set, whereas the other folds
were combined with the ambiguously-labeled samples to form
the training set. The rationale behind employing a 30-fold CV is
similar to the use of leave-one-out CV in studies with limited
samples size, both aiming to allocate more of the available data
in training to build a more reliable model. It is important to
note that in this CV scheme, ambiguously-labeled samples were
only included to help model training. When the trained model
is in use, it should and will classify each sample into a precise
label. This is why only precisely-labeled samples were included
in the left-out validation fold, such that the CV accuracy reflects
the performance of the model for classifying each sample into
the precise label it belongs to.

A special caution in the training-validation split was that we
avoided putting samples from the same patient in both training
and validation, which may cause overfitting, as mentioned in
Section 2.1. ADPacer was trained using the training set and the
model was then applied to classify samples in the validation set.
This process was iterated over the 30 folds. We reported the
overall accuracy and class-specific accuracy based on the CV in
Table 1. We also composed a confusion matrix to show the dis-
tribution of correctly and wrongly classified samples in Figure 1.

In comparison, we applied three existing ordinal learning
algorithms to the same dataset, including ordinal SVM (Chu
and Keerthi, 2007), ordinal logistic regression (Harrell,
2015), and ordinal random forest (Hornung, 2020). The
same 30-fold CV scheme as ADPacer was used, except that
these existing methods could not incorporate ambiguously-
labeled samples in training. We reported the overall accur-
acy, class-specific accuracy, and confusion matrix of each
method in Table 1 and Figure 1 to compare with ADPacer.
It is clear from the results that ADPacer achieved the high-
est overall accuracy and class-specific accuracy.
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Additionally, we applied several multi-class classification
algorithms including multi-class SVM, logistic regression,
and random forest to the same dataset. These algorithms
had low overall accuracy (range: 0.32-0.39), which was not
only significantly worse than ADPacer but also worse than
most existing ordinal learning algorithms. This result empir-
ically justified the appropriateness of considering the four
different paces of conversion to AD as ordinal classes.

Furthermore, as mentioned in Introduction, most existing
research in predicting MCI conversion to AD focused on a
binary classification of MCI patients into converters vs. non-
converters based on a pre-defined timeframe. To facilitate a
meaningful comparison between ADPacer and the reported
binary classification performance in the literature, we eval-
uated the accuracies of ADPacer in three binary classifica-
tion tasks: 1) predicting MCI conversion to AD within or
beyond one year (class 1 vs. 2-4); 2) predicting MCI conver-
sion within or beyond two years (class 1-2 vs. 3-4); 3)
predicting MCI conversion within or beyond five years
(class 1-3 vs. 4). It is worth noting that this evaluation did
not require model re-training. ADPacer remained trained as
an ordinal learning model, but we computed the accuracy of
the model for each binary task. For instance, in task 1), if a
sample from class 2, 3, or 4 is predicted to be in any of
these classes, it is considered correctly classified, even if the
true and predicted ordinal classes of the sample do not
exactly match. In a similar way, we evaluated the accuracies
of the existing ordinal learning methods in the three binary
classification tasks. In addition, for binary classification
tasks, it is natural to train models specifically designed for

binary classification. To this end, we trained three widely-
used binary classification models including binary SVM,
logistic regression, and random forest. Unlike existing
ordinal learning models that cannot incorporate ambigu-
ously-labeled samples in training, these binary classifiers can
accommodate such samples. For instance, if a patient has
not converted to AD within the first year and subsequently
dropped out of the study, the data of this patient cannot be
included in training the existing ordinal learning models but
can be included in training binary classifiers in task 1).
Therefore, in training binary classifiers, we included ambigu-
ously-labeled samples whenever possible for each binary
task.

Table 2 summarizes the results of ADPacer and existing
ordinal learning models used for the binary classification
tasks, as well as results of the binary classifiers. ADPacer
achieved superior accuracies compared to all the other
methods. Also, comparing Tables 1 and 2, we can observe
that when a trained ordinal learning model is used to make
a binary classification, its accuracy is higher than that when
used to make an ordinal classification. This is expected
because the former does not require an exact match between
the predicted and true ordinal classes of samples.
Additionally, it is interesting to observe that despite the cap-
ability of including ambiguously-labeled samples in training,
binary classifiers performed worse than most ordinal learn-
ing algorithms. This may be due to the need to merge sam-
ples from multiple ordinal classes into a single class when
training a binary classifier. The inherent heterogeneity pre-
sent within these combined classes can make it challenging
to identify an optimal binary classification boundary. This
result reinforced the appropriateness of our focus on pace
prediction using ordinal learning in this paper. ADPacer
further expanded the capability of ordinal learning by incor-
porating ambiguously-labeled samples in training.

Also, we showed the contribution of each data modality
using the SHAP method in Figure 2.

Finally, we applied the ADPacer model trained using
ADNI data to AIBL samples. For this purpose, the model
was re-trained using all the ADNI data under the optimal
tuning parameters found under CV. Then, the trained

Table 1. Accuracies of ADPacer and existing ordinal learning methods based on CV.

Overall accuracy Class 1 accuracy Class 2 accuracy Class 3 accuracy Class 4 accuracy

ADPacer 0.83 0.83 0.83 0.84 0.79
Ordinal SVM 0.71 0.78 0.68 0.78 0.60
Ordinal logistic regression 0.60 0.72 0.46 0.49 0.76
Ordinal random forest 0.35 0.69 0.024 0.20 0.49

Figure 1. Confusion matrices of ADPacer and existing ordinal learning methods
based on CV.

Table 2. Accuracies of ADPacer, existing ordinal learning methods, and binary
classifiers in binary classification tasks based on CV.

Accuracy of
classifying

class 1 vs 2-4

Accuracy of
classifying
1-2 vs 3-4

Accuracy of
classifying class

1-3 vs 4

ADPacer 0.94 0.94 0.95
Ordinal SVM 0.92 0.89 0.89
Ordinal logistic regression 0.83 0.82 0.89
Ordinal random forest 0.63 0.67 0.72
Binary SVM 0.67 0.78 0.30
Binary logistic regression 0.70 0.75 0.69
Binary random forest 0.64 0.66 0.66
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model was applied to predict the ordinal class of each sam-
ple in AIBL. During this training-application process, two
strategies were implemented to mitigate the discrepancies
between the two datasets. First, to mitigate the impact of
different tracers used to acquire amyloid-PET in the ADNI
and AIBL datasets, the features extracted from amyloid-PET
were standardized within each dataset separately. Second, to
address the discrepancy that some non-imaging features in
ADNI are unavailable in AIBL, ADPacer was trained using
only the overlapping non-imaging features along with imag-
ing features.

To evaluate the performance of ADPacer on AIBL data,
it is unreliable to evaluate its ordinal classification accuracy
because the precisely-labeled samples in each ordinal class
are too small. Thus, we adopted an alternative approach by
evaluating the accuracy of ADPacer used for binary classifi-
cation tasks. Given the sample size constraint, our focus was
narrowed down to two binary classification tasks: (a) class
1-2 vs. 3-4 (24 samples); (b) class 1-3 vs. 4 (19 samples). On
the AIBL data, ADPacer achieved accuracies of 0.75 and
0.84 accuracies for task (a) and (b), respectively. In compari-
son, the highest accuracies achieved by the other ordinal
learning models were 0.68 and 0.74, which were lower than
ADPacer.

4. Discussion

We proposed an ADPacer model to predict the fast-to-slow
paces of conversion to AD for MCI patients by integrating
both ambiguously- and precisely-labeled samples in training.
The capability of leveraging ambiguously-labeled samples
differentiated ADPacer from existing ordinal learning mod-
els, and improved the training capability especially when
precisely-labeled samples are limited. We applied ADPacer
to predict the fast-to-slow paces of conversion to AD for
MCI patients based on multi-modality neuroimaging and
non-imaging data. While there is existing work using
machine learning models to classify MCI patients into con-
verters or non-converters based on a pre-defined time
frame, the present study focused on conversion pace predic-
tion, which greatly complemented the existing research. On
the ADNI data, ADPacer achieved significantly higher
accuracy (0.83 overall accuracy) than other ordinal learning
models (the second best, ordinal SVM, has only 0.71 overall
accuracy). The class-specific accuracy of ADPacer was also

fairly balanced, with 0.83-0.84 for class 1-3, and 0.79 for
class 4. The reason for a slightly lower class-4 accuracy may
be that this class, defined as MCI patients who have not
converted to AD in five years, has substantial heterogeneity.
That is, class 4 includes MCI patients who convert to AD in
any number of years beyond five, as well as patients whose
MCI symptoms may be due to other underlying conditions
that are not AD-related so that they will not convert to AD
dementia. Compared to ADPacer, the other ordinal learning
models had more imbalanced class-specific accuracy and
low overall accuracy. The reason is that these existing mod-
els can only include precisely-labeled samples in training.
Since the precisely-labeled samples in each class are quite
limited in this dataset whereas the feature dimension is
high, these existing models may have suffered more from
curse of dimensionality. In contrast, ADPacer was capable of
additionally including ambiguous-labeled samples, so that
the total training samples size nearly doubled that by the
other models. This alleviation of curve of dimensionality led
to more robust model training of ADPacer and higher
accuracy.

In the existing research that predicts MCI conversion as
a binary classification problem, the reported accuracy ranges
from 0.743-0.898 based on integrating MRI and PET with
some studies additionally including non-imaging datasets
(Liu et al., 2017, 2021; Schwarz et al., 2016; Shen et al.,
2021; Zhu et al., 2019). This range can hardly be taken as a
point of reference to our work because the existing studies
focused on binary but not pace/ordinal class prediction.
Also, the various studies differ in the dataset and imaging/
non-imaging features used. Nevertheless, if we just take the
face values of the reported accuracies in the various existing
studies and compare with that in the present study, our
accuracy is comparable to the existing studies especially con-
sidering that pace/ordinal classification is a more challenging
task than binary classification. Furthermore, we demon-
strated that ADPacer achieved superior accuracy (0.94-0.95)
if used as a binary classifier.

Because we embedded a feature weighting scheme in
training ADPacer (under “implementation details” in
Section 2.3), we can naturally know the relative importance
of features. We found that, among the top ranked features,
regions such as hippocampus, superior_parietal, inferior_
temporal, amygdala, and thalamus have been widely
reported in the literature (Cai et al., 2017; Desikan et al.,
2010; Jacobs et al., 2012; Pini et al., 2016). Furthermore, by
using the method in Section 2.4, we can know the modality-
level contribution to the model prediction. Specifically,
according to absolute SHAP value of each modality in
Figure 2, both MRI and amyloid-PET contributed more
than non-imaging data. Neuroimaging data contains rich
information about brain alteration associated with AD,
which has been demonstrated in various studies (van
Oostveen and de Lange, 2021). Between MRI and amyloid-
PET, MRI contributed slightly more. Overall, all the
included neuroimaging and non-imaging modalities more or
less contributed to the pace prediction of MCI conversion
to AD.

Figure 2. Modality contributions to ADPacer prediction.
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Recognizing the value of including a separate dataset to
evaluate ML models, we applied the ADPacer model trained
using ADNI data to the data from another public dataset,
AIBL. Our results showed that ADPacer performed better
than existing methods. On the other hand, we acknowledge
the limitations associated with the AIBL dataset, which
make it less than ideal as a validation set for ADPacer.
These limitations include the limited sample size, the utiliza-
tion of a different tracer for amyloid-PET compared to
ADNI, the unavailability of certain non-imaging features,
and the sub-optimal nature of our evaluation approach due
to the constraint of the small sample size. Therefore, the
inclusion of AIBL data in our study was only intended to
serve the purpose of some preliminary validation for the
ADPacer model. Further validation is needed based on
larger and more compatible datasets.

This study has several limitations. First, our dataset has a
relatively small sample size, which is inherent to the nature
of the study that focused on amyloid-positive MCI patients.
This focus has significant clinical value, as this patient sub-
group has an elevated risk of progressing to AD and the
ability of accurately predicting their paces of progression
would greatly help the patient and clinician for decision
making. However, this focus limits the sample size. Future
research is needed to validate the findings in this paper
using larger datasets. Second, this study includes volumetric
MRI, amyloid-PET, and some demographic and clinical var-
iables for pace prediction. There are other structural and
functional neuroimages as well as non-imaging datasets such
as CSF and genomics, which could provide additional value
and help improve accuracy. Third, this study included four
ordinal classes with relatively balanced sample sizes which
may not accurately represent the population-level distribu-
tion of patients. Currently, there is a lack of population-level
statistics in this regard, due to relative recency of the criteria
for defining amyloid-positivity, limited access to amyloid-
PET exams for patients, and clinical expertise required for
image interpretation, which lead to limited sample sizes for
conducting population studies (Klunk et al., 2015; Su et al.,
2019; Zhang et al., 2014). In this study, we chose to include
all available samples in the ADNI database according to the
inclusion criteria stated in Section 2.1. In the future, refine-
ment of class definition and sample inclusion can be done
to align with population-level statistics and enhance result
representativeness.

Last but not least, the ADPacer algorithms have some
limitations that could be improved in future research.
Specifically, ADPacer is kernel-based model. While we used
the SHAP method for interpreting feature contributions, this
occurs post-analysis. Regression and decision tree are well-
known white-box methods, possessing inherent interpret-
ability. Thus, it would be interesting to extend ADPacer by
using regression or decision tree as the base model and
modifying it to have the capability of incorporating both
precisely- and ambiguously-labeled samples in training.
Furthermore, while the case study has a relatively balanced
sample size across different classes, this may not hold true
in other applications of ADPacer. Thus, future research may

investigate how to optimize the performance of ADPacer in
the presence of class imbalance, using strategies such as data
resampling, class weighting and cost-sensitive training.

5. Conclusion

We developed an ADPacer model to integrate both ambigu-
ously- and precisely-labeled samples for training a robust
ordinal classifier to predict the fast-to-slow paces of MCI
conversion to AD based on multi-modality neuroimaging
and non-imaging datasets. ADPacer showed significantly
better performance than existing ordinal learning models.
Prediction of progression pace has multifold benefits in
aspects of facilitating individually-tailored intervention, bet-
ter preparation of patients and caregivers, and more
nuanced patient selection strategies in clinical trials.
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Appendix

Proof of Proposition 1: Let c ¼ ðfa1i2 D1
g, :::, faC�1

i2DC�1
gÞT , �ki , lk

for i and k, be the Lagrange multipliers, and kk, k ¼ 1, :::,C� 1, are
tuning parameters. The Lagrangian for the primal ADPacer optimiza-
tion in (3)–(5) is
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By introducing a new notation s satisfying ski ¼ nki for i 2 Dl
k and

ski ¼ fki for i 2 Dr
k, k ¼ 1, :::,C� 1, L can be simplified as

L ¼ 1
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(12)

where yki ¼ 1 or� 1 indicates if xi 2 Dl
k or xi 2 Dr

k, respectively.
Then the optimal solution of the primal problem in (3)–(5) is

equivalent to the solution of the following optimization:

max
c, �, l

minw, b, sL: (13)

The KKT conditions for the primal problem require the following
to hold:
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Then we have
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Inserting (16) and (17) into the optimization in (13), after simplifi-
cation we can get
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Furthermore, according to (14), we have
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Then inserting (16) into the optimization in (18), we can have
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Additionally, the conditions in (14) give rise to the constraints of
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The conditions in (17) give rise to the constraints of
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Finally, the dual problem becomes
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